焊接机器人介绍

焊接机器人介绍
焊接机器人介绍

目录

焊接机器人介绍...................................................................................................... 错误!未定义书签。

1焊接机器人的应用背景 (2)

1.1焊接机器人的概述 (2)

1.1.1焊接机器人的优点 (2)

1.1.2 焊接机器人的发展历史 (3)

1.2焊接行业中采用焊接机器人的重要性 (5)

1.3焊接机器人对车身焊接的现状 (5)

1.4某款微型汽车车身制造中机器人焊接与人工焊接的详细对比 (6)

1.4.1焊接机器人SPQRC (6)

1.4.2人工焊接SPQRC (7)

1.4.3对比总结 (8)

1.5微型汽车车身制造焊接工艺中需要注意的问题 (9)

1.6点焊使用中存在的问题 (10)

1.7焊接机器人在某条重卡装焊线上应用时存在的问题及经验汇总 (11)

2 焊接机器人使用中的共性关键技术 (12)

2.1焊缝跟踪技术与离线编程技术的研究 (12)

2.2焊接机器人焊接路径规划 (14)

2.3对多台焊接机器人及外围设备的协调控制技术的研究 (15)

2.4对焊接机器人采用弧焊电源的研究 (15)

2.5仿真技术及机器人用焊接工艺方法 (15)

2.6焊接工艺的制定 (16)

2.6.1焊接工艺的研究内容 (16)

2.6.2焊接工艺要素 (16)

2.7焊接机器人专用夹具的设计 (17)

焊接机器人介绍

1焊接机器人的应用背景

工业制造领域中应用最广泛的机器人是焊接机器人,特别是在汽车制造业中,机器人使用量约占全部工业机器人总量的30%,而其中的焊接机器人数量就占去50%左右。

焊接是现代机械制造业中必不可少的一种加工工艺方法,在汽车制造、工程机械、摩托车等行业中占有重要的地位。过去采用人工操作焊接加工是一项繁重的工作,随着许多焊接结构件的焊接精度和速度要求越来越高,一般工人已难以胜任这一工作。此外,焊接时的电弧、火花及烟雾等对人体会造成伤害,焊接制造工艺的复杂性、劳动强度、产品质量、批量等要求,使得焊接工艺对于自动化、机械化的要求极为迫切,实现机器人自动焊接代替人工操作焊接成为几代焊接人的理想和追求目标。汽车制造的批量化、高效率和对产品质量一致性的要求,使焊接机器人在汽车焊接中获得大量应用。汽车制造中的机器人自动焊接所占比重也超过建筑、造船、钢结构等其它行业,这也反映出汽车焊接生产所具有的自动化、柔性化、集成化的制造特征。焊接机器人是焊接自动化的革命性进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化生产方式。刚性自动化生产设备通常都是专用的,只适用于中、大批量的自动化生产,因而在很长一段时期内中、小批量产品的焊接生产中,仍然以手工焊接为主要的焊接方式,而焊接机器人的出现,使小批量产品自动化焊接生产成为可能。由于机器人具有示教再现功能,完成一项焊接任务只需要人给机器人作一次示教,随后机器人可精确的再现示教的每一步操作。如果需要机器人去作另一项工作,无需改变任何硬件,只要对机器人再作一次示教或编程即可,因此,在一条焊接机器人生产线上,可同时自动生产若不同产品。

1.1焊接机器人的概述

焊接机器人是集机械、计算机、电子、传感器、人工智能等多方面知识技术于一体的现代化、自动化设备。焊接机器人主要由机器人和焊接设备两大部分构成。机器人由机器人本体和控制系统组成。焊接设备以点焊为例,则由焊接电源、专用焊枪、传感器、修磨器等部分组成。此外,还有相应的系统保护装置。

1.1.1焊接机器人的优点

(1) 稳定和提高焊接质量,保证焊缝均匀性;

(2) 提高劳动生产率,一天可24小时连续工作:

(3) 改善工人劳动条件,可以在有毒、有害的环境下工作;

(4) 降低对工人操作技术的要求;

(5 )可实现小批量产品的焊接自动化;

(6) 能在空间站建设、核能设备维修、深水焊接等极限条件下完成人工无法或难以进行的焊接作业;

(7 )为焊接柔性生产线提供技术基础。

1.1.2 焊接机器人的发展历史

从二十世纪六十年代焊接机器人诞生和发展到现在,焊接机器人研究大致分为三代:第一代是指基于示教再现方式的焊接机器人,由于其操作简便、不需要环境模型,并且可以在示教时修正机械结构带来的误差,因此在焊接生产中得到大量的应用。第二代是指基于一定传感器传递信息的离线编程机器人,它得益于焊接传感技术和离线编程技术的不断改进和快速发展,目前这类机器人己经进入实际应用研究阶段。第三代是指具有多种传感器,在接收作业指令后可根据客观环境自行编程的高度适应性智能焊接机器人。

这一代机器人由于人工智能技术发展的滞后,目前正处于实验研究阶段。

随着计算机智能控制技术的不断发展进步,焊接机器人从单一的示教再现型向多传感器、智能化、柔性化加工方向发展必将是下一个目标。最近几十年来,随着焊接技术和其他科学技术的迅猛发展,出现了激光、电子束、等离子及气体保护焊等新的焊接方法以及高质量、高性能焊接材料的不断发展和完善,使得几乎所有的工程材料都能实现焊接。而且焊接自动化技术发展迅速,自动化焊接的生产方式越来越多的代替了手工焊接生产方式。在各种焊接技术及焊接系统中,以电子技术、信息技术及计算机技术综合应用为标志的焊接机械化、自动化系统乃至焊接柔性制造系统,是信息时代焊接技术的重要特点。实现焊接产品制造的自动化、柔性化与智能化己成为必然趋势。

采用机器人焊接己成为焊接自动化技术现代化的主要标志。焊接机器人由于具有通用性强、工作可靠的优点,受到人们越来越多的重视。在焊接生产中采用机器人技术,可以提高生产率、改善劳动条件、稳定和保证焊接质量、实现小批量产品的焊接自动化。国外发达工业国家在制造业中应用工业机器人技术相当广泛,从上个世纪六十年代初焊接工业机器人刚诞生不久就开始应用机器人进行焊接加工,经过四十多年的技术发展和经验积累,不仅技术上相当成熟,而且在实际应用上也很

成功,国际上许多大型汽车企业都广泛采用机器人进行汽车制造的焊接加工,大大提高了汽车产品的质量和生产效率,获得很好的经济效益和社会效益。

美国通用、福特,日本丰田、日产,德国大众、宝马等大型汽车企业基本上建立了全部采用机器人焊接的车身焊接生产线。发达国家焊接自动化生产从最初的半自动化,采用焊接机器人代替手工焊接,但上下料、待焊工件定位夹紧等工作仍需手工完成,现今已发展成柔性自动化焊接生产线,整个焊接过程均自动完成。当今的汽车产品改型换代相当频繁,不同的车型需要不同的焊接生产线,如果重建新的焊接生产线,要花费大量资金,而原有的焊接生产线则被闲置或报废,造成极大浪费。假如焊接生产线具有柔性,则只须对生产线进行局部改造就可以满足新产品车型的生产需要。自动化焊接生产线是由焊接设备、焊接工装夹具及自动控制和机械化运输系统等组成,其中焊接设备的柔性是决定焊接生产线柔性的关键。而焊接机器人是机体独立、动作自由度多、程序变更灵活、自动化程度高、柔性程度好的焊接设备,具有多用途功能、重复定位精度高、焊接质量高、运动速度快、动作稳定可靠等特点,是焊接设备柔性化的最佳选择。

我国的机器人焊接应用起步较晚,二十世纪七十年代末,上海电焊机厂与上海电动工具研究所合作研制的直角坐标机械手,成功地应用于“上海牌”轿车底盘的焊接,可以看作是我国机器人焊接应用的萌芽,虽然这还不是严格意义上的机器人焊接。到了二十世纪八十年代,我国应用机器人焊接生产的发展开始明显加快,主要是在一些大、中型的汽车、摩托车、工程机械等制造业企业中广泛采用,特别是在汽车制造企业,焊接机器人的应用最为广泛。1984年“一汽”成为我国最早引进焊接机器人进行汽车制造的企业,先后从德国KUKA公司引进了3台焊接机器人用于当时的“红旗牌”轿车的车身焊接和“解放牌”卡车的车顶盖焊接。1986年又成功应用机器人焊接汽车前围总成,1988年又开发了机器人焊接车身总焊装线。此后随着德国大众等一批世界著名汽车企业在中国合资办厂,带来了一系列自动化生产设备和工艺装备,使焊接机器人大量进入我国。到2001年,我国全国各类焊接机器人数量就达到一千台,此后由于我国汽车行业的迅猛发展,我国焊接机器人每年以近千台的数量剧增,目前己突破五千台。汽车制造中的发动机、变速箱、车桥、车架、车身、车厢这六大总成加工都离不开焊接技术应用,随着我国汽车需求量的激增,汽车制造业急需适应市场需求的先进加工技术来改变传统的加工方法。焊接加工作为汽车制造中重要的技术之一,也亚需采用先进的自动化加工技术来替代传统的落后的加工方法,提高汽车产品的质量和生产率,提升中国制造业自动化水平。汽车工业的技术水平和生产能力代表一个国家工业技术水平,我国汽车工业正在步入一

个高速发展的快车道,并成为国民经济的重要支柱产业,对国民经济的贡献和提高人民生活质量的作用也越来越大。

中国加入WTO后,面对国际市场的激烈竞争,中国的制造企业,特别是汽车工业急需引进、开发具有世界先进水平的生产线。目前,我国许多大型的汽车制造企业都在努力进行现代化的技术改造,如在焊接加工中采用半自动、全自动化加工技术,运用机器人来完成人工动作,如焊接机器人、上下料机器人、搬运机器人等。利用机器人焊接可以有效提高产品质量、降低能耗、改善工人劳动条件、稳定和保证焊接质量。虽然我国已经掌握了焊接机器人生产的关键技术,并且也有专门生产焊接机器人的工厂,但是机器人产品同世界先进产品相比,在性价比上还有很大差距。目前我国焊接机器人应用主要以自我设计开发焊接辅助设备为主,结合先进的焊接机器人产品,研发出焊接机器人工作站、焊接机器人生产线等自动化焊接加工系统,应用于我国飞速发展的汽车工业及其它制造业。

1.2焊接行业中采用焊接机器人的重要性

由于存在焊接烟尘、弧光、金属飞溅,焊机环境恶劣,焊接质量的好坏决定了产品的质量。主要的重要性如下:

1)焊接质量稳定并得到提高,均一性得到保障。焊接结果主要受焊接电流、电压、速度及干伸长度等焊接参数的影响。机器人焊接时,每条焊缝的焊接参数恒定,人为影响比较小。当人工焊接时,焊接速度、干伸长等都是变化的,质量的均一性不能保障。

2)工人劳动条件得到改善。工人在焊接机器人的应用中只负责装卸工件,从而远离了焊接弧光、烟雾和飞溅等,对于点焊工人来说,不用再搬运笨重的手工焊钳,工人的劳动强度得到了改善。

3)劳动生产率得到提高。机器人不会感到疲劳,可以整天24 小时连续生产,随着高速高效焊接技术的应用,使用机器人焊接,劳动生产效率得到大大的提高。

4)产品周期明确,产品产量容易控制。机器人的生产环节是固定的,所以安排生产的计划将会非常明确。

5)大大缩短了产品改型换代的周期,设备投资相应减少。焊接机器人可以实现小批量产品的自动化,通过修改程序来适应不同工况,较传统焊接优势明显。

1.3焊接机器人对车身焊接的现状

从本质上讲焊接是使用局部加热或加压,或同时加热、加压的方法,使连接处的金属变成塑性状态或熔化,在原子间的结合力作用下把两个或多个金属工件连接到一起的过程。汽车车身焊接生产线的发展通过从手工、(半)自动刚性、(半)自动柔性等不同阶段,现已慢慢成熟。目前,国内应用于汽车车身的焊接方法多种多样,最广泛常用的是电阻焊工艺。而在国外激光焊接机器人已经大量投入于生产中。

1.4某款微型汽车车身制造中机器人焊接与人工焊接的详细对比

一直以来大家接触关于机器人焊接的信息大都是积极的,如同在第一章中提到的那样焊接机器人有许多的优点,白车身焊装自动线是工业机器人应用的一个典型领域,用机器人来代替人工焊接是未来发展的必然趋势。但正是出于对微型汽车“低成本,高价值”制造理念的深刻理解,以及通过对生产线人工焊接的仔细观察分析,作者发现人工焊接同样有自己的特长和优势。把车身生产线的工人全部用机器人来代替的想法,并不现实。特别是对于微型汽车或者低成本的车身制造来说,只有把机器人焊接和人工焊接有机的结合起来才是正道。

为了能更加有效的对比机器人焊接和人工焊接,作者引入SPQRC的比较指标。SPQRC 即S 安全(Safety)、P 人员(People)、Q 质量(Quality)、R 响应(Responsiveness)、C 成本(Cost Goals)。

1.4.1焊接机器人SPQRC

安全:

机器人在安全方面有着无可比拟的优势。适合在车身焊接这种恶劣的工作环境(噪声大、金属焊接飞溅物多、金属粉尘多、焊接过程中光和热辐射强)下长时间运行,不存在人机工程问题。周边设备工作稳定,安全风险低。

人员:

焊接机器人一旦调试完成后得益于其很低的设备故障率,只需要少量专门的操作和维护人员。但对人员的技术水平要求高,需要维护人员需要经过较长时间的培训和实践才能独立处理故障。无论是进行在线式还是离线仿真编程,都需要工程技术人员有很高技术水平和经验。

质量:

调试好数据后,质量好且稳定性高。但系统缺乏自我纠正能力,当发生质量偏移时,没有办法立刻做出自发的检查和调整,需要待后面的工序检查反馈后才能调整。目前的智能视觉检查系统还处于起步阶段,价格昂贵且只是在部分弧焊和激光焊接上有使用,还没有出现点焊的应用实例。

响应:

(1)机器人焊接速度快,特别是使用伺服焊枪系统,机器人每个焊点相对于人工可以节省大约 50%的时间。以本次改造项目为例:每台机器人平均焊接 28 点,改造前这些工位的工人平均每人焊接 18 点。平均机器人焊接一个焊点需要 2 秒,而人工平均焊接一个焊点的时间为 3 秒。

(2)另外一个优点是,由于使用了离线编程技术,机器人仿形轨迹的调试时间较以往有明显缩短,使系统调试的时间较短。并且试生产和产能爬坡时间段短,事实上几乎不需要爬坡时间。完成后可以马上投入三班运行。这一点对于新产品研发后迅速提高产能抢占市场尤为重要。

(3)焊接机器人的平均故障率低于人工生产线,但遇到重大故障时的处理时间也比一般设备要更长。这一点可以通过人工补焊等应急措施来弥补。

(4)机器人生产工位提速能力弱。由于机器人焊接在设计时往往是针对特定的焊点,如果计算合理机器人焊接的效率是很高的,但反过来说就不会有很大的余量。

在原有工位内增加机器人的空间也难以找到。

经过计算本次改造项目所有费用均摊到机器人为 60 万元/台、后期维护费用每年平均要 1 万元(更换润滑油和零件等)、每班次使用成本为平均功率 10KW 每年的电费大约是 2 万元。

1.4.2人工焊接SPQRC

安全:

车身焊接环境恶劣,焊接时产生的大量金属烟尘、强光/热辐射、巨大的噪音在不断的侵蚀着操作工人的健康。特别是有许多焊接位置的流水线其人机工程更差,进一步加大了工人的劳动强度和健康代价。车身线设备复杂,危险因素多,虽然有严格的安全制度,但各种安全事故还是时有发生。

人员:

车身是仅次于总装的人员需要求大户,每条生产线需要配置大量的焊接操作工人,还必须配置较多的班组长对一线员工进行管理。对人员进行较长时间的培训才能达到熟练焊接的技能水平。但员工知识的起始点要求不高,这使企业很容易从劳动力市场上招聘到需要的人员。

质量:

工人在工作过程中随时观察到质量的变化,并常常会根据零件的一些细小不同,动态的进行适应,并且立刻采取措施调节焊接工具的位置和状态,还可以马上对质量问题进行反馈和解决。但焊接的质量直接受到员工焊接技能和工作时身体、心理状态的影响,质量具有随机性,稳定性不强。

响应:

1)焊接速度一般,特别是在焊点位置人机工程差的地方速度更加不理想。

2)系统试生产和生产爬坡时间长。考虑到市场的变化,企业不可能在短时间内招聘大量的工人,难以确保三班同步运作。

3)人员变动可以通过及时更换和调整解决,不易发生长时间的停线。

4)通过增加操作人员数量和优化工序步骤实现生产提速较简单。

成本:

在人工工位需要构建钢结构室体和工作平台,加上需要购买的焊接设备每一个工位大约投入 30W。目前了解到生产线每名工人每年的费用大约是 4 万元,每个工位通常配置 6 名工人。

1.4.3对比总结

以下对比重点在于成本。对比中均不包含工装夹具和车身输送设备等主线设备,因为无论是机器人焊接还是人工焊接这些设备都是必须的,不会影响投入。

以本地一个 4 台机器人的补焊工位为例,在 40JPH(40 件/小时产量)的条件下:

单台机器人焊接速度约为人工的 1.5 倍。那么同样完成相同的工作的人工工位需要配置 6 个工人,如果开 3 个班就需要 18 人。

机器人初期一次性需要投入:60×4=240 万元每年的费用 4×(1[年维护费用]+2[每班次电费]×班次数)

人工工位初期一次性投入:30W 每年的人力投入:6×4×班次数

由此计算两者的成本对比平衡点出现:

开一班生产:在第 17.5 年,18 年后机器人的成本将低于人工。

开二班生产:在第 7.5 年,8 年后机器人的成本将低于人工。

开三班生产:在第 4.8 年,5 年后机器人的成本将低于人工。

当然这是对两者成本的主要部分做统计,还有一些辅助项未加计算:比如对机器人来说需要相应的操作/维护人员,通常 1 名操作/维护人员可以兼顾 4-5 个机器人工位;对于人工焊接来说则要配置相应的班组长等等,这些都会产生相关成本,但这些项占整个项目投入的比例并不高。

从这一点上看,机器人和人工的投资效益的平衡点与运行的时间和当地劳动力成本有直接关系。而对于微型车行业来说产能就是经济效益,因此新生产线在项目建设结束后很快就会投入 2-3 班的连续运行阶段。从这一点看机器人的一次性投入

虽然高于人工工位,但随着机器人工作时间的增长,高出的部分很快会在 5-8 年内被稀释。

这就解释了为什么上海、广州这样一线城市的汽车企业在焊接机器人的使用率上要远高于本企业。他们人力的成本更高,并且随着国家对劳动者权益的越来越重视,法规越来越严格,人力成本还将继续上涨,这是不可逆转的必然趋势。因此在生产线的设计寿命内机器人的总投入将大幅度低于人力成本的投入。在劳动密集型企业这种特点尤为突出,例如连富士康这样的企业也提出 5 年内用 100 万台机器人代替工人的计划。

综合上述来看机器人焊接在效率上和质量稳定性上优于人工焊接,但一个非常明显的缺点,就是对质量的自我检查和纠正能力很差。目前在机器人焊接技术上使用了视觉或其他类型的传感器让机器人可以“看到”焊接结果,从而实现自我纠正的闭环控制。其技术要求高,价格昂贵,目前主要应用在电弧焊和激光焊这样的对精度有严格要求的场所。在微型汽车车身焊接中应用最广泛的电阻点焊领域还没有应用的先例,前沿技术的市场化在短期内还没有实现的可能。因此对机器人焊接质量的把关还是必须由人工完成。

综合上述的两点,考虑到本地的人力资源状况,将机器人和人工焊接有机的结合起来将是微车车身制造发展的方向。具体的来说就是讨论两者如何进行组合最有效率。

1.5微型汽车车身制造焊接工艺中需要注意的问题

通过对现场实践,本文总结了 4 个原则:

1 必须要为机器人焊接配置人工检查工位。根据我们的观察(在40JPH的条件下),人工焊接检查工位(人工检查工位用于检查机器人焊接点是否存在质量缺陷,并对缺陷点进行补焊)和机器人焊接的比例不应低于 1:5 。这主要是考虑到工人进行在线检查每个焊点时间的需求,人工检查每个焊点的时间约为 0.4 秒。当生产节拍提高时该比例还要相应提高,即增加人工检查工位人数。

2 必须要考虑到当出现某台机器人故障且无法在短时间内修复时,应当可在人工工位进行补焊。当出现这种情况时,应保证生产线的连续运行,但可能会出现生产节拍低于设定值的情况。修补工位在每条补焊线不应少 1 个,和焊接机器人数量的比例应高于 1:10 。

3 充分考虑到车身的焊点分布特点,用人工焊接工位。通常有相当部分焊点是比较容易人工操作的,人机工程相对理想,人工焊接的速度快。经过在现场实际的

测试,对于这些人机工程良好的焊点人工焊接的速度基本和机器人持平。这样就可以缓解生产线初期一次性投入的成本压力。通过生产线工作平衡,人工工位完成一部分焊点的同时还可以检查机器人焊点的质量。具体情况因不同的车型设计有所区别,对本多款公司微车产品的车身焊点研究统计后发现:全部焊点的 20%左右、即大约 500-700 个为人机工程不理想焊点。大约 30%-40%的焊点为人机工程理想焊点,其余的焊点为普通焊点。

4 把机器人焊接和简单的自动焊结合起来,可以降低。微型车身上一些有规律的焊点,比如左右侧围下裙边,焊点在低位置的一条有规律的直线上。对于人工焊接来说其处于低工位,人机工程较差焊接困难。而采用具有一个活动轴的自动焊相对于机器人来说可以节约成本。比如下裙边的焊点,采用单轴的自动焊其成本只有机器人的30%左右。

综合这些特点来看:焊接机器人工位和焊接工人工位比例应当合适,必须要结合不同的情况(节拍、车型等)来考虑机器人的数量,并不是焊接机器人越多越好。焊接机器人优先处理人机工程差的焊点,同时要配置机器人焊点的检查工位。若以本次改造项目车型来看,在补焊线机器人数量和焊接工人数量的比例大约在 1:2 较为合理,实际在项目实施时处于成本控制的原因,比例为 1:3。

附本次改造项目改造前和改造后的对比

1.6点焊使用中存在的问题

1.焊点质量检验目前尚缺少简单而又可靠的无损检验方法

2.焊件的尺寸、形状、厚度以及焊件的材料受焊机功率、机臂尺寸与结构形状的限制,所以对于一些封闭型、半封闭型结构或特殊材料不适合使用点焊。

3.点焊多采用搭接接头,增加了构件的质量,焊缝受力时会有附加力矩,使承载条件变化,降低了焊接接头的承载能力。

1.7焊接机器人在某条重卡装焊线上应用时存在的问题及经验汇总

机器人电缆磨损问题

虽然机器人厂家为机器人配备了耐磨的专业点焊电缆套件,将水、电、气集成为电缆包套件随机器人固定好, 由于机器人的运动速度很快, 部分姿态电缆经过长期频繁的弯折后仍会出现软管套破裂, 电缆线磨损等问题 "对于一体化焊钳, 由于将电网动力电直接接到焊接变压器上, 如果导线裸露,后果不堪设想 "因此出现以上问题时必须及时处理。对于磨损严重的, 我们采取将整个电缆包套件更换修复后再做为储备件使用 "从这个问题可以看到,如果仿真工作做得不是很准确, 会给后

期使用带来很多麻烦。

水、气路问题

点焊设备在工作中需要用循环水来冷却 , 用压缩空气驱动焊钳的张开、闭合, 压缩空气和水的供应质量很重要, 必须先经过过滤 , 去除水中的杂质和空气中的

尘埃颗粒 , 否则时间久了会发生堵塞或腐蚀 , 造成水压、气压不足, 影响产品的质量和焊钳的寿命 "车间采用统一的循环水处理站和空气压缩站, 经过一段时间的使用出现机器人回水压力小,甚至堵塞, 检查发现回水管路里含有杂质 , 对每台

机器人进水管路处增加过滤装置后解决了该问题 "机器人底座配备的水电气输入

模块自带有空气过滤器, 气路运行良好 "另外, 在一台点焊机器人带有两把焊钳

的工作站出现过焊钳的电极帽脱落后仍然继续焊接, 其原因为两把焊钳共用一个回水流量监测装置, 回水流量监测参数设置偏小 , 后来我们对该回水参数进行合理

设置, 从而避免了该类问题的再次发生。

位置偏移后在线示教问题

对于示教再现型焊接机器人而言, 如果在焊接时发生焊接位置偏移 , 必须停

止机器人乃至整个生产线的工作 , 进行机器人在线示教后再现运行, 这个工作现

在需要占用大量的生产时间 "装焊线正常生产后 , 随着工艺零件的更改, 现有的焊接位置和运行轨迹不能满足变化的需要, 因此要重新在线示教 " 同样的一个变

化会带来若干车型的变化, 因此重新在线示教的工作量很大, 浪费时间, 降低了工作效率。

机器人与其他设备或障碍物碰撞问题

在装焊线上曾出现过机器人与机器人碰撞的事故, 经过分析机器人的工作程序, 发现机器人控制系统在处理信号交换时, 都采用外部 I/0 信号来交换彼此的工作

状态。"信号检测还只是以一个“点”的方式测量 , 即在某一运动程序中, 机器人的下一步工作是由确认某一个交换信号是否存在来决定,而不是在某一个运动区域

中持续检测其他设备或障碍物的状态 , 这样, 一旦检测过程结束而机器人运动轨迹发生错误或信号交换不正常时即会发生碰撞 "如果能够在机器人控制系统中,引入后台处理方式来实时检测其他设备的工作状态, 以决定机器人是否应该继续在有可能干涉的区域内工作, 碰撞问题即能得到有效的控制。

机器人维护问题

目前, 装焊车间拥有焊接机器人共 93 台, 其中点焊机器人 62 台、弧焊机器人 31 台, 机器人上的部件多属专用部件 , 须从国外进口, 进口的机器人备件价格高昂, 且采购周期长, 给车间的正常生产造成了很大的问题。该问题的解决一方面有赖于国内工业机器人技术的进步和机器人产品的市场化发展, 另一方面也要求国外提供机器人产品的企业加强售后服务工作。

2 焊接机器人使用中的共性关键技术

2.1焊缝跟踪技术与离线编程技术的研究

近代由于模糊数学和神经网络的出现,并将其应用到焊接这一复杂的不确定性的非线性系统,使焊缝跟踪踏入一个崭新的时代)智能焊缝跟踪时代"随着焊接机器人在我国的应用,国内也开始重视对焊缝跟踪的研究"国内的各大高校和研究机构都对焊缝跟踪技术进行了多方面的研究"如清华大学对弧焊跟踪系统中的传感器和其中的控制系统分别进行了研究,并提出了一种基于焊缝CCD图像模式特征的焊缝轨迹识别的新算法"华南理工大学主要研究用视觉传感器来检测焊缝,并将神经网络和模糊控制应用到焊缝跟踪系统中,提出一种基于自适应共振理论(AdaPtive Resonance Theory)神经网络的焊缝跟踪算法"天津大学研制了一种非接触超声传感埋弧焊焊缝跟踪系统"华北石油管理局利用CCD面阵摄像机作为前面焊缝检测传感器,STD工控机作图像数字处理、识别。确定焊缝位置,并抑制焊头移动机构来实现焊缝在线自动跟踪实时纠正偏差,通过对焊缝的跟踪,将传感器测得的焊缝误差传到PC机内,并通过模糊实时控制技术使焊头移动到准确的位置,实现对焊缝的纠正,离线编程技术对数据的分析处理功能是实现模糊实时控制的基础。

表焊缝自动跟踪传感器的原理和特点

离线编程是指利用计算机图形学的结果,建立机器人及其工作的虚拟环境,利用一些规划算法,通过对图形的控制和操作在离线的情况下对焊接过程进行规划和仿真"通常一个完整的离线编程系统需要满足以下功能:

l)交互式的机器人系统CAD建模环境;

2)运动学、动力学方程的自动生成:

3)交互式的任务规划!编程及调试环境;

4)碰撞检测;

5)对传感器的仿真。

但是目前的许多应用系统往往不同时具有以上功能"离线编程系统从实验室开发出来后,并不能直接应用于具体的工业机器人以完成作业任务,还必须解决软件的实用化问题,包括:机器人建模,机器人对环境的不确定性抽取,传感器的建模及仿真等。

离线编程技术不仅改善了劳动环境!减轻了劳动强度!提高了工作效率,还可以对编程结果进行三维图形动画仿真,以检验编程的正确性,提供最佳的执行代码,从而保证了焊接产品的高质量"与在线示教编程相比,离线编程系统具有如下优点:

1.机器人不占用工作时间,提高工作效率;

2.使编程者远离危险的工作环境;

3.减小编程的劳动强度;

4.便于和CAD/CAM系统结合,做到CADlcAM瓜OBOTICS一体化:

5.可对复杂任务进行编程和计算机仿真;

6.便于修改机器人程序,从而满足中小批量的生产要求;

7.适用范围广,离线编程系统可以对各种机器人进行编程"

2.2焊接机器人焊接路径规划

机器人路径规划是指在其工作空间中,为机器人完成某一给定任务提供一条安全!高效的运动路径"一般而言,机器人完成给定任务可选择的路径有多条"实际应用中往往要选择一条在一定准则下为最优(或近似最优)的路径"常用的准则有:路径最短!消耗能量最少或使用时间最短等"因此,机器人路径规划实质上是一个有约束的优化问题"由于机器人的高度非线性和强藕和性,对其求解非常困难"国内外学者在这方面不断努力,取得了显著成绩。

在过去的20多年里,机器人运动的路径规划技术己经有了很大的发展.这个领域涉及到许多重要的数学内容,如经典几何学!拓扑学!代数几何学!代数学和组合学等,这些数学工具都已经应用到相关的研究中"目前,路径规划应用的主要方法大致可以分为两类:传统方法和智能方法"

传统路径规划方法包括:自由空间法!图搜索法!栅格解藕法!人工势场法等几种主要的方法"大部分机器人路径规划中的全局规划都是基于上述几种方法进行的。

近年来,随着模糊控制、神经网络和遗传算法等智能方法的广泛应用,机器人路径规划方法也有了长足的进展,许多研究者把目光放在了基于智能方法的路径规划研究上"其中应用较多的算法主要有神经网络和遗传算法。

在国外,日本!美国!德国等国家的有的汽车企业已经利用这些路径规划的方法和现代新技术特别是计算机软硬件技术,结合自己企业的知识开发了适用于本企业的专用于产品路径规划的系统为企业的发展服务,取得了令人瞩目的效果,例如Tecnomatxi公司开发的EM系列软件就是该类软件。

但在国内,还没有哪家汽车制造商使用该类白车身焊接路径规划软件,在2002年底上海大众引进了德国大众正在使用的工艺规划软件EM一Planner,但是国内尚未开发出这类软件。

2.3对多台焊接机器人及外围设备的协调控制技术的研究

对焊接机器人这一工作来说,并不是像表面看的那样轻松。这一过程是一个焊接机器人系统又叫工作站。对于工作站而言,是由很多的部件组合而成的。如机器人本体、机器人控制柜。焊机系统及送丝单位等。对于生产应用过程,单个机器人所发挥的作用相对比较单一,为了生产应用的需要就必须对焊接机器人与变位机、弧焊电源等相关的设备规定要求,从而促进柔性化的集成。为减少焊接过程中的辅助时间及生产效率的提高,就要对焊接机器人与周边设备的柔性化进行适当的协调控制。

2.4对焊接机器人采用弧焊电源的研究

在设计并研究焊接机器人系统的工作中,只是一味的对机器人本体或焊接操作系统进行详细研究是不行的。要想实现焊接机器人充分发挥出高效优质的特点,对电器性能良好的专用弧焊电源的研究是至关重要的。目前,模糊控制电源的出现引起了大家的关注,对于模糊控制电源,采用了模糊控制的方法对电源进行控制。对焊接表面有波浪型起伏的工作和焊接过程中有较大变形工作这两项工作中最适合采用这种电源。模糊控制电源的运用,不仅可以减少焊接缺陷,还可以对熔宽和熔深给予保证,而且还可以拥有美观的焊接表面。目前,弧焊电源的发展不断数字化,数字焊机也将成为弧焊机器人焊接电源的发展方向。

2.5仿真技术及机器人用焊接工艺方法

目前,机器人在生产过程中,运动学和动力学起到了重要的作用。对机器人来说,拥有比较自由和连杆空间复杂的机构,因此运动学和动力学得采用可以解决其中存在的很多问题,但是还是有较大多得问题存在,相对而言,其中的计算机的难度和计算机都很大。为解决在对机械手研究过程所存在的问题,应采用计算机图形技术、CAD 技术和机器人学理论的基础上进行,通过计算机达到集合图形的生成,然后进行动画显示工作,其次对机器人的机构设计、运动学正反解进行分析、操作手臂控制及实际工作环境中所遇障碍进行避让和碰撞干涉等问题都一一通过模拟仿真。现在我国在弧焊机器人上多数采用气体保护焊方法,而在国外先进国家中已经采用高速、高效气体保护焊接工艺。相比之下这种高速、高效气体保护焊接工艺以对优良的焊接接头给予保护外,还可以对焊接速度和熔敷效率上起到重要作用。

2.6焊接工艺的制定

2.6.1焊接工艺的研究内容

焊接工艺是基于生产性质、图样和技术要求,结合现有条件,运用现代化焊接技术、知识和先进生产经验,确定产品的加工方法和程序,是焊接过程中的一整套技术规定。焊接工艺包括焊前的准备、焊接材料、焊接方法、焊接顺序、焊接操作的最佳选择以及焊后的处理等。制定焊接工艺是焊接生产的关键部分,其合理与否直接影响产品制造质量、生产效率和制造成本,而且是管理生产、设计焊接夹具和焊接车间的主要依据。

焊接工艺的核心是焊接方法,其发展过程代表了焊接工艺的进步。不同焊接方法的发明年代及发明国家见表 1.1 所示。目前,许多新的焊接工艺已应用于焊接生产,大大提高了焊接效率和焊接质量,如俄罗斯汽车工业科学研究所发明的氙灯焊接新工艺,为金属、非金属材料焊接提供了广泛的可能性,其生产成本远低于激光焊。

2.6.2焊接工艺要素

概括地说,焊接工艺要素包括对接头性能和致密性起决定性作用的所有工艺因素。除了焊接方法外,焊接工艺要素还包括焊接接头的形式与拘束度、焊前的加工和准备、焊接材料的种类和规格、焊接材料、焊前预热、层间温度和低温后热处理、

焊后热处理、焊接能量参数、操作技术、焊缝检查等。这些焊接工艺要素都应在焊接工艺评定中予以考虑,并在焊接工艺规程中做出明确的规定。

(1) 焊接接头设计的基本原则

焊接接头已成为整个金属结构不可分割的组成部分,它对结构的可靠性和使用寿命有着决定性的影响。焊接接头的设计主要包括确定接头的形式和位置、设计坡口形式和尺寸、制定对接头质量的要求等。

(2) 焊接材料的基本要求

焊接材料按作用可分为焊接填充材料和焊接辅助材料两大类。焊接材料应对焊接区提供良好的保护,防止各种有害气体的侵入,并通过适当的冶金反应将焊缝金属合金化,使焊缝金属具有较高的抗裂性和符合要求的各项性能。

焊接材料的选择根据焊接结构的制造工艺、焊接方法的不同而不同。对于一些重要的焊接结构和焊接接头按等原则设计的焊接结构,应按焊接接头性能的要求和焊接结构部件的所有制造工艺对接头性能的影响,结合各种焊接方法的冶金特点来合理选择焊接材料。

(3) 焊接热处理

焊前预热:是防止厚板件、低合金钢和中合金钢接头产生焊接裂纹的最有效的措施之一,是决定接头致密性和性能的重要因素。

低温后热处理 (简称后热) :焊接结束后,将焊件或整条焊缝立即加热到150~250℃温度范围,并保持一段时间。后热主要用于焊前预热不足以防止冷裂纹的形成以及焊接性较差的低合金钢。但低温后热处理对于强度级别高于650MPa、壁厚大于80mm 的接头,不是可靠的防裂措施。

消氢处理:为了消除氢在焊缝表层下的富集,防止引起的横向延迟裂纹,可将焊件或整条焊缝在 300℃以上温度加热一段时间,即进行消氢处理。消氢处理。必须在焊接结束后立即进行。消氢处理的温度为 300~400℃,消氢时间为 1~2h。

在某些情况下,消氢处理还可取代低合金钢厚壁焊件的中间消除应力处理过程。

焊后热处理:焊接后为改善焊接接头的组织和性能或消除残余应力而进行的热处理,是焊接工艺的重要组成部分,它与焊件材料的种类、型号、厚度、选用的焊接工艺、焊接材料及对接头性能的有密切关系,是保证焊件使用性能和寿命的关键工序。

2.7焊接机器人专用夹具的设计

在机器人自动焊接加工中,专用夹具起着非常关键的作用,夹具设计的成败往往直接影响机器人焊接加工系统的成败,好的夹具系统是成功开发机器人自动化焊接系统的关键因素。随着焊接方法的增多和改进,焊接工艺水平的提高,焊接夹具也由原来传统的手动夹具,逐步过渡到气动夹具、电动夹具,以至机器人专用焊接夹具,夹具设计思想也由原来的形面、孔位定位,低精确度,逐步向高精确度、模拟智能形发展。

传统的焊接夹具设计,一般要从制件的操作顺序、制件的自由度控制、制件施焊部位的操作性三个主要方面对夹具进行考虑,其设计理念是尽量在一个夹具上实现点焊的施焊过程,尽量避免辅助结构及不必要的夹紧、定位方式,使夹具简洁、明快。

机器人焊接夹具在设计思想方法上与传统手工夹具完全不同,它有自己的设计原则和规范。机器人专用夹具要求精度高,因为机器人本身不具备判断能力,它每次都严格执行给定的程序,或者执行示教过的工作。高精度的夹具不仅保证工件本身的精度要求,而且也保证了机器人能正常完成焊接工作,尽量减少工件误差对施焊的影响。在机器人焊接夹具设计时,还要考虑给机器人焊枪留有足够的空间,因为机器人焊枪相比手工焊接焊枪要大一些。对于点焊机器人焊接工艺的夹具结构,除了要满足传统焊接夹具设计思想,还应该考虑到机器人手臂轨迹控制的难易程度、轨迹运行的稳定性以及路径规划,还有夹具在工作状态时,其操作面的位置是否对焊枪运动轨迹控制有所影响。点焊机器人系统的生产节拍相对较短,夹具出现磨损或变形也必然较快,尤其是夹具承受冲击载荷的部位,对这些部位应设计成可以调整或更换的结构,保证夹具的定位和夹紧。

Love is not a maybe thing. You know when you love someone.

焊接机器人介绍

目录 焊接机器人介绍........................................................................................... 错误!未定义书签。 1焊接机器人的应用背景 (2) 1.1焊接机器人的概述 (3) 1.1.1焊接机器人的优点 (3) 1.1.2 焊接机器人的发展历史 (4) 1.2焊接行业中采用焊接机器人的重要性 (6) 1.3焊接机器人对车身焊接的现状 (7) 1.4某款微型汽车车身制造中机器人焊接与人工焊接的详细对比 (8) 1.4.1焊接机器人SPQRC (8) 1.4.2人工焊接SPQRC (9) 1.4.3对比总结 (10) 1.5微型汽车车身制造焊接工艺中需要注意的问题 (12) 1.6点焊使用中存在的问题 (13) 1.7焊接机器人在某条重卡装焊线上应用时存在的问题及经验汇总 (14) 2 焊接机器人使用中的共性关键技术 (16) 2.1焊缝跟踪技术与离线编程技术的研究 (16) 2.2焊接机器人焊接路径规划 (18) 2.3对多台焊接机器人及外围设备的协调控制技术的研究 (19) 2.4对焊接机器人采用弧焊电源的研究 (19) 2.5仿真技术及机器人用焊接工艺方法 (20) 2.6焊接工艺的制定 (20) 2.6.1焊接工艺的研究内容 (20) 2.6.2焊接工艺要素 (21) 2.7焊接机器人专用夹具的设计 (23)

焊接机器人介绍 1焊接机器人的应用背景 工业制造领域中应用最广泛的机器人是焊接机器人,特别是在汽车制造业中,机器人使用量约占全部工业机器人总量的30%,而其中的焊接机器人数量就占去50%左右。 焊接是现代机械制造业中必不可少的一种加工工艺方法,在汽车制造、工程机械、摩托车等行业中占有重要的地位。过去采用人工操作焊接加工是一项繁重的工作,随着许多焊接结构件的焊接精度和速度要求越来越高,一般工人已难以胜任这一工作。此外,焊接时的电弧、火花及烟雾等对人体会造成伤害,焊接制造工艺的复杂性、劳动强度、产品质量、批量等要求,使得焊接工艺对于自动化、机械化的要求极为迫切,实现机器人自动焊接代替人工操作焊接成为几代焊接人的理想和追求目标。汽车制造的批量化、高效率和对产品质量一致性的要求,使焊接机器人在

焊接机器人工作站简介

焊接机器人工作站简介 首钢莫托曼机器人有限公司(SGM)是专门从事工业机器人及其自动化生产线设计、制造及销售的中日合资公司。公司成立于1996年8月23日,注册资金700万美元,由首钢总公司(45%)、日本株式会社安川电机(43%)和日本岩谷产业株式会社(12%)共同投资,总部位于北京经济技术开发区。 SGM主营日本安川MOTOMAN系列机器人产品,广泛应用于弧焊、点焊、涂胶、切割、搬运、码垛、喷漆、科研及教学。安川新推出的洁净机器人和双臂机器人是MOTOMAN机器人的开拓性产品,SGM今后会不断推出更多高性能、高精度、高可靠性的新型MOTOMAN机器人。 SGM的产品遍布汽车、摩托车、家电、烟草、陶瓷、工程机械、矿山机械、物流、铁路机车等诸多行业。为促进企业发展、提升行业知名度,SGM每年都会参展多个大型行业应用展会, SGM拥有一批优秀的工程设计、项目调试人员,在机器人工作站及各种大中型机器人自动化系统生产线的研发、制造、调试及运行维护等方面具有成熟经验和较高水平,在应用技术上获得了多项国家专利。SGM在不断发展壮大的过程中不断提高系统设计的精准性,这大大提高了系统设备的使用可靠性。 机器人本体专门为点焊而设计,其上臂内藏点焊用的电缆,气管与水管,它与高性能NX100控制柜及配备6.5”LCD彩色显示触摸屏的示教盒的结合,使MOTOMAN-ES系列机器人极大程度地完善

了点焊系统。 NX100可同时协调控制多达36个轴,可以实现机器人6轴+电动点焊钳1轴+行走轴1轴,可四台点焊机器人单元的同时协调动作。并且,由于控制柜命令的运行数度提高1倍从而缩短了作业周期。有负载重量为165KG到200KG达到了机械人精度运动的最大承重量。 机器人运用高精度控制算法缩短了命令响应的滞后时间,它是安川独有的“高级机器人动作(ARM)”控制特点之一。因此,机器人的诡计重复精度可以提高50%。 误差补偿功能(选项)使机器人绝对位置精度提高2到5倍。这个功能能够提高焊接质量,减小因绝对位置精度而引起的焊接不良。 为了操作者方便使用者,机器人采用彩色显示触摸屏幕,方便示教与设备维护,采用图标与图画显示,操作与Windows类似,比以前的操作方法更容易掌握。屏幕显示的帮助向导功能协助操作者确认操作示教盒的步骤。示教盒可以显著提高再工作现场对I/0型号的调试效率可以在显示屏上编辑梯形图。由于配备了高达10000步的存储容量,可以不使用外部PLC。

二、机器人焊接系统要求

焊接机器人技术要求 一、设备名称、数量及用途 焊接机器人 1套用于山东玲珑机电有限公司(甲方) 二、供货范围 1、焊接机器人(焊枪、送丝机、储丝桶、水冷机、清枪剪丝装置、防碰撞传感器等) 2、机器人滑台系统 3、变位机 4、集成控制系统 5、示教器 6、焊接软件 7、配套的工装夹具 8、安全护栏及其它保护装置 9、烟尘处理系统 10、附件、备品备件 11、其它 一、系统方案 1.依据 1.1 甲方所提供的被焊工件照片、图纸及相关技术要求。 1.2 以产品的焊接工艺分析和工艺流程的合理性为基础,力求高柔性、高性价比、高可靠性,并且日后可扩展升级。 2.主要焊接工件及焊接要求 2.1.1工件外形图如下:(甲方可提供图纸)

热板 2.2工件的焊接要求: 2.2.1 气体保护电弧焊接(MAG)。 2.2.2 焊接牢固,无设备自身原因导致的夹渣、裂纹、咬边、漏焊等焊接缺陷。 2.2.3 焊缝均匀平整、无焊瘤等外观缺陷。 2.2.4 焊缝尺寸及质量应符合甲方图纸及技术要求。 2.2.5焊接位置:船形位焊接 3.工序及工艺路线的划分 3.1工序: 人工点焊零部件---吊运工件至变位机-→手动夹紧工件-→确认程序号-机器人焊接工件(变位机协调联动)- →焊接工件结束-→机器人复位→人工装卸工件,程序结束。 底座、横梁和热板在变位机上面焊接。 底座、横梁需要分两次焊接,第一次焊接底座、横梁的内部焊缝,第二次焊接底座、横梁的外部焊缝。需要人工分两次装卸工件。 3.2操作: 操作人员按下操作盒上的启动按钮,滑台上的焊接机器人按照预先设定好的程序运行,机器人夹持焊枪到达焊缝始端开始焊接,在焊接过程中变位机可以适时转动工件,使得工件上的焊缝有利于机器人的焊接作业,焊接结束,机器人复位,人工装卸工件。 该变位机可以同机器人配合工作。变位机带动工件适时翻转,可以将工件焊缝调整为机器人最佳位置焊接焊缝(船型焊缝),方便机器人焊接工件,此变位机还可以适应工件的多层多道焊接、对称焊接等焊接要求,减少工件焊接变形。 3.3机器人弧焊软件包: 机器人带有起始点寻位功能。该功能具备接触传感功能,具有自动寻找焊缝起始位置的功能,从而解决工件初始定位偏差问题。 机器人带有电弧跟踪功能。能够自动补偿由于工件的不一致性、焊接变形带来的偏差。 焊接工艺特点:通过触碰寻位对于其中特征位置的焊缝集中进行寻位;按照工艺需求,遵循焊接应力变化、表面要求及焊接可达性要求,依次进行焊接;大部分焊缝都尽最大可能调整为船型位置。焊接过程中,部分关键尺寸进行必要的二次寻位,以保证起弧位置准确。并利用变位机大幅反转的间隙,设置程序,进行清枪剪丝喷硅油的工作。 3.4焊接工艺 3.4.1工件参数条件 1)工件材料:Q345;

焊接机器人系统集成

多年质保操作简单方便快捷—————————————————————————————————————————————随着人类生产生活的发展,人们更多的注重其产品性能以及生产的速度以及生产操作的安全性,工业机器人技术的研发能够提供更加好的工作环境,同时降低车间工人的劳动强度,减少因工业生产带来的劳动风险。接下来由安徽泰珂森智能装备科技有限公司为您简单介绍焊接机器人其系统集成相关知识,希望能给您带来一定程度上的帮助。 焊接作为工业裁缝,是现在工业制造比较主要的加工工艺,也是衡量一个国家制造业水平的重要标杆。焊接机器人作为工业机器人比较重要应用板块发展非常迅速,已广泛应用于工业制造各领域,占整个工业机器人应用百分之40左右。在实际应用中,焊接机器人本体很少单独使用,绝大多数还需要系统集成商结合行业和用户情况,

多年质保操作简单方便快捷—————————————————————————————————————————————将除焊接机器人本体以外的各功能单元等通过系统集成为成套自动化、信息化、智能化系统(单元),形成满足用户需求的总体解决方案。 一般来讲,焊接机器人系统集成作为机器人应用下游,是机器人大规模普及应用和提升用户制造水平的关键,其市场份额总体是焊接机器人本体的5倍以上;在应用市场,其份额更高。焊接机器人系统集成总体水平的高低,是决定机器人在焊接领域是否规模应用的重要因素,也是提升以焊接工艺为主的制造业水平的关键。 安徽泰珂森智能装备科技有限公司集机械手、工业机器人系统集成研发、制造、销售、自动化控制工程承包于一体的综合性自动化技术企业。公司在自动化领域具备充足的技术研发能力和丰富的项目经

FANUC焊接机器人控制系统介绍、应用故障分析及处理

FANUC焊接机器人控制系统介绍、应用故障分析 及处理 FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,其控制系统采用32位CPU 控制,采用64位数字伺服驱动单元,同步控制6轴运动;支持离线编程技术;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。 焊接是工业生产中非常重要的加工方式,同时由于焊接烟尘、弧光和金属飞溅的存在,焊接的工作环境非常恶劣,随着人工成本的逐步提升,以及人们对焊接质量的精益求精,焊接机器人得到了越来越广泛的应用。 机器人在焊装生产线中运用的特点 焊接机器人在高质、高效的焊接生产中发挥了极其重要的作用,其主要特点如下: 1.性能稳定、焊接质量稳定,保证其均一性 焊接参数如焊接电流、电压、焊接速度及焊接干伸长度等对焊接结果起决定性作用。人工焊接时,焊接速度、干伸长等都是变化的,很难做到质量的均一性;采用机器人焊接,每条焊缝的焊接参数都是恒定的,焊缝质量受人为因素影响较小,降低了对工人操作技术的要求,焊接质量非常稳定。 2.改善了工人的劳动条件 采用机器人焊接后,工人只需要装卸工件,远离了焊接弧光、烟雾和飞溅等;点焊时,工人不再需要搬运笨重的手工焊钳,从大强度的体力劳动中解脱出来。 3.提高劳动生产率 机器人可一天24h连续生产,随着高速、高效焊接技术的应用,使用机器人焊接,效率提高地更加明显。 4.产品周期明确,容易控制产品产量 机器人的生产节拍是固定的,因此安排生产计划非常明确。 5.可缩短产品改型换代的周期,降低相应的设备投资 可实现小批量产品的焊接自动化。机器人与专机的最大区别就是它可以通过修改程序以适应不同工件的生产。 FANUC机器人控制系统 1.概述 FANUC机器人主要应用在奇瑞公司乘用车一厂和乘用车三厂的焊装车间中,是奇瑞公司最早引进的焊接机器人,也是最先用到具有附加轴的焊接机器人。其控制系统采用32位CPU控制,以提高机器人运动插补运算和坐标变换的运算速度;采用64位数字伺服驱动单元,同步控制6轴运动,运动精度大大提高,最多可控制21轴,进一步改善了机器人动态特性;支持离线编程技术,技术人员可通过离线编程软件设置参数,优化机器人运动程序;控制器内部结构相对集成化,这种集成方式具有结构简单、整机价格便宜且易维护保养等特点。其控制原理如图1所示。

工业机器人焊接技术及行业应用-教材习题答案

项目一初识工业机器人的焊接应用 知识测评 一、选择 1. 工业机器人在哪个工业领域应用占比最大(D ) A. 装配 B. 码垛 C. 喷涂 D. 焊接 2. 弧焊机器人的末端执行器是(C ),点焊机器人的末端执行器是(A ),激光焊机器人的末端执行器是(D ) A. 伺服焊钳 B. 搅拌头 C. 焊枪 D. 激光加工头 E. 激光传感器 二、填空 1. 目前在我国应用的焊接机器人主要分日系、欧系和国产三种。 2. 现在广泛应用的焊接机器人绝大多数属于第一、二代工业机器人,他的基本工作原理是示教—再现和可编程控制。 3. 根据焊接原理的不同,目前焊接机器人应用中比较普遍的主要有3种,它们分别为弧焊机器人、点焊机器人以及激光焊接机器人。 4. 当前焊接机器人的技术革新基本上体现在:焊缝跟踪、多机器人协同控制、数字化焊接电源、运动学动力学仿真、焊接工艺和离线编程等六大方面。 三、简答 1. 相对于手工焊接,利用机器人焊接有哪些优点? 答:焊接质量高;生产率高;适应恶劣的操作环境;便于实现自动化;降低对操作人员的焊接技术要求等。 2. 工业机器人弧焊系统由哪几部分组成? 答:工业机器人弧焊系统通常由工业机器人、控制系统、示教器、弧焊设备、焊接辅助设备和安全设备等几部分。 3. 工业机器人点焊系统由哪几部分组成? 答:工业机器人点焊系统通常由机器人本体、机器人控制装置、示教器、点焊钳及焊接系统等主要部分组成,其中焊接系统主要由焊接控制器(时控器)、焊钳(含阻焊变压器)及水路、电路、气路等辅助部分组成。

4. 国产焊接机器人的发展需要从哪些方面找到突破点?工业机器人焊接技术可以向哪些方面发展?(讨论) 答:可参考1.1.2和1.3.2相关内容。

弧焊机器人简介

燕山大学职业技术学院 XXXX机器人系统有限公司 实习报告 题目弧焊机器人简介、应用实例 专业焊接技术及自动化 班级 09级1班 姓名 X X X QQ 号 358698916 完成日期:2012年5月27日

目次 第一章引言 (1) 第二章我国机器人[1]发展现状及发展方向 (1) 第三章神钢机器人组成及功能特点 (2) 3.1 神钢机器人的分类 (2) 3.2 神钢机器人的组成 (4) 3.3 神钢机器人的功能特点 (5) 3.3.1 接触传感[3]功能 (5) 1.1三方向传感[3]功能: (6) 1.2圆弧传感[3]功能: (6) 1.3间隙检测[3]功能: (7) 3.3.2 电弧跟踪[3]功能 (7) 3.3.3 数据库[3]功能 (8) 3.3.4 坡口宽度[3]跟踪 (8) 3.3.5双丝焊接功能 (8) 3.3.6高熔敷效率[2] (9) 第四章神钢机器人应用举例 (9) 4.1水平角焊[3] (9) 4.2船型焊[3] (11) 参考文献 (13)

摘要 随着我国工业化的发展,我国焊接机器行业整体技术水平和综合实力已有显著提高,国家大型工程项目的相继启动,将促使行业向研发高技术含量、高附加值的大型焊接设备、焊接辅机具、专用成套焊接设备方向发展。但相对于发达国家而言,我国的工业机器人技术及其工程应用的水平还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;应用规模小,没有形成机器人产业。 针对以上情况,我们应如何引进、消化、吸收世界先进焊接技术,以及在焊接过程中对焊接缺陷问题的分析,已成为焊接工作者不得不面对的问题,这次实习报告主要针对日本神户制钢焊接机器人功能及应用进行介绍,并举例实习期间机器人焊接的工艺参数。 从X月X号开始在XXXX机器人系统有限公司实习的过程中,不仅对手工操作CO2气体保护焊有很大提高,同时掌握了焊接机器人基本知识,能独立进行操作。并进行了水平角焊和船型焊的实际焊接,多次调整参数使自己的焊接知识、焊接分析能力有很大提高。 关键词:神户制钢机器人焊接功能特点焊接分析

工业机器人焊接技术大全.

焊接 焊接是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间结合力而连接成一体的连接方法。 常用的焊接方法可分为三大类:熔化焊、压力焊、钎焊。熔化焊中又分为气焊、电弧焊、电渣焊、等离子弧焊等等。本文主要介绍电弧焊中的手工电弧焊、埋弧自动焊和氩弧焊。 在化工机械制造中,据统计,化工装置焊接的构件量,约占整个装置重量的75%左右。各种容器、塔器、换热器、反应器、钢结构等大多数采用焊接方法制造。由于化工、炼油、制药等生产工艺复杂,操作压力高,温度范围广,要求密封性好,腐蚀性强,所以对焊接要求特别严格。因此,提高焊接技术水平,规范焊接工艺,确保焊接质量,对保证长期、安全、高效率生产有着重要的意义。 第一节电弧焊 电弧焊是利用电弧的热量加热并熔化金属进行焊接的。 一、焊接电弧 焊接电弧是一种强烈的持久的气体放电现象。在这种气体放电过程中产生大量的热能和强烈的光辉。通常,气体是不导电的,但是在一定的电场和温度条件下,可以使气体离解而导电。焊接电弧就是在一定的电场作用下,将电弧空间的气体介质电离,使中性分子或原子离解为带正电荷的正离子和带负电荷的电子(或负离子),这两种带电质点分别向着电场的两极方向运动,使局部气体空间导电,而形成电弧。 焊接电弧的引燃一般采用两种方法:接触引弧和非接触引弧。手工电弧焊是采用接触引弧的。引弧时,焊条与工件瞬时接触造成短路。由于接触面的凹凸不平,只是在某些点上接触,因而使接触点上电流密度相当大;此外,由于金属表面有氧化皮等污物,电阻也相当大,所以接触处产生相当大的电阻热,使这里的金属迅速加热熔化,并开始蒸发。当焊条轻轻提起时,焊条端头与工件之间的空间内充满了金属蒸气和空气,其中某些原子可能已被电离。与此同时,焊条刚拉开一瞬间,由于接触处

智能焊接机器人系统

焊接机器人系统 机器人通常定义为:机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 焊接机器人作为在生产中最为常见的工业机器人,焊接机器人目前已广泛应用在汽车制造业,汽车底盘、座椅骨架、导轨、消声器以及液力变矩器等焊接,尤其在汽车底盘焊接生产中得到了广泛的应用。因此,我选取焊接机器人作为讨论对象,以下是我比对自己在图书馆和网上找到的资料对焊接机器人的系统组成进行的简要概括,分析焊接机器人系统是怎样完成复杂的焊接工作的。 一、典型的机器人系统组成: 1、机器人本体和操作机,可以直接完成各种具体作业; 2、机器人控制器,用来控制机器人和完成数据存储,包括计算机系统和伺服系统两部分; 3、各种不同的作业工具,如焊枪和手爪等; 4、各种周边辅助设备; 5、为完成特殊任务而使用的传感器; 6、用于完成计算机管理、监控和计算机通信的通信系统。 二、焊接机器人的定义 焊接机器人是从事焊接的工业机器人。根据国际标准化组织工业机器人术语标准焊接机器人的定义,工业机器人是一种多用途的、可重复编程的自动控制操作,具有三个或更多可编程的轴,用于工业自动化领域。为了适应不同的用途,机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊枪的,使之能进行焊接,切割或热喷涂。目前在汽车工业中被广泛应用于汽车底盘的焊接。 三、焊接机器人的软硬件系统组成 1、焊接机器人的硬件系统。如下图所示:焊接机器人的硬件系统一般由机器人本体、摄像 机随动机构、焊接电源、摄像机、机器人控制器、示教盒、和中央控制机、导引/焊缝跟踪计算机、熔透控制计算机、焊机接口控制盒、电焊机和送丝机等部分构成。 2、焊接机器人的软系统。焊接机器人的软系统根据模块化设计的思想,将焊接机器人工作 单元分解为不同的功能模块。主要有初始位置导引模块、焊缝跟踪模块,熔透控制模块,

焊接机器人发展现状及发展趋势!

焊接机器人发展现状 我国的工业机器人从80年代“七五”科技攻关开始起步,目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品;机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;应用规模小,没有形成机器人产业。 当前我国的机器人生产都是应用户的要求,单户单次重新设计,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程。 焊接机器人的编程方法目前还是以在线示教方式为主,但编程器的界面比过去有了不少改进,尤其是液晶图形显示屏的采用使新的焊接机器人的编程界面更趋友好、操作更容易。然而,机器人编程时焊缝轨迹上的关键点坐标位置仍必须通过示教方式获取,然后存入程序的运动指令中。这对于一些复杂形状的焊缝轨迹来说,必须花费大量的时间示教,从而降低了机器人的使用效率,也增加了编程人员的劳动强度。目前解决的方法有两种:一是示教编程时只是粗略获取几个焊缝轨迹上的几个关键点,然后通过焊接机器人的视觉传感器通常是电弧传感器或激光视觉传感器自动跟踪实际的焊缝轨迹。这种方式虽然仍离不开示教编程但在一定程度上可以减轻示教编程的强度,提高编程效率。由于电弧焊本身的特点,机器人的视觉传感器并不是对所有焊缝形式都适用。二是采取完全离线编程的办法,使机器人焊接程序的编制、焊缝轨迹坐标位置的获取、以及程序的调试均在一台计算机上独立完成,不需要机器人本身的参与。机器人离线编程早在多年以前就有,只是由于当时受计算机性能的限制,离线编程软件以文本方式为主,编程员需要熟悉机器人的所有指令系统和语法,还要知道如何确定焊缝轨迹的空间位置坐标,因此,编程工作并不轻松省时。随着计算机性能的提高和计算机三维图形技术的发展,机器人离线编程系统多数可在三维图形环境下运行,编程界面友好、方便,获取焊缝轨迹的坐标位置通常可以采用“虚拟示教”的办法,用鼠标轻松点击三维虚拟环境中工件的焊接部位即可获得该点的空间坐标;在有些系统中,可通过图形文件中事先定义的焊缝位置直接生成焊缝轨迹,然后自动生成机器人程序并下载到机器人控制系统。从而大大提高了机器人的编程效率,也减轻了编程员的劳动强度。目前,国际市场上已有基于普通机的商用机器人离线编程软件,通过虚拟示教获得,并在三维图形环境中可让机器人按程序中的轨迹作模拟运动,以此检验其准确性和合理性。所编程序可通过网络直接下载给机器人控制器。 焊接机器人发展趋势 目前国际机器人界都在加大科研力度,进行机器人共性技术的研究。从机器人技术发展趋势看,焊接机器人和其它工业机器人一样,不断向智能化和多样化方向发展。具体而言,表现在如下几个方面: 1).机器人操作机结构: 通过有限元分析、模态分析及仿真设计等现代设计方法的运用,实现机器人操作机构的优化设计。 探索新的高强度轻质材料,进一步提高负载/自重比。例如,以德国KUKA公司为代表的机器人公司,已将机器人并联平行四边形结构改为开链结构,拓展了机器人的工作范围,加之轻质铝合金材料的应用,大大提高了机器人的性能。此外采用先进的RV减速器及交流伺服电机,使机器人操作机几乎成为免维护系统。

机器人焊接技术的应用工程分析

焊接机器人的工程应用 本文介绍了我国焊接机器人的应用状况、应用焊接机器人的意义和焊接机器人应用工程几个方面的情况,同时介绍了焊接机器人的4种最新的应用技术。 国内焊接机器人技术的发展 我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。到80年代中期,全国没有一 台工业机器人问世。而在国外,工业机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。鉴于当时的国内外形势,国家“七五”攻关计划将工业机器人的开发列入了计划,对工业机器人进行了攻关,特别是把应用作为考核的重要内容,这样就把机器人技术和用户紧密结合起来,使中国机器人在起步阶段就瞄准了实用化的方向。与此同时于1986年将发展机器人列入国家“863”高科技计划。在国家“863”计划实施五周年之际,邓小平同志提出了“发展高科技,实现产业化”的目标。在国内市场发展的推动下,以及对机主题专家组及时对主攻方向863器人技术研究的技术储备的基础上, 进行了调整和延伸,将工业机器人及应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家

“八五”和“九五”中。经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。 我国焊接机器人的应用状况 我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等几个主要行业。汽车是焊接机器人的最大用户,也是最早用户。早在70年代末,上海电焊机厂与上海电动工具研究所,合作研制的直角坐标机械手,成功地应用于上海牌轿车底盘的焊接。“一汽”是我国最早引进焊接机器人的企业,1984起先后从KUKA公司引进了3台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。1986年成功将焊接机器人应用于前围总成的焊接,并于1988年开发了机器人车身总焊线。80年代末和90年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自动化程度与装备水平,让我们认识到随后二汽在货车及轻型车项目中都引进了焊接了与国外的巨大差距。. 机器人。可以说90年代以来的技术引进和生产设备、工艺装备的引进使我国的汽车制造水平由原来的作坊式生产提高到规模化生产,同时使国外焊接机器人大量进入中国。由于我国基础设施建设的高速发展带动了工程机械行业的繁荣,工程机械行业也成为较早引用焊接机器人的行业之一。近年来由于我国经济的高速发展,能源的大量需求,与能源相关的制造行业也都开始寻求自动化焊接技术,焊接机器人逐

焊接机器人的控制原理及应用

焊接机器人的控制原理及应用焊接机器人是一种高度自动化的焊接设备,是焊接自动化的革命性进步,它突破了焊接刚性自动化传统方式,开拓了一种柔性自动化新方式。在大三上学期的认识实习过程中,已经在长力机械厂有所接触。焊接机器人采用机器人代替手工焊接作业是焊接制造业的发展趋势,是提高焊接质量、降低成本、改善工作环境的重要手段。机器人焊接作为现代制造技术发展的重要标志己被国内许多工厂所接受,并且越来越多的企业首选焊接机器人作为技术改造的方案。 一、我国焊接机器人技术的发展历史 焊接机器人技术的发展我国开发工业机器人晚于美国和日本,起于20世纪70年代,早期是大学和科研院所的自发性的研究。到80年代中期,全国没有一台工业机器人问世。而在国外,工业机器人已经是个非常成熟的工业产品,在汽车行业得到了广泛的应用。鉴于当时的国内外形势,国家“七五”攻关计划将工业机器人的开发列入了计划,对工业机器人进行了攻关,特别是把应用作为考核的重要内容,这样就把机器人技术和用户紧密结合起来,使中国机器人在起步阶段就瞄准了实用化的方向。 与此同时于1986年将发展机器人列入国家"863"高科技计划。在国家"863"计划实施五周年之际,邓小平同志提出了"发展高科技,实现产业化"的目标。在国内市场发展的推动下,以及对机器人技术研究的技术储备的基础上,863主题专家组及时对主攻方向进行了调整和延伸,将工业机器人及应用工程作为研究开发重点之一,提出了以应用带动关键技术和基础研究的发展方针,以后又列入国家"八五"和"九五"中。经过十几年的持续努力,在国家的组织和支持下,我国焊接机器人的研究在基础技术、控制技术、关键元器件等方面取得了重大进展,并已进入使用化阶段,形成了点焊、弧焊机器人系列产品,能够实现小批量生产。 二、焊接机器人的组成 常规的弧焊机器人系统由以下5部分组成。 1、机器人本体,一般是伺服电机驱动的 6 轴关节式操作机,它由驱动器、传动机构、机械手臂、关节以及内部传感器等组成。它的任务是精确地保证机械手末端(悍枪)所要求的位置、姿态和运动轨迹。 2、机器人控制柜,它是机器人系统的神经中枢,包括计算机硬件、软件和一些专用电路,负责处理机器人工作过程中的全部信息和控制其全部动作。 3、焊接电源系统,包括焊接电源、专用焊枪等。 4、焊接传感器及系统安全保护设施。 5、焊接工装夹具。 三、焊接机器人工作站的工作原理 焊接机器人工作站正常运行的中枢是其控制柜中的计算机系统。焊接机器人工作站通过计算机系统对焊接环境、焊缝跟踪及焊接动态过程进行智能传感,根据传感信息对各种复杂的空间曲线焊缝进行实时跟踪控制,从而控制焊枪能够实现规划轨迹运行,并对焊接动态过程进行实时智能控制。由于焊接工艺、焊接环境的复杂性和多样性,焊接机器人工作站在实施焊接前,应配备其焊接

机器人焊接智能化技术.

机器人焊接智能化技术 随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已成为必然趋势[1-8]。目前,采用机器人焊接已成为焊接自动化技术现代化的主要标志。焊接机器人由于具有通用性强、工作可靠的优点,受到人们越来越多的重视。在焊接生产中采用机器人技术,可以提高生产率、改善劳动条件、稳定和保证焊接质量、实现小批量产品的焊接自动化[9]。 从60年代诞生和发展到现在,焊接机器人的研究经历了三个阶段,即示教再现阶段、离线编程阶段和自主编程阶段。随着计算机控制技术的不断进步,使焊接机器人由单一的单机示教再现型向多传感、智能化的柔性加工单元(系统)方向发展,实现由第二代向第三代的过渡将成为焊接机器人追求的目标[9,10]。 目前,国内外大量应用弧焊机器人系统从整体上看基本都属于第一代或准二代的焊接由于焊接路径和焊接参数是根据实际作业条件预先设置的,在焊接时缺少外部信息传感和实时调整控制功能,这类弧焊机器人对焊接作业条件的稳定性要求严格,焊接时缺乏“柔性”,表现出明显的缺点。在实际弧焊过程中,焊接条件是经常变化的,如加工和装配上的误差会造成焊缝位置和尺寸的变化,焊接过程中工件受热及散热条件改变会造成焊道变形和熔透不均[9,12]。为了克服机器人焊接过程中各种不确定性因素对焊接质量的影响,提高机器人作业的智能化水平和工作的可靠性,要求弧焊机器人系统不仅能实现空间焊缝的自动实时跟踪,而且还能实现焊接参数的在线调整和焊缝质量的实时控制。 2. 机器人焊接智能化技术的主要构成 现代焊接技术具有典型的多学科交叉融合特点[5,11],采用机器人焊接则是相关学科技术成果的集中体现。将智能化技术引入焊接机器人所涉及的主要技术构成可见图 1 所示。其中包括: 图1机器人焊接智能化技术构成

焊接机器人的基本常识介绍

焊接机器人的基本常识介绍 焊接作为基础制造工艺中不可缺少的一环,是一种精确可靠的材料连接方法,焊接技术和自动化水平反应着国家工业发展的水平。如今焊接装备面临着从手动、半自动到自动化和智能型升级,其中焊接机器人即是升级浪潮中的产物。 目前,我们国家已经成为世界上最大的焊接设备生产国和出口国,产能大于需求。但是制造业中焊接自动化程度仍然比较低,企业中自动化焊接设备(包括焊接机器人)仅占总焊接设备的15%左右,同发达工业国家如德国、日本的80%相差很远。未来的几十年内,制造业对焊接自动化设备的需求量将明显增加。尤其是船舶制造、汽车、机车、冶金设备、压力容器等制造业都需要装备自动化程度高、性能优良的焊接设备。焊接机器人作为焊接自动化发展的一项趋势,其市场前景乐观。 根据国际工业机器人联合会统计,2005年全世界在役工业机器人约92万,日本占第一位约为50万,美国和德国分列二、三位,而我国在这方面的差距很大。《智能制造科技发展“十二五”专项规划》和《服务机器人科技发展“十二五”专项规划》明确提出,“十二五”期间我国将把工业、服务机器人作为战略新兴产业予以重点扶持。 焊接机器人技术是工业机器人技术在焊接领域的应用,它能够根据预先设定的程序同时控制焊接端的动作和焊接过程,在不

同的场合可以进行重新编程。其应用目的在于提高焊接生产率,提高质量稳定性和降低成本。焊接机器人可以代替人类从事一些特殊环境(如危险、污染等)的焊接任务,再者是简单而单调重复的任务,从而解放劳动力,提高生产率;可以有效降低工人操作技术难度的要求,且焊接精度高、质量可靠稳定,还具有柔性。 但是焊接机器人对于工件夹具的精度、工件表面清洁度、焊接位置、焊接可达性等有着严格的要求。 焊接机器人的发展目前可分为三代: 第一代机器人,即目前广泛应用的示教再现型工业机器人,这类机器人对环境的变化没有适应能力。 第二代机器人,在视角再现型机器人的基础上增加感觉系统,使其具有环境适应能力,如传感机器人。 第三代机器人,即智能机器人,具有自身发展能力,能以一定的方式理解人的指令,感知环境、识别操作对象,自行规划操作步骤以完成焊接任务。 工业机器人可按照如下方式分类: 一、按照驱动方式分类: 1)气压驱动 2)液压驱动(搬运、点焊机器人) 3)电驱动 二、按照受控的运动方式分类:

机器人焊接操作教程

机器人焊接操作规程 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接机器人是从事焊接(包括切割与喷涂)的工业机器人。根据国际标准化组织(ISO)工业机器人属于标准焊接机器人的定义,工业机器人是一种多用途的、可重复编程的自动控制操作机(Manipulator),具有三个或更多可编程的轴,用于工业自动化领域。为了适应不同的用途,机器人最后一个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊(割)枪的,使之能进行焊接,切割或热喷涂。 点焊机器人的焊接装备,由于采用了一体化焊钳,焊接变压器装在焊钳后面,所以变压器必须尽量小型化。对于容量较小的变压器可以用50Hz工频交流,而对于容量较大的变压器,已经开始采用逆变技术把50Hz工频交流变为600~700Hz交流,使变压器的体积减少、减轻。变压后可以直接用600~700Hz交流电焊接,也可以再进行二次整流,用直流电焊接。焊接参数由定时器调节,参见图1b。新型定时器已经微机化,因此机器人控制柜可以直接控制定时器,无需另配接口。点焊机器人的焊钳,通常用气动的焊钳,气动焊钳两个电极之间的开口度一般只有两级冲程。而且电极压力一旦调定后是不能随意变化的。近年来出现一种新的电伺服点焊钳,如图4所示。焊钳的张开和闭合由伺服电机驱动,码盘反馈,使这种焊钳的张开度可以根据实际需要任意选定并预置。而且电极间的压紧力也可以无级调节。这种新的电伺服点焊钳具有如下优点: 1)每个焊点的焊接周期可大幅度降低,因为焊钳的张开程度是由机器人精确控制的,机器人在点与点之间的移动过程、焊钳就可以开始闭合;而焊完一点后,焊钳一边张开,机器人就可以一边位移,不必等机器人到位后焊钳才闭合或焊钳完全张开后机器人再移动; 2)焊钳张开度可以根据工件的情况任意调整,只要不发生碰撞或干涉尽可能减少张开度,以节省焊钳开度,以节省焊钳开合所占的时间。 3)焊钳闭合加压时,不仅压力大小可以调节,而且在闭合时两电极是轻轻闭合,减少撞击变形和噪声。

机器人智能化焊接技术

机器人智能化焊接技术 1、智能化焊接的大背景: 自从改革开放以来,中国制造业发展突飞猛进,彻底激活了中国的加工业,让中国成为了“世界工厂”之说,但是近年来,随着中国人口红利的日渐消失,外来制造业正逐步转移到东南亚以及印度、巴西、墨西哥等劳动力成本较低的国家。正如美国提出制造业回归概念,中国制造业的未来应该考虑如何能够长远提升中国创造的能力以及产业投资、经营环境,而不应该仅仅停留在早期代工阶段。 目前,中国制造业生产技术特别是关键技术主要依靠国外的状况仍未从根本上改变,部分行业劳动密集型为主,附加值不高。目前,尽管我国制造业的技术创新有所提高,但在自主开发能力仍较薄弱,研发投入总体不足,缺少自主知识产权的高新技术,缺乏世界一流的研发资源和技术知识,对国外先进技术的消化、吸收、创新不足,基本上没有掌握新产品开发的主动权。 更为关键的是,大部分企业和政府部门基于中国市场的薪资水平,来为是否选用机器人做成本核算,却根本没有考虑到周边国家及地区“竞争对手”的人力成本。其实,大规模使用机器人升级制造业,更深层次的原因是减少流水线管理成本以及提高企业的管理和生产效率。因为除了精准、高效、可适应恶劣生产环境等优势,机器人可以给制造业带来“高水平制造工艺”和“制造高水平产品”。 为了提高我国的制造业技术以及提升我们产品的附加价值,我们国家提出了在2025年实现工业4.0(工业化4.0)。工业化4.0最开始是德国政府提出的一个高科技战略计划,其技术基础是网络实力系统及物联网。德国所谓的工业四代(Industry4.0)是指利用物联信息系统(Cyber—PhysicalSystem简称CPS)将生产中的供应,制造,销售信息数据化、智慧化,最后达到快速,有效,个人化的产品供应。工业4.0已经进入中德合作新时达了。 全世界平均45%的钢用于焊接结构,而工业发达国家焊接结构用钢量已达到占钢产量的60%~70%。近些年,随着我国工业现代化的高速发展,许多重型结构如电站锅炉、压力容器、重型机械、船舶等结构大型化,使焊接结构用钢量大幅上升,但是我国焊接生产机械化、自动化水平低,为了提高生产效率,提高产品的精度,降低工人劳动强度,我们国家需要向焊接自动化,焊接智能化发展。

焊接机器人简介

焊接机器人简介 摘要:随着产品向高质量、多品种的方向发展以及人们对改善生产环境意识的进一步提高,机器人作为创造舒适环境的一种手段,其应用越来越广泛。本文就主要介绍了工业机器人在现代制造业中的发展及其重要地位,阐述了机器人的应用领域,其中具体介绍了焊接机器人中的点焊机器人以及弧焊机器人。详细叙述了点焊机器人与弧焊机器人的基本功能及其所用的焊接设备。 一、机器人产生及其发展情况 机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,也同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中,各国加强了经济的投入,就加强了本国的经济的发展 目前,工业机器人作为现代制造业主要的自动化设备,己经广泛应用于汽车、摩托车、工程机械、电子信息、家电、化工等行业,主要用于完成焊接、搬运、装配、加工、喷漆、码垛等作业。据统计,全世界己经有100多万台机器人投入使用,其中用于焊接作业的机器人占全部机器人的45%以上。机器人技术己成为世界各国竞相发展的高新技术,其发展己成为衡量一个国家技术水平发展程度的重要指标之一。

二、机器人的应用领域 研制机器人的最初目的是为了帮助人们摆脱繁重劳动或简单的重复劳动,以及替代人到有辐射等危险环境中进行作业,因此机器人最早在汽车制造业和核工业领域得以应用。随着机器人技术的不断发展,工业领域的焊接、喷漆、搬运、装配、铸造等场合,己经开始大量使用机器人。另外在军事、海洋探测、航天、医疗、农业、林业甚到服务娱乐行业,也都开始使用机器人。 从机器人的用途来分,可以分为两大类:军用机器人和民用机器人。 军用机器人主要用于军事上代替或辅助军队进行作战、侦察、探险等工作。根据不同的作战空间可分为地面军用机器人、空中军用机器人(即无人飞行机)、水下军用机器人和空间军用机器人等。军用机器人的控制方式一般有自主操控式、半自主操控式、遥控式等多种方式。 在民用机器人中,各种生产制造领域中的工业机器人在数量上占绝对多数,成为机器人家族中的主力军;其它各种种类的机器人也开始在不同的领域得到研究开发和应用。总体看来,若按用途分,民用机器人可以分为以下几个主要类别: 1、工业机器人 现在工业机器人主要用于汽车工业、机电工业(包括电讯工业)、通用机械工业、建筑业、金属加工、铸造以及其它重型工业和轻工业部门。 机器人的工业应用分为四个方面,即材料加工、零件制造、产

工业机器人的焊接应用 焊接机器人

工业机器人的焊接应用-焊接机器人 工业机器人在焊接领域内的应用,被称作焊接机器人,它是从事焊接工艺的工 业机器人,它主要包括机器人和专业工艺焊接装备两部分。其中,机器人由机 器人本体和控制柜(硬件及软件)组成;而焊接装备,以弧焊及点焊为例,则 由焊接电源(包括其控制系统)、送丝机(弧焊)、焊枪(钳)等部分组成。 对于智能机器人,还应配有传感系统,如激光或摄像传感器及其控制装置等。 1、弧焊机器人的特点 弧焊机器人多采用气体保护焊方法(MAG、MIG、TIG),通常的晶闸管式、逆变式、波形控制式、脉冲或非脉冲式等的焊接电源都可以装到机器人上 作电弧焊。由于机器人控制柜采用数字控制,而焊接电源多为模拟控制,所以 需要在焊接电源与控制柜之间加一个接口。 近年来,国内外机器人生产厂都有自己特定的配套焊接设备,在这些焊接 设备内已经插入相应的接口板,所以弧焊机器人系统中并没有附加接口箱。比如:上海弗劳思FRB050不锈钢自动化焊接机器人套装,是联合了北京时代科 技量身定制的数字化脉冲焊机,焊接1CM的小圆效果完美赶超四大家族品牌。随着不锈钢焊接、铝制品焊接的应用越来越广泛,国内外的焊接设备倾向于往 数字化焊机方向的发展。应该指出的是,在弧焊机器人工作周期中,电弧时间 所占的比例较大,因此在选择焊接电源时,一般应按持续率100%来确定电源 的容量。送丝机构可以装在机器人的上臂上,也可以放在机器人之外,前者焊 枪到送丝机之间的软管较短,有利于保持送丝的稳定性,而后者软管校长,当 机器人把焊枪送到某些位置,使软管处于多弯曲状态,会严重影响送丝的质量,所以送丝机的安装方式一定要考虑保证送丝稳定性的问题。 2、点焊机器人的特点 由于采用了一体化焊钳,焊接变压器装在焊钳后面,所以点焊机器人的变 压器必须尽量小型化。对于容量较小的变压器可以用50Hz工频交流,而对于 容量较大的变压器,工业上已经开始采用逆变技术把50Hz工频交流变为 600~700Hz交流,使变压器的体积减少、减轻。变压后可以直接用600~ 700Hz交流电焊接,也可以再进行二次整流,用直流电焊接,焊接参数由定时 器调节。目前,新型定时器已经微机化,因此机器人控制柜可以直接控制定时器,无需另配接口。点焊机器人的焊钳,用电伺服点焊钳,焊钳的张开和闭合

焊接机器人的应用与发展

焊接机器人的应用 与发展

焊接机器人的应用与发展 【论文摘要】:简要介绍了机器人焊接技术发展历程、应用现状,从焊缝跟踪技术、离线编程与路径规划技术、多机器人协调控制技术、专用弧焊电源技术、焊接机器人系统仿真技术、机器人用焊接工艺方法、遥控焊接技术等七个方面论述了焊接机器人技术的研究现状,并对焊接机器人技术的未来发展趋势做出了展望,其中视觉控制技术、模糊控制技术、神经网络控制及嵌入式控制技术将是焊接机器人智能化技术发展的主要方向。 【关键词】:焊接机器人;技术现状;智能化;控制技术;发展趋势 【Abstract】:This paper briefly introduces the development courses and application situation of technology of welding robot. The present situation on technology of welding robot were discussed,these technologies are seam-tracking,off-line programming and trajectory planning,multi robots corresponded control,welding power source,simulation,welding technologies and remote welding robot. The development trend of technology on welding robot in future was presented. The visual manipulation-technology,fuzzy manipulation-technology,neural network manipulation-technology,embedded system manipulation-technology and intelligent technology were considered as the main development directions. 【Key words】:welding robot;technical state;intelligent technology;manipulation-technology;development tendency

相关文档
最新文档