大学物理电场高斯定理

合集下载

大学物理 高斯定理

大学物理 高斯定理

引言概述:在大学物理中,高斯定理是一项重要的物理原理,它描述了电场和磁场的性质。

高斯定理由德国物理学家卡尔·弗里德里希·高斯于18世纪中叶提出,是电磁学的基础之一。

本文将介绍高斯定理的概念、原理及其在电场和磁场中的应用。

正文内容:1. 高斯定理的概念1.1 定义高斯定理是描述电场和磁场分布的一种数学工具,它通过计算电场或磁场通过一个闭合曲面(高斯面)的总通量来研究场的分布。

1.2 数学表达高斯定理可以用数学表达式表示为:∮E·dA = q/ε0,其中∮E·dA表示场在闭合曲面上的总通量,q表示闭合曲面内的电荷量,ε0为真空介电常数。

2. 高斯定理的原理2.1 高斯面的选择高斯定理中的高斯面是根据具体问题选择的,一般情况下我们选择对称性较高的闭合曲面,以简化计算。

2.2 电场线的特性高斯定理的基础是电场线的性质,电场线从正电荷流向负电荷,且与介质边界垂直,通过一个封闭曲面的电场线数目与该封闭曲面内的电荷量有关。

2.3 通量与电场强度高斯定理中的总通量与电场强度呈正相关关系,通过计算总通量可以得到闭合曲面内的电场强度大小。

3. 高斯定理在电场中的应用3.1 点电荷的场分布高斯定理可以用来研究点电荷周围的电场分布,通过选择以点电荷为中心的球面作为高斯面,可以计算出球面内外的电场强度大小。

3.2 均匀带电球壳的场分布对于均匀带电球壳,可以通过选择以球壳为中心的闭合曲面来计算球壳内外的电场分布,根据高斯定理可以得到球壳内外的电场强度大小。

4. 高斯定理在磁场中的应用4.1 磁场的总通量类似于电场,磁场也可以使用高斯定理来描述,通过计算磁场通过闭合曲面的总通量可以了解磁场的分布情况。

4.2 磁场的磁感应强度高斯定理在磁场中的应用可以得到磁场的磁感应强度大小,通过选择合适的闭合曲面,可以计算出曲面内外的磁感应强度。

5. 高斯定理的实际应用5.1 高斯定理在电容器中的应用电容器是电子器件中常见的元件,根据高斯定理,可以计算电容器两极板之间的电场强度,进而了解电容器的性能。

大学物理高斯定理

大学物理高斯定理

球对称分布:包括 均匀带电的球面, 球体和多层同心球 壳等
轴对称分布:包 括无限长均匀带 电的直线,圆柱 面大,学物圆理高柱斯壳定理等;
无限大平面电荷: 包括无限大的均 匀带电平面,平 板等。
步骤:
1.进行对称性分析,即由电荷分布的对称性,分 析场强分布的对称性,判断能否用高斯定理来求 电场强度的分布(常见的对称性有球对称性、轴 对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:
静电场的性质与计算 6-3 电场线 高斯定理
大学物理高斯定理
6-3 电场线 高斯定理
一、电场线
1、定义
在电场中画一组带箭头的曲线,
这些曲线与电场强度 E 之间具有
E
以下关系:
①电场线上任一点的切线方向给出了该点电场 强度的方向;
②某点处电场线密度与该点电场强度的大小相 等。
大学物理高斯定理
电场线密度:经过电场中任一点, 作一面积元dS,并使它与该点的 场强垂直,若通过dS面的电场线 条数为dN,则电场线密度
大学物理高斯定理
高斯定理的应用
例1. 求球面半径为R,带电为q的均匀带电球面的电场的
空间分布。
解: 电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面.
S E dS
E 4r2
q
0
q
E 40 r 2
+ +
+ +
+
R
+
r
+q + +
+
rR时,高斯面无电荷,
E=0
+
+
+++ +

大学物理高斯定理公式

大学物理高斯定理公式

大学物理高斯定理公式大学物理中的高斯定理公式是一种关于电场和电流分布的基本定律。

高斯定理可以用于描述物体电场和电流分布,同时可以用于计算一般电场和电流分布情况下的电容量和电侵蚀率。

这里介绍几种常用的高斯定理公式。

一、单点电荷的高斯定理公式通常情况,单一的常规的静电场的电荷分布是具有点特征的,此时只需要考虑一个点电荷的作用,可以根据高斯定理,给出点电荷产生的电场的表达式:$$E(r)=\frac{q}{4\pi \epsilon_0 r^2}$$其中,$E$ 是点电荷$q$所产生的电场,$\epsilon_0$是空气介电常数,$r$是测量点相较于点电荷的距离。

二、多点电荷组合的高斯定理公式当考虑多点电荷时,就没有简单地表达式了,首先根据高斯定理,给出多点电荷产生的电场的概念的表达式:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i}{4\pi \epsilon_0 r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的电场强度,$q_i$表示第i个点电荷,$\epsilon_0$是空气介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。

有时,我们可以使用梯度运算来分析多点电荷组合作用下的电场,即:$$\nabla E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi\epsilon_0 r_i^3}$$三、静电场介电体上的高斯定理公式静电场介电体的电场分布可以根据高斯定理给出:$$E(r, t)=\sum\limits_{i=1}^n \frac{q_i \cdot \nabla r_i}{4\pi \epsilon(r)r_i^2}$$其中,$E(r,t)$是测量点相较于多点电荷源的介电体静电场强度,$q_i$表示第i个点电荷,$\epsilon(r)$是介电体在多点电荷源处的介电常数,$r_i$是测量点和第i个点电荷的距离,n表示点电荷的数量。

大学物理高斯定理

大学物理高斯定理


第11章 静电场
11-4 高斯定理
2 点电荷在任意形状的高斯面内 通过球面 S 的电场线也必通 过任意曲面S‘ ,即它们的电 通量相等。 为 q / o
S'
S +
q E Φ E d dS e e SS o
第11章 静电场
11-4 高斯定理
3 电荷q在闭合曲面以外
0
dV E d S 若电荷连续分布,则为 e: E d S s V
0
第11章 静电场
11-4 高斯定理
讨论
1 闭合面内、外电荷 对
S
E 都有贡献
对电通量 E dS 的贡献有差别
只有闭合面内的电量对电通量有贡献 2 静电场性质的基本方程
非匀强电场
E
dS
en
Φ dΦ S E dS
第11章 静电场
11-4 高斯定理
讨论
1
dΦ E dS 的正、负取决于面元的法线方向与
电场强度方向的关系
如图所示: 若面元法向相反:
E dS 0
E dS ' 0
E
dS
dS '
第11章 静电场
11-4 高斯定理
11-4 高斯定理
描述电场的两种方法:电力线和电通量。 11.4.1 电场线 1 曲线上各点的切线方向都与该点处的场强方向一致 2 电场线密度
EP
dN E dS
第11章 静电场
EQ
Q
P
dN
dS
11-4 高斯定理
电场线的性质: 电场线起自于正电荷或无穷远,止于负电荷或无穷 远 ,没有电荷处不中断。 对于静电场不可能出现单一绕向的闭合电力线。 两条电场线不会相交,不能相切。

大学物理-电场强度通量,高斯定理

大学物理-电场强度通量,高斯定理


2
i
0
q
i
E 4πr 0
E 4 πr
2
q
E 0
0
E
q 4 π 0 r 2
例2 计算均匀带电球体的场强分布,q , R 解: 通量

q 4 πR 3 3
qi 2 Φe E dS E 4πr S 0
r<R r>R 电量
电量
4 3 q π r i 3
S S

n
E
曲面闭合时
Φe E dS E cos dS
S S
S
dS

注: E为dS处的电场强度
n E
例 三棱柱体放置在如图所示的匀强电 场中. 求通过此三棱柱体的电场强度通量. 解
Φe Φei
i 1
5
y
N
S1
P
S2
Φe1 Φe 2
2、高斯 (Gauss) 定理 (1) 证明: 略.书P166-168 (2 )内容(书P168): 真空中 注:
1 Φe E dS
s
0
q
i 1
n
in i
①公式中S:高斯面(闭合曲面)
②穿过S面的电场强度通量e: 只由S面内的电荷决定
(如图中 q1、q2) ③ E : 面元 dS 处的场强 , 由所有电荷(面内、外电荷) 共同产生(如图中 q1、 q2 、 q3)

.
q 8 0
(3) 若将此电荷移到正方体的一 个顶点上,则通过整个 正方体表面的电场强度通量为
1 e E dS
s
0
q

大学物理电通量高斯定理

大学物理电通量高斯定理

高斯定理的应用范围
在静电场中,高斯定理广泛应用 于电荷分布和电场关系的分析。
在恒定磁场中,高斯定理可以用 来分析磁通量与电流之间的关系

高斯定理是解决物理问题的重要 工具之一,尤其在计算电场分布 、求解电势、分析带电体的相互
作用等方面具有广泛应用。
02
电通量和高斯定理的关系来自 电通量的定义和性质总结词
大学物理电通量高斯定理
汇报人: 202X-01-04
contents
目录
• 高斯定理的概述 • 电通量和高斯定理的关系 • 高斯定理的证明 • 高斯定理的应用实例
01
高斯定理的概述
高斯定理的内容
总结了电荷分布与电场之间的关系, 指出在空间中任一封闭曲面内的电荷 量与该封闭曲面上的电场通量之间存 在正比关系。
利用电场线证明高斯定理
总结词:直观明了
详细描述:通过电场线的闭合曲线围成的面积的电通量与该闭合曲线所包围的电荷量的关系,证明高 斯定理。
利用高斯公式证明高斯定理
总结词:数学严谨
详细描述:利用高斯公式,将空间分成无数小的体积元,再通过求和得到整个空间的电场分布,从而证明高斯定理。
利用微积分证明高斯定理
详细描述
高斯定理是描述电通量与电荷分布关系的定理,它指出在任意闭合曲面内的电荷量等于该闭合曲面所包围的体积 内电场线的总条数。这个定理表明,电荷分布与电场线数之间存在一定的关系,即电荷分布影响电场线的分布。
电通量和高斯定理的推导过程
总结词
通过数学推导,我们可以证明高斯定理的正确性。首先,我们定义电场线密度为电场强 度与垂直于曲面的面积之比,然后利用微积分原理和格林公式,推导出高斯定理的表达
公式表达为:∮E·dS = 4πkQ,其中 ∮E·dS表示封闭曲面上的电场通量,Q 表示曲面内的电荷量。

大学物理常用公式电场磁场热力学

大学物理常用公式电场磁场热力学

第四章 电 场一、常见带电体的场强、电势分布 1点电荷:2014q E r πε=04qU rπε=2均匀带电球面球面半径R 的电场:200()()4r R E qr R r πε≤⎧⎪=⎨>⎪⎩00()4()4qr R r U q r R R πεπε⎧>⎪⎪=⎨⎪≤⎪⎩3无限长均匀带电直线电荷线密度为λ:02E rλπε=,方向:垂直于带电直线; 4无限长均匀带电圆柱面电荷线密度为λ: 00()()2r R E r R rλπε≤⎧⎪=⎨>⎪⎩5无限大均匀带电平面电荷面密度为σ的电场:0/2E σε=,方向:垂直于平面; 二、静电场定理 1、高斯定理:0e Sq E dS φε=⋅=∑⎰静电场是有源场; q ∑指高斯面内所包含电量的代数和;E指高斯面上各处的电场强度,由高斯面内外的全部电荷产生;SE dS ⋅⎰指通过高斯面的电通量,由高斯面内的电荷决定;2、环路定理:0lE dl⋅=⎰ 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统:1ni i E E ==∑;连续电荷系统:E dE =⎰2、利用高斯定理求场强 四、求电势的两种方法1、利用电势叠加原理求电势 分离电荷系统:1nii U U==∑;连续电荷系统: U dU =⎰2、利用电势的定义求电势 rU E dl =⋅⎰电势零点五、应用点电荷受力:F qE = 电势差: bab a b aU U U E dr =-=⋅⎰a由a 到b六、导体周围的电场1、静电平衡的充要条件: 1、导体内的合场强为0,导体是一个等势体;2、导体表面的场强处处垂直于导体表面;E ⊥表表面;导体表面是等势面; 2、静电平衡时导体上电荷分布: 1实心导体: 净电荷都分布在导体外表面上; 2导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷;3导体腔内有电荷+q,导体电量为Q :静电平衡时,腔内表面有感应电荷-q,外表面有电荷Q +q;3n σε=七、电介质与电场 1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化; 2、—电介质介电常数,r ε—电介质相对介电常数;3、无介质时的公式将0ε换成ε或0ε上乘r ε,即为有电介质时的公式 八、电容131C 4、电容器的储能、电场的能量密度:21122e E D E ωε==⋅第五章 稳恒磁场一、常见电流磁场分布1、载流圆环圆心处磁场:3单位长度上匝数1/n d = d :导线直径 二、磁场定理1、磁通量:通过某一面元dS 磁通:dS B S d B d m θφcos =⋅=m SB dS φ=⋅⎰⎰2、磁场的高斯定理:通过任意闭合曲面的磁通量为零: 0=⋅⎰⎰SS d B稳恒磁场是无源场3 稳恒磁场是一非保守场∑内I:闭合回路所包围的电流的代数和;I 的正负:由所取回路的方向按右手定则确定;B指回路上各处的磁感应强度,由回路内外的全部电流产生;环流⎰⋅ll d B只与回路内的电流有关;三、利用磁场叠加原理求B : ,i iB B B dB ==∑⎰四、应用1、 洛伦兹力:B v q f ⨯= 当B v⊥时:粒子在均匀磁场中作匀速圆周运动:2/mv qvB mv R R qB =→= 2mT qBπ=2、 安培力:电流元受力: B l Id F d⨯= 一段载流导线受力:⎰⨯=LB l Id F若直导线上的B处处与导线垂直且相等,则安培力:F IBL =3磁矩m PN :线圈匝数;I 为通过线圈的电流强度;S 为线圈的面积;n为线圈的法向单位矢量 五、磁场中的磁介质12、磁介质安培环路定理: ∑⎰=⋅0I l d H lH:磁场强度矢量μ:介质的磁导率;r μ:介质的相对磁导率r μμμ0=3、无介质时的公式将0μ换成μ或0μ上乘r μ,即为有磁介质时的公式 第六章 变化的电磁场一、法拉第电磁感应定律: 感应电流:1md I RR dtεΦ==-感应电量:R Idt q m ∆Φ-==⎰二、产生动生电动势的非静电力—洛仑兹力动生电动势计算:三、产生感生电动势的非静电力-感生电场力 四、感生电场的环流:m lS d BE dl dS dt tΦ∂⋅=-=-⋅∂⎰⎰感 感生电场是非保守场;无势能感生电场的通量:0SE dS ⋅=⎰感 感生电场是无源场;感生电场线是闭合曲线;五、磁场的能量1、自感磁能、线圈储存的能量六、麦克斯韦方程的积分形式dd Sd H dl I I I dtΦ⋅=+=+⎰磁场由传导电流和位移电流变化的电场激发位移电流的实质是时变电场,无电荷移动,无焦耳热 第十章 气体动理论及热力学一、理想气体的状态方程1玻尔兹曼常数/A k R N =;气体普适常数R;阿伏加德罗常数A N ;质量密度与分子数密度的关系:m 气体分子质量平均速率:方均根速率:p v v >>四、热力学第一定律 :第一类永动机是不可能制成的; 五、非平衡过程:绝热自由膨胀过程气体体积增加一倍:熵增加0Q A ==120E T T ∴∆==11122122p V p V V V ==1212p p ∴=六、理想气体在各种平衡过程:七、循环过程 1、 循环一次:0=∆E ;A Q =净净=循环曲线围成图形面积 2、循环效率 1A Q Q Q η==-净放吸吸 3、卡诺循环效率:211T T η=-八、一切实际过程都是不可逆过程,只能沿着无序度增加熵增加的方向进行;0ds ≥仅对可逆过程取等号 可逆过程:无阻力的单摆,无摩擦的准静态过程 九、平均碰撞频率22Z d nv π=d :分子有效直径 平均自由程:212v Z d nλπ==第十二章 量子物理一、光电方程 212m h mv A ν=+,c m eU mv =221,00hc h A νλ==二 、德布罗意假设2;hmc h p mv ενλ====德布罗意波长:hmv λ= 电子012.2A Uλ=德布罗意波是一种没有能量转移的概率波; 1927年戴维孙和革末用电子衍射实验证实实物粒子的波动性;四、不确定关系:x x P h ∆⋅∆=粒子的坐标和动量不能同时精确确定;五、2(,,,)x y z t ψ 就表示粒子在t 时刻在x,y,z 处单位体积内出现的概率 波函数的标准化条件:单值、有限、连续;波函数的归一化:21dv ψ=⎰六、玻尔理论:轨道角动量:2hL mvr nn π=== 跃迁假设:n k h E E ν=- 轨道半径:020.531,2,3...n r n A n ==,能级:213.61,2,3...n E eV n n=-=七、氢原子的量子力学处理:1、主量子数:12 3...(1)n n =-、、、角量子数:0123 (1)p dl n s =-、、、、、、磁量子数:012......l m l =±±±、、、 自旋磁量子数:s m =±1/22、核外电子分布遵从:泡利不相容原理;能量最低原理。

大学物理 —— 第四章2 电通量 电场中的高斯定理

大学物理 —— 第四章2  电通量  电场中的高斯定理

E • ds
s
0 r
qi
当场源分布具有高度对称性时求场强分布
步骤:1.对称性分析,确定
E
的大小、方向分布特征
2.作高斯面,计算电通量及 qi
3.利用高斯定理求解
例1.均匀带电球面
已知R、 q>0 求均匀带电球面的场强分布
解: 对称性分析
E
具有球对称
❖ 作高斯面 过P点的球面
R
r
P
通量
rR
e
E1 • ds E1
ds E14 r 2
rR r
通量
e
E2 • ds E2
P
ds E24 r2
s
s1
电量
qi 0
s
电量
s2
qi q
用高斯定理求解
E1 4r 2 0
E2 4r 2
q
0
E1 0
E2
q
4 0r 2
课 球体

练 计算均匀带电球体内外的场强分布,已知q,R
电通量 电场中的高斯定理
一.电场线(电场的图示法)
方向 :切线
E 大小:E dN =电场线密度
Ea
Eb
b
dS Ec
c
E
a
dS
E
性质: 静电场中,
不闭合;不相交 起于正电荷、 止于负电荷。
E
点电荷的电场线
负电荷
正电荷
+
一对等量异号电荷的电场线 +
一对等量正点电荷的电场线
+
+
一对异号不等量点电荷的电场线
)
等于这个闭合
曲面所包围的电荷的代数和除以 0 ,与闭合曲面外 的电荷无关。

大学物理高斯定理

大学物理高斯定理

大学物理高斯定理简介大学物理中,高斯定理(也称为电通量定理)是电学领域中的一个重要定理,它描述了电场通过一个封闭曲面的总电通量与该曲面内的电荷量之间的关系。

高斯定理的数学表达式是一个面积分,通过对电场和曲面的特性进行积分计算,我们可以计算得到相应的电通量。

定理表述高斯定理可以用数学公式表述如下:其中, - 表示对封闭曲面 S 的面积分; - 表示电场的向量;- 表示面元矢量; - 是真空中的介电常数(气体中也可近似使用该值); - 表示电荷密度在封闭曲面内的体积分。

解读根据高斯定理,电通量与环绕其的电荷量成正比。

如果电场线密集,表示电通量会相应增大,而如果电场线稀疏,表示电通量相应减少。

因此,高斯定理为我们提供了一种计算电场分布和电荷分布之间关系的方法。

高斯定理的背后思想是通过找到一个适当的曲面,使得计算曲面上的电场更加容易,从而求得电场的总电通量。

这个曲面可以是球面、柱面、立方体等等,具体选择曲面要与问题的几何特征和对称性相匹配。

应用举例例子1:均匀带电球考虑一个均匀带电球体,电荷密度为,半径为。

我们想通过高斯定理计算球内外的电场。

在这种情况下,由于球具有球对称性,我们选择一个以球心为中心的球面作为高斯曲面。

根据球对称性,球的电场在球面上处处相等,并且与球面的法线垂直。

因此,和在点积后等于,其中是球面上的电场强度。

曲面的面积元等于球的表面积元。

因此,高斯定理可简化为:等式的右边是整个球的表面积,用!表示。

由于电场是球对称的,且垂直于球面,所以电场与面积元相乘的结果在整个球面上是相等的。

由于曲面上的电场都是相等的,整个球面的面积元乘以电场强度后等于电场强度乘以整个球面的面积,所以可以简化为:解得:其中,为球内的总电荷量。

例子2:无限长均匀带电线考虑一个无限长均匀带电线,线密度为。

我们想通过高斯定理计算线外的电场。

在这种情况下,由于线具有柱对称性,我们选择一个以线为轴的柱面作为高斯曲面。

我们将柱面的两个底面分别设为 A 和 B,其中 A 的面积为,B 的面积为。

大学物理Ⅱ 高斯定理

大学物理Ⅱ 高斯定理

P
l
e
E dS S
E dS
侧 E dS 上底 E dS 下底 E dS
侧 EdS E 侧 dS E 2r l
根据高斯定理得 E 2r l 1 l 0
E 2 0 r
用高斯定理求场强小结:
1 . 对称性分析
电荷分布对称性→场强分布对称性
点电荷 球对称性 均匀带电球面
均匀带电球壳
球体
轴对称性 柱对称
无限带电直线
无限带电圆柱 无限圆柱面 无限同轴圆柱面
无限大平面 面对称性 无限大平板
若干无限大平面
2. 高斯面的选择
①高斯面必须通过所求的场强的点。
②高斯面上各点场强大小处处相等,方向处处与该 面元线平行;或者使一部分高斯面的法线与场强方 向垂直;或者使一部分场强为零。
+ q+ +
+
0
R
r
高斯定理的应用
例2 均匀带电球体的电场。球半径为R,带电为q。
解:电场分布也应有球对称性,方向沿径向。
作同心且半径为r的高斯面
1)r R时 ,
E ds E ds
E 4r2
s
s
r
q
0
4 r3
3
0
q
4 R3
4 r3330E qr4 0R3
R
高斯面
高斯定理的应用
Φe前 Φe后 Φe下
s
E
dS
0
y
P
N
en
o
zM
en
E
en
Q
Rx
Φe左
s左
E
dS
ES左
cosπ
ES左
Φe右 s右E dS ES右 cos ES左

《大学物理》高斯定理知识点

《大学物理》高斯定理知识点

(2)库仑定律只适用于静电场,高斯定理不 但适用于静电场, 对变化电场也是适用的。
第六章 静电场
6 - 2 高斯定理
四 高斯定理应用举例
面内例部1和外设部有任一意半点径的为电R场, 均强匀度带E 电。为Q
分析:
的球面。求球
E
解: r R q 0
R S1 Q
E d S E 4 r2 0 S E 0 (r R)
第六章 静电场
6 - 2 高斯定理
高斯定理的应用
能用高斯定理求解的静电场必须具有一定的对称性。 其步骤为
对称性分析:轴对称、面对称、球对称。
根据对称性选择合适的高斯面:
·高斯面上所有点的场强都相等;
·高斯面上的部分面上各点的场强都相等,另一 些面上场强与该面的法线相垂直;
应用高斯定理计算:
一般高斯面会分为几部分,要分别计算出各面上 的电通量;求出高斯面内包围的净电荷量;计算待求 电场强度。
拓展:若为一半径为R的均匀带电球体,所带电荷量为Q。 则其球内外的电场如何分布?
第六章 静电场
6 - 2 高斯定理
例2 设有一无限大的均匀带电平面,单位面积上所
带的电荷即电荷面密度为 。求距离该平面为 r 处某点
的电场强度。
分析:
E
E E
E
S
解:根据高斯定理
2ES S 0
第六章 静电场
E
e E cos dS E cos dS E cos dS
S
底面1
底面2
E cos dS 0 0 E 2 rl 2 Rl
侧面
0
l
所以场强:E R
令圆柱面每单位长度的电0r量为λ,则有λ =σ2πR・1。
则: 2R

大学物理静电场的高斯定理

大学物理静电场的高斯定理

高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。

大学物理——高斯定理

大学物理——高斯定理

(2) 电通量是代数量
0θ 2
θ 2
de de
为正 为负
5
三、高斯定理
K.F.Gauss——德国物理学家、数学家、天文学家
定理:真空中的静电场内,通过任意封闭曲面的
电通量等于曲面内所包围的电荷电量的代数和除
以真空介电常数。
e
E dS
S
1
0
Qi
分立
高斯
1
0
dQ
连续
说明:对 有贡献的仅是面内电荷 e E 面上各点的 却是在场的全部电荷的贡献
7
高斯定律的用途:
当电荷分布具有某种对称性时,可用高斯定律求 出该电荷系统的电场的分布。比用库仑定律简便。
当已知场强分布时,可用高斯定律求出任一区域 的电荷、电位分布。 开文迪许就是用高斯定律来证明库仑定律的平方 反比关系。这说明它们不是相互独立的定律,而 是用不同形式表示的电场与场源电荷关系的同一 客观规律。
18
上节回顾 1、 电场力的功 2、静电场的环路定理
L E dl 0
3. 电势的计算
A
qq0
4
0
1 r1
1 r2
dq
V
Q 4 0r
1
4-3 高斯定理
一、电场线(电力线)
1.画法要求:电场中假想的曲线 2.几种电场的电场线:
疏密——表征场强的大小(穿 过单位垂直截面的电场线数= 附近的场强大小) E N
12
例4. 求均匀带电圆柱面的电场分布。 已知沿轴线方向单位长度带电量为,半径为R
解:场具有轴对称 高斯面:圆柱面
(1) r <R
e E dS E dS E dS E dS
s
上底

大学物理-电通量--高斯定理

大学物理-电通量--高斯定理

Φe
q
0
点电荷在闭合曲面之外
只有与闭合曲面S相切的锥 体范围内的电力线才通过闭
合曲面S,每一条电力线从
某处穿入必从另一处穿出, q
一进一出正负抵消,总电通 +
量为零.
rrq
Ñ E dS 0
仍成立
14
S
E
多个点电荷的情况
vv
nv v
Ñ Ñ Φe
E dS
S
(
S
Ei ) dS
i 1
v nv
外侧. 因此,从曲面上
穿出的电力线,电通量
为正值;穿入曲面的电
力线,电通量为负值。
9
r
r
例:一电场强度为 E 的均匀电场 ,E 的方向与x轴正方
向平行,则通过图中一半径为R的半球面的电通量为 D
A、πR2E
B、πR2E/ 2
C、2πR2E
O
x
D、0
B
10
三 高斯定理
通过真空中的静电场中任一闭合面的电通量 Φe
例8.6 均匀带电球面的电场强度
一半径为 R, 均匀带电+ q 的球
面 . 求球面内外任意点的电场强度.
解:电荷分布具有球对称性,所以 空间场强分布为球对称性,即
+ +S1+
r +
+O
+ +
+R +
+++
与球心距离相等的球面各点
场强大小相等,方向沿半径
呈辐射状。
取过场点P的同心球面为高斯面,半径为r
均匀电场 ,E 垂直平面
Φe ES
均匀电场 ,E 与平面法线 夹角为

大学物理-高斯定理

大学物理-高斯定理
复习 库仑定律
电场强度的计算
F
1
4 0
q1q2 r2
r0
电场强度
E
F
q0
(1) 点电荷的场强
E
1 4πε0
q r2
r0
(2) 场强叠加原理
E E1 E2 En
(3) 电荷连续分布的 带电体的电场
电 荷
E dE
dq
r
(q)
(q) 4 0r 3
分 布
dq ρdV (体 分 布) dq σdS (面 分 布) dq λdl (线 分 布)
q2 A P*
s
q2 B
q1
在点电荷 和q 的q静电场中,做如下的三个闭合面
求通过各闭合S面1 ,的S电2 ,通S量3。,
Φe1
E dS
q
S1
0
Φe2 0
Φe3
q
0
q
q
S1
S2
S3
例:一点电荷位于边长为 a 的立方体的顶角上, 求:通过该立方体表面总的电通量。
解: 顶角所在的三个面上的通量为零。 其余三个面上直接计算困难
(3) 天文学和大地测量学中:如小行星轨道的计算,地球大 小和形状的理论研究等。统计 理论和误差理论,发明了最小二乘法,引入高斯误差曲线。
(5) 高斯还创立了电磁量的绝对单位制。
一、电通量 1、电场线 ( Electric Field Line ) (电场的几何描述)
E
n
dS
E
S E cos dS
Φe
E dS
S
为通过 S 面的电通量。
dS 有两个法线方向,dφ 可正可负。
S为封闭曲面
规定:闭合面上各面元的外法

大学物理-第1章 电场强度 高斯定理

大学物理-第1章 电场强度 高斯定理

+的场强 视为点电荷 dq
r r
P
Q
分解
dq
Q
r dE
设带电体的电荷体密度为, dq在 P 点产生的场强为 叠加
则 d q dV
r dE
r 1 r dV 3 4π 0 r
r r E dE
P点的场强为
r 1 E 4π 0

V
r r dV 3 r
穿出为正,穿进为负
向外法 线
31
S

E
选取面积元 dS dS en
1.3.3 高斯定理
1. 点电荷q 的电场中任意闭合曲面的电场强度通量 (1)点电荷在闭合曲面内 以q为中心、半径任意的球面S 的电场强度通量 由库仑定律得P 点场强 面积元dS的电场强度通量
v E 1 q r e 2 r 4π 0 r
大小 F12 k
12
v v F21 F12
q1q2
q1q2
r122 方向 沿 q1、 q 2 的连线,同性相斥,异性相吸
k 9 109 N m2 C2
比例系数 真空中的电容率
9
1 4π 0 r12 2
v F21
v r12
q1
v F12
q2
0 8.851012 C2 (N m2 )
15
点电荷的电场分布
q>0
q<0 (b)负电荷
(a)正电荷
16
1.2.3. 一定数量点电荷产生的电场强度
q0 受到的合力为
q1
r r r r F = F+F 1 2+L F n
P 点场强
r E r Fi
n i 1
r r1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 库仑力满足牛顿第三定律;
F12
1 4πε0
q1q2 r2
rˆ21
(3) F电 F万 e.g. 两个粒子
m 6.64 1027 kg q 3.2 1019 C
F电 F万
kq2 / r 2 Gm2 / r 2
9 109 (3.2 1019 )2 6.67 1011 (6.64 1027 )2
E
2p
4πε0r3
例10.2 均匀带电细直棒,与棒垂直距离为 a 的P点的
场强。已知电荷线密度为,棒两端到P点的连线与X
轴的夹角分别为1和 2
dE dE
y
Y
dE x P
ar 1
解场:强建为立:坐解 标轴: d如E图, x41x+0ddrx2电qe荷r1元dλx产d生x的
2
dE xdE coθs4π0εr2 coθs
②改为均匀带电的半圆环,线电荷密度
为0,结果?
Y
O
X
[例] 均匀带电(Q)直线段延长线上一点的场强.
L O x x+dx
a X
p
解:建立坐标轴如图
xx+dx电荷元在P点产生的场强:
dE
dq
4 0r2
i
QL dx
40(Lax)2
i
P点的总场强:
E dE i4Q 0L0 L(Ld ax x)2
q2
q1
r2 q0 r1
F1
F2
10.2 静电场 电场强度
早期:电磁理论是超距作用理论 电荷
电荷
后来: 法拉第提出近距作用,并提出力线和场的概念
电荷 电场 电荷
一、电场 (electric field)
在任何电荷的周围,都存在一种特殊的物质——电场
电场——一种物质(场物质)
静电场——相对于观察者静止的电荷产生的电场
d q 电荷体 : dq 分 dV 布 — — 电荷体
类似于质量密度
注意:在具体计算时,要化成标量积分,即先分 解,再积分。
例10.1 求电偶极子(electric dipole)的场强。
一对相距为l 的等量异号点电荷
若从电荷连线中点指向场点P的位矢为 r
P
当满足 r >> l 时,称之为电偶极子。 r
大学物理电场高斯定理
第三篇 电磁场
一.真空中的静电场
电场
二.导体和电介质中的静电场

三.真空中的恒定磁场(电生磁)
磁 磁场

四.磁介质中的磁场
五.法拉第电磁感应 (磁生电) 电磁场
六.麦克斯韦方程组
第 10 章
Electrostatic Field in Vacuum
10.1 电荷 库仑定律 一、电荷 (Electric charge) 1. 正负性-两种,同号相斥,异号相吸 2. 量子性---电荷量子化,是基本单元
二、库仑定律 (Coulomb`s Law)
库仑(1736 ~ 1806)
法国工程师、物理学家。
1777年开始研究静电和 磁力问题,发明扭秤。 1779年对摩擦力进行分析,提出有关润滑剂 的科学理论。1785--1789年,用扭秤测量静 电力和磁力,导出著名的库仑定律。
1、点电荷 ( Point Charge ) 在具带体电问体题之中间,电当力带定电量体研的究形比状较和困大小 难与,它需们要之考间虑的电距量离、相物比体可形以状忽、略物时体,大把 小仑带、 提电周出体围 点看介 电作质 荷点等 概电许 念荷多 。.因素。1785年库
(q)
(q)
三、电场强度的计算 1. 点电荷Q的场强
(场源点电荷Q在场点P产生的电场强度)
q Q rP r
首先,将试验点电荷q置于任意场点P处
由库仑定律有,F 再由场强定义
Qq 4 πε0Fr 2
E

q
E
Q 4πε0r 2

讨论 1)球对称分布
2)场强方向:正电荷受力方向, 径向
2. 任意带电体的场强
O dx
x
Ex dEx
X
r a
sin
dE ydE siθ n4π10ελrd2 xsiθ n
xactg
dx a d sin2
Ey dEy
dEx 40acosd dEy 40asind
ExdxE40a12cod s
40a(sin2sin1)
Ey dyE40a12sind
40a(co1scos2)
电场的宏观表现 • 对放入其内的任何电荷都有作用力 (电场强度) • 电场力对移动电荷作功(电势)
二、电场强度 Electric Field Strength
将试验电荷置于各场点处,测其受力
F
q
0
结果表明:在任一确定场点 F 比值与试验电荷无关
q
F
q0
q
2q 0
Q
0
3q 0
F 2F
3F
定义:
电场强度
E
1 4πε0
(R2
Qx x2 )3/2
E
1
4 0
(R2
Qx x2 )3/2

[思考]
E
1
4 0
(R2
Qx x2 )3/2

①环心(x=0)处场强?
若 x0, E0 —环心处场强为零
② x<0,结果?
③ xR ,结果? 说明:点电荷模
E
Q
4 0 x2
i
Q
4 0r 2
型使用的条件 i ——点电荷的场强
1 [SI]: k
4 0
q1 rˆ12 r
q2
F21
两电荷同号时q2受力方向
08.851012F/m k 9 109 N m2/c2
真空中的介电常数 (电容率)
F21
1 4πε0
q1q2 r2
rˆ12
讨论:
F21
1 4πε0
q1q2 r2
rˆ12
(1) 库仑定律只适用于真空中的点电荷;
[思考] ①通过蓝红闭合曲面电力线数目相等吗? ②左右红闭合曲面电力线数目有区别吗?
③通过粉红闭合曲面电力线数目?
二、电通量electric flux
通过任意曲面的电场线条数叫通过该面的电通量
带电体由 n 个点
根据场强叠加原理和场强定义 电荷组成,如图
1)点电荷系的场强
qi
将试验点电荷q0置于任意场点P处
由电力叠 q
加原理 由场强定义
0
q
受合力 F
0 处总场强
in
Fi
i 1
F
E
E
Ei

q0
in E
qi
i
i1 4πε0
P
q0
in i1
ri2 rˆi
ri
Fi q0
dq
r
R
O
x
P dE //
X
由对称性分析知
r dE dE
dq
垂直x 轴的场强为0
EExx
由图:
dEx dEcos
cos x
r
Exdx EdE coθs Q
4πdεq0r2cosθ
1 4πε0
x dq r r2
dq Q dl 2π R
r R2x2
1
Qx 2πR dl
E4π0ε(R2x2)3/2 0 2πR
其特征物理量是电偶极矩
r
r
pql 方向:从-q→ +q q q
l
解 根据场强叠加原理:
E E E 4q0r2 r 4q0r2 r
电偶极子的场强:
E E E 4πq0r2 rˆ4πq0r2 rˆ
写成
E
q
4π0
rr3
rr3
形式
E
特殊情况:
EP
1)对中垂线上的各点 因电偶极子满足 r >> l ,得:
E r
q
rr
l q
r r r
q
E40r3
(r
r)
qpl 4πε0r 3
2)连线上,正电荷右侧任一点 P 的场强
r
rl , 2
r
rl 2
q E
4π0
rr3
rr3
q
l
q r
P
r
q[ 1
40 (rl)2
(r1l
]rˆ )2
4πq0ε(r22lr2l/4)2
2
2
r l
E
1 4πε0
2ql r3
E
F
试验电荷必须: 电量充分小
q
线度足够小
大小:等于单位正电荷在该点所受的电场力 方向:与正电荷在该点所受力的方向相同
单位: N/C ; V/m
讨论
定义:
电场强度
E
F
q
1) E E r E x y z
2) 矢量场
3) 点电荷在外场中受的电场力 FqE
一般带电体在外场中受力
FdFEdq
(1) x R, 无限大均匀带电平面,
E
σ
(2)xR , (1R 2/x2)1 211R 2
2ε0
E
R2 4 0 x 2
q
4 0 x 2
,
2x2
q R2
—点电荷场强
[例] 如图,带电圆环半径为 R,电荷线密度为 =0cos (0为一常量).求环心O点处的电场强度.
解:在圆环上任取电荷元 dq0cosdl一象限
+
一对等量正点电荷的电场线
+
+
一对不等量异号点电荷的电场线
相关文档
最新文档