导数的应用(1)专题

合集下载

考研数学-专题5 导数的概念及应用

考研数学-专题5  导数的概念及应用

f (x), x 0;
F
(
x)
0, x 0;
f (x), x 0;
若 f (0) 1, 则
lim F(x) F(0) lim f (x) f (0) f (0) 1
x0
x
x0
x
lim F(x) F(0) lim f (x) f (0)
x0
x
x0
x
lim f (x) f (0) f (0) 1
x0
x0

lim ln[ f (x) ex ] ln 2
x0
x
从而 lim ln[ f (x) ex ] 0, lim f (x) f (0) 0,
x0
x0
当 x 0 时, ln[ f (x) ex ] ln[1 f (x) ex 1] ~ f (x) ex 1
则 lim ln[ f (x) ex ] lim f (x) ex 1 f (0) 1 ln 2
1
【例 2】已知 f (x) 在 x 0 处连续,且 lim[ f (x) ex ]x 2, 则 f (0) ( ) x0
(A)不存在
(B)等于 e2 ,
(C)等于 2,
(D)等于 1 ln 2
1
ln[ f ( x)e x ]
【解】 由于 lim[ f (x) ex ]x lim e x 2
3
f (x0 n ) f (x0 ) f (x0 )n n
(其中 lim 0 ) n
f
( x0
n ) f (x0 n n
n)
f
(
x0
)
n n
n n
n n n n
n n n n n n
0
则 lim n

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

导数应用八个专题汇总

导数应用八个专题汇总

1.导数应用之函数单调性题组1:1.求函数32()3912f x x x x =--+的单调区间.2.求函数2()3ln f x x x x =-+的单调区间.3.求函数2()3ln f x x x x =+-的单调区间.4.求函数1()ln f x x x=的单调区间.5.求函数ln ()ln ln(1)1xf x x x x=-+++的单调区间. 题组2:1.讨论函数4322411()(0)43f x x ax a x a a =+-+>的单调区间.2.讨论函数32()3912f x x ax x =+--的单调区间.3.求函数321()(2)4132mf x mx x x =-+++(0)m >的单调递增区间.4.讨论函数1ln )1()(2+++=ax x a x f 的单调性.5.讨论函数1()ln 1af x x ax x-=-+-的单调性. 题组3:1.设函数32()1f x x ax x =+++. (1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间21()33--,是减函数,求a 的取值围.2.(1)已知函数2()ln f x ax x x =++在区间(1,3)上单调递增,数a 的取值围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,数a 的取值围.3.已知函数32()(3)xf x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间;(2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x )=(x+3x-3x-3)e ,故= (3)分当x<-3或0<x<3时,>0; 当-3<x<0或x>3时,<0,从而f(x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+)上单调递减………. 6分 (2)…..7分…………….……………8分将……..…..…………….10分………………………………………………..11分 .由此可得a<-6,于是>6。

导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)

导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)

图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .

2 热点小专题一 导数的应用

2 热点小专题一 导数的应用

2 热点小专题一导数的应用2.3热点小专题一导数的应用--一、考情分析从近几年高考客观题对导数应用的考查主要是:利用导数的几何意义求曲线的切线方程;利用导数研究函数的零点,参数的取值范围;以实际问题、三角函数、几何体为载体的导数求最值问题.二、必备知识整合1.导数的几何意义函数y=f(x)在点x0处的导数是曲线y=f(x)在P(x0,f(x0))处的切线的斜率f''(x0).2.常用的导数及求导法则--3.求曲线y=f(x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程.(2)已知切线的斜率为k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f''(x0),解得x0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f''(x0),然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.4.利用导数研究函数单调性的方法(1)若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f''(x)>0或f''(x)<0.(2)若已知函数的单调性,则转化为不等式f''(x)≥0或f''(x)≤0在单调区间上恒成立问题来求解.--5.利用导数研究函数的极值、最值(1)若在x0附近左侧f''(x)>0,右侧f''(x)<0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f''(x)<0,右侧f''(x)>0,则f(x0)为函数f(x)的极小值.(2)设函数y=f(x)在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有最大值和最小值且在极值点或端点处取得.6.利用导数研究函数零点问题的思路(1)求函数f(x)=g(x)-h(x)的零点个数,转化为两函数y=g(x),y=h(x)的交点个数,通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,再利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.--热点一热点二热点三热点四利用导数求曲线的切线例1(1)设函数f( x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2x B.y=-x C.y=2x D.y=x(2)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.?解析关闭解析答案解析答案关闭--热点一热点二热点三热点四解题心得1.求切线方程需要两个条件,曲线在某点处的切线意味着该点在曲线上,求该点的导数值即得切线的斜率.2.求经过点P(x1,y1)的曲线y=f(x)的切线(斜率存在)的方程的关键:若点P是切点,则直接利用求曲线在点P处的切线方程的思路去求解;若点P不是切点,则需先设切点的坐标(x0,y0),再根据得到切点的坐标,进而利用直线的点斜式或两点式方程求出切线的方程.--热点一热点二热点三热点四对点训练1(2019江苏卷,11)在平面直角坐标系xOy中,点A 在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是.?解析关闭解析答案解析答案关闭--热点一热点二热点三热点四已知曲线的切线方程求参数的值例2若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=l n(x+1)的切线,则b=.?解析关闭解析答案解析答案关闭--热点一热点二热点三热点四解题心得解已知曲线的切线方程求参数问题的一般思路是:利用方程的思想求解,即设出切点坐标,求出函数在切点的导数得切线的斜率,由斜率相等得一方程,由切点坐标代入函数解析式,又得一方程,联立求解即可.--热点一热点二热点三热点四对点训练2(2019山东潍坊二模,文13)若函数f(x)=x-alnx在点(1,1)处的切线方程为y=2x-1,则实数a=.?解析关闭解析答案解析答案关闭--热点一热点二热点三热点四求参数的取值范围(多维探究)类型一已知函数单调性求参数范围例3(1)若函数f(x)=kx-lnx在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)(2)若函数f(x)=x2-4ex-ax在R上存在单调递增区间,则实数a的取值范围为.?解析关闭解析答案解析答案关闭--热点一热点二热点三热点四解题心得已知函数的单调性求参数范围关键是转化,即“若函数单调递增,则f''(x)≥0;若函数单调递减,则f''(x)≤0”.--热点一热点二热点三热点四对点训练3(1)若函数f(x)=x-sin2x+asinx在区间(-∞,+∞)单调递增,则a的取值范围是()答案(1)C(2)[e-1,+∞)--热点一热点二热点三热点四--热点一热点二热点三热点四--热点一热点二热点三热点四--热点一热点二热点三热点四类型二已知函数极值点求参数范围答案B--热点一热点二热点三热点四--热点一热点二热点三热点四--热点一热点二热点三热点四--热点一热点二热点三热点四对点训练4设函数.若存在f(x)的极值点x0满足+[f(x0)]2,-6)∪(6,+∞)B.(-∞,-4)∪(4,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析关闭解析答案解析答案关闭--热点一热点二热点三热点四类型三已知函数零点情况求参数值或范围例5已知函数f(x)=x2-2x+a(ex- 1+e-x+1)有唯一零点,则a=()解析关闭解析答案解析答案关闭--热点一热点二热点三热点四解题心得已知函数零点情况求参数值或范围问题,一般思路是通过求函数的导数及对参数分类讨论确定函数的极值,参照函数图象的变化趋势,看参数在什么范围满足零点情况的要求.有时根据题意转化为两个函数图象交点个数,因此解决此类问题要注重数形结合.--热点一热点二热点三热点四对点训练5(2019山东潍坊三模,理12)已知函数与g(x)=2elnx+mx的图象有4个不同的交点,则实数m的取值范围是()答案C--热点一热点二热点三热点四--热点一热点二热点三热点四--热点一热点二热点三热点四三角、几何体及实际问题中的最值例6(1)(2019山东德州一模,理12)在四面体ABCD中,若AD=DB=AC=CB=1,则四面体ABCD体积的最大值是()(2)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.?--热点一热点二热点三热点四--热点一热点二热点三热点四(2)由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,所以求f(x)的最小值可考虑求f(x)在[0,2π)上的值域.由f(x)=2sinx+sin2x,得f''(x)=2cosx+2cos2x=4cos2x+2cosx-2.--热点一热点二热点三热点四解题心得关于三角函数、几何体的表面积、体积及实际问题中的最值问题,一开始想到的往往并不是用导数的方法求最值,但在一般方法不易求的情况下,能想到用导数的方法求最值,问题就容易多了.--热点一热点二热点三热点四答案A--热点一热点二热点三热点四∴f''(x)化为g(t)= -(1-t2)+2at+(4a-3)=t2+2at+4a-4;由题意知g(t)=t2+2at+4a-4≥0恒成立,其中t∈[-1,1];当-a≤-1,即a≥1时,g(t)在区间[-1,1]上单调递增,--热点一热点二热点三热点四(1)(xm)''=m,(sinx)''=cosx,(cosx)''=-sinx,(ex)''=ex,(lnx)''=,(ax)''=axlna,(logax)'' =.(2)[f(x)+g(x)]''=f''(x)+g''(x);[f(x)g(x)]''=f''(x)g(x)+f(x)g''(x);'' =[g(x)≠0].(1)因为f(x)为奇函数,所以f(-x)=-f(x),即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax,解得a=1,则f(x)=x3+x.由f''(x)=3x2+1,得在(0,0)处的切线斜率k=f''(0)=1.故切线方程为y=x.(2)∵f''(x)=3ax2+1,∴f''(1)=3a+1,即切线斜率k=3a+1.又f(1)=a+2,∴已知点为(1,a+2).而由过(1,a+2),(2,7)两点的直线的斜率为=5-a,∴5-a=3a+1,解得a=1.(1)D(2)1设点A(x0,y0),则y0=lnx0,又y''=,当x=x0时,y''=,点A在曲线y=lnx上的切线为y-y0=(x-x0),即y-lnx0=-1,代入点(-e,-1),得-1-lnx0=-1,即x0lnx0=e,得x0=e,y0=1,故点A(e,1).(e,1)对函数y=lnx+2求导,得y''=,对函数y=ln(x+1)求导,得y''=设直线y=kx+b与曲线y=lnx+2相切于点P1(x1,y1),与曲线y=ln(x+1)相切于点P2(x2,y2),则y1=lnx1+2,y2=ln(x2+1).由点P1(x1,y1)在切线上,得y-(lnx1+2)=(x-x1),由点P2(x2,y2)在切线上,得y-ln(x2+1)=(x-x2).因为这两条直线表示同一条直线,所以解得x1=,所以k==2,b=lnx1+2-1=1-ln2.1-ln2f''(x)=1-,f''(1)=1-=1-a,由题意得1-a=2,解得a=-1.-1(1)由f''(x)=k-,又f(x)在(1,+∞)上单调递增,则f''(x)≥0在x∈(1,+∞)上恒成立,即k在x∈(1,+∞)上恒成立.又当x∈(1,+∞)时,0<<1,故k≥1.故选D.(2)因为f(x)=x2-4ex-ax,所以f''(x)=2x-4ex-a.由题意,f''(x)=2x-4ex-a>0,即a<2x-4ex有解.令g(x)=2x-4ex,则g''(x)=2-4ex.令g''(x)=0,解得x=-ln2.当x∈(-∞,-ln2)时,函数g(x)=2x-4ex单调递增;当x∈(-ln2,+∞)时,函数g(x)=2x-4ex单调递减.所以当x=-ln2时,g(x)=2x-4ex取得最大值-2-2ln2,所以a<-2-2ln2.(1)D(2)(-∞,-2-2ln2)A.[-1,1]B.-1,C.-D.-1,-(2)设f(x)=ex(lnx-a),若函数f(x)在区间,e上单调递减,则实数a的取值范围为.?解析(1)由题意可知,f''(x)=1-cos2x+acosx=-cos2x+acosx+因为f(x)在R 上单调递增,所以f''(x)=-cos2x+acosx+0在R上恒成立.(方法一)则由题意可得,当cosx=1时,f''(x)≥0,当cosx=-1时,f''(x)≥0,即解得-a(方法二)令t=cosx∈[-1,1],当t=0时,>0恒成立;当0''(t)=>0,所以h(t)在(0,1]上单调递增.所以h(t)max=h(1)=-所以a≥-当-1≤t<0时,at-令g(t)=t-,则g''(t)=>0,所以g(t)在[-1,0)上单调递增.所以g(t)min=g(-1)=,所以a综上,-a(2)由题意可得f''(x)=exlnx+-a≤0在,e上恒成立.因为ex>0,所以只需lnx+-a≤0,即a≥lnx+在,e上恒成立.令g(x)=lnx+因为g''(x)=由g''(x)=0,得x=1.则g(x)在,1内单调递减,在(1,e)内单调递增,g=ln+e=e-1,g(e)=1+,因为e-1>1+,所以g(x)max=g=e-1.故a的取值范围为[e-1,+∞).例4(2019山西吕梁一模,理11,文12)函数f(x)=lnx+x2-ax(x>0)在区间,3上有且仅有一个极值点,则实数a的取值范围是()A.,3B.C.D.2,解析∵f(x)=lnx+x2-ax(x>0),∴f''(x)=+x-a(x>0).∵函数f(x)=lnx+x2-ax(x>0)在区间,3上有且仅有一个极值点,∴y=f''(x)在区间,3上只有一个变号零点.令f''(x)=+x-a=0,得a=+x.令g(x)=+x,x∈,3,则g(x)在区间,1上单调递减,在区间(1,3)上单调递增,∴g(x)min=g(1)=2,又g=,g(3)=结合函数g(x)=+x,x∈,3的图象可得,当a<时,y=f''(x)在区间,3上只有一个变号零点.∴实数a的取值范围为.故选B.解题心得解决已知函数极值点求参数范围问题一要注重转化,如本例中f(x)在,3上有且仅有一个极值点的转化;二要注重数形结合, 如本例中g(x)=+x的值域是2,,若a的值为2.2,则f''(x)=+x-a的值在区间,1上先正后负,在(1,3]上先负后正,因此函数f(x)在,3上有两个极值点.Df(x)=sin∵x0是f(x)的极值点,∴f''(x0)=0,即cos=0,得x0=kπ+,k∈Z,即x0=mk+m,k∈Z.+[f(x0)]2问题成立,只需存在k∈Z,使1-成立即可.又的最小值为,∴1-,解得m<-2或m>2.故选 C.A.-B.C.D.1C∵f(x)=x2-2x+a(ex-1+e-x+1),∴f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+ex-1)=x2-2x+a(ex-1+e-x+1),∴f(2-x)=f(x),即x=1为f(x)图象的对称轴.∵f(x)有唯一零点,∴f(x)的零点只能为1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=A.(-4,0)B.,2C.0,D.(0,2)f(x)=解析函数f(x)=与g(x)=2elnx+mx的图象有4个不同的交点,即为mx=-2elnx,即m=(x>0且x≠e)有4个不相等的实根.设h(x)=,则h''(x)=由h''(x)=0,可得x=2elnx或3x=2elnx或x=e(舍去).由y=的导数为y''=,当x>e时,函数单调递减;当0在x=e处取得极大值,且为最大值,则x=2elnx有两解,3x=2elnx无解.当x=2elnx,可得m=0,即为h(x)的最小值,由x→+∞,0,可得,可得当00且x≠e)有4个不等实根,故选C.A.B.C.D.答案(1)A(2)-解析(1)因为AD=DB=AC=CB=1,所以△ACD与△BCD全等.如图,取AB中点E,连接CE,DE,设AB=2x(0,当x∈,1时,V为减函数.故当x=时,V有最大值Vmax=3=令f''(x)=0,可得cosx=或cosx=-1,x∈[0,2π)时,解得x=或x=或x=π.因为f(x)=2sinx+sin2x的最值只能在x=,x=,x=π或x=0时取到,且f,f=-,f(π)=0,f(0)=0,所以函数f(x)的最小值为-对点训练6(2019山东泰安二模,文12)若函数f(x)=(cosx+sinx)(cosx-sinx-4a)+(4a-3)x在区间0,上单调递增,则实数a的取值范围为()A.a≥B.。

导数应用例题

导数应用例题

导数应用例题LELE was finally revised on the morning of December 16, 2020导数应用举例导学案(一)知识说明1.如何利用导数判断函数的单调性y=f(x)在(a,b)上可导,若f′(x)>0,则f(x)为增函数,若f′(x)<0,则f(x)为减函数利用导数讨论函数的单调性需注意以下几个问题(1)确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的不连续点或不可导点.(3)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.2.若函数f(x)在(a,b)上单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)上单调递增的充要条件?函数f(x)在(a,b)上是增函数,则f′(x)≥0,f′(x)>0是f(x)在(a,b)上单调递增的充分不必要条件.例函数在上单调递增,求实数的取值范围。

简析:则单调递增,但在一些孤立点处成立并不妨碍函数的单调性。

如:有,但函数在R上单调递增。

答案。

函数的导数与其单调性之间的关系可以从以下三个方面理解:①在某个区间(a,b)上,若f′(x)>0,则f(x)在这个区间上单调递增;若f′(x)<0,则f(x)在这个区间上单调递减;若f′(x)=0恒成立,则f(x)在这个区间上为常数函数;若f′(x)的符号不确定,则f(x)不是单调函数.②若函数y=f(x)在区间(a,b)上单调递增,则f′(x)≥0,其逆命题不成立,因为f′(x)≥0包括f′(x)>0或f′(x)=0,当f′(x)>0时,函数y=f(x)在区间(a,b)上单调递增,当f′(x)=0时,f(x)在这个区间内为常数函数;同理,若函数y=f(x)在区间(a,b)上单调递减,则f′(x)≤0,其逆命题不成立.③使f′(x)=0的离散的点不影响函数的单调性.f(x)在[a,b]上的最值求法(步骤):①求出f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.(1)设函数f(x)在点x0及其附近有定义,如果对x0附近的所有点,都有f(x)<f(x0),我们说f(x0)是函数f(x)的一个__极大值_,记作___y极大值=f(x0)____;如果对x0附近的所有点,都有f(x)>f(x0),就说f(x0)是f(x)的一个____极小值_____,记作__ y极小值=f(x0)__ 极大值与极小值统称为___极值(2)判别f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是__极大值___②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是___极小值_________4.有人说极大值一定比极小值大,你认为呢?极值是一个局部性概念,一个函数在其定义域内可以有许多个极大值和极小值,在某一点的极小值也可能大于另一点的极大值,即函数的极大值不一定比极小值大,极小值也不一定比极大值小,也就是说极大值与极小值没有必然的大小关系.5.求可导函数f(x)的极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的根;(3)检验f′(x)在方程f′(x)=0的根的左右的符号:如果在根的左侧附近为正,右侧附近为负,那么函数y=f(x)在这个根处取得极大值;如果在根的左侧附近为负,右侧附近为正,那么函数y=f(x)在这个根处取得极小值.6.导数为零的点一定是极值点吗?对于可导函数来说,函数在某点x0的导数为0是函数在该点处取得极值的必要不充分条件,即y=f(x)在x0处取得极值必有f′(x0)=0,但反过来不成立,即导数为0的点不一定是极值点.例如f(x)=x3,则f′(x)=3x2,∴f′(0)=0,但x=0不是f(x)=x3的极值点,事实上f(x)=x3在R上单调递增。

导数的实际应用题典型例题(1)

导数的实际应用题典型例题(1)

2019导数的实际应用示例内 容要 求[AB C 导数在实际生活中的应用√1、能用导数方法求解有关利润最大等与最值有关的问题。

2、感受导数在解决实际问题中的作用。

年份2015年2016年2018年考查知识点函数的实际应用,利用导数研究函数的最值。

函数的实际应用,利用导数研究函数的最值。

与立体几何结合。

函数的实际应用,利用导数研究函数的最值。

与三角函数结合 利用导数研究函数的最值是函数模型的一个重要模块,导数是求函数的一种重要工具,对函数的解析式没有特殊的要求,无论解析式是复杂或者简单,与三角函数还是与其他模块的结合都可以运用导数求解,常考的知识点可以与立体几何、三角函数、解析几何等模块结合,这是近几年江苏高考命题的趋势。

在高考复习中要注意以下几点:1、导数的实际应用关键是构建函数模型。

第一步:弄清问题,选取自变量,确立函数的取值范围;第二步:构建函数,将实际问题转化为数学问题;第三步:解决构建数学问题;第四步:考纲要求近五年高考情况分析考点总结将解出的结果回归实际问题,对结果进行取舍。

2、在建立函数模型时,要注意函数的定义域,要积累常见函数模型如分式函数、三次函数、三角函数等知识点模块的结合。

1、某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5km和40km,点N到l1,l2的距离分别为20km和2.5km,以l2,l1所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y =ax2+b(其中a,b为常数)模型.(1) 求a,b的值;(2) 设公路l与曲线C相切于点P,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.五年高考真题2、现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的4倍.(1)若16m,2m,AB PO ==则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?3、某农场有一块农田,如图所示,它的边界由圆的一段圆弧(为此圆弧的中点)和线段构成.已知圆的半径为40米,点到的距离为50米.现规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形,大棚内的地块形状为,要求均在线段上,均在圆弧上.设与所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.题型一与函数有关的最值问题1、如图,半圆AOB是某爱国主义教育基地一景点的平面示意图,半径OA的长为1百米.为了保护景点,基地管理部门从道路l上选取一点C,修建参观线路C-D-E-F,且CD,DE,EF 均与半圆相切,四边形CDEF是等腰梯形.设DE=t百米,记修建每1百米参观线路的费用为()f t万元,经测算1503 ()118 2.3tf ttt⎧<⎪=⎨⎪-<<⎩,,≤,(1)用t表示线段EF的长;(2)求修建该参观线路的最低费用. 三年模拟试题2、下图(I)是一斜拉桥的航拍图,为了分析大桥的承重情况,研究小组将其抽象成图(II)所示的数学模型.索塔AB,CD与桥面AC均垂直,通过测量知两索塔的高度均为60m,桥面AC上一点P到索塔AB,CD距离之比为21:4,且P对两塔顶的视角为135.(1)求两索塔之间桥面AC的长度;(2)研究表明索塔对桥面上某处的“承重强度”与多种因素有关,可简单抽象为:某索塔对桥面上某处的“承重强度”与索塔的高度成正比(比例系数为正数a),且与该处到索塔的距离的平方成反比(比例系数为正数b).问两索塔对桥面何处的“承重强度”之和最小?并求出最小值.3、某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=1260x+1;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b x(a,b为实常数).(1) 求函数q(x)的表达式;(2) 当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.4、经市场调查,某商品每吨的价格为x(1<x<14)百元时,该商品的月供给量为y 1吨,y 1=ax +72a 2-a(a>0);月需求量为y 2万吨,y 2=-1224x 2-1112x +1,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1) 若a =17,问商品的价格为多少时,该商品的月销售额最大?(2) 记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a 的取值范围.题型二 与平面或空间几何体有关的最值问题1、有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好..能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中OEMF 是以O 为圆心、∠EOF =120°的扇形,且弧EF ︵,GH ︵分别与边BC ,AD 相切于点M ,N.(1) 当BE 长为1分米时,求折卷成的包装盒的容积;(2) 当BE 的长是多少分米时,折卷成的包装盒的容积最大?,甲),乙)2、在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图).设小正方形边长为x 厘米,矩形纸板的两边AB ,BC 的长分别为a 厘米和b 厘米,其中a≥b.(1) 当a =90时,求纸盒侧面积的最大值;(2) 试确定a ,b ,x 的值,使得纸盒的体积最大,并求出最大值.题型三 与三角函数有关的问题1、17.如图,是一个扇形花园,已知该扇形的半径长为400米,2AOB π∠=,且半径OC 平分AOB ∠.现拟在OC 上选取一点P ,修建三条路PO ,PA ,PB 供游人行走观赏,设PAO α∠=. (1)将三条路PO ,PA ,PB 的总长表示为α的函数()l α,并写出此函数的定义域; (2)试确定α的值,使得()l α最小.2、如图,已知A,B两镇分别位于东西湖岸MN的A处和湖中小岛的B处,点C在A的正西方向1 km处,tan∠BAN=34,∠BCN=π4.现计划铺设一条电缆连通A,B两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元km、4万元km.(1) 求A,B两镇间的距离;(2) 应该如何铺设,使总铺设费用最低?3、如图是一个半圆形湖面景点的平面示意图.已知AB为直径,且AB=2 km,O为圆心,C为圆周上靠近A 的一点,D为圆周上靠近B 的一点,且CD∥AB.现在准备从A经过C 到D建造一条观光路线,其中A到C是圆弧AC,C到D是线段CD.设∠AOC=x rad,观光路线总长为y km.(1) 求y关于x的函数解析式,并指出该函数的定义域;(2) 求观光路线总长的最大值.2019 导数的实际应用示例3、能用导数方法求解有关利润最大等与最值有关的问题。

导数的应用(一)---单调性

导数的应用(一)---单调性
导数的应用(一)---单调性
01 课前自助餐 02 授人以渔 03 课外阅读
课前自助餐
函数的单调性 (1)设函数 y=f(x)在某个区间内_可_导__,若 f′(x)__>_ 0,则 f(x) 在这个区间内为增函数;若 f′(x)__<_ 0,则 f(x)在这个区间内为 减函数. (2)求可导函数 f(x)单调区间的步骤: ①确定 f(x)的_定__义_域__; ②求导数 f′(x); ③令 f′(x)__>_ 0(或 f′(x) _<__0),解出相应的 x 的范围; ④当_f′_(x_)_>_0___时,f(x)在相应区间上是增函数;当_f_′(_x)_<_0___ 时,f(x)在相应区间上是减函数.
【思路】
根据题意当x≥0时f′(x)=1-
2 3
cos2x>0,又f(x)
是定义在R上的奇函数,则f(x)在定义域上单调递增,tan
2π 5
>tanπ4 =1,0<cos2π 5 <1,log3cos2π 5 <0,由函数的单调性可得出
答案.
【解析】 由题意知当x≥0时,f′(x)=1-23cos2x>0,所以f(x)在
2.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x) 的图象可能是( C )
解析 由导函数的图象可知,当x<0时,f′(x)>0,即函数f(x) 单调递增;当0<x<x1时,f′(x)<0,即函数f(x)单调递减;当x>x1 时,f′(x)>0,即函数f(x)单调递增.观察选项易知C正确.故选C.
授人以渔
题型一 求函数的单调区间(自主学习)
例1 求下列函数的单调区间.

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。

导数在高中数学中的应用

导数在高中数学中的应用

导数在高中数学中的应用第一篇:导数在高中数学中的应用导数在高中数学中的应用导数是解决高中数学问题的重要工具之一,很多数学问题如果利用导数的方法来解决,不仅能迅速找到解题的切入点,甚至解决一些原来只是解决不了的问题。

而且能够把复杂的分析推理转化为简单的代数运算,化难为易,事半功倍的效果.如在求曲线的切线方程、方程的根、函数的单调性、最值问题;数列,不等式等相关问题方面,导数都能发挥重要的作用。

导数(导函数的简称)是一个特殊函数,所以它始终贯穿着函数思想。

随着课改的不断深入,新课程增加了导数的内容,导数知识考查的要求逐渐加强,而且导数已经在高考中占有很重要的地位,导数已经成为解决问题的不可缺少的工具。

函数是中学数学研究导数的一个重要载体,近年好多省的高考题中都出现以函数为载体,通过研究导函数其图像性质,来研究原函数的性质。

本人结合教学实践,就导数在函数中的应用作个初步探究。

导数在高中数学中的应用主要类型有:求函数的切线,判断函数的单调性,求函数的极值和最值,利用函数的单调性证明不等式,尤其函数的单调性和函数的极值及最值,是高中数学学习的重点之一,预计也是“新课标”下高考的重点。

一、用导数求切线方程方法提升:利用导数证明不等式是近年高考中出现的一种热点题型。

其方法可以归纳为“构造函数,利用导数研究函数最值”。

总之,导数作为一种工具,在解决数学问题时使用非常方便,尤其是可以利用导数来解决函数的单调性,极值,最值。

在导数的应用过程中,要加强对基础知识的理解,重视数学思想方法的应用,达到优化解题思维,简化解题过程的目的,更在于使学生掌握一种科学的语言和工具,进一步加深对函数的深刻理解和直观认识。

第二篇:导数在高中数学教学中的应用导数在高中数学教学中的应用【摘要】导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率的有力工具。

导数专题及其应用教案

导数专题及其应用教案

导数专题及其应用教案教案标题:导数专题及其应用教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 熟悉导数在实际问题中的应用。

教学重点:1. 导数的定义和计算方法;2. 导数在函数图像、极值和曲线的切线方程中的应用。

教学难点:1. 理解导数的概念和意义;2. 运用导数解决实际问题。

教学准备:1. 教师准备:教学课件、教学素材、计算工具;2. 学生准备:教材、笔记、计算器。

教学过程:一、导入(5分钟)1. 引入导数的概念,提问学生对导数的理解;2. 通过一个简单的例子,引导学生思考导数的意义。

二、导数的定义和计算方法(15分钟)1. 介绍导数的定义和符号表示;2. 讲解导数的计算方法,包括用极限定义导数和使用导数公式计算导数;3. 通过示例演示导数的计算过程。

三、导数在函数图像中的应用(15分钟)1. 讲解导数与函数图像的关系,包括导数与函数的增减性、极值和拐点;2. 指导学生根据导数的正负判断函数的增减性,并绘制函数图像;3. 引导学生通过导数的零点判断函数的极值和拐点,并绘制函数图像。

四、导数在曲线的切线方程中的应用(15分钟)1. 引入导数与曲线的切线方程的关系;2. 讲解切线方程的一般形式和求解步骤;3. 指导学生根据导数和给定点求解曲线的切线方程,并进行实际问题的应用练习。

五、导数在实际问题中的应用(15分钟)1. 介绍导数在实际问题中的应用领域,如物理、经济等;2. 提供一些实际问题,引导学生运用导数解决问题;3. 学生个别或小组完成导数应用问题的解答和讨论。

六、总结(5分钟)1. 简要回顾导数的概念和计算方法;2. 强调导数在实际问题中的应用;3. 鼓励学生继续深入学习导数的相关知识。

教学延伸:1. 提供更多的导数计算练习题,巩固学生的计算能力;2. 引导学生在实际生活中寻找更多导数的应用案例,并进行讨论和分享。

教学评估:1. 教师观察学生在课堂上的参与和表现;2. 学生完成课后作业,包括导数计算和应用题目;3. 学生进行小组或个人报告,展示导数在实际问题中的应用案例。

新高考数学一轮复习考点知识专题讲解与练习 17 导数的应用(一)

新高考数学一轮复习考点知识专题讲解与练习 17 导数的应用(一)

新高考数学一轮复习考点知识专题讲解与练习考点知识总结17导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=1+x-sin x在(0,2π)上是() A.增函数B.减函数C.在(0,π)上单调递增,在(π,2π)上单调递减D.在(0,π)上单调递减,在(π,2π)上单调递增答案 A解析 f ′(x )=1-cos x >0,∴f (x )在(0,2π)上单调递增. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4 答案 C解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2(舍去).当-1≤x <0时,f ′(x )>0;当0<x ≤1时,f ′(x )<0.所以f (x )在[-1,0)上是增函数,在(0,1]上是减函数,所以f (x )max =f (0)=2.故选C.3.已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .-1e C .1 D .2ln 2 答案 D解析 由题意知f ′(x )=2e f ′(e )x -1e ,∴f ′(e)=2e f ′(e )e -1e ,f ′(e)=1e ,∴f (x )=2ln x -x e ,f ′(x )=2x -1e ,令f ′(x )=0,得x =2e ,当0<x <2e 时,f ′(x )>0,当x >2e 时,f ′(x )<0,∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减,∴f (x )的极大值为f (2e)=2ln (2e)-2=2ln 2.故选D.4.直线y =a 分别与曲线y =e x ,y =ln x +1交于M ,N 两点,则|MN |的最小值为( ) A .1 B .1-ln 2 C .ln 2 D .1+ln 2 答案 A解析 分别令e x =a ,ln x +1=a ,其中a >0,则x 1=ln a ,x 2=e a -1,从而|MN |=|x 1-x 2|=|ln a -e a -1|,构造函数h (a )=ln a -e a -1,求导得h ′(a )=1a -e a -1,当a ∈(0,1)时,h ′(a )>0,h (a )单调递增;当a ∈(1,+∞)时,h ′(a )<0,h (a )单调递减.所以h (a )有极大值h (1)=-1.因此|MN |的最小值为|h (1)|=1.故选A.5.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( )A .120000 cm 3B .128000 cm 3C .150000 cm 3D .158000 cm 3 答案 B解析 设水箱底长为x cm ,则高为120-x 2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0得0<x <120.设容器的容积为y cm 3,则有y =120-x 2·x 2=-12x 3+60x 2,则有y ′=-32x 2+120x .令y ′=0,解得x=80(x =0舍去).当x ∈(0,80)时,y ′>0,y 单调递增;当x ∈(80,120)时,y ′<0,y 单调递减.因此80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =-12×803+60×802=128000.故选B.6.(多选)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (a )<f (b )<f (c )B .函数f (x )在x =c 处取得极小值,在x =e 处取得极大值C .函数f (x )在x =c 处取得极大值,在x =e 处取得极小值D .函数f (x )的最小值为f (d ) 答案 AC解析 由导函数图象可知在(-∞,c ),(e ,+∞)上,f ′(x )>0,在(c ,e )上,f ′(x )<0,所以函数f (x )在(-∞,c ),(e ,+∞)上单调递增,在(c ,e )上单调递减,所以f (a )<f (b )<f (c );函数f (x )在x =c 处取得极大值,在x =e 处取得极小值;f (d )>f (e ),所以f (d )不是函数f (x )的最小值.故选AC.7.(多选)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )·sin x <0,则下列判断中正确的是( )A .f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4B .f ⎝ ⎛⎭⎪⎫ln π3>0C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3D .f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3答案 CD解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x ,因为f ′(x )cos x+f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减,因此g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4,即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错误;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错误;又g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确;又g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确.故选CD.8.若函数f (x )=x ln x -a2x 2-x +1有两个极值点,则a 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令g (x )=ln x -ax ,则g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,则f ′(x )在(0,+∞)上单调递增,当x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→+∞,所以f (x )只有一个极值点,不符合题意.当a >0时,可得f ′(x )有极大值点1a ,由于x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→-∞,因此原函数要有两个极值点,只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e .二、高考小题9.(2022·全国乙卷)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2 D .ab >a 2 答案 D解析 解法一:因为函数f (x )=a (x -a )2(x -b ),所以f ′(x )=2a (x -a )(x -b )+a (x -a )2=a (x -a )(3x -a -2b ).令f ′(x )=0,结合a ≠0可得x =a 或x =a +2b3. (1)当a >0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递增,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递减,所以x =a 为函数f (x )的极大值点,满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递增,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递减,在(a ,+∞)上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意.(2)当a <0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递减,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递减,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递增,在(a ,+∞)上单调递减,所以x =a 为函数f (x )的极大值点,满足题意.综上,a >0且b >a 满足题意,a <0且b <a 也满足题意.据此,可知必有ab >a 2成立.故选D.解法二:由题意可知a≠b,当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.综上,可知必有ab>a2成立.故选D.10.(2022·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为()A.-1 B.-2e-3C.5e-3D.1答案 A解析由题意可得f′(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,∴f′(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x -2)=e x-1(x-1)(x+2),∴当x∈(-∞,-2)时,f′(x)>0,f(x)单调递增;当x∈(-2,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)极小值=f(1)=-1.故选A.11.(2022·北京高考)设函数f(x)=e x+a e-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.答案-1(-∞,0]解析 ∵f (x )=e x +a e -x (a 为常数)的定义域为R ,且f (x )为奇函数,∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立,即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立.又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0].12.(2022·全国Ⅰ卷)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4(cos x +1)⎝ ⎛⎭⎪⎫cos x -12,所以当cos x ≤12时函数单调递减,当cos x ≥12时函数单调递增,从而得到函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-5π3,2k π-π3(k ∈Z ),函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ),所以当x =2k π-π3,k ∈Z 时,函数f (x )取得最小值,此时sin x =-32,sin 2x =-32,所以f (x )min =2×⎝ ⎛⎭⎪⎫-32-32=-332.13.(2022·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 ∵f (x )=2x 3-ax 2+1,∴f ′(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,不符合题意,∴a >0.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.∵f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),列表如下:x -1 (-1,0) 0 (0,1) 1 f ′(x ) 12 + 0 - 0 f (x )-41∴f (x )在[-1,1]上的最大值为1,最小值为-4.∴最大值与最小值的和为-3. 三、模拟小题14.(2022·四川省达州中学模拟)函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝ ⎛⎭⎪⎫1e ,e B .⎝ ⎛⎭⎪⎫0,1e C.⎝ ⎛⎭⎪⎫-∞,1e D .⎝ ⎛⎭⎪⎫1e ,+∞ 答案 B解析 因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .15.(2022·湖南湘潭模拟)已知定义域为R 的函数f (x )的导函数为f ′(x ),且f ′(x )>f (x ),若实数a >0,则下列不等式恒成立的是( )A.af (ln a )≥e a -1f (a -1)B.af (ln a )≤e a -1f (a -1)C.e a -1f (ln a )≥af (a -1)D.e a-1f(ln a)≤af(a-1) 答案 D解析令g(x)=f(x)e x ,则g′(x)=f′(x)-f(x)e x>0,所以g(x)为增函数.令h(a)=ln a-a+1,则h′(a)=1a-1.当a∈(0,1)时,h′(a)>0,h(a)单调递增,当a∈(1,+∞)时,h′(a)<0,h(a)单调递减,所以h(a)≤h(1)=0,所以ln a≤a-1,所以g(ln a)≤g(a-1),即f(ln a)a≤f(a-1)e a-1,所以e a-1f(ln a)≤af(a-1).故选D.16.(2022·新高考八省联考)已知a<5且a e5=5e a,b<4且b e4=4e b,c<3且c e3=3e c,则()A.c<b<a B.b<c<aC.a<c<b D.a<b<c答案 D解析因为a e5=5e a,a<5,故a>0,同理b>0,c>0,令f(x)=e xx,x>0,则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,a<5,故e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1,同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c),因为f(5)>f(4)>f(3),故f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.17.(多选)(2022·福建省福州市高三调研考试)设函数f(x)=e xln x,则下列说法正确的是( )A.f (x )的定义域是(0,+∞)B.x ∈(0,1)时,f (x )图象位于x 轴下方C.f (x )存在单调递增区间D.f (x )有且仅有一个极值点 答案 BCD解析 由题意,函数f (x )=e x ln x 满足⎩⎨⎧x >0,ln x ≠0,解得x >0且x ≠1,所以函数f (x )=e xln x的定义域为(0,1)∪(1,+∞),所以A 不正确;由f (x )=e xln x ,当x ∈(0,1)时,ln x <0,所以f (x )<0,所以f (x )在(0,1)上的图象都在x 轴的下方,所以B 正确;因为f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -1x (ln x )2,所以f ′(x )>0在定义域上有解,所以函数f (x )存在单调递增区间,所以C 正确;令g (x )=ln x -1x ,则g ′(x )=1x +1x 2(x >0),所以g ′(x )>0,函数g (x )单调递增,又g (1)=-1<0,g (2)=ln 2-12>0,所以∃x 0∈(1,2)使得f ′(x 0)=0,且当x ∈(0,1),(1,x 0)时,f (x )单调递减,当x ∈(x 0,+∞)时,f (x )单调递增,所以函数f (x )只有一个极值点,所以D 正确.故选BCD.18.(多选)(2022·河北秦皇岛第二次模拟)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( )A.a ∈⎝ ⎛⎭⎪⎫0,1eB.y =f (x )在(0,e)上单调递增C.x 1+x 2>6D.若a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,则x 2-x 1<2-a a答案 ABD解析 由f (x )=ln x -ax ,可得f ′(x )=1x -a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,由f ′(x )=1x -a =0,解得x =1a ,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又由函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),可得f ⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,可得a <1e .综上可得0<a <1e ,故A 正确;当a →1e 时,x 1+x 2→2e<6,故C 错误,∵当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f (x )单调递增,又a ∈⎝ ⎛⎭⎪⎫0,1e ,∴(0,e)⊆⎝ ⎛⎭⎪⎫0,1a ,故B 正确;∵f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,且a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,∴1,x 1∈⎝ ⎛⎭⎪⎫0,1a ;2a ,x 2∈⎝ ⎛⎭⎪⎫1a ,+∞,∵f (1)=-a <0=f (x 1),∴x 1>1,∵f ⎝ ⎛⎭⎪⎫2a =ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a-1=2-aa ,故D 正确.故选ABD.19.(2022·江苏常州高三质量检测)已知f (x )=e x ,g (x )=2x .若f (x 1)=g (x 2),d =|x 2-x 1|,则d 的最小值为________.答案1-ln 22解析 令f (x 1)=g (x 2)=k >0,则x 1=ln k ,x 2=k 24,所以x 2-x 1=k 24-ln k ,令g (k )=k 24-ln k (k >0),则g ′(k )=k 2-1k =k 2-22k ,当0<k <2时,g ′(k )<0;当k >2时,g ′(k )>0;所以g (k )在(0,2)上单调递减,在(2,+∞)上单调递增,则g (k )min =g (2)=1-ln 22>0,所以d =|x 2-x 1|=|g (k )|≥1-ln 22,则d 的最小值为1-ln 22.20.(2022·吉林第四次调研测试)若函数f (x )=mx 2-e x +1(e 为自然对数的底数)在x =x 1和x =x 2两处取得极值,且x 2≥2x 1,则实数m 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫1ln 2,+∞解析 因为f (x )=mx 2-e x +1,所以f ′(x )=2mx -e x ,又函数f (x )在x =x 1和x =x 2两处取得极值,所以x 1,x 2是方程2mx -e x=0的两个不等实根,且x 2≥2x 1,即m =e x2x (x ≠0)有两个不等实根x 1,x 2,且x 2≥2x 1.令h (x )=e x 2x (x ≠0),则直线y =m 与曲线h (x )=e x2x 有两个交点,且交点横坐标满足x 2≥2x 1,又h ′(x )=e x (2x -2)4x 2=e x (x -1)2x 2,由h ′(x )=0,得x =1,所以当x >1时,h ′(x )>0,即函数h (x )=e x2x 在(1,+∞)上单调递增;当x <0,0<x <1时,h ′(x )<0,即函数h (x )=e x2x 在(-∞,0),(0,1)上单调递减.作出函数h (x )的图象如图所示.当x2=2x1时,由e x12x1=e x22x2,得x1=ln 2,此时m=e x12x1=1ln 2,因此,由x2≥2x1,得m≥1ln 2.一、高考大题1.(2022·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0).令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增.令f′(x)<0,则x>2ln 2,此时函数f(x)单调递减.故函数f(x)的单调递增区间为⎝⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝⎛⎭⎪⎫2ln 2,+∞.(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x a a x =1(x >0)有两个不同的解,故方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0). 令g ′(x )=1-ln xx 2=0,解得x =e.令g ′(x )>0,则0<x <e ,此时函数g (x )单调递增. 令g ′(x )<0,则x >e ,此时函数g (x )单调递减. 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e .又g (1)=0,故要使方程ln x x =ln a a 有两个不同的解,则0<ln a a <1e . ①当0<a <1时,不符合条件; ②当a >1时,因为g (x )max =g (e)=1e , 故a ∈(1,e)∪(e ,+∞).综上,a 的取值范围为(1,e)∪(e ,+∞).2.(2022·新高考Ⅱ卷)已知函数f (x )=(x -1)e x -ax 2+b . (1)讨论f (x )的单调性;(2)从下面两个条件中选一个,证明:f (x )有一个零点. ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .解 (1)由函数的解析式可得,f ′(x )=x (e x -2a ), 当a ≤0时,若x ∈(-∞,0),则f ′(x )<0,f (x )单调递减, 若x ∈(0,+∞),则f ′(x )>0,f (x )单调递增;当a>0时,令f′(x)=0,得x1=0,x2=ln (2a),当0<a<12时,若x∈(-∞,ln (2a)),则f′(x)>0,f(x)单调递增,若x∈(ln (2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(-∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln (2a)),则f′(x)<0,f(x)单调递减,若x∈(ln (2a),+∞),则f′(x)>0,f(x)单调递增.(2)证明:若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b-1>0,f(-2b)=(-1-2b)e-2b-4ab2+b<0,而由(1)知函数f(x)在区间(-∞,0)上单调递增,故函数f(x)在区间(-∞,0)上有一个零点.f(ln (2a))=2a[ln (2a)-1]-a[ln(2a)]2+b>2a[ln (2a)-1]-a[ln (2a)]2+2a=2a ln (2a)-a[ln (2a)]2=a ln (2a)[2-ln (2a)],由于12<a≤e22,1<2a≤e2,所以0<ln (2a)≤2,故a ln (2a)[2-ln (2a)]≥0,所以f(ln (2a))>0,结合函数的单调性可知,函数f (x )在区间(0,+∞)上没有零点. 综上可得,题中的结论成立. 若选择条件②:由于0<a <12,故0<2a <1,则f (0)=b -1≤2a -1<0, 当b ≥0时,e 2>4,4a <2,f (2)=e 2-4a +b >0,而函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点. 当b <0时,构造函数H (x )=e x -x -1,则H ′(x )=e x -1, 当x ∈(-∞,0)时,H ′(x )<0,H (x )单调递减, 当x ∈(0,+∞)时,H ′(x )>0,H (x )单调递增, 注意到H (0)=0,故H (x )≥0恒成立, 从而有e x ≥x +1,当x >1时,x -1>0,则f (x )=(x -1)e x -ax 2+b ≥(x -1)(x +1)-ax 2+b =(1-a )x 2+(b -1),当x >1-b1-a时,(1-a )x 2+(b -1)>0, 取x 0=1-b1-a+1,则f (x 0)>0, 由于f (0)<0,f ⎝⎛⎭⎪⎫1-b 1-a +1>0,函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点.f (ln (2a ))=2a [ln (2a )-1]-a [ln (2a )]2+b≤2a [ln (2a )-1]-a [ln (2a )]2+2a =2a ln (2a )-a [ln (2a )]2 =a ln (2a )[2-ln (2a )], 由于0<2a <1,所以ln (2a )<0, 故a ln (2a )[2-ln (2a )]<0,结合函数的单调性可知,函数f (x )在区间(-∞,0)上没有零点. 综上可得,题中的结论成立.3.(2022·天津高考)已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时,①求曲线y =f (x )在点(1,f (1))处的切线方程; ②求函数g (x )=f (x )-f ′(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.解 (1)①当k =6时,f (x )=x 3+6ln x ,f ′(x )=3x 2+6x . 可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8. ②依题意,g (x )=x 3-3x 2+6ln x +3x ,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2=3(x -1)3(x +1)x 2,令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )∞),g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝ ⎛⎭⎪⎫3x 21+k x 1+3x 22+k x 2-2⎝ ⎛⎭⎪⎫x 31-x 32+k ln x 1x 2=x 31-x 32-3x 21x 2+3x 1x 22+k ⎝ ⎛⎭⎪⎫x 1x 2-x 2x 1-2k ln x 1x 2=x 32(t 3-3t 2+3t -1)+k ⎝ ⎛⎭⎪⎫t -1t -2ln t .(*) 令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x >1时,h ′(x )=1+1x 2-2x =⎝ ⎛⎭⎪⎫1-1x 2>0,所以h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1)=0,即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以x 32(t 3-3t 2+3t -1)+k ⎝⎛⎭⎪⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎪⎫t -1t -2ln t =t 3-3t 2+6ln t +3t -1. (**)由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0. (***)由(*)(**)(***)可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0,所以当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.二、模拟大题4.(2022·广东珠海高三摸底测试)已知函数f (x )=e x -a ln xx -a (e 为自然对数的底数)有两个零点.(1)若a =1,求曲线y =f (x )在x =1处的切线方程;(2)若f (x )的两个零点分别为x 1,x 2,证明:x 1x 2>e 2e x 1+x 2.解 (1)当a =1时,f (x )=e x-ln x x -1,f ′(x )=e x-1-ln x x 2.又f (1)=e -1,所以切点坐标为(1,e -1),切线的斜率为k =f ′(1)=e -1, 所以切线的方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:由已知得f (x )=x e x -a (ln x +x )x =0有两个不等的正实根,所以方程x e x -a (ln x +x )=0有两个不等的正实根,即x e x -a ln (x e x )=0有两个不等的正实根,a ln (x e x )=x e x ①要证x 1x 2>e 2e ex 1+x 2, 只需证(x 1e x 1)·(x 2e x 2)>e 2,即证ln (x 1e x 1)+ln (x 2e x 2)>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2.由①得a ln t 1=t 1,a ln t 2=t 2,所以a (ln t 2-ln t 1)=t 2-t 1,a (ln t 2+ln t 1)=t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1(ln t 2-ln t 1) =⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1, 只需证⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1>2. 设0<t 1<t 2,令t =t 2t 1,则t >1, 所以只需证ln t >2(t -1)t +1. 令h (t )=ln t -2(t -1)t +1,t >1,则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 所以h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即当t >1时,ln t -2(t -1)t +1>0成立.所以ln t 1+ln t 2>2,即(x 1e x 1)·(x 2e x 2)>e 2,即x 1x 2>e 2e e x 1+x 2. 5.(2022·江苏泰州中学高三期初检测)已知函数f (x )=1+ln (x +1)x +1. (1)求函数y =f (x )的最大值;(2)令g (x )=(x +1)f (x )-(a -2)x +x 2,若g (x )既有极大值,又有极小值,求实数a 的取值范围;(3)求证:当n ∈N *时,ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+…+ln ⎝ ⎛⎭⎪⎫1+1n <2n . 解 (1)f ′(x )=-ln (x +1)(x +1)2,x ∈(-1,+∞), 在(-1,0)上,f ′(x )>0,函数f (x )单调递增,在(0,+∞)上,f ′(x )<0,函数f (x )单调递减,所以f (x )max =f (0)=1.(2)g (x )=(x +1)f (x )-(a -2)x +x 2=1+ln (x +1)-(a -2)x +x 2g ′(x )=1x +1-(a -2)+2x=2x 2+(4-a )x +3-a x +1, g (x )既有极大值,又有极小值,等价于2x 2+(4-a )x +3-a =0在区间(-1,+∞)上有两个不相等的实数根.即⎩⎨⎧2+(a -4)+3-a >0,a -44>-1,Δ=(a -4)2-8(3-a )>0,解得a >22,所以实数a 的取值范围为(22,+∞).(3)证明:由(1)得,当x >0时,f (x )<1,即ln (1+x )<x ,可得ln ⎝⎛⎭⎪⎫1+1n <1n (n ∈N *), 于是ln ⎝ ⎛⎭⎪⎫1+11<11,ln ⎝⎛⎭⎪⎫1+12<12,…, ln ⎝⎛⎭⎪⎫1+1n <1n , 于是ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+...+ln ⎝ ⎛⎭⎪⎫1+1n <1+12+13+ (1)=1+222+223+…+22n <1+21+2+22+3+…+2n -1+n=1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n .6.(2022·新高考八省联考)已知函数f (x )=e x -sin x -cos x ,g (x )=e x +sin x +cos x .(1)证明:当x >-5π4时,f (x )≥0;(2)若g (x )≥2+ax ,求a .解 (1)证明:分类讨论:①当x ∈⎝ ⎛⎦⎥⎤-5π4,-π4时,f (x )=e x -2sin ⎝ ⎛⎭⎪⎫x +π4>0; ②当x ∈⎝ ⎛⎭⎪⎫-π4,0时,f ′(x )=e x -cos x +sin x ,f ′(0)=0, 令m (x )=e x -cos x +sin x ,则m ′(x )=e x +sin x +cos x =e x +2sin ⎝ ⎛⎭⎪⎫x +π4>0, 则函数f ′(x )在⎝ ⎛⎭⎪⎫-π4,0上单调递增, 则f ′(x )<f ′(0)=0,则函数f (x )在⎝ ⎛⎭⎪⎫-π4,0上单调递减, 则f (x )>f (0)=0;③当x =0时,由函数的解析式可知f (0)=1-0-1=0,当x ∈[0,+∞)时,令H (x )=-sin x +x (x ≥0),则H ′(x )=-cos x +1≥0,故函数H (x )在区间[0,+∞)上单调递增,从而H (x )≥H (0)=0,即-sin x +x ≥0,-sin x ≥-x ,从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1,令y =e x -x -1,则y ′=e x -1,当x ≥0时,y ′≥0,故y =e x -x -1在[0,+∞)上单调递增,故函数y =e x -x -1在[0,+∞)上的最小值为e 0-0-1=0,从而在区间[0,+∞)上,e x -x -1≥0.从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1≥0.综上可得,题中的结论成立.(2)令F (x )=e x +sin x +cos x -ax -2,F (x )≥0,则F (x )min ≥0.又F (0)=0,所以F (x )在R 上的最小值为F (0). F ′(x )=e x +cos x -sin x -a ,令G (x )=e x +cos x -sin x -a ,则G ′(x )=e x -sin x -cos x =f (x ),由(1)知,当x >-5π4时,G ′(x )≥0,所以G (x )在⎝ ⎛⎭⎪⎫-5π4,+∞上单调递增,G (0)=2-a . ①当a >2时,G (0)<0,G (a +ln a )=a (e a -1)+2cos ⎝ ⎛⎭⎪⎫a +ln a +π4>2(e 2-1)-2>0. 故G (x )在(0,a +ln a )内存在零点,设为x 1, 当x ∈(0,x 1)时,G (x )<0,即F ′(x )<0, 则F (x )在(0,x 1)上单调递减,所以F (x 1)<F (0)=0,与题意不符,舍去; ②当≤a <2时,G (0)>0,G ⎝ ⎛⎭⎪⎫-5π4=故G (x )在⎝ ⎛⎭⎪⎫-5π4,0上存在零点,设为x 2, 当x ∈(x 2,0)时,G (x )>0,即F ′(x )>0, 则F (x )在(x 2,0)上单调递增,所以F (x 2)<F (0)=0,与题意不符,舍去; ③当a =2时,G (0)=0,则当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,G (x )<0, 当x ∈(0,+∞)时,G (x )>0,即当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,F ′(x )<0, 当x ∈(0,+∞)时,F ′(x )>0,所以F (x )在⎝ ⎛⎭⎪⎫-5π4,0上单调递减,在(0,+∞)上单调递增, 所以当x ∈⎝ ⎛⎭⎪⎫-5π4,+∞时,F (x )≥F (0)=0. 又当x ∈⎝ ⎛⎦⎥⎤-∞,-5π4时,F (x )=e x +2sin ⎝ ⎛⎭⎪⎫x +π4-2x -2>-2+5π2-2>0. 因此,当a =2时,F (x )≥0.综上,a =2.。

2.7导数的应用(讲义+典型例题+小练)(原卷版)

2.7导数的应用(讲义+典型例题+小练)(原卷版)

2.7导数的应用(讲义+典型例题+小练)1. 基本方法:(1)函数的导数与函数的单调性的关系:设函数y =f (x )在某个区间内有导数,如果在这个区间内/y >0,那么函数y =f (x )为这个区间内的增函数;如果在这个区间内/y <0,那么函数y =f (x )为这个区间内的减函数.(2)用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间.(3)判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.(4)求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x ). ②求方程f '(x )=0的根. ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格. 检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f (x )在这个根处无极值.2、基本思想:学习的目的,就是要会实际应用,本讲主要是培养学生运用导数知识解决实际问题的意识,思想方法以及能力.解决实际应用问题关键在于建立数学模型和目标函数. 把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再化为常规问题,选择合适的数学方法求解.根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变化区间,构造相应的函数关系,是这部分的主要技巧.知识当回归于生活,在现实生活中,有很多时候我们需要用到最大、最小。

导数及其应用(1)

导数及其应用(1)

导数及其应用(1)一、基础训练:1.曲线(3ln 1)y x x =+在点()1,1处的切线方程为 430x y --= . 2.已知)1(3)1()(23-'+'+=f x f x x x f ,则)1()1(-'+'f f 的值为 43- . 3.函数x e x x f )3()(-=的单调递增区间是 ),2(+∞ . 4.函数21ln 2y x x =-的单调递减区间为 ()0,1 . 5.函数32()31f x x x =-+在x = 2 处取得极小值.6.若0,0a b >>,且函数()32422f x x ax bx =--+在1x =处有极值,则a b += 6 . 二、例题分析:例1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,,a b 为常数,已知曲线()y f x =与()y g x =在点()2,0处有相同的切线l . 求,a b 的值,并写出切线l 的方程.解:因为()23g x x '=-,所以直线l 的斜率(2)1k g '==,所以切线l 的方程为:2y x =-.由(2)1281(2)8820f a b f a b a '=++=⎧⎨=+++=⎩,得25a b =-⎧⎨=⎩所以a 的值为-2,b 的值为5,切线l 的方程为2y x =-.例2.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点.解:(1)因为()232f x x ax b '=++,所以()()13201320f a b f a b '=++=⎧⎪⎨'-=-+=⎪⎩,解得30a b =-⎧⎨=⎩经检验:3,0a b =-=符合题意.(2)由题意知:()()()233212g x x x x x '=-+=-+令()0g x '=,解得122,1x x =-='(),()f x f x 随x 的变化情况如下表:所以,()g x 的极小值点为2x =-,()g x 无极大值.例3.函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围. 解:(I)因为2'()f x x k =-当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)- (II)令()()g x f x k =-,所以()g x 只有一个零点 ;因为2'()'()g x f x x k ==- 当0k =时,3()g x x =,所以()g x 只有一个零点0当0k <时,2'()0g x x k =->对R x ∈成立, 所以()g x 单调递增,所以()g x 只有一个零点当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <即2(03g k =<,解得904k << 综上所述,k 的取值范围是94k <备用题:已知函数()ln (1)f x m x m x =+- ()m ∈R .(Ⅰ)当2m =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性;(III)若()f x 存在最大值M ,且0M >,求m 的取值范围. 解:(Ⅰ)当2m =时,()2ln f x x x =+.22()1x f x x x+'=+=. 所以(1)3f '=. 又(1)1f =, 所以曲线()y f x =在点(1,(1))f 处的切线方程是13(1)y x -=-, 即320x y --=. (Ⅱ)函数()f x 的定义域为(0,)+∞, (1)()1m m x mf x m x x-+'=+-=. ①当0m ≤时,由0x >知()10mf x m x'=+-<恒成立, 此时()f x 在区间(0,)+∞上单调递减. ②当m ≥1时,由0x >知()10mf x m x'=+->恒成立, 此时()f x 在区间(0,)+∞上单调递增.③当01m <<时,由()0f x '>,得1m x m <-,由()0f x '<,得1mx m>-, 此时()f x 在区间(0,)1m m -内单调递增,在区间(,)1m m+∞-内单调递减.(III)由(Ⅱ)知函数()f x 的定义域为(0,)+∞,①当0m ≤或m ≥1时,()f x 在区间(0,)+∞上单调,此时函数()f x 无最大值.②当01m <<时,()f x 在区间(0,)1m m -内单调递增,在区间(,)1m m+∞-内单调递减, 所以当01m <<时函数()f x 有最大值. 最大值()ln 11m m M f m m m m==---. 因为0M >,所以有ln 01m m m m ->-,解之得e1e m >+. 所以m 的取值范围是e(,1)1e+.三、巩固练习:1.在平面直角坐标系xOy 中,点P 在曲线C :3103y x x =-+上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 ()2,15- .2.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 1 . 3.函数32()15336f x x x x =--+的单调减区间为 ()1,11- .4.函数x x y ln =的单调减区间为 ⎪⎭⎫ ⎝⎛e 1,0 .5.函数()3226f x x x m =-+(m 为常数)在[]2,2-上有最大值3,则此函数在[]2,2-上的最小值是 37- .6.若函数()3231f x x a x =-+的图象与直线3y =只有一个公共点,则实数a 的取值范围是()1,1-.7.已知()3f x ax bx c =++在2x =处取得极值16c -.(1)求实数,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值. 解:(1)()23f x ax b '=+;因为()f x 在2x =处取得极值16c -所以()()282212f a b c f a b=++⎧⎪⎨'=+⎪⎩,解得1,12a b ==-经检验:1,12a b ==-符合题意.(2)由(1)知: ()312f x x x c =-+,令()23120f x x '=-=,解得122,2x x =-='(),()f x f x 随x 的变化情况如下表:所以,()f x 的极大值为()282428f c -=-++=,所以12c =.所以()31212f x x x =-+,又()()321,24f f -==-,所以()min 4f x =-.8.已知函数1331(223+-+=x m mx x x f ),m ∈R . (Ⅰ)当1=m 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (Ⅱ)若)(x f 在区间(2,3)-上是减函数,求m 的取值范围. 解:(Ⅰ)当1=m 时,321()313f x x x x =+-+, 又2'()23f x x x =+-,所以'(2)5f =. 又5(2)3f =, 所以所求切线方程为 55(2)3y x -=-,即153250x y --=. 所以曲线)(x f y =在点))2(,2(f 处的切线方程为025315=--y x .(Ⅱ)因为2232('m mx x x f -+=), 令'(0f x =),得3x m =-或x m =. ①当0m =时,2'(0f x x =≥)恒成立,不符合题意. ②当0m >时,()f x 的单调递减区间是(3,)m m -,若()f x 在区间(2,3)-上是减函数,则32,3.m m -≤-⎧⎨≥⎩解得3m ≥.③当0m <时,()f x 的单调递减区间是(,3)m m -,若()f x 在区间(2,3)-上是减函数,则2,3 3.m m ≤-⎧⎨-≥⎩,解得2m ≤-.综上所述,实数m 的取值范围是3m ≥或2m ≤-.9.已知函数2()()(0)x f x ax bx c e a =++>的导函数'()y f x =的两个零点为3-和0.(Ⅰ)求()f x 的单调区间;(Ⅱ)若()f x 的极小值为1-,求()f x 的极大值.解:(Ⅰ)22()(2)()[(2)]x x x f x ax b e ax bx c e ax a b x b c e '=++++=++++.令2()(2)g x ax a b x b c =++++, ∵0xe >,∴'()y f x =的零点就是2()(2)g x ax a b x b c =++++的零点,且()f x '与()g x 符号相同.又∵0a >,∴当3,0x x <->或时,()g x >0,即()0f x '>,当30x -<<时,()g x <0,即()0f x '<, ∴()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0).(Ⅱ)由(Ⅰ)知,x =0是()f x 的极小值点,所以有1,0,93(2)0,c b c a a b b c =-⎧⎪+=⎨⎪-+++=⎩解得1,1,1a b c ===-.所以函数的解析式为2()(1)xf x x x e =+-.又由(Ⅰ)知,()f x 的单调增区间是(-∞,-3),(0,+∞),单调减区间是(-3,0). 所以,函数()f x 的极大值为335(3)(931)f e e --=--=.10.已知函数211()ln (,0)22f x x a x a a =--∈≠R . (Ⅰ)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.(Ⅰ)2a =时,211()2ln ,(1)022f x x x f =--= 2'(),'(1)1f x x f x=-=-曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(Ⅱ)2'()(0)a x af x x x x x-=-=>①当0a <时, 2'()0x af x x-=>恒成立,函数()f x 的递增区间为()0,+∞②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为(Ⅲ)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥①当0a <时,()f x 在∞[1,+)上是增函数, 所以只需(1)0f ≥ ,而11(1)ln1022f a =--= ,所以0a <满足题意;②当01a <≤时,01<≤,()f x 在∞[1,+)上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= ,所以01a <≤满足题意;③当1a >时1>,()f x 在上是减函数,∞)上是增函数,所以只需0f ≥即可, 而(1)0f f <= ,从而1a >不满足题意; 综合①②③实数a 的取值范围为(,0)(0,1]-∞ .。

高中数学中的导数应用案例全面解析与计算

高中数学中的导数应用案例全面解析与计算

高中数学中的导数应用案例全面解析与计算导数是高中数学中的一个重要概念,在不同的数学问题中都有广泛的应用。

本文将通过一些具体案例,全面解析和计算导数的应用,以帮助读者更好地理解和应用导数。

案例一:汽车行驶问题假设一辆汽车以恒定的速度行驶,车速为v(t)(单位:m/s)。

我们需要求出汽车行驶过程中的加速度a(t)。

根据导数的定义,加速度a(t)可以表示为车速v(t)对时间t的导数,即a(t) = dv(t)/dt。

由此,我们可以通过求车速对时间的导数得到加速度。

在具体计算中,我们可以用一个具体的函数来描述车速v(t)的变化规律。

例如,假设车速v(t) = 2t + 3,其中t为时间(单位:s)。

根据导数的计算规则,这个函数的导数即为加速度。

对v(t)进行求导,有:dv(t)/dt = d(2t + 3)/dt = 2因此,这辆汽车的加速度恒定为2 m/s²。

案例二:曲线的切线问题假设有一条曲线y = f(x),我们需要求出该曲线在某一点P(x0, y0)处的切线斜率k。

根据导数的定义,斜率k可以表示为曲线y = f(x)在点P处的斜率,即k = dy/dx |x=x0。

其中,dy/dx表示y对x的导数,"|"表示在x=x0的意思。

在实际计算中,我们首先需要确定曲线函数f(x)的具体形式,以及点P(x0, y0)的坐标。

然后,对曲线函数进行求导,并将x的值代入导函数,即可得到切线斜率k的值。

以一个具体的例子来说明。

假设曲线为y = x²,要求在点P(2, 4)处的切线斜率k。

首先,对曲线函数y = x²进行求导,得到导函数dy/dx = 2x。

然后,将点P(2, 4)中的x坐标代入导函数2x,即可得到切线斜率:k = dy/dx |x=2 = 2(2) = 4所以,在曲线y = x²的点P(2, 4)处,切线的斜率为4。

通过以上两个案例,我们可以看到导数在不同数学问题中的应用。

【创新设计】高考数学一轮总复习 第三篇 第2讲 导数的应用(一)课件 理 湘教版

【创新设计】高考数学一轮总复习 第三篇 第2讲 导数的应用(一)课件 理 湘教版

增函数得,x>-1,即不等式f(x)>2x+4的解集是(-1,+
∞),选B.
答案 B
5.函数f(x)=x3+ax-2在(1,+∞)上是增函数,则实数a的 取值范围是________. 解析 f′(x)=3x2+a,f(x)在区间(1,+∞)上是增函数,则 f′(x)=3x2+a≥0在(1,+∞)上恒成立,即a≥-3x2在(1,+ ∞)上恒成立,∴a≥-3. 答案 [-3,+∞)
考向一 导数几何意义的应用
【例 1】►(2013·苏州模拟)若存在过点(1,0)的直线与曲线 y
=x3 和 y=ax2+145x-9 都相切,则 a 等于( ).A.-1 或-2654
B.-1 或241
C.-74或-2654
D.-74或 7
[审题视点] 因为点(1,0)不在曲线 y=x3 上,所以应从设切点
考点自测
1.(2012·辽宁)函数 y=12x2-ln x 的单调递减区间为
A.(-1,1]
B.(0,1]
( ).
C.[1,+∞)
D.(0,+∞)
解析 由题意知,函数的定义域为(0,+∞),又由 y′
=x-1x≤0,解得 0<x≤1,所以函数的单调递减区间
为(0,1]. 答案 B
2.(2011·山东)曲线y=x3+11在点P(1,12)处的切线与y轴交
∴f(x)min=f(1)=-a=32,∴a=-32(舍去). ②若 a≤-e,则 x+a≤0,则 f′(x)≤0 在[1,e]上恒 成立,此时 f(x)在[1,e]上为减函数,
∴f(x)min=f(e)=1-ae=32,∴a=-2e(舍去).
③若-e<a<-1,令 f′(x)=0 得 x=-a, 当 1<x<-a 时,f′(x)<0,∴f(x)在(1,-a)上为减函数; 当-a<x<e 时,f′(x)>0,∴f(x)在(-a,e)上为增函数,

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。

第1讲 导数及其应用(知识点串讲)(解析版)

第1讲 导数及其应用(知识点串讲)(解析版)

第1讲 导数及其应用(知识点串讲)知识整合考点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=lim Δx →0()()f x x f x x+∆-∆为f (x )的导函数. 例1、(2018·山东东营期中)曲线f (x )=x 2-3x +2ln x 在x =1处的切线方程为____________.【答案】x -y -3=0 [f ′(x )=2x -3+2x ,f (1)=-2,f ′(1)=1,故切线方程为y +2=x -1,即x -y -3=0.][跟踪训练]1、(2019·山东济南联考)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2【答案】B [设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ). 又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1. 又y 0=ln(x 0+a ), 所以y 0=0,则x 0=-1,所以a =2.]考点2.基本初等函数的导数公式考点3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)()()()()()()()2'''f x f xg x f x g xg x g x⎡⎤-=⎢⎥⎡⎤⎣⎦⎣⎦(g(x)≠0).考点4.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y 对u的导数与u对x的导数的乘积.例2、(2019·山东菏泽模拟)已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-6【答案】D[由题意f(1)=f′(1)+2+2f(1),化简得f(1)=-f′(1)-2,而f′(x)=2f′(1)x+2,所以f′(1)=2f′(1)+2,得f′(1)=-2,f(x)=-2·x2+2x+2f(1).所以f′(x)=-4·x+2.所以f′(2)=-4×2+2=-6.] [跟踪训练]2、(2019·山东临沂期中)设函数f(x)在(0,+∞)可导,其导函数为f′(x),若f(ln x)=x2-ln x,则f′(1)=________.【答案】2e2-1[设ln x=t,则x=e t,∵f(ln x)=x2-ln x,∴f(t)=e2t-t,∴f(x)=e2x-x,∴f′(x)=2e2x -1,∴f′(1)=2e2-1.]考点5.与导数相关的重要结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).(3)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点6.函数的单调性(1)在(a ,b )内函数f (x )可导,f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x ) ≥0⇔f (x )在(a ,b )上为增函数. f ′(x ) ≤0⇔f (x )在(a ,b )上为减函数.(2)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(3)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x ) ≥0(f ′(x ) ≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.例3、(2019·山东青岛模拟)已知函数f (x )=x 2+ax ,若函数f (x )在x ∈[2,+∞)上是单调递增的,则实数a的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)【答案】B[f (x )=x 2+a x 在x ∈[2,+∞)上单调递增,则f ′(x )=2x -a x 2=2x 3-ax2 ≥0在x ∈[2,+∞)上恒成立. 则a ≤2x 3在x ∈[2,+∞)上恒成立. 所以a ≤16.][跟踪训练]3、(2019·山东临沂阶段检测)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .f (ln 2)<2f (0),f (2)<e 2f (0)B .f (ln 2)>2f (0),f (2)>e 2f (0)C .f (ln 2)<2f (0),f (2)>e 2f (0)D .f (ln 2)>2f (0),f (2)<e 2f (0)【答案】A [令()()xf xg x e =,则()()()2''x x x e f x e f x g x e -==()()'x f x f x e -.∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )是减函数,则有g (ln 2)<g (0),g (2)<g (0),即()ln 2ln 2f e <()00f e,()()2020f f e e <,所以f (ln 2)<2f (0),f (2)<e 2f (0).]考点7.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 例4、(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1【答案】A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1. 所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0. 所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.] [跟踪训练]4、(2019·山东淄博模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞C .⎝⎛⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 【答案】D [因为f (x )=x 3-2cx 2+x 有极值点,f ′(x )值有正有负,所以f ′(x )=3x 2-4cx +1=0有两个不同的根,Δ=(4c )2-12>0,解得c <-32或c >32.]考点8.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例5、已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.【答案】-13 [f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13.]。

高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)

高考数学第一轮知识点总复习 第二节  导数的应用(Ⅰ)
分析 函数的增区间是f′(x)≥0恒成立的区间,函数的减区间是 f′(x)≤0恒成立的区间(导数值为零的点为有限个).
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)当aHb 时,讨论函数f (X)的单调性;
全国名校高中数学二轮专题提分优质专题汇编(附详解)
导数第2节 导数的应用(1)单调性
1.(优质专题天津文 20( 1))已知函数f(x) =4X -X 4
,X 迂R ,求f(x)的单调性;
4.(优质专题全国2文21(1))设函数f (x ) = (1 —x 2
)eX .
(1)讨论f ( X )的单调性;
2.(2013 广东文 21)设函数
f(x) = x 3-kx 2+x (k 迂 R ).
(1)当k =1,求函数f (x)的单调区间; 3 2
4 5.(优质专题重庆文19 (1))已知函数f ( x )= ax 3
+x 2
( a W R )在x = -—处取得极值.
3
若g (X ) = f ( X )eX ,讨论g (X )的单
调性.
3.(优质专题四川文21 (1))已知函数f(x)=-2xlnx + x 2
-2ax+a 2
,其中a>0.
6. ( 2013湖北文21) 设a^O ,b^O ,已知函数
ax+ b
设g (X )为f (X )的导函数,讨论g (X )的单调性;
心x+1
全国名校高中数学二轮专题提分优质专题汇编(附详解)
7.(优质专题江苏19( 1))已知函数f (x)= x' + ax2 +b(a,b壬R).试讨论f(x)的单调性. 9.(优质专题新课标2卷文21(1))已知函数f ( X)=lnx+a 1- X).讨论f ( X)的单调性.
8.(优质专题山东文20( 1))设f(x)=xlnx-ax2+(2a-1)x,a迂R . 10.(优质专题全国1文21*( 1))已知函数f( x)= e x(e x-a)—a2x.
(1)令g(x )= f '(X ),求g(x )的单调区间;
(1)讨论f(X)的单调性;
全国名校高中数学二轮专题提分优质专题汇编(附详解)
令 f '(x )=0,得 X
2
+2X —1=0,解得 X1=-/2—1, X2=J 2—1.所以当-/2-1C X S 迈—1 时,
f '(X ):>0,当 X WT 迈—1 或 J 2—1c x 时,f '(x )<0,所以 f (x )在区间(亠,品—1 ,
(72—1,十处)上是减函数,在区间(-/2 —1J 2-1)上是增函数.
5
.解析由
(1)
得g (x
)需宀沖,故如€宀2
吵+£宀十
g (x )= f '(X )=2(x —1-1 nx-a ),所以 g'(x )=2-2 二2^^^
X X
当 x w (1,十乂)时,g '(x ):>0, g (x )单调递增.
所以函数f (X )的单调递增区间是(4,1),单调递减区间是(1,+工'
当acb 时,f '(x )>0,函数f (x )在(亠,—1),(—1,垃')上单调递减.
当 (0,1 )时,g '(x )<0, g (x )单调递
减;
6.解析(1) f (x )定义域为(亠,-此(-1,垃),f Y x X a 'x +OT ax +b )— 一 b
2 (x +1)
2・
(x +1)
4.解析(1) f '(X ) = -2xe X +(1-x 2 b x =(1—2x — x 2 b x
. )■ 2
7.解析由题意,m ax =3x [x
+yj
导数第2节导数的应用(1)单调性答案 1. 解析(1) 由 f(x)=4x-x 4,可得 f'(x)=4-4x 3
,
2. f '(X )A O
,即xc1时,函数f (X )单调递增; ,即x"时,函数f (X )单调递减.
解析
(1 )当 k =1 时,f(x)=x 3-x 2+x, f'(X )=3X 2
-2X + 1 ,
因为△ =4-4X3X1 =-8 <0,所以f '(x ):>o 恒成立,所以函数 f (x )在R 上单调递增,故 函数f (x )的单调递增区间为(-处,+处),函数f (x )没有单调递减区间.
3.解析 由已知可得函数 f (x )的定义域为(0,+迹
1’ 1 3 5
2 ) X 1
弋 x+?x+
2x J e
-Jx+Hx + g.
令 g '( X )= 0 ,解得 x = 0, x=—1 或 x=—4 . 则x , g'(x ), g (x )的变化如下表所示:
当a^b 时,f '(x )>0,函数f (x )在(亠,—1),(—1,畑)上单调递增; 所以g (x )在(亠,-4)和(-1,0)上为减函数,在(-4,-1)和(0,十K )上为增函
数.
全国名校高中数学二轮专题提分优质专题汇编(附详解)
1
9.解析f (x )的定义域为(0,+艺),f '(x ) = ——a x
若a, 0,贝y f '(x )>0,所以f (x )在(0,+N )上单调递增.
8.解析 (1)由 f '(x )=l nx-2ax+2a,可得 g (x )=l n x-2ax+2a,x 迂(0,+处
贝y g "(x )=
1
-2a =1_22X
x x
③当a c 0时,e
x
-a >0恒成立,令■r(x ):>0,贝U 2e x
+a
》0,即『>-上=/「2
)
2
f a )
f f a > 所以XA 叫「计,所以f (x
)在伫-2.)
当a, 0时,x W(0,+处)时,g '(x ):>0,函数g (x )单调递增;当a >0时,当〔0,丄]时,
< 2a 丿
r 1
g'(x):>0,函数g(x )单调递增;当X 匕!——,

<2a
综上所述,当a, 0时,函数g(x )单调递增区间为(0,+N ); 当a>0时,函数g(x )单调递增区间为〔0,丄],单调递减区间为〔丄严
2
2◎当一一a >0,即卩a <0时, 3 若 a 〉0,则当 I 0 -时,f '(x )>0 ;当 I —,+处 时,f '(x )v
0. 令 falbO
,贝y X <0 或 X I 3 J
l a 丿
f '
2
—3a

所以f (X )在〔0」〕上单调递增,
在〔-+迂】上单调递减. la 丿
r 2
所以f (X )的单调递增区间为(亠,0 和 -
13 /
-二a,+K 1,单调递减区间为 (0,弓];
I 3丿
2
3 ◎当一一a < 0 ,即卩a < 0时, 3
令 f '(x ) = 3x 〔x a >0,则
< 3丿 10.解析 (1)
①当a = 0时,
< -―a 或 X A 0 + 3
②当a 》。

时,
2
f '(x )=2(e x
)- X 2 X X
ae - a =(2e + a ^ e -
a ).
f '(x )=2(e x )2:> 0恒成立,所以f (x )在R 上单调递增; 2e x
+ a 》。

恒成立,令 f'(x)>0,贝U e x
- 0
+
f 所以f (X )的单调递增区间为 : 一fa j 和(0,*^),单调递减区间为 故x 》lna ,所以f (x )在(1 na,十乞)上单调递增,在(亠,1 n a )上单调递减;
2
1 ◎当 一5a = 0,即 a = 0 时,f '(x ) = 3x 2
…0对 x w R 恒成
立,
故f (X )的单调递增区间为(亠,2 );
,+N 〕上单调递增,同理在"亠,ln | -
丿 <
上单调
递减.
]时,g '(x )<0,函数g (x )单调递减.
I 2a .丿I2a。

相关文档
最新文档