集合间的并集交集运算练习题(含答案)

合集下载

新教材2022版数学必修第一册(人教B版)课时作业-1.1.3.1交集与并集-含解析

新教材2022版数学必修第一册(人教B版)课时作业-1.1.3.1交集与并集-含解析

课时作业(三)交集与并集一、选择题1.(多选)若集合M⊆N,则下列结论正确的是()A.M∩N=M B.M∪N=NC.M⊆(M∩N) D.(M∪N)⊆N2.已知集合A={x|x≥-3},B={x|-5≤x≤2},则A∪B=()A.{x|x≥-5}B.{x|x≤2}C.{x|-3<x≤2}D.{x|-5≤x≤2}3.设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C =()A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}4.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.a<2B.a>-2C.a>-1D.-1<a≤2二、填空题5.定义A-B={x|x∈A,且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M =________.6.设集合A={1,2,a},B={1,a2},若A∩B=B,则实数a允许取的值有________个.7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围为________.三、解答题8.设A={x|-1<x<2},B={x|1<x<3},求A∪B,A∩B.9.已知A={x|a<x≤a+8},B={x|x<-1或x>5}.若A∪B=R,求a的取值范围.[尖子生题库]10.集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.课时作业(三)交集与并集1.解析:∵集合M⊆N,∴在A中,M∩N=M,故A正确;在B中,M∪N=N,故B正确;在C中,M⊆(M∩N),故C正确;在D中,(M∪N)⊆N,故D正确.答案:ABCD2.解析:结合数轴(图略)得A∪B={x|x≥-5}.答案:A3.解析:本题主要考查集合的运算.由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.答案:C4.解析:在数轴上表示出集合A,B即可得a的取值范围为a>-1.答案:C5.解析:关键是理解A-B运算的法则,N-M={x|x∈N,且x∉M},所以N-M={6}.答案:{6}6.解析:由题意A∩B=B知B⊆A,所以a2=2,a=±2,或a2=a,a=0或a=1(舍去),所以a=±2,0,共3个.答案:37.解析:由A∪B=R,得A与B的所有元素应覆盖整个数轴.如图所示:所以a必须在1的左侧,或与1重合,故a≤1.答案:(-∞,1]8.解析:如图所示:A ∪B ={x |-1<x <2}∪{x |1<x <3}={x |-1<x <3}. A ∩B ={x |-1<x <2}∩{x |1<x <3}={x |1<x <2}.9.解析:在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧a +8≥5,a <-1,解得-3≤a <-1. 综上可知,a 的取值范围为-3≤a <-1.10.解析:(1)∵B ={x |x ≥2},∴A ∩B ={x |2≤x <3}.(2)C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇒B ⊆C ,∴-a 2<2,∴a >-4. 即a 的取值范围为a >-4.。

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。

思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。

记作:A∩B 读作:“A交B” 。

即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。

用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。

讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。

1求A∪B。

2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。

高中数学交集、并集练习题(有解析)

高中数学交集、并集练习题(有解析)

高中数学交集、并集练习题(有解析)数学必修1(苏教版)1.3 交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}答案:A2.设S={x||x|3},T={x|3x-51},则ST=()A.B.{x|-33}C.{x|-32} D.{x|23}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为()A.{x=1,或y=2} B.{1,2}C.{(1,2)} D.(1,2)解析:AB=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR且x +y=1,则AB的元素个数为()A.4个B.3个C.2个D.1个解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,即AB={(1,0),(0,1)}.答案:C6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案:C7.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且MS={3},则pq=________.解析:∵MS={3},3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.答案:438.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.解析:SA={x|x1}.答案:{x|15}9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范畴是________.解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.答案:{a|a0或a6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.答案:{1,3,7,8}11.满足条件{1,3}A={1,3,5}的所有集合A的个数是________个.答案:4能力提升12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()A.{x|-11} B.{x|x0}C.{x|01} D.解析:∵A={x|-11},B={y|y0}AB={x|01}.答案:C13.若A、B、C为三个集合,且有AB=BC,则一定有()A.AC B.CAC.A D.A=答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB =________解析:UA={c,d},UB={a},UAUB={a,c,d}.答案:{a,c,d}15.(2021上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa-1},若AB=R,则a的取值范畴为________.解析:当a1时,A={x|x1或xa},要使AB=R,则a1,a-112;当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.综上,a答案:{a|a2}16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.解析:|x+2|-3x+2-51,A={x|-51},又∵AB=(-1,n),-1是方程(x-m)(x-2)=0的根,即m=-1,现在B={x|-12},AB =(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:(1)AP;(2)若xA,则2xA;(3)若xPA,则2xPA.解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A={x|x+10或x-40},B={x|2aa+2}.(1)若A,求实数a的取值范畴;(2)若AB=B,求实数a的取值范畴.解析:(1)A={x|x-1或x4},∵A,2a2+a,a+24或2aa+2,2a-1.a=2或a-12.综上所述,实数a的取值范畴为aa-12或a=2.(2)∵AB=B,BA.①B=时,满足BA,则2aa+22,②B时,则2aa+2,a+2-1或2aa+2,2a4.即a-3或a=2.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

集合专题训练(含答案)

集合专题训练(含答案)

集合专题训练(含答案)1.对集合中有关概念的考查在2020年校运动会中,集合A表示参加比赛的运动员,集合B表示参加比赛的男运动员,集合C表示参加比赛的女运动员。

那么下列关系正确的是()A。

A是B的子集B。

B是C的子集C。

A与B的交集等于CD。

B与C的并集等于A解析:根据题意,A包含了所有参加比赛的运动员,B只包含了男运动员,C只包含了女运动员。

因此,B是A的子集。

选项A正确。

点评:此题考查了集合的子集概念和集合运算,需要注意从元素的角度理解集合的含义。

2.对集合性质及运算的考查已知全集U={2,3,4,5,6,7},集合M={3,4,5,7},集合N={2,4,5,6},那么下列哪个选项是正确的?A。

M与N的交集为{4,6},N等于全集UB。

M与N的并集为{2,3,4,5,6,7},N等于全集UC。

(C并N)与M的并集等于全集UD。

(C并M)与N的交集等于N解析:根据题意,M与N的交集为{4,5},N不等于全集U;M与N的并集为{2,3,4,5,6,7},N不等于全集U;(C并N)与M的并集包含了全集U中的所有元素,因此选项C正确;(C并M)与N的交集为{4},不等于N。

因此选项D错误。

点评:此题考查了集合的并、交、补运算以及集合间的关系应用。

可以使用文氏图来帮助理解。

3.对与不等式有关集合问题的考查已知集合M={x|x+3<x-1},集合N={x|-3<x<1},那么集合{ x | x-1<x }等于哪个选项?A。

M并NB。

M交NC。

实数集RD。

(M交N)的补集解析:将集合M中的不等式化简得到-3<x,将集合N中的不等式化简得到-3<x<1,因此集合M交N等于{x|-3<x<1}。

而{x|x-1<x}等价于{x|x<1},因此选项C正确。

点评:此题考查了解不等式的知识内容,同时也考查了集合的运算。

需要注意参数的取值范围以及数形结合思想的应用。

高中一年级数学单元检测交集与并集(含答案)

高中一年级数学单元检测交集与并集(含答案)

答案:{k |k ≥-1}解析:因为M ={x |-1≤x <2},N ={x |x -k ≤0}={x |x ≤k },如图,当k ≥-1时,M ,N 有公共部分,满足M ∩N ≠∅.三、解答题:(共35分,11+12+12)10.已知集合A ={-2,0,3},M ={x |x 2+(a +1)x -6=0},N ={y |y 2+2y -b =0},若M ∪N =A ,求a ,b 的值.解:因为A ={-2,0,3},0∉M 且M ∪N =A ,所以0∈N .将0代入方程y 2+2y -b =0,求得b =0.由此可得N ={y |y 2+2y =0}={0,-2}.因为3∉N 且M ∪N =A ,所以3∈M .将3代入方程x 2+(a +1)x -6=0,求得a =-2.此时M ={x |x 2-x -6=0}={-2,3},满足M ∪N =A , 所以a =-2,b =0.11.已知集合A ={x |2<x <4},B ={x |a <x <3a }.(1)若A ∩B =∅,求实数a 的取值范围;(2)若A ∩B ={x |3<x <4},求a 的值.解:(1)因为A ∩B =∅,所以可分两种情况讨论:B =∅和B ≠∅. 当B =∅时,a ≥3a ,解得a ≤0;当B ≠∅时,⎩⎨⎧a >0a ≥4或3a ≤2,解得a ≥4或0<a ≤23. 综上,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤23或a ≥4. (2)因为A ∩B ={x |3<x <4},所以a =3.12.设A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值;(2)若∅Ø (A ∩B ),且A ∩C =∅,求a 的值;(3)若A ∩B =A ∩C ≠∅,求a 的值.解:(1)B ={x |x 2-5x +6=0}={2,3},C ={x |x 2+2x -8=0}={-4,2}.因为A ∩B =A ∪B ,所以A =B ,则A ={2,3},所以⎩⎪⎨⎪⎧2+3=a 2×3=a 2-19,解得a =5. (2)因为∅Ø (A ∩B ),且A ∩C =∅,B ={2,3},C ={-4,2}, 所以-4∉A,2∉A,3∈A ,所以32-3a +a 2-19=0, 即a 2-3a -10=0,解得a =5或a =-2.当a =-2时,A ={-5,3},满足题意;当a =5时,A ={2,3},不满足题意,舍去. 综上可知,a =-2.(3)因为A ∩B =A ∩C ≠∅,B ={2,3},C ={-4,2}, 所以2∈A ,则22-2a +a 2-19=0,即a 2-2a -15=0,解得a =5或a =-3.当a =5时,A ={2,3},不满足题意,舍去; 当a =-3时,A ={-5,2},满足题意.综上可知,a =-3.。

集合的基本运算练习题含答案

集合的基本运算练习题含答案

集合的基本运算练习题(2)1. 已知集合A={x|2x2−7x+3<0},B={x∈Z|lg x<1},则阴影部分表示的集合的元素个数为()A.1B.2C.3D.42. 已知集合A={x|x2−4<0},B={x|x2−4x+3<0},则A∪B=()A.{x|−2<x<1}B.{x|1<x<2}C.{x|−2<x<3}D.{x|−2<x<2}3. 已知集合A={x∈Z|y=log2(3−x)},B={y|y=√x+1},则A∩B=()A.(0, 3)B.[1, 3)C.{1, 2}D.{1, 2, 3}4. 若集合A={x∈N||x−1|≤1},B={x|y=√1−x2},则A∩B的真子集的个数为()A.3B.4C.7D.85. 设集合A={x|1<x<2},B={x|x<a}满足A⫋B,则实数a的取值范围是( )A.{a|a≥1}B.{a|a≤1}C.{a|a≥2}D.{a|a≤2}6. 已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.7. 设集合A={2,4}, B={2,6,8},则A∪B=________.8. 设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B=________.9. 我们把集合{x|x∈A且x∉B}叫做集合A与B的差集,记作A−B.据此回答下列问题:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},求A−B;(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,求a的取值范围.10. 已知集合A={−1,0},B={−1,3},则A∪B=________.11. 已知全集U=R,集合A={x|0<x<1},B={x|3≤9x≤27},C={x|a−2<x< 2a−4}.(1)求(∁U A)∩B;(2)若A∩C=C,求a的取值范围.12. 已知A={x|a≤x≤2a+3},B={x|x>1或x<−6}.(1)若A∩B=(1,3],求a的值;(2)若A∪B=B,求a的取值范围.参考答案与试题解析集合的基本运算练习题(2)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】B【考点】Venn图表达集合的关系及运算【解析】根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得【解答】阴影部分所表示的集合为A∩B,A={x|2x2−7x+3<0}=(1, 3),2B={x∈Z|lg x<1}={x∈Z|0<x<10},A∩B={1, 2},那么满足图中阴影部分的集合的元素的个数为2,2.【答案】C【考点】并集及其运算【解析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】集合A={x|x2−4<0}={x|−2<x<2},B={x|x2−4x+3<0}={x|1<x<3},则A∪B={x|−2<x<3}.3.【答案】C【考点】交集及其运算【解析】先求出集合A,B,由此能求出A∩B.【解答】∵集合A={x∈Z|y=log(3−x)}={x∈Z|3−x>0}={x∈Z|x<3},2B={y|y=√x+1}={y|y≥1},∴A∩B={x∈Z|1≤x<3}={1, 2}.4.【答案】A【考点】交集及其运算子集与真子集【解析】分别求出集合A和B,从而求出A∩B={0, 1},由此能求出A∩B的真子集的个数.【解答】解:集合A={x∈N||x−1|≤1},B={x|y=√1−x2},∴A={0, 1, 2},B={x|−1≤x≤1},∴A∩B={0, 1},∴A∩B的真子集的个数为22−1=3.故选A.5.【答案】C【考点】集合关系中的参数取值问题【解析】根据真子集的定义、以及A、B两个集合的范围,求出实数a的取值范围.【解答】解:因为集合A={x|1<x<2},B={x|x<a},且满足A⫋B,所以集合A是集合B的真子集,所以a≥2.故选C.二、填空题(本题共计 3 小题,每题 5 分,共计15分)6.【答案】a≤1【考点】集合关系中的参数取值问题并集及其运算【解析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图所示:故当a≤1时,命题成立.故答案为:a≤1.7.【答案】{2,4,6,8}【考点】并集及其运算【解析】此题暂无解析【解答】解:因为集合A={2,4}, B={2,6,8},所以A∪B={2,4,6,8}.故答案为:{2,4,6,8}.8.【答案】{5,2,1}【考点】交集及其运算并集及其运算【解析】此题暂无解析【解答】解:由题意得a+1=2,解得a=1,则b=2,∴A∪B={5,2,1}.故答案为:{5,2,1}.三、解答题(本题共计 4 小题,每题 5 分,共计20分)9.【答案】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]【考点】Venn图表达集合的关系及运算【解析】(1)根据差集定义即可求A−B;(2)根据差集定义即可阴影部分表示集合A−B;(3)根据A−B=⌀,即可求a的取值范围.【解答】解:(1)若A={1, 2, 3, 4},B={2, 3, 4, 5},则A−B={1};(2)在下列各图中用阴影部分表示集合A−B;(3)若A={x|0<x≤a},B={x|−1≤x≤2},且A−B=⌀,则a≤2,∴a的取值范围是(−∞, 2]10.【答案】{−1,0,3}【考点】并集及其运算【解析】此题暂无解析【解答】解:∵A={−1,0},B={−1,3}∴A∪B={−1,0,3}.故答案为:{−1,0,3}.11.【答案】集合A={x|0<x<1}=(7, 1),所以∁U A=(−∞, 0]∪[7;又B={x|3≤9x≤27}={x|4≤2x≤3}={x|≤x≤,],所以(∁U A)∩B=[1,];若A∩C=C,则C⊆A;因为C={x|a−2<x<2a−4},所以当C=⌀时,a−2≥5a−4;当C≠⌀时,则,解得,即.综上知,a的取值范围是.【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答12.【答案】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).【考点】集合关系中的参数取值问题【解析】(1)根据A={x|a≤x≤2a+3},B={x|x<−6, 或x>1},再由A∩B={x|1< x≤3}可得{2a+3=3−6≤a≤1,由此求得a的值.(2)由A∪B=B得A⊆B,分A=⌀和A≠⌀两种情况,分别求出a的取值范围,再取并集,即得所求.【解答】解:(1)∵A∩B={x|1<x≤3},可得{2a+3=3−6≤a≤1,∴a=0.(2)由A∪B=B得A⊆B.①当A=⌀时满足题意,此时,a>2a+3,解得a<−3;②当A≠⌀时,有{a≤2a+3a>1或2a+3<−6,解得a>1.综上,a的取值范围为:a<−3或a>1,即(−∞, −3)∪(1, +∞).。

集合的概念与运算例题及答案

集合的概念与运算例题及答案

集合的概念与运算例题及答案1 集合的概念与运算(一)目标:1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点:1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ?注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素(B )3个元素(C )4个元素(D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数,∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )} 含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗 }1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈,⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。

集合及其运算2

集合及其运算2

集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x|-3<x≤5},N ={x|-5<x<5},则M∩N=________.2.已知集合A ={1,2,3},B ={2,m ,4},A∩B={2,3},则m =________.3.设集合A ={x|2≤x<4},B ={x|3x -7≥8-2x},则A ∪B =__________.4.集合P ={x ∈Z |0≤x<3},M ={x ∈Z |x 2≤9},则P∩M=________.5.集合M ={y|y =x 2-1,x ∈R },集合N ={x|y =9-x 2,x ∈R },则M∩N=________.[典型例题]题型一 与集合有关的运算例1. 设A ={x|2x 2-px +q =0},B ={x|6x 2+(p +2)x +5+q =0},若A∩B=⎩⎨⎧⎭⎬⎫12, 求A ∪B.变式:设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2-4>0}.求A∩B;A ∪B ;(∁R A)∩B;(∁R A)∩(∁R B);A ∪(∁R B)题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的人百分率最多是多少,最少是多少?题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.题型四分类讨论思想在集合运算中的应用例4设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.4.已知集合A ={y|y =x 2-4x ,x ∈R },B ={y|y =-x 2+4x ,x ∈R },求A ∩B.5. 已知集合A ={x|5<x ≤6},集合 B ={x|m+1<x<2m-1},若A ∩B φ≠,求实数m 的取值范围.[反思总结][课后检测]1.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为________.2.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____.3.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.4. 已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若9∈(A ∩B ),则实数a =________.5.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.6.设M={a|a=(2,0)+m(0,1),m∈R}和N={b|b=(1,1)+n(1,-1),n∈R}都是元素为向量的集合,则M∩N=________.7.已知集合A={x|y=x2-5x-14},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}.(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.8.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N =________.答案 {x |-3<x <5}解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.2.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________.答案 3解析 ∵A ∩B ={2,3},∴3∈B ,∴m =3.3.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =__________.{x |x ≥2}4.集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M =________.答案 {0,1,2}解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}5.集合M ={y |y =x 2-1,x ∈R },集合N ={x |y =9-x 2,x ∈R },则M ∩N =________.答案 [-1,3]解析 ∵y =x 2-1≥-1,∴M =[-1,+∞)[典型例题]题型一 方程解集的运算例1.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B =⎩⎨⎧⎭⎬⎫12,求A ∪B . 【解析】 ∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A ,12∈B .将12分别代入方程2x 2-px +q =0及6x 2+(p +2)x +5+q =0,联立得方程组⎩⎨⎧ 12-12p +q =0,32+12(p +2)+5+q =0,解得⎩⎪⎨⎪⎧p =-7,q =-4, ∴A ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫-4,12, B ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13, ∴A ∪B =⎩⎨⎧⎭⎬⎫12,13,-4.题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?解析由题意知,同时参加三个小组的人数为0,令同时参加数学、化学人数为x人.20-x+6+5+4+9-x+x=36,x=8.答案8变式:变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的百分率最多是多少,最少是多少?53%,8%题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.解析依题意及韦恩图可得,B∩(∁U A)={5,6}.答案{5,6}题型四 分类讨论思想在集合运算中的应用例4设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}. 当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2}, A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}. 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0. 综上可得,a 的取值范围为a ≥-14.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.解析:由题易知P ∩Q ={2}.答案:{2}2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.解析:∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},则(∁U A )∩(∁U B )={7,9}.答案:{7,9}3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.解析:集合S 表示直线y =1上的点,集合T 表示直线x =1上的点,S ∩T 表示直线y=1与直线x=1的交点.答案:{(1,1)}4.已知集合A={y|y=x2-4x,x∈R},B={y|y=-x2+4x,x∈R},求A∩B.A={y|y=(x-2)2-4,x∈R}={y|y≥-4,y∈R},B={y|y=-(x-2)2+4,x∈R}={y|y≤4,y∈R},所以A∩B={y|-4≤y≤4,y∈R}.≠,求实数m的取值范围.5. 已知集合A={x|5<x≤6},集合 B={x|m+1<x<2m-1},若A∩Bφ35<<m[反思总结][课后检测]1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.2.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=____.答案 1解析∵3∈B,由于a2+4≥4,∴a+2=3,即a=1.3.设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若9∈(A∩B),则实数a=________.[自主解答](1)集合{z|z=x+y,x∈A,y∈B}={-1,1,3}.故所求集合中元素的个数为3.(2)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9.∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意;当a =3时,A ={-4,5,9},B 不满足集合中元素的互异性,故a ≠3;当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意.∴a =5或a =-3.[答案] (1)3 (2)5或-35.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.解析:A ∩B 中元素的个数就是函数y =|ln x |的图象与椭圆x 29+y 24=1的交点个数,如图所示.由图可知,函数图象和椭圆有两个交点,即A ∩B 中有两个元素,故A ∩B 的子集有22=4个.答案:46.设M ={a |a =(2,0)+m (0,1),m ∈R }和N ={b |b =(1,1)+n (1,-1),n ∈R }都是元素为向量的集合,则M ∩N =________.解析:设c =(x ,y )∈M ∩N ,则有(x ,y )=(2,0)+m (0,1)=(1,1)+n (1,-1),即(2,m )=(1+n,1-n ),所以⎩⎪⎨⎪⎧2=1+n ,m =1-n ,由此解得n =1,m =0,(x ,y )=(2,0), 即M ∩N ={(2,0)}.答案:{(2,0)}7.已知集合A ={x |y =x 2-5x -14},集合B ={x |y =lg(-x 2-7x -12)},集合C ={x |m +1≤x ≤2m -1}.(1)求A ∩B ;(2)若A ∪C =A ,求实数m 的取值范围.解:(1)∵A =(-∞,-2]∪[7,+∞),B =(-4,-3),∴A ∩B =(-4,-3).(2)∵A ∪C =A ,∴C ⊆A .①C =∅,2m -1<m +1,∴m <2.②C ≠∅,则⎩⎪⎨⎪⎧ m ≥2,2m -1≤-2,或⎩⎪⎨⎪⎧m ≥2,m +1≥7, 解得m ≥6.综上可得,实数m 的取值范围是m <2或m ≥6.8.设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.A ={x |x 2-3x +2=0}={1,2}.(1)∵A ∩B ={2},∴2∈B .将x =2代入B 中的方程,得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上所述,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3),∵A ∪B =A ,∴B ⊆A ,∴①当Δ<0,即a <-3时,B =Ø,满足条件;②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,只有B =A ={1,2}满足条件,则由根与系数的关系得:即 无解.综上所述,a 的取值范围是a ≤-3.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,4.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A ⊆B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.解:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)若A ⊆B ,当a =0时,B =∅,显然不成立;当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧a ≤2,3a ≥4⇒43≤a ≤2; 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4,此时不等式组无解, ∴当A ⊆B 时,43≤a ≤2. (2)∵要满足A ∩B =∅,当a =0时,B =∅满足条件;当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2.∴0<a ≤23或a ≥4; 当a <0时,B ={x |3a <x <a },a ≤2或3a ≥4.∴a <0时成立,综上所述,a ≤23或a ≥4时,A ∩B =∅. (3)要满足A ∩B ={x |3<x <4},显然a =3.2.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.正解 由x 2-3x -10≤0,解得-2≤x ≤5,即A ={x |-2≤x ≤5}.因为A ∪B =A ,所以B ⊆A .①若B ≠Ø,则2m -1≥m +1,解得m ≥2.又B ⊆A ,所以解得-3≤m ≤3.所以2≤m ≤3.②若B =Ø,则2m -1<m +1,解得m <2.综合①②可知,m 的取值范围为(-∞,3].6.(2013·南京四校联考)已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________.解析:由条件得m ∈Q ,即-1<m <34,从而整数m =0. 答案:07.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案:(-∞,-1]∪(0,1)11.(满分14分)A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.解:∵A ∩B ={x |1<x <3},∴b =3,又A ∪B ={x |x >-2},∴-2<a ≤-1,又A ∩B ={x |1<x <3},∴-1≤a <1,∴a =-1.14. 已知A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 及m 的值.解 ∵A ={1,2},B ={x |(x -1)[x -(a -1)]=0},又A∪B=A,∴B⊆A.∴a-1=2⇒a=3(此时A=B),或a-1=1⇒a=2(此时B={1}).由A∩C=C⇒C⊆A,从而C=A或C=∅(若C={1}或C={2}时,可检验不符合题意).当C=A时,m=3;当C=∅时,Δ=m2-8<0⇒-22<m<2 2.综上可知a=2或a=3,m=3或-22<m<2 2.。

2019-2020学年高一数学人教A版必修1练习:1.1.3 第1课时 并集和交集 Word版含解析.pdf

2019-2020学年高一数学人教A版必修1练习:1.1.3 第1课时 并集和交集 Word版含解析.pdf

1.1.3 集合的基本运算第1课时 并集和交集课后篇巩固提升基础巩固1.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}M和N,如图所示,则M∪N={x|x<-5,或x>-3}.2.(2018全国3高考,理1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}A={x|x≥1},B={0,1,2},∴A∩B={1,2}.3.已知集合A={x|x=2n-3,n∈N},B={-3,1,4,7,10},则集合A∩B中元素的个数为( )A.5B.4C.3D.2,当n=0时,2n-3=-3;当n=2时,2n-3=1;当n=5时,2n-3=7.所以A∩B={-3,1,7}.故选C.4.若A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则图中阴影部分表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}{1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.5.已知集合S={直角三角形},集合P={等腰三角形},则S∩P= .∩P表示集合S和集合P的公共元素组成的集合,故S∩P={等腰直角三角形}.等腰直角三角形}6.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m= .A∩B={2,3},则3∈B,又B={2,m,4},则m=3.7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是 .A,B,如图所示,因为A∪B=R,则在数轴上实数a与1重合或在1的左边,所以a≤1.≤18.已知集合A=,集合B={x|2x-1<3},求A ∩B ,A ∪B.{x |{3-x >0,3x +6>0}得-2<x<3,{3-x >0,3x +6>0,即A={x|-2<x<3}.解不等式2x-1<3,得x<2,即B={x|x<2},在数轴上分别表示集合A ,B ,如图所示.则A ∩B={x|-2<x<2},A ∪B={x|x<3}.9.已知集合M={x|2x-4=0},集合N={x|x 2-3x+m=0},(1)当m=2时,求M ∩N ,M ∪N ;(2)当M ∩N=⌀时,求实数m 的取值范围.由题意得,M={2},当m=2时,N={x|x 2-3x+2=0}={1,2},则M ∩N={2},M ∪N={1,2}.(2)M={2}≠⌀,则2不是方程x 2-3x+m=0的解,所以4-6+m ≠0,即m ≠2.所以实数m 的取值范围为m ≠2.能力提升1.设集合A={1,2,4},B={x|x 2-4x+m=0}.若A ∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}A ∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x 2-4x+3=0}={1,3}.故选C .2.已知集合A={x|-3≤x ≤8},B={x|x>a },若A ∩B ≠⌀,则a 的取值范围是( )A.a<8B.a>8C.a>-3D.-3<a ≤8{x|-3≤x ≤8},B={x|x>a },要使A ∩B ≠⌀,借助数轴可知a<8.3.设A ,B 是非空集合,定义A*B={x|x ∈A ∪B 且x ∉A ∩B },已知A={x|0≤x ≤3},B={x|x ≥1},则A*B 等于( )A.{x|1≤x<3}B.{x|1≤x ≤3}C.{x|0≤x<1或x>3}D.{x|0≤x ≤1或x ≥3},A ∪B={x|x ≥0},A ∩B={x|1≤x ≤3},则A*B={x|0≤x<1或x>3}.4.已知集合M={(x ,y )|x+y=2},N={(x ,y )|x-y=4},那么集合M ∩N= .解得{x +y =2,x -y =4,{x =3,y =-1.∴M ∩N={(3,-1)}.-1)}5.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b },且A ∪B=R ,A ∩B={x|5<x ≤6},则2a-b= .,可知a=1,b=6,2a-b=-4.46.若集合A={x|3ax-1=0},B={x|x 2-5x+4=0},且A ∪B=B ,则a 的值是 .B={1,4},A ∪B=B ,∴A ⊆B.当a=0时,A=⌀,符合题意;当a ≠0时,A=,{13a }∴=1或=4,13a 13a ∴a=或a=.13112综上,a=0,.13,1120,13,1127.设集合A={x|-1≤x ≤2},B={x|x 2-(2m+1)x+2m<0}.(1)当m<时,化简集合B ;12(2)若A ∪B=A ,求实数m 的取值范围.x 2-(2m+1)x+2m<0,得(x-1)(x-2m )<0.(1)当m<时,2m<1,12∴集合B={x|2m<x<1}.(2)若A ∪B=A ,则B ⊆A ,①当m<时,B={x|2m<x<1},12此时-1≤2m<1,解得-≤m<;1212②当m=时,B=⌀,有B ⊆A 成立;12③当m>时,B={x|1<x<2m },12此时1<2m ≤2,解得<m ≤1.12综上所述,所求m 的取值范围是.{m |-12≤m ≤1}8.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?A ,B ,C ,同时参加数学和化学小组的有x 人,由题意可得如图所示的Venn 图.由全班共36名同学参加课外探究小组可得(26-6-x )+6+(15-10)+4+(13-4-x )+x=36,解得x=8,即同时参加数学和化学小组的有8人.。

高中数学必修一:集合间的基本运算(交集与并集、补集)

高中数学必修一:集合间的基本运算(交集与并集、补集)

6 6 14
A
B
画出Venn图右图 , 可知没有参加过比赛的同学有
45 12 20 6 19. 答 这个班共有 19名同学没有参加过比赛 .
例3.(1)已知集合A={1,2,3,4},B={x|x=n2, n∈A},则A∩B=( ) A.{1,4} B.{2,3} C.{9,16} D.{1,2} (2)设集合M={x|x2+2x=0,x∈R},N={x|x2- 2x=0,x∈R},则M∪N=( ) A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}
4.已知集合A={(x,y)|y=x+3},B={(x,y)|y =3x-1},则A∩B=________.
y=x+3 解析:由 y=3x-1 x=2 得 y= 5

y=x+3 ∴A∩B=x,y| y=3x-1 x=2 ={(2,5)}. =x,y| y=5
解析: M∪N={-1,0,1,2}.
2.设A={4,5,6,8}, B={3,5,7,8},求A∪B.
解: A∪B={4,5,6,8} ∪ {3,5,7,8}
={3,4,5,6,7,8}
3.设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3}
Venn图表示:
A
A∪B
B
A
A∪B
B
性质:
A B B A, A A B, B A B .
思考: A∪B=B可能成立吗?
A
A∪B
B
若A
B,则
A∪B=B

高中数学必修一《并集交集》精选练习(含详细解析)

高中数学必修一《并集交集》精选练习(含详细解析)

高中数学必修一《并集交集》精选练习(含详细解析)一、选择题1.设集合S={x|x≥2},T={x|x≤5},则S∩T= ( )A.{x|x≤5}B.{x|x≥2}C.{x|2<x<5}D.{x|2≤x≤5}2.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∪B= ( )A.∅B.{2}C.{0,-1,2}D.{-2,-1,0,2}3.设集合A={x∈N|1≤x≤10},B={x∈R︱x2+ x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)的运算结果为( )A.aB.bC.cD.d5.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.86.已知集合M={(x,y)|3x+2y=1},N={(x,y)|2x+y=2},那么集合M∩N为( )A.x=3,y=-4B.(3,-4)C.{-3,-4}D.{(3,-4)}7.定义集合{x|a≤x≤b}的“长度”是b-a.已知m,n∈R,集合M=,N={x|n-≤x≤n},且集合M,N都是集合{x|1≤x≤2}的子集,那么集合M∩N的“长度”的最小值是( )A. B. C. D.二、填空题(每小题5分,共15分)8.已知集合M={0,1,2},P={x|-2≤x≤2,x∈Z},则M∩P= .9.设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .10.设集合A={x|-1<x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是.11.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N= .12.已知集合A={1,3,},B={1,m},A∪B=A,则m= .三、解答题(每小题10分,共20分)13.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y∈M},求A∩B和A∪B.14.已知A={1,x,-1},B={-1,1-x}.(1)若A∩B={1,-1},求x.(2)若A∪B={1,-1,},求A∩B.(3)若B⊆A,求A∪B.15.集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B.(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.16.已知A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},若A∩B=B,求a的值.参考答案与解析1【解析】选D.依题意计算得S∩T=,故选D.2【解析】选D.因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∪B={-2,-1,0,2}.3【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.4【解析】选A.由上表可知:(a⊕c)=c,故d⊗(a⊕c)=d⊗c=a.5【解题指南】由并集中的元素可知集合B中至少含有一个元素3,由此分类求解. 【解析】选C.因为A={1,2},A∪B={1,2,3},所以B={3}或{1,3}或{2,3}或{1,2,3},故选C.【解析】选D.解方程组得x=3,y=-4.7【解析】选C.因为集合M=,所以集合M的长度是,因为集合N=,所以集合N的长度是,因为M,N都是集合{x|1≤x≤2}的子集,所以m最小为1,n最大为2,此时集合M∩N的“长度”最小,为.8【解析】P={-2,-1,0,1,2},所以M∩P={0,1,2}.答案:{0,1,2}9【解析】因为A∩B={2},所以2∈A,故a+1=2,a=1,即A={5,2};又2∈B,所以b=2,即B={1,2},所以A∪B={1,2,5}.答案:{1,2,5}10【解析】利用数轴分析可知,a>-1.答案:a>-111【解析】M={x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.答案:{y|y≥-1}【解题指南】由A∪B=A得B⊆A,利用集合间的包含关系求参数,同时注意检验. 12【解析】由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时,B={1,1}矛盾,m=0或3时符合题意.答案:0或313【解析】因为A={(1,2),(1,1)},B={(1,1),(2,1)}.所以A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.14【解析】(1)由条件知1∈B,所以1-x=1,所以x=0.(2)由条件知x=,所以A=,B=,所以A∩B=.(3)因为B⊆A,所以1-x=1或1-x=x,所以x=0或,当x=0时,A∪B={1,0,-1},当x=时,A∪B=.15【解析】(1)因为B={x|x≥2},所以A∩B={x|2≤x<3}.(2)C=,B∪C=C⇒B⊆C,所以-<2,所以a>-4.16【解析】由题意得,当a=1时,方程x2-ax+1=0,即x2-x+1=0无解,集合B=∅,满足题意;当a=2时,方程x2-ax+1=0,即x2-2x+1=0有两个相等的实根1,集合B={1},满足题意;当a=3时,方程x2-ax+1=0,即x2-3x+1=0有两个不相等的实根,,集合B={,},不满足题意.综上可知,a的值为1或2.。

集合的概念与运算例题及答案

集合的概念与运算例题及答案

1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练 word版,含答案

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练  word版,含答案

人教A 版(2019)高一上册数学:1.3 集合基本运算同步训练一、选择题1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于( ) A .{}1,3 B .{}2,4C .{2,4,5,7}D .{1,2,3,4,5,7}2.设集合{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,则实数m 等于 A .1-B .1C .0D .23.已知集合{|26}A x x =∈-<<R ,{|2}B x x =∈<R ,则()C R A B ⋃=( ) A .{|6}x x <B .{|22}x x -<<C .{|2}x x >-D .{|26}x x ≤≤4.若全集{}1,2,3,4U =,集合{}2430M x x x =-+=,{}2560N x x x =-+=,则()UM N =.A .{}4B .{}1,2C .{}1,2,4D .{}1,3,45.已知全集U Z =,{31,}A x x n n Z ==-∈,{3,}B x x x Z =>∈,则()U A C B ⋂中元素的个数为 A .4B .3C .2D .16.已知集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈,则A B 的子集个数为( )A .2B .4C .7D .87.若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}8.设M 、P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ∉,则()M M P --等于( ) A .P B .MC .MPD .M P ⋃9.设{|210},{|350}Sx x T x x ,则S TA .∅B .1|2x xC .3|5x x D .15|23x x10.设全集U ={x |x 是小于5的非负整数},A ={2,4},则∁U A = A .{1,3}B .{1,3,5}C .{0,1,3}D .{0,1,3,5}11.已知集合{}1A x x =≤,{}12B x x =-<<则()R A B =A .{}12x x <<B .{}1x x >C .{}12x x ≤<D .{}1x x ≥12.已知集合{}A x x a =<,{}2B x x =<,且()RA B =R ,则a 满足A .2a ≥B .2a >C .2a <D .2a ≤13.已知M,N 都是U 的子集,则图中的阴影部分表示( )A .M∁NB .∁U (M∁N)C .(∁U M)∩ND .∁U (M∩N)14.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃二、填空题15.设全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,则a =_____.16.已知集合{}0A x x a =->,{}20B x x =-<,且A B B ⋃=,则实数a 满足的条件是______. 17.设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.18.设集合{}24A x x =≤<,{}12B x x m =≤-,若AB =∅,则实数m 的取值范围为______.19.已知全集为R ,集合()(){}620A x x x =-->,{}44B x a x a =-≤≤+,且A B ⊆R,则实数a的取值范围是______.20.已知{}{}|12M x x N x x a =≤-=-,,若M N ≠∅,则a 的范围是________.三、解答题21.设{4,5,6,8}A =,{3,5,7,8}B =,求A B .22.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .23.已知集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=. (1)若A B ⋂≠∅与A C ⋂=∅同时成立,求实数a 的值; (2)若()A B C ⊆⋂,求实数a 的取值范围.24.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ,()()U U A B .25.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()UU A B ; (2)()()U U A B ⋃.26.若A ={3,5},B ={x |x 2+mx +n =0},A ∁B =A ,A ∩B ={5},求m ,n 的值.27.设全集I R =,已知集合(){}{}22|30,|60M x x N x x x =+≤=+-=(1)求()I C M N ⋂;(2)记集合(),I A C M N =⋂已知集合{}|15,,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.参考答案1.D 【解析】 【分析】先求出集合A ,B ,再利用并集定义能求出结果. 【详解】全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7}, {1,A B ∴⋃=2,3,4,5,7}.故选D . 【点睛】本题考查并集的求法,是基础题. 2.A 【分析】根据,A B ,以及A 与B 的并集,确定出m 的值即可. 【详解】{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,所以1B -∈,1m ∴=-,故选A.【点睛】本题主要考查并集的定义,意在考查对基础知识的掌握情况,属于简单题. 3.C 【分析】先由补集的概念,求出C R B ,再和集合A 求交集,即可得出结果. 【详解】由{|2}B x x =∈<R ,得C {|2}R B x x =∈≥R .又{|26}A x x =∈-<<R ,所以()C {|2}R A B x x ⋃=>-.故选:C. 【点睛】本题主要考查集合的交集与补集的运算,熟记概念即可,属于基础题型. 4.C 【分析】先根据一元二次方程的解表示出集合,M N ,然后再求解出M N ⋂的结果,最后求解出()UM N 的结果. 【详解】2430x x -+=的解为1x =或3,{}1,3M ∴=,2560x x -+=的解为2x =或3,{}2,3N ∴=,∁{}3M N ⋂=,∁(){}1,2,4UM N =,故选C . 【点睛】本题考查集合的交集、补集混合运算,难度较易.()UM N 的计算除了按本题的方法外,还可以由()()()UUUMN M N =来计算.5.C 【分析】先求出U C B ,然后求出()U A C B ⋂,即可得到答案. 【详解】{3,}U C B x x x Z =≤∈,{31,}A x n n Z ==-∈,则(){}12U A C B ⋂=-,.故答案为C. 【点睛】本题考查了集合的运算,主要涉及交集与补集,属于基础题. 6.D 【分析】先求出A B ⋂集合元素的个数,再根据求子集的公式求得子集个数. 【详解】因为集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈ 所以{}0,1,2A B ⋂= 所以子集个数为328= 个 所以选D 【点睛】本题考查了集合交集的运算,集合子集个数的求解,属于基础题. 7.A 【详解】因为集合A ={0,1,2,3},B ={1,2,4}, 所以由并集的定义可得,故选A.8.C 【分析】根据题意,分M P ⋂=∅和M P ⋂≠∅两种情况,结合集合的基本运算,借助venn 图,即可得出结果. 【详解】当M P ⋂=∅,由于对任意x M ∈都有x P ∉,所以M P M -=, 因此()M M P M M M P --=-=∅=⋂; 当M P ⋂≠∅时,作出Venn 图如图所示,则M P -表示由在M 中但不在P 中的元素构成的集合,因而()M M P --表示由在M 中但不在M P -中的元素构成的集合,由于M P -中的元素都不在P 中,所以()M M P --中的元素都在P 中,所以()M M P --中的元素都在M P ⋂中,反过来M P ⋂中的元素也符合()M M P --的定义,因此()M M P M P --=⋂.故选:C. 【点睛】本题主要考查集合的应用,熟记集合的基本运算即可,属于常考题型. 9.D 【分析】先分别求解出集合,S T 中表示元素的范围,然后利用数轴表示出交集,从而求解出S T 的结果.【详解】 ∁1{|210}|2Sx x x x,5{|350}|3T x x x x,如图所示,∁15|23S T x x, 故选D. 【点睛】本题考查集合的交集运算,难度较易.集合的交集运算结果可通过数轴来直观表示,具体做法为:将相应集合对应的解集表示在数轴上,然后求解公共部分范围即为交集运算结果. 10.C 【分析】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},由集合的补集的概念得到结果. 【详解】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},A ={2,4},∁∁U A ={0,1,3}. 故选C . 【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算. 11.A 【分析】 根据()RA B ⋂可知,应先求解A R ,再求解B ,最终根据交集运算进行求解即可【详解】因为集合{}1A x x =≤,所以{}1RA x x =>,则(){}12R AB x x ⋂=<<.答案选A 【点睛】本题考查集合的混合运算,在运算法则中应遵循有括号先算括号的基本原则,易错点为将A R错解为{}1RA x x =≥12.A 【分析】 可先求出B R,再根据()RAB =R 进行求解即可【详解】{}2RB x x =,则由()RA B =R ,得2a ≥,故选A.【点睛】本题考查并集与补集的混合运算,易错点为求解时忽略端点处2a =能取得到的情况,为了提升准确率,建议对范围理解陌生的考生最好辅以数轴图进行求解 13.B 【分析】观察图形可知,图中非阴影部分所表示的集合是A B ,从而得出图中阴影部分所表示的集合.【详解】由题意,图中非阴影部分所表示的集合是A B ,所以图中阴影部分所表示的集合为A B 的 补集,即图中阴影部分所表示的集合为()U C A B ,故选B.【点睛】本题主要考查集合的venn 图的表示及应用,其中venn 图既可以表示一个独立的集合,也可以表示集合与集合之间的关系,熟记venn 图的含义是解答的关键. 14.C 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题. 15.2或8 【分析】根据题意得出53a -=,解出该方程即可得出实数a 的值. 【详解】全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,53a ∴-=,解得2a =或8.故答案为2或8. 【点睛】本题考查利用补集的结果求参数,根据题意得出方程是解题的关键,考查运算求解能力,属于基础题. 16.2a ≥ 【分析】根据A B B ⋃=可得A B ⊆,分别化简集合A 与B ,进行求解即可 【详解】{}{}0A x x a x x a =->=>,{}{}202B x x x x =-<=>.A B B =,A B ⊆,则2a ≥. 【点睛】本题考查根据集合的并集结果求参数问题,易错点为忽略端点处元素2的存在,需注意若A B ⊆,其中也包括A B =的情况下 17.-3 【详解】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.18.1,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】根据A B =∅可判断212m >-,求出m 即可【详解】因为A B =∅,所以212m >-, 所以1,2m ⎛⎫∈-+∞ ⎪⎝⎭. 【点睛】本题考查根据空集的概念求解参数问题,属于基础题19.{|10a a ≥或}2a ≤-【分析】先求解出R B ,根据A B ⊆R 得到集合,A B 的端点值之间的不等式关系,从而求解出a 的取值范围. 【详解】 由题可知{}26A x x =<<,{4R B x x a =<-或}4x a >+, 因为A B ⊆R ,所以64a ≤-或24a ≥+,即10a ≥或2a ≤-.故答案为{|10a a ≥或}2a ≤-.【点睛】本题考查根据集合的包含关系确定参数范围以及补集运算,难度一般.除了直接分析出不等式组,通过数轴根据解集的位置关系列出不等式组求解亦可.20.1a <【分析】表示出N 中不等式的解集,根据M 与N 交集不为空集,即可确定出a 的范围.【详解】集合{}{}|12M x x N x x a =≤-=-,,MN ≠∅,则21a -<-,解得:1a <故填1a <.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.{3,4,5,6,7,8}【解析】【分析】根据并集定义直接求解即可.【详解】由并集定义可知:{}3,4,5,6,7,8AB = 【点睛】本题考查集合运算中的并集运算,属于基础题.22.{}5,8A B =,{}3,4,5,6,7,8A B =【分析】根据交集和并集定义直接求解即可.【详解】由交集定义知:{}5,8AB =;由并集定义知:{}3,4,5,6,7,8A B = 【点睛】本题考查集合运算中的交集和并集运算,属于基础题.23.(1)2a =-(2)a >a < 【分析】(1)先化简集合B 与集合C ,再根据A B ⋂≠∅,A C ⋂=∅,得到3是方程22190x ax a -+-=的解,求出2a =-或5a =,再检验,即可得出结果;(2)先由(1)得到{}2B C ⋂=,根据()A B C ⊆⋂,得到A =∅或{}2A =,分别讨论这两种情况 ,即可得出结果.【详解】(1)由题意可得{}2{|560}2,3B x x x =-+==,{}2{|280}2,4C x x x =+-==-, ∁A B ⋂≠∅,A C ⋂=∅,集合A 中的元素有3,即3是方程22190x ax a -+-=的解;把3x =代入方程得23100a a --=,解得2a =-或5a =.当2a =-时,{}5,3A =-,满足题意;当5a =时,{}2,3A =,此时A C ⋂≠∅,故5a =不满足题意,舍去.综上知2a =-.(2)由(1)可知{}2B C ⋂=,若()A B C ⊆⋂,则A =∅或{}2A =.当A =∅时,()224190a a ∆=--<,解得a >或a <. 当{}2A =时,方程22190x ax a -+-=有两个相等的实数根2,由根与系数的关系得222,1922,a a =+⎧⎨-=⨯⎩解得a ∈∅.综上可得,实数a 的取值范围是3a >或3a <-. 【点睛】本题主要考查由集合交集的结果求参数,以及由集合间的包含关系求参数,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.24.(){}2,4U A B =,()(){}6U U A B =.【分析】 根据补集定义首先求得U A 和U B ,由交集定义可求得结果. 【详解】{}1,3,6,7U A =,{}2,4,6U B =(){}2,4U A B ∴=,()(){}6U U A B =【点睛】本题考查集合运算中的补集和交集运算,属于基础题.25.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.26.10,{25.m n =-=【分析】由题意,A∁B =A ,A∩B ={5},求得B ={5},进而得到方程x 2+mx +n =0只有一个根为5,列出方程组,即可求解.【详解】解:∁A ∁B =A ,A ∩B ={5},A ={3,5},∁B ={5}.∁方程x 2+mx +n =0只有一个根为5,∁2255040m n m n ++=⎧⎨∆=-=⎩∁解得10,25.m n =-⎧⎨=⎩【点睛】本题主要考查了集合的交集、并集的应用,其中解答中熟记集合的交集、并集的基本运算,转化为方程的根求解是解答的关键,着重考查了转化思想的应用,以及推理与运算能力.27.(1){}2;(2){}|3a a ≥.【分析】(1)通过解不等式和方程求得集合M,N ,再进行集合的补集、交集运算;(2)由(1)知集合{}2A =,根据集合关系B A A ⋃=,得B φ=或{}2B =,利用分类讨论求出a 的范围.【详解】(1)∁(){}{}2|303,M x x =+≤=- {}2{|60)3,2,N x x x =+-==- {|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=(2)由题意得(){}2I A C M N =⋂=.∁,A B A ⋃=B A ∴⊆,∁B =∅或{}2,B =∁当B =∅时, 15a a ->-,得3a >;∁当{}2B =时,解得3a =.综上所述,所求a 的取值范围为{}|3a a ≥.【点睛】该题考查的是与集合相关的参数的取值范围的问题,在解题的过程中,涉及到的知识点有集合的交集,集合的补集,以及集合之间的包含关系,正确得出其满足的式子是解题的关键.。

集合间的并集交集运算练习题(含答案)

集合间的并集交集运算练习题(含答案)

课时4一.选择题1.若聚集A ={0,1,2,3},B ={1,2,4},则聚集A∪B=( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2}D .{0}解析 由并集的概念,可得A∪B={0,1,2,3,4}. 答案 A2.已知聚集M ={(x,y)|x +y =2},N ={(x,y)|x -y =4},那么聚集M∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)}解析 ∵请求聚集M 与N 的公共元素,∴⎩⎪⎨⎪⎧x +y =2x -y =4解得⎩⎪⎨⎪⎧x =3y =-1∴M∩N={(3,-1)},选D .答案 D3.设全集U =R,A ={x∈N|1≤x≤10},B={x∈R|x2+x -6=0},则右图中暗影部分暗示的聚集为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析 留意到聚集A 中的元素为天然数,是以易知A ={1,2,3,4,5,6,7,8,9,10},而直接解聚集B 中的方程可知B ={-3,2},是以暗影部分显然暗示的是A∩B={2},选A .答案 A4.知足M ⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的聚集M 的个数是( )A .1B .2C .3D .4解析 直接列出知足前提的M 聚集有{a1,a2}.{a1,a2,a4},是以选B .答案 B 二.填空题5.[2015·福建六校高一联考]已知聚集A ={1,3,m}, B ={3,4},A∪B={1,2,3,4},则m =________.解析 由题意易知2∈(A∪B),且2∉B,∴2∈A,∴m=2. 答案 26.设聚集A ={-3,0,1},B ={t2-t +1}.若A∪B=A,则t =________.解析 由A∪B=A 知B ⊆A, ∴t2-t +1=-3① 或t2-t +1=0② 或t2-t +1=1③①无解;②无解;③t=0或t =1. 答案 0或17.已知聚集P ={-1,a +b,ab},聚集Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0b a a -b ,若P∪Q=P∩Q,则a -b =________.解析 由P∪Q=P∩Q 易知P =Q,由Q 聚集可知a 和b 均不为0,是以ab≠0,于是必须a +b =0,所以易得ba =-1,是以又必得ab=a -b,代入b =-a 解得a =-2.所以b =2,是以得到a -b =-4.答案 -4 三.解答题8.已知聚集A ={x|0≤x-m≤3},B={x|x<0或x>3},试分离求出知足下列前提的实数m 的取值规模.(1)A∩B=∅; (2)A∪B=B .解 ∵A={x|0≤x-m≤3}, ∴A={x|m≤x≤m+3}. (1)当A∩B=∅时,有⎩⎪⎨⎪⎧m≥0m +3≤3解得m =0.(2)当A∪B=B 时,则A ⊆B,∴有m>3或m +3<0,解得m<-3或m>3.∴m 的取值规模为{m|m>3或m<-3}.9.[2015·衡水高一调研]已知聚集A ={-1,1},B ={x|x2-2ax +b =0},若B≠∅且A∪B=A,求a,b 的值.解 B≠∅且A∪B=A,所以B≠∅且B ⊆A,故B 消失两种情形: (1)当B 含有两个元素时,B =A ={-1,1},此时a =0,b =-1; (2)当B 含有一个元素时,Δ=4a2-4b =0,∴a2=b. 若B ={1}时,有a2-2a +1=0,∴a=1,b =1. 若B ={-1}时,有a2+2a +1=0,∴a=-1,b =1.综上:⎩⎪⎨⎪⎧a =0b =-1或⎩⎪⎨⎪⎧a =1b =1或⎩⎪⎨⎪⎧a =-1b =1.。

课时作业(四) 并集、交集(经典例题及答案详解)

课时作业(四) 并集、交集(经典例题及答案详解)

课时作业(四)并集、交集[学业水平层次]一、选择题1.已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是()A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3} D.{1,-2,-3}【解析】A={1,-2},B={-2,3},∴A∪B={1,-2,3}.【答案】 C2.(2014·大纲全国卷)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2B.3 C.5D.7【解析】根据题意画出Venn图,如图所示,则M∩N={1,2,6},有3个元素,故选B【答案】 Bx|x≥2,T={}x|x≤5,则S∩T=()3.(2014·浙江高考)设集合S={}A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]x|x≥2且x≤5={}x|2≤x≤5.x|x≤5,所以S∩T=⎩⎨⎧⎭⎬⎫x|x≥2,T={}【解析】因为S={}【答案】 D4.(2013·课标全国卷Ⅱ)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【解析】M∩N={-2,-1,0},故选C.【答案】 C二、填空题5.已知A={x|x是锐角三角形},B={x|x是钝角三角形},则A∩B=________,A∪B=________.【解析】 ∵A ={x |x 是锐角三角形},B ={x |x 是钝角三角形},∴A ∩B =∅,A ∪B ={x |x 是斜三角形}.【答案】 ∅ {x |x 是斜三角形}6.若集合A ={}x |x ≤2,B ={}x |x ≥a ,且满足A ∩B ={2},则实数a =________.【解析】 当a >2时,A ∩B =∅;当a <2时,A ∩B ={}x |a ≤x ≤2;当a =2时,A ∩B ={2}.综上:a =2.【答案】 27.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是________________________________________________________________________.【解析】 利用数轴分析可知,a >-1.【答案】 {a |a >-1}三、解答题8.已知:A ={x |2x 2-ax +b =0},B ={x |bx 2+(a +2)x +5+b =0},且A ∩B =⎩⎨⎧⎭⎬⎫12,求A ∪B .【解】 ∵A ∩B =⎩⎨⎧⎭⎬⎫12, ∴12∈A ,且12∈B .∴⎩⎪⎨⎪⎧2·⎝ ⎛⎭⎪⎫122-12a +b =0,b ·⎝ ⎛⎭⎪⎫122+12(a +2)+5+b =0,解之得⎩⎪⎨⎪⎧a =-439,b =-269,∴A ={x |18x 2+43x -26=0}=⎩⎨⎧⎭⎬⎫12,-269. B ={x |26x 2+25x -19=0}=⎩⎨⎧⎭⎬⎫12,-1913. ∴A ∪B =⎩⎨⎧⎭⎬⎫12,-269,-1913. 9.集合A ={x |-1<x <1},B ={x |x <a },(1)若A ∩B =∅,求a 的取值范围;(2)若A∪B={x|x<1},求a的取值范围.【解】(1)如下图所示:A={x|-1<x<1},B={x|x<a},且A∩B=∅,∴数轴上点x=a在x=-1左侧.∴a≤-1.(2)如图所示:A={x|-1<x<1},B={x|x<a}且A∪B={x|x<1},∴数轴上点x=a在x=-1和x=1之间.即a的范围为{a|-1<a≤1}.[能力提升层次]1.已知方程x2-px+15=0与x2-5x+q=0的解集分别为A与B,且A∩B={3},则p+q=() A.14B.11C.7D.2【解析】∵A∩B={3},∴3∈A,3∈B,∴32-p×3+15=0,32-5×3+q=0,解得p=8,q=6,∴p+q =14.【答案】 A2.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个【解析】∵A∪B=A,∴B⊆A,∴x2=0或x2=2或x2=x,解得x=0或2或-2或1.经检验,当x=2或-2时满足题意,故选B.【答案】 B3.(2014·成都高一检测)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.【解析】设所求人数为x人,则只喜爱乒乓球运动的人数为10-(15-x)=x-5,故15+x-5=30-8⇒x =12.【答案】124.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值集合.【解】A={1,2},∵A∪B=A,∴B⊆A,故分B=∅和B≠∅两种情况讨论.(1)B=∅时,方程x2-4x+a=0无实数根,则Δ=16-4a<0,解得a>4.(2)B≠∅时,当Δ=0时,a=4,B={2}⊆A满足条件;当Δ>0时,若1,2是方程x2-4x+a=0的根,由根与系数的关系知矛盾,无解,所以a=4.所以a的取值集合为{a|a≥4}.。

高中数学集合练习题附答案

高中数学集合练习题附答案

高中数学集合练习题附答案一、单选题1.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5]B .(3,5]C .{4,5}D .{2,3,4,5} 2.已知集合{1A x x =≤-或}2x >,则R A =( ). A .{}12x x -≤<B .{}12x x -<≤C .{}12x x -<<D .{1A x x =<-或}2x ≥3.设实数集为R ,集合{}1,0,1,2A =-,{}230B x x x =-≥,则()R A B ⋂=( ) A .{}1,0- B .{}1,2 C .{}1,0,1- D .{}0,1,2 4.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--5.已知集合{}i ,N n M m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()1i 1i -+B .1i 1i -+C .i 1i -D .()21i -6.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( ) A .()1,2- B .()1,2 C .(]1,3- D .(]1,37.已知集合{}2450A x N x x =∈--≤,{}1,0,1,2B =-,则A B =( ) A .{}1,0,1,2 -B .∅C .{}0,1,2D .{}1,2,3 8.已知集合2,1,0,1,2U,{}1,2A =,{}1,1B =-,则()U A B ⋂=( ) A .{}1 B .{}2 C .{}1,2 D .{}1,1,2- 9.设集合{}09A x x ∈≤≤N =,{}1,2,3,6,9,10B =-,则A B =( )A .{}1,4,5,7,8B .{}0,1,4,5,7,8C .∅D .{}2,3,6,910.设集合{A x y ==,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂ 11.已知集合(){}lg 2A x y x ==-,{}2540B x x x =-+<,则A B =( )A .{}12x x <<B .{}12x x <≤C .{}24x x <<D .{}24x x <≤12.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()U A B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,5 13.已知集合{}ln ,1A y y x x ==>,1,12x B y y x ⎧⎫⎪⎪⎛⎫==>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .102y y ⎧⎫<<⎨⎬⎩⎭ B .{}01y y << C .112y y ⎧⎫<<⎨⎬⎩⎭ D .∅14.设集合{}{}1,2,20A B x ax ==-=,若B A ⊆,则由实数a 组成的集合为( ) A .{1} B .{2} C .{1,2} D .{0,1,2} 15.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.设全集{}0,1,2U =,集合{}0,1A =,在U A ______17.设全集R U =,集合{}3,1A =-,{}22,1B m m =--,且A B =,则实数m =______.18.集合{|13},{|25}A x x B x x =∈<≤=∈<<Z Z ,则A B 的子集的个数为___________. 19.已知A ,B 为非空集,I 为全集,且A B ≠,用适当的符号填空:(1)A B ______A B ; (2)A ______()I A A ⋃;(3)A B ______A ; (4)∅______A B ;(5)A A ⋂______A A ⋃; (6)A ∅______A ;(7)A ∅____()I A A ⋂____∅; (8)A B ____A ____A B .20.已知集合{}4194,A x x n n *==-+∈N ,{}6206,B y y n n *==-+∈N ,将A B 中的所有元素按从大到小的顺序排列构成一个数列{}n a ,则数列{}n a 的前n 项和的最大值为___________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知集合{}1,2,3A =,{}1,0,1B =-,则A B ⋃=___________.23.设集合21|,|32A x m x m B x n x n ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且,A B 都是集合{}|01x x ≤≤的子集,如果把b a -叫作集合{}|≤≤x a x b 的“长度”,那么集合A B 的“长度”的最小值是___________.24.已知集合{}()216,x A x B a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.已知集合{}2|1A x x ==,{}|10B x ax =-=,若B A ⊆,则实数=a ______. 三、解答题26.设2n ≥且N n ∈,集合{1,2,3,4,,2}U n =,若对U 的任意k 元子集k V ,都存在,,k a b c V ∈,满足:a b c <<,a b c +>,且a b c ++为偶数,则称k V 为理想集,并将k 的最小值记为K .(1)当2n =时,是否存在理想集?若存在,求出相应的K ;若不存在,请说明理由;(2)当3n =时,是否存在理想集?若存在,直接写出对应的k V 以及满足条件的,,a b c ;若不存在,请说明理由;(3)证明:当4n =时,6K =.27.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.28.已知集合{23}M xx =-<≤∣, {}N x x a =≤∣. (1)当1a =时,求M N ⋂,M N ⋃,()R M N ;(2)当M N ⋂=∅时,求a 的取值范围.29.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ①A B B =;②A B A ⋃=;③()A B =∅R ;若集合A ={x |2x -2x -3>0},B ={x |a -1<x <2a +3}设全集为R .(1)若a =-1,求()A B ⋂R ;(2)若 ,求实数a 的取值范围.注:如果选择多个条作分别解答,则按第一个解答计30.已知集合{}10A x x =+>,{}2,1,0,1B =--,求()A B R .【参考答案】一、单选题1.C【解析】【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案.【详解】 因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =,所以{4,5}A B =,故选:C2.B【解析】【分析】利用补集的概念求解R A . 【详解】 因为{1A x x =≤-或}2x >,所以R A ={}12x x -<≤,故选:B3.B【解析】【分析】解出B 集合,得到B 的补集的范围,再与A 取交集.【详解】 解得{|30}B x x x =≥≤或,()R 03B =(,),()R {12}A B ⋂=,故选:B.4.B【解析】【分析】根据交集的定义运算.【详解】 因为集合{}21A x x =-<≤,{}2,1,0,1B =--,由交集定义可知:A B ={}1,0,1-.故选:B.5.B【解析】【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项.【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--,()()1i 1i 112M -+=+=∉,()()()21i 1i 2i i 1i 1i 1i 2M ---===-∈++-, ()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B.6.B【解析】【分析】求出集合A 的解集,即可求出A B 的结果.【详解】因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<, {|13}B x x =<≤,所以{|12}A B x x =<<,故选:B.7.C【解析】【分析】根据集合的交集运算即可求解.【详解】 解:{}{}{}2450150,1,2,3,4,5A x N x x x N x =∈--≤=∈-≤≤=, {}0,1,2A B =,故选:C.8.B【解析】【分析】根据集合补集和交集的定义进行求解即可.【详解】因为2,1,0,1,2U ,{}1,1B =-,所以{}2,0,2U B =-,又因为{}1,2A =,所以()U A B ⋂={}2,故选:B9.D【解析】【分析】根据集合的交集概念运算即可.【详解】依题意,{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-,∴{}2,3,6,9A B ⋂=﹒故选:D .10.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C11.C【解析】【分析】求出集合A 、B ,利用交集的定义可求得结果.【详解】 由题知:(){}{}{}lg 2202A x y x x x x x ==-=->=>,{}{}254014B x x x x x =-+<=<<,所以,{}24A B x x ⋂=<<. 故选:C .12.B【解析】【分析】利用集合间的基本运算,即可得到答案;【详解】{}3,4,5U A =,则(){}U 3,4,5A B ⋂=.故选:B.13.A【解析】【分析】根据题意求出,A B 后运算【详解】由题意,A B 为对应函数的值域,(0,)A =+∞,1(0,)2B = 故1(0,)2A B = 故选:A14.D【解析】【分析】由题设可知集合B 是集合A 的子集,集合B 可能为空集,故需分类讨论【详解】解析:由题意,当=B ∅时,a 的值为0;当{}=1B 时,a 的值为2;当{}=2B 时,a 的值为1,故选:D15.B【解析】【分析】根据元素与集合的关系、集合与集合的关系即可判断.【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个.故选:B.二、填空题16.{2} 【解析】【分析】利用集合的补运算求U A 即可. 【详解】由{}0,1,2U =,{}0,1A =,则{2}U A =.故答案为:{2}.17.3或-1##-1或3【解析】【分析】根据集合相等得到223m m -=,解出m 即可得到答案.【详解】由题意,2233m m m -=⇒=或m =-1.故答案为:3或-1.18.8【解析】【分析】先求得A B ,然后求得A B 的子集的个数.【详解】{}{}2,3,3,4A B ==,{2,3,4}A B ⋃=,有3个元素,所以子集个数为328=.故答案为:819. ⊆ ⊆ ⊆ ⊆ = = = = ⊆ ⊆【解析】【分析】根据集合的交集,并集,补集的性质及子集、集合相等的概念求解.【详解】由交集,并集,补集的运算及性质,结合子集、集合相等求解,直接写出答案即可. 故答案为:⊆,⊆,⊆,⊆,=,=,=,=,⊆,⊆20.1472【解析】【分析】由题意设4194n b n =-+,6206m c m =-+,根据n m b c =可得326m n -=,从而312194n n a b n ==-+,即可得出答案.【详解】设4194n b n =-+,由41940n b n =-+>,得48n ≤6206m c m =-+,由62060m c m =-+>,得34m ≤A B 中的元素满足n m b c =,即41946206n m -+=-+,可得326m n -= 所以223m n =+,由,*m n N ∈,所以3,*n k k N =∈ 所以312194n n a b n ==-+,要使得数列{}n a 的前n 项和的最大值,即求出数列{}n a 中所以满足0n a ≥的项的和即可. 即121940n a n =-+≥,得16n ≤,则116182,2a a ==所以数列{}n a 的前n 项和的最大值为121618221614722a a a ++++=⨯= 故答案为:1472 21.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂22.{}10123-,,,, 【解析】【分析】根据并集的定义可得答案.【详解】{}1,2,3A =,{}1,0,1B =-,∴{}10123A B ⋃=-,,,,.故答案为:{}10123-,,,,. 23.16【解析】【分析】 根据“长度”定义确定集合,A B 的“长度”,由A B “长度”最小时,两集合位于集合[]0,1左右两端即可确定结果.【详解】由题可知,A 的长度为23 ,B 的长度为12, ,A B 都是集合{|01}x x ≤≤的子集, 当A B 的长度的最小值时,m 与n 应分别在区间[]0,1的左右两端,即0,1m n ==,则|0,213|12A x x B x x ⎧⎫⎧⎫=≤≤=≤≤⎨⎬⎨⎬⎩⎭⎩⎭, 故此时1223A B x x ⎧⎫⋂=≤≤⎨⎬⎩⎭的长度的最小值是:211326-=. 故答案为:16 24.4a >【解析】【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解.【详解】解:{}(]216,4x A x ∞=≤=-, 因为A B ⊆,所以4a >.故答案为:4a >.25.0,1或1-【解析】【分析】根据集合间的关系,运用分类讨论的方法求解参数的值即可.【详解】根据题意知,{}1,1A =-B A ⊆B ∴=∅①时,0a =;B ≠∅② 时,1B a ⎧⎫=⎨⎬⎩⎭,此时, 11a =或11a =-,解得 1a =或1a =- 故答案为:01,或-1.三、解答题26.(1)不存在,理由见解析;(2)存在,6{1,2,3,4,5,6}V =,3,4,5或3,5,6;(3)证明见解析.【解析】【分析】(1)根据理想集的定义,分3元子集、4元子集分别说明判断作答.(2)根据理想集的定义,结合(1)中信息,说明判断5元子集,6元子集作答.(3)根据理想集的定义,结合(1)(2)中信息,判断U 的所有6元子集都符合理想集的定义作答.(1)依题意,k V 要为理想集,3k ≥,当2n =时,{1,2,3,4}U =,显然{2,3,4}U ⊆,有234,234<<+>,而234++不是偶数,即存在3元子集不符合理想集定义,而{1,2,3,4}U ⊆,在{1,2,3,4}中任取3个数,有4种结果,1,2,3;1,2,4;1,3,4;2,3,4,它们都不符合理想集定义,所以,当2n =时,不存在理想集.(2)当3n =时,{1,2,3,4,5,6}U =,由(1)知,存在3元子集{2,3,4}、4元子集{1,2,3,4}均不符合理想集定义,5元子集{1,2,3,4,6},在此集合中任取3个数,满足较小的两数和大于另一个数的只有2,3,4与3,4,6两种,但这3数和不为偶数,即存在5元子集{1,2,3,4,6}不符合理想集定义,而U 的6元子集是{1,2,3,4,5,6},345,345,345<<+>++是偶数,356,356,356<<+>++是偶数,即U 的6元子集{1,2,3,4,5,6}符合理想集定义,{1,2,3,4,5,6}是理想集,所以,当3n =时,存在理想子集6{1,2,3,4,5,6}V =,满足条件的,,a b c 可分别为3,4,5或3,5,6.(3)当4n =时,{1,2,3,4,5,6,7,8}U =,由(1),(2)知,存在U 的3元子集、4元子集、5元子集不满足理想集定义,k V 要为理想集,6k ≥,显然{1,2,3,4,5,6}符合理想集的定义,满足条件的,,a b c 分别为3,4,5或3,5,6,U 的6元子集中含有3,5,6的共有25C 10=个,这10个集合都符合理想集的定义,U 的6元子集中含有3,5不含6的有5个,其中含有4的有4个,这4个集合都符合理想集的定义,不含4的为{1,2,3,5,7,8},显然有578,578,578<<+>++为偶数,即U 的6元子集中含有3,5不含6的5个都符合理想集的定义,U 的6元子集中含有36,不含5的有5个,它们是{1,2,3,4,6,7},{1,2,3,4,6,8},{1,2,3,6,7,8},{1,3,4,6,7,8},{2,3,4,6,7,8},它们对应的,,a b c 可依次为:3,6,7;4,6,8;3,6,7;3,6,7;3,6,7,即U 的6元子集中含有36,不含5的5个都符合理想集的定义, U 的6元子集中含有5,6不含3的有5个,它们是{1,2,4,5,6,7},{1,2,4,5,6,8},{1,2,5,6,7,8},{1,4,5,6,7,8},{2,4,5,6,7,8},它们对应的,,a b c 可依次为:5,6,7;4,6,8;5,6,7;5,6,7;5,6,7,即U 的6元子集中含有5,6不含3的5个都符合理想集的定义,U 的6元子集中含有3,5,6之一的有3个,它们是{1,2,3,4,7,8},{1,2,4,5,7,8},{1,2,4,6,7,8},对应的,,a b c 可依次为:3,7,8;5,7,8;4,6,8,即U 的6元子集中含有3,5,6之一的3个都符合理想集的定义,因此,U 的所有68C 28=个6元子集都符合理想集的定义,6V 是理想集,U 的7元子集有78C 8=个,其中含有3,5,6的有5个,这5个集合都符合理想集的定义,不全含3,5,6的有3个,它们是{1,2,3,4,5,7,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},对应的,,a b c 可依次为:3,7,8;3,7,8;4,6,8,即U 的所有8个7元子集都符合理想集的定义,7V 是理想集,U 的8元子集是{1,2,3,4,5,6,7,8},对应的,,a b c 可以为:3,7,8,因此,8V 是理想集, 因此,U 的6元子集,7元子集,8元子集都是理想集,6K =,所以当4n =时,6K =.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解;(2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时, 则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 28.(1){}|21M N x x =-<≤,{}|3M N x x =≤,()(]1,3R M N ⋂=(2)(]2-∞-,【解析】【分析】(1)由集合的交集运算和并集运算、补集元素概念可得答案;(2)由集合间的关系可求得a 的取值范围.(1)当1a =时,{}|1N x x =≤,又{}|23M x x =-<≤,所以{}|21MN x x =-<≤,{}|3M N x x =≤; ()1,R N =+∞,则()(]1,3R M N ⋂=(2)当M N ⋂=∅时,则需2a ≤-,所以a 的取值范围(]2-∞-,. 29.(1){}|11x x -≤< (2){4a a ≥或2}a ≤-【解析】【分析】(1)由集合的交集和补集运算求解即可;(2)①②③均等价于B A ⊆,讨论B =∅,B ≠∅两种情况,结合集合的包含关系得出实数a 的取值范围.(1){3A x x =>∣或1}x <-当1a =-时,{21}B x x =-<<∣,{13}A x x =-≤≤R ∣所以(){11}A B x x ⋂=-≤<R ∣ (2)①②③均等价于B A ⊆当B =∅时,123a a -≥+,解得4a ≤-;当B ≠∅时,有12313a a a -<+⎧⎨-≥⎩或123231a a a -<+⎧⎨+≤-⎩解得4a ≥或42a -<≤-综上,实数a 的取值范围{4a a ≥或2}a ≤-.30.{}2,1--【解析】【分析】先解不等式,求出集合A ,进而求出()A B R .【详解】{}1A x x =>-,{}R 1A x x =≤-,所以(){}R 2,1A B =--。

交集、并集、补集的混合运算 单选题50练(含详细答案)

交集、并集、补集的混合运算 单选题50练(含详细答案)

交、并、补集的混合运算·单选题50练(含详细答案)一、单选题1.已知集合=U =log 2,>1,=U =,>1,则A B =⋂()A .ΦB .{}|01y y <<C .1|12y y ⎧⎫<<⎨⎬⎩⎭D .1|02y y ⎧⎫<<⎨⎬⎩⎭2.已知全集U =R ,集合A ={x|x 2-2x <0},B ={x|x -1≥0},那么集合A∩U B ð=()A .{x|0<x <1}B .{x|x <0}C .{x|x >2}D .{x|1<x <2}3.已知集合{}0,1,2A =,{}0,1,3B =,若全集U AB=⋃,则()U AB =⋂ð()A .{}2,3B .{}0,1C .{}0,1,2,3D .∅4.已知全集{}0,1,2,3,4,5,6,7,8,9U =,集合{}0,1,3,5,8A =,集合{}2,4,5,6,8B =,则()()U U C A C B =⋂()A .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,65.设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是()A .{4}B .{2,4}C .{4,5}D .{1,3,4}6.已知集合{|5}U x x x N =≤∈,,{}1245A =,,,,0123B ={,,,},则()UA B =⋂ð()A .{}03,B .{3}C .{0}D .{}12,7.设全集*{|6}U x N x =∈<,集合{}13A =,,{}35B =,,则()U A B ⋃ð()A .{}1 6,B .{}15,C .{}24,D .{}23,8.已知集合{}(){}|24|lg 2A x x B x y x =-<<==-,,则()RAC B =⋂()A .()24,B .()24-,C .(]22-,D .()2-+∞,9.设全集为R ,若{}|1M x x =≥,{}|05N x x =≤<,则()()U U C M C N ⋃是()A .{}|0x x ≥B .{|1x x <或5}x ≥C .{|1x x ≤或5}x >D .{|0x x <或5}x ≥10.已知集合{}|06M x x =<<,2{|450}N x x x =--≤,则()R M N ⋂=ð()A .()56,B .()05,C .()16-,D .()()1056⋃-,,11.已知集合A={x ∈R|0≤x≤4},B={x ∈R|x 2≥9},则A ∪(∁R B )等于()A .[0,3)B .(﹣3,4]C .[3,4]D .(﹣∞,﹣3)∪[0,+∞)12.已知全集U R =,集合{}|12A x x =-〉,{}2|680B x x x =-+<,则集合()UA B =⋂ð()A .{}|23x x <≤B .{}|14x x -≤≤C .{}|23x x ≤<D .{}|14x x -<<13.已知集合{|2}A x x = ,2{|60}B x x x =-- ,则RAB =⋂ð()A .{|23}x x <B .{|23}x x <C .{|23}x x -< D .{|32}x x -< 14.已知全集{}1,2,3,4,5,6U =,集合{}1,2,5A =,集合{}1,3,4B =,则()U C A B =⋂()A .{}1B .{}3,4C .{}2,5D .{}1,2,3,4,515.已知集合{}|14A x x =≤≤,(){}2|14B x x =-≥,则()R A B ⋂=ð()A .[]34,B .[]14,C .[)13,D .[)3+∞,16.已知集合{}{}|1|ln 1A x x B x N x =<=∈<,,则()R C A B =⋂()A .{}2B .{}12,C .{}23,D .{}123,,17.已知集合{}{}{}0,1,2,3,4,5,6,7,1,2,3,5,1,2,4,6U A B ===,则()UA B =⋃ð()A .{0,1,2,4,6,7}B .{1,2,4,6,7}C .{4,6}D .{0,4,6,7}18.设全集为{}3,2,1,0,1,2,3U =---,集合{}3,0,1S =-,{}1,2T =-,则()U ST ⋃ð等于()A .0B .{}2,3-C .{}2,1,2,3--D .{}3,1,0,1,2--19.已知全集U R =,集合{|(4)(1)0}A x x x =--<,{}3|log 1B x x =>,则()UAB =⋂ð()A .{13}xx ≤<∣B .{13}x x <≤∣C .13}x x <<D .{14}xx ≤<∣20.已知全集{}12345U =,,,,,集合{}{}13124A B ==,,,,,则()U A B ⋂=ð()A .{}24,B .{}15,C .{}1245,,,D .{}12345,,,,21.已知全集U R =,{}|22M x x =-≤≤,{}|1N x x =<,那么MN =⋃()A .{}|21x x -≤<B .{}|21x x -≤≤C .{}|2x x <-D .{}|2x x ≤22.已知集合{}|24xA x =<,()(){}|410B x x x =--<,则()RA B =⋂ð()A .{}|12x x <<B .{}|24x x <<C .{}|24x x ≤<D .{|2x x <或4}x ≥23.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6],则()U C ST ⋃等于()A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}24.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U ()A B =⋂ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1-25.已知集合M={x|2x ≤1},N={x|-2≤x ≤2},则R C MN⋂()A .[-2,1]B .[0,2]C .(0,2]D .[-2,2]26.全集{}{}3,24,|log 1xU R A X B x x ===<,则A B ⋂=().A .{}|2x x <-B .{}|23x x <<C .{}3x x D .{|2x x <-或23}x <<27.设全集U {x N |x 6}=∈<,集合{}A l,3=,{}B 3,5=,则()()UU A B (=⋂)A .{}2,4B .{2,4,6}C .{0,2,4}D .{0,2,4,6}28.设全集为{}|7U x N x =∈<.集合A={1,3,6},集合B={2,3,4,5}.则集合UAB =⋂ð().A .{3}B .{}1,3,6C .{}2,4,5D .{}1,629.已知集合{}{},1,0,1,2,3,2,0,3U Z A B ==-=--,则UAB =⋂ð()A .{3-,3}B .{2-,0,2}C .{0,2}D .{1-,1,2}30.设全集{}2,1,0,1,2U =--,{}2,1A =--,{}2,1,0,1B =--,则()U C A B =⋂()A .{}2,1--B .{}0,1C .{}1,0,1-D .{}2,1,0,1--31.已知全集U Z =,集合{}123A =-,,,{}34B =,,则()UA B =⋂ð()A .{}4B .{}3C .{}12,D .∅32.已知集合{}1,2,3,4,5,6,7U =,{}2,3,4,5A =,{}2,3,6,7B =,则()UBA =⋂ð()A .{}1,6B .{}1,7C .{}6,7D .{}1,6,733.设全集U=R ,集合A={x|x 2﹣3x≥0},B={x ∈N|x≤3},则(∁U A )∩B 等于()A .∅B .{0,1}C .{1,2}D .{1,2,3}34.图中阴影部分所对应的集合是()A .()()UAB B ⋃⋂ðB .()U AB ⋂ðC .()()()U AB A B ⋂⋂⋃ðD .()()()U AB A B ⋃⋃⋂ð35.设全集为R ,集合A={x||x|≤2},B={x|11x ->0},则A∩∁R B=()A .[﹣2,1)B .[﹣2,1]C .[﹣2,2]D .[﹣2,+∞)36.已知全集{1,U =2,3,4,5,6},集合{}1,4P =,{}3,5Q =,则()(U PQ =⋃ð)A .B .3,5,C .3,4,D .2,3,4,5,37.设全集U={x|x <4,x ∈N},A={0,1,2},B={2,3},则B ∪∁U A 等于()A .{3}B .{2,3}C .∅D .{0,1,2,3}38.已知集合{|48}A x x =≤<,{|210}B x x =<<,则()R C A B =⋂()A .{|48}x x ≤<B .{|28}x x <<C .{|410}x x <<D .{|24}{|810}x x x x <<≤<⋃39.已知R 是实数集,M={x|2x<1},N={y|y=+1},N∩∁R M=()A .(1,2)B .[0,2]C .∅D .[1,2]40.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()UA B⋃ð为()A .{}0,2,3,4B .{4}C .{}1,2,4D .{}0,2,441.若集合=0,,=1,2,∩=2,则PQ ⋃=()A .{0,1}B .{0,2}C .{1,2}D .{0,1,2}42.已知集合A={x|y=},B={x|﹣1≤2x ﹣1≤0},则(∁R A )∩B=()A .(4,+∞)B .102⎡⎤⎢⎣⎦,C .142⎛⎤⎥⎝⎦,D .(1,4]43.已知全集{}1,2,3,4,5,6,7,8,U =集合{}{}3,4,5,6,5,6,7,8A B ==,则()U A B =⋂ð()A .{}1,2B .{}3,4C .{}5,6D .{}7,844.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()UA B =⋂ð()A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-45.设{}2,{|21},log 0xU A x B x x ==>=R ,则CUAB =⋂()A .{|0}x x <B .{}|1x x 〉C .{|01}x x <≤D .{|01}x x ≤<46.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A∩B={3},()U C B ∩A={9},则A=()A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}47.已知全集U={x|x≤9,x ∈N +},集合A={1,2,3},B={3,4,5,6},则∁U (A ∪B )=()A .{3}B .{7,8}C .{7,8,9}D .{1,2,3,4,5,6}48.若集合A={x|x 2﹣3x ﹣10<0},集合B={x|﹣3<x <4},全集为R ,则A∩(∁R B )等于()A .(﹣2,4)B .[4,5)C .(﹣3,﹣2)D .(2,4)49.设全集u={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则()UAC B =⋂()A .{0}B .{1}C .{0,1}D .{0,1,2,3,4}50.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7}则UBA⋂ð=()A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}答案解析部分1.【答案】D【知识点】交、并、补集的混合运算;指数函数的定义、解析式、定义域和值域;对数函数的值域与最值【解析】【分析】=,=,所以故选D.【点评】熟练掌握指数函数和对数函数的定义域、值域。

(人教版)数学必修一课时训练《并集、交集、补集)(含答案)

(人教版)数学必修一课时训练《并集、交集、补集)(含答案)

课时提升卷并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B= ,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A ∩B={2}.4.【解析】选B.∵A∩B=∅,∴结合数轴分析可知应满足的条件是p≥1.【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0,解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x ∈N*|x<6},集合A={1,3},B={3,5},则U ð(A ∪B)=( ) A.{1,4} B.{1,5} C.{2,4} D.{2,5}2.已知全集U=R,集合A={x|-1≤x ≤2},B={x|x<1},则A ∩(R ðB)=( )A.{x|x>1}B.{x|x ≥1}C.{x|1<x ≤2}D.{x|1≤x ≤2} 3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.U ðB ⊆U ð AB.(U ðA)∪(U ðB)=UC.A ∩U ðB=∅D.B ∩U ðA=∅4.设全集U(U ≠∅)和集合M,N,P,且M=U ðN,N=U ðP,则M 与P 的关系是( ) A.M=U ðP B.M=P C.M PD.M P 5.(广州高一检测)如图,I 是全集,A,B,C 是它的子集,则阴影部分所表示的集合是( )A.(I ðA ∩B)∩CB.(I ðB ∪A)∩CC.(A ∩B)∩I ðCD.(A ∩I ðB)∩C二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A ∩(N ðB)= .7.已知全集为R,集合M={x ∈R|-2<x<2},P={x|x ≥a},并且M ⊆R ðP,则a 的取值范围是 .8.设集合A,B 都是U={1,2,3,4}的子集,已知(U ðA)∩(U ðB)={2},(U ðA)∩B={1},且A ∩B=∅,则A= .三、解答题(9题,10题14分,11题18分) 9.(济南高一检测)已知全集U=R,集合A={x|1≤x ≤2},若B ∪R ðA=R, B ∩R ðA={x|0<x<1或2<x<3},求集合B.10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A R ðB,求a 的取值范围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(U ðA)∩B=∅,求m 的值.答案解析1.【解析】选C.由题知U={1,2,3,4,5},A ∪B={1,3,5},故U ð(A ∪B)={2,4}. 2.【解析】选D.∵B={x|x<1},∴R ðB={x|x ≥1}, ∴A ∩R ðB={x|1≤x ≤2}.3.【解析】选D.逐一进行验证.U ðB={1,2,4,6,7},U ðA={2,4, 6},显然U ðA ⊆U ðB,显然A,B 错误;A ∩U ðB={1,7},故C 错误,所以只有D 正确.4.【解析】选B.利用补集的性质:M=U ðN=U ð(U ðP)=P,所以M=P.【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A 是B 相对于全集U 的补集,那么,集合B 也是A 相对于全集U 的补集.同时A 与B 没有公共元素,且它们的并集正好是全集,即A ∪B=U,A ∩B= .5.【解析】选D.由图可知阴影部分是A 的元素,且是C 的元素,但不属于B,故所表示的集合是(A ∩I B)∩C.6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴N ðB={1,2,4,5,7,8,…}.∴A ∩N ðB={1,5,7}.答案:{1,5,7}7.【解析】M={x|-2<x<2},R ðP={x|x<a}. ∵M ⊆R ðP,∴由数轴知a ≥2.答案:a ≥28.【解析】根据题意画出Venn 图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x ≤2},∴R ðA={x|x<1或x>2}.又B ∪R ðA=R,A ∪R ðA=R,可得A ⊆B. 而B ∩R ðA={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A ∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用A R ðB,对A=∅与A ≠∅进行分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题.【解析】R ðB={x|x ≤1或x ≥2}≠∅,∵A R B.∴分A=∅和A ≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a ≥2.(2)若A ≠∅, 则有或 ∴a ≤1.综上所述,a ≤1或a ≥2.11.【解题指南】本题中的集合A,B 均是一元二次方程的解集,其中集合B 中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(U ðA)∩B=∅对集合A,B 的关系进行转化.【解析】A={-2,-1},由(U ðA)∩B=∅,得B ⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B ≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且R ðA ⊆R ðB,求实数a 的取值集合. 【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又R ðA ⊆R ðB,∴B ⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3;当B=∅时,有a=0,∴实数a 的取值集合为{0,2,3}.。

集合计算练习题(打印版)

集合计算练习题(打印版)

集合计算练习题(打印版)### 集合计算练习题一、集合的基本概念1. 定义集合A={1, 2, 3},集合B={3, 4, 5},求A∪B(A和B的并集)。

2. 已知集合C={x | x是小于10的正整数},求C的元素个数。

3. 若集合D={x | x是偶数},集合E={x | x是3的倍数},求D∩E(D和E的交集)。

二、集合运算4. 集合F={1, 2, 3, 4},集合G={2, 3, 5, 6},计算F∩G(F和G的交集)。

5. 集合H={x | x是5到10之间的整数},求H的补集(相对于自然数集N)。

6. 集合I={x | x是小于20的质数},集合J={2, 3, 5, 7, 11, 13, 17, 19},判断I和J是否相等,并说明理由。

三、集合的包含关系7. 集合K={1, 3, 5},集合L={1, 2, 3, 4, 5, 6},判断K是否是L的子集。

8. 集合M={x | x是4的倍数},集合N={x | x是8的倍数},判断M和N的包含关系。

9. 集合P={x | x是小于15的正整数},集合Q={1, 2, 3, ..., 14},判断P和Q是否相等。

四、集合的幂集10. 集合R={a, b},求R的幂集,并说明幂集中元素的个数。

11. 集合S={1, 2, 3},求S的幂集,并计算幂集中包含{1, 2}的子集个数。

五、集合的笛卡尔积12. 集合T={1, 2},集合U={x, y},求T×U(T和U的笛卡尔积)。

13. 集合V={a, b},集合W={0, 1},计算V×W,并说明结果中元素的个数。

六、集合的等价关系14. 集合X={1, 2, 3, 4},定义关系R={(x, y) | x和y同奇偶},判断R是否是等价关系,并说明理由。

15. 集合Y={x | x是小于20的正整数},定义关系S={(x, y) | x和y的和能被5整除},判断S是否是等价关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 1.1.3 课时4
一、选择题
1.若集合A ={0,1,2,3},B ={1,2,4},则集合A ∪B =( ) A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2}
D .{0}
解析 由并集的概念,可得A ∪B ={0,1,2,3,4}. 答案 A
2.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( ) A .x =3,y =-1 B .(3,-1) C .{3,-1}
D .{(3,-1)}
解析 ∵要求集合M 与N 的公共元素,
∴⎩
⎪⎨
⎪⎧
x +y =2x -y =4解得⎩
⎪⎨
⎪⎧
x =3
y =-1∴M ∩N ={(3,-1)},选D .
答案 D
3.设全集U =R ,A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2
+x -6=0},则右图中阴影部分表示的集合为( )
A .{2}
B .{3}
C .{-3,2}
D .{-2,3}
解析 注意到集合A 中的元素为自然数,因此易知A ={1,2,3,4,5,6,7,8,9,10},而直接解集合B 中的方程可知B ={-3,2},因此阴影部分显然表示的是A ∩B ={2},选A .
答案 A
4.满足M ?{a 1,a 2,a 3,a 4},且M ∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3
D .4
解析 直接列出满足条件的M 集合有{a 1,a 2}、{a 1,a 2,a 4},因此选B . 答案 B 二、填空题
5.[2015·福建六校高一联考]已知集合A ={1,3,m },
B ={3,4},A ∪B ={1,2,3,4},则m =________.
解析 由题意易知2∈(A ∪B ),且2?B ,∴2∈A ,∴m =2. 答案 2
6.设集合A ={-3,0,1},B ={t 2
-t +1}.若A ∪B =A ,则t =________. 解析 由A ∪B =A 知B ?A , ∴t 2
-t +1=-3 ① 或t 2-t +1=0 ② 或t 2-t +1=1

①无解;②无解;③t =0或t =1. 答案 0或1
7.已知集合P ={-1,a +b ,ab },集合Q =⎩
⎨⎧

⎬⎫
0,b a
,a -b ,若P ∪Q =P ∩Q ,则a -b =
________.
解析 由P ∪Q =P ∩Q 易知P =Q ,由Q 集合可知a 和b 均不为0,因此ab ≠0,于是必须
a +
b =0,所以易得b
a
=-1,因此又必得ab =a -b ,代入b =-a 解得a =-2.所以b =2,因
此得到a -b =-4.
答案 -4 三、解答题
8.已知集合A ={x |0≤x -m ≤3},B ={x |x <0或x >3},试分别求出满足下列条件的实数
m 的取值范围.
(1)A ∩B =?; (2)A ∪B =B .
解 ∵A ={x |0≤x -m ≤3}, ∴A ={x |m ≤x ≤m +3}.
(1)当A ∩B =?时,有⎩
⎪⎨
⎪⎧
m ≥0,
m +3≤3,解得m =0.
(2)当A ∪B =B 时,则A ?B ,∴有m >3或m +3<0,解得m <-3或m >3. ∴m 的取值范围为{m |m >3或m <-3}.
9.[2015·衡水高一调研]已知集合A ={-1,1},B ={x |x 2
-2ax +b =0},若B ≠?且A ∪B =A ,求a ,b 的值.
解 B ≠?且A ∪B =A ,所以B ≠?且B ?A ,故B 存在两种情况: (1)当B 含有两个元素时,B =A ={-1,1},此时a =0,b =-1; (2)当B 含有一个元素时,Δ=4a 2
-4b =0,∴a 2
=b .
若B ={1}时,有a 2
-2a +1=0,∴a =1,b =1. 若B ={-1}时,有a 2
+2a +1=0,∴a =-1,b =1.
综上:⎩⎪⎨
⎪⎧
a =0,
b =-1
或⎩⎪⎨⎪⎧
a =1,
b =1
或⎩⎪⎨⎪⎧
a =-1,
b =1.。

相关文档
最新文档