蛋白质的空间结构和功能

合集下载

蛋白质的结构与功能

蛋白质的结构与功能

蛋白质的结构与功能蛋白质是生物体中最为重要的有机分子之一,它在维持生命活动中起到关键作用。

蛋白质的结构多样且复杂,这种结构的多样性与其功能密切相关。

本文将介绍蛋白质的结构特点以及与其功能之间的联系。

一、蛋白质的结构层次蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。

一级结构是指由氨基酸组成的线性多肽链,通过肽键连接在一起。

二级结构是指由氢键形成的稳定的结构片段,常见的二级结构包括α-螺旋和β-折叠。

三级结构则是指蛋白质在空间上的折叠和疏水性相互作用形成的三维结构。

最后,四级结构是指多个多肽链通过非共价键结合在一起形成功能完整的蛋白质复合物。

二、蛋白质的功能1. 结构功能:蛋白质可以组成细胞的骨架结构,维持细胞的形态和稳定性。

例如,肌纤维中的肌动蛋白和微管中的微管蛋白可以赋予细胞运动和形态维持的能力。

2. 酶功能:蛋白质中的酶可以促进生物反应的发生,例如在代谢途径中催化化学反应,如葡萄糖酶催化葡萄糖的分解。

3. 运输功能:许多蛋白质可以在细胞和器官之间进行物质的运输。

血红蛋白是一种负责将氧气从肺部输送到组织的蛋白质。

4. 免疫功能:免疫球蛋白可以识别和结合病原体,从而触发免疫反应,并协助淋巴细胞杀伤病原体。

5. 调节功能:一些蛋白质可以调节细胞内物质的合成和代谢,包括细胞凋亡、基因表达和信号转导等过程。

6. 结合功能:许多蛋白质具有结合小分子的能力,如激素与其相应的受体的结合。

三、蛋白质结构与功能的关系蛋白质的结构决定其功能,不同的结构使得蛋白质能够在特定的环境中担任特定的功能。

例如,蛋白质的二级结构决定了其折叠形态和稳定性,从而影响其功能的发挥。

另外,蛋白质的胺基酸序列决定了其结构的折叠方式和功能区域的位置。

蛋白质的功能也会受到环境因素的影响。

例如,温度、PH值和离子浓度等环境因素都可以改变蛋白质的结构和功能。

当蛋白质受到变性剂的作用时,其结构会发生破坏,功能也会丧失。

总结起来,蛋白质的结构与功能之间存在密切的关系。

.蛋白质的结构与功能

.蛋白质的结构与功能
结构域是球状蛋白质的折叠单位,是在超二级结构基础上 进一步绕曲折叠有独特构象和部分生物学功能的结构。对 于较小的蛋白质分子或亚基,结构域和三级结构是一个意 思,即这些蛋白质是单结构域的;对于较大的蛋白质分子 或亚基,多肽链往往由两个或两个以上的相对独立的结构 域缔合成三级结构。
三、蛋白质的三级结构(tertiary structure)
(二)氨基酸的分类
1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类 。
2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不 带电荷、极性带负电荷或带正电荷的四类。 带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙 (Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫 (Met)、脯(Pro)、色(Trp) 带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser) 、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys) 带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys )、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨 基酸。
(一)氨基酸的结构通式
组成蛋白质的20种氨基酸有共同的结构特点 :
1.氨基连接在α- C上,属于α-氨基酸(脯氨 酸为α-亚氨基酸)。
2.R是側链,除甘氨酸外都含手性C,有D型和L-型两种立体异构体。天然蛋白质中的 氨基酸都是L-型。
注意:构型是指分子中各原子的特定空间排布,其变化要 求共价键的断裂和重新形成。旋光性是异构体的光学活性 ,是使偏振光平面向左或向右旋转的性质,(-)表示左 旋,(+)表示右旋。构型与旋光性没有直接对应关系。
20世纪30年代末,L.Panling 和R.B.Corey应用X射线衍射分 析测定了一些氨基酸和寡肽的晶体结构,获得了一组标准 键长和键角,提出了肽单元(peptide unit)的概念, 还提出 了两种主链原子的局部空间排列的分子模型(α-螺旋)和 (β-折叠)。

蛋白质的功能和结构

蛋白质的功能和结构

蛋白质的功能和结构蛋白质是一种复杂的生物分子,是构成生物体的基本成分之一,具有许多重要的功能。

蛋白质的功能和结构是生物学研究的重要方向之一。

本文将从蛋白质的基本结构、功能和分类三个方面进行探讨。

一、蛋白质的基本结构蛋白质是由一条或多条长链构成的,这些长链由氨基酸分子组成。

氨基酸是生物体内最基本的化合物之一,由一个氮原子、一个羧基和一个氨基组成。

氨基酸的羧基和氨基通过肽键连接成链,形成多肽分子,多肽分子又可以进一步形成蛋白质。

蛋白质的基本结构包括四级结构,即原生结构、二级结构、三级结构和四级结构。

其中原始结构是指蛋白质生物合成后形成的最基本结构,也称为未折叠构象。

二级结构是指蛋白质分子中相邻氨基酸之间的氢键连接所形成的二维结构,如α-螺旋和β-折叠。

三级结构是指蛋白质分子中各个二级结构的空间排列所形成的三维结构。

而四级结构是指蛋白质分子中两个或多个亚基的空间排列所形成的层级结构。

二、蛋白质的功能蛋白质的功能多种多样,主要包括以下几个方面:1.代谢功能蛋白质可以在代谢中发挥重要的作用,参与新陈代谢中的各种化学反应,如酶的催化作用和激素的调节作用。

2.结构功能蛋白质可以形成细胞质骨架和结构分子,如肌肉蛋白和细胞中的膜蛋白,保持细胞的形态和稳定性。

3.运输功能蛋白质可以通过血液将各种物质从一个部位输送到另一个部位,如血红蛋白携带氧气,载脂蛋白携带脂肪酸和胆固醇。

4.防御功能蛋白质可以形成抗体,抵御外来物质入侵,并加速宿主清除抗原体。

5.调节功能蛋白质可以调节细胞生长、分化和凋亡,促进细胞自身修复和更新。

三、蛋白质的分类按照结构分类,蛋白质可分为球形蛋白、纤维蛋白和膜蛋白等。

球形蛋白具有高度可压缩性,可在机体中流动作用,如血浆中的白蛋白和酸性蛋白。

纤维蛋白则具有高度的支持性和膜层稳定性,如胶原蛋白和肌动蛋白。

膜蛋白则集聚于细胞膜上,起到细胞唯一轴向的生理功能。

按照功能分类,蛋白质可分为酶、激素、抗体、载体、结构蛋白等。

蛋白质空间结构

蛋白质空间结构

蛋白质结构与功能的关系――――蛋白质的一级结构一、蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)蛋白质的一级结构决定其高级结构如核糖核酸酶含124个氨基酸残基,含4对二硫键,在尿素和还原剂β-巯基乙醇存在下松解为非折叠状态。

但去除尿素和β—巯基乙醇后,该有正确一级结构的肽链,可自动形成4对二硫键,盘曲成天然三级结构构象并恢复生物学功能。

(二)一级结构与功能的关系已有大量的实验结果证明,如果多肽或蛋白质一级结构相似,其折叠后的空间构象以及功能也相似。

几种氨基酸序列明显相似的蛋白质,彼此称为同源蛋白质。

可认为同源蛋白质来自同一祖先,它们的基因编码序列及蛋白质氨基酸组成有较大的保守性,构成蛋白质家族。

在进化过程中祖先蛋白的基因发生突变,蛋白质结构逐渐发生变异,同源蛋白质序列的相似性大小反映蛋白质之间的进化关系的近远。

比较广泛存在各种生物的某种蛋白质,如细胞色素C的一级结构,通过分析不同物种的细胞色素C一级结构间相似程度,可反映出该物种在进化中的位置。

二、蛋白质的空间结构与功能的关系蛋白质的空间结构决定了其生物学功能。

下面以肌红蛋白和血红蛋白为例,说明蛋白质空间结构和功能关系。

(一)肌红蛋白(Mb)和血红蛋白(Hb)的结构的相似性决定了功能的相似性肌红蛋白与血红蛋白都都能与氧结合,因为它们以血红素为辅基,并且在血红素周围以疏水性氨基酸残基为主,形成空穴,为铁原子与氧结合创造了结构环境。

(二)肌红蛋白(Mb)和血红蛋白(Hb)的结构的差异性决定了功能的不同肌红蛋白为单肽链蛋白质,而血红蛋白是由四个亚基组成的寡聚蛋白,这样的空间结构差异决定了它们之间的功能的各自特性。

肌红蛋白的主要功能是储存氧。

其三级结构折叠方式使辅基血红素对环境中O2的浓度改变非常敏感,当环境中的O2分压高时,Mb与O2结合能力极高,起到对O2的储存功能;当环境中的O2分压低时,Mb与O2结合能力大大降低,对外释放O2,为环境提供O2供机体所需。

蛋白质的空间结构与功能

蛋白质的空间结构与功能

蛋白质的空间结构与功能蛋白质是生命体中不可或缺的重要分子,其在生物学、生物化学、生物医学、生物物理、生物工程等领域的重要性越来越受到人们的关注和重视。

蛋白质的空间结构与功能具有密切的关联,本文将从该角度出发,详细探讨蛋白质的空间结构以及与功能之间的关系,并对如何合理地设计和使用蛋白质进行阐述。

一、蛋白质的空间结构蛋白质的成份主要是氨基酸,由20种不同的氨基酸组成,其基本结构单元为α-氨基酸,由一个氢原子、一个羧基、一个氨基和一个侧链组成。

蛋白质的相互作用主要由氢键、离子键、疏水作用和范德华力等因素所决定。

蛋白质的空间结构具有非常重要的意义,其结构包括主链的折叠、各种共面、非共面和取向关系、侧链的生物摆动、组成复杂的三级结构(一级结构指氨基酸序列,二级结构指氢键构成的形态,三级结构则是在二级结构的基础上进一步的空间构象),以及其他和环境条件有关的特征等。

这些特征不仅决定了蛋白质的结构,还决定了蛋白质的功能。

二、蛋白质结构与功能的相互关系蛋白质结构决定了其功能,也就是说,蛋白质的结构和功能之间具有密切的关系,其原因在于蛋白质分子的功能完全依赖于其独特的三维结构。

因此,对蛋白质三维结构的研究不仅直接关系到生命科学各个方面的进展,还有助于加速药物设计和疾病诊断的进展。

1. 蛋白质催化作用许多酶都是蛋白质,酶能够催化化学反应,其催化作用与其酶活特征密切相关。

酶分子有一定的空间结构,其中主链、侧链和水分子起着重要的作用。

只有在适当的情况下,包括适当的温度、pH值和离子浓度下,酶才能发挥催化作用。

2. 蛋白质运动与功能蛋白质分子具有高度的动态性。

当一些蛋白质分子遇到神经递质或激素等信号物质时,它们可以发生构象变化,从而完成生理功能。

神经递质和激素分子与蛋白质分子之间的特异性相互作用,加上构象变化,完成生理功能。

3. 蛋白质信号传递细胞内媒介物通过蛋白质反应细胞外信号。

蛋白质相互作用是大多数代谢途径、调节途径、分泌途径的核心,其机制在于信号分子与接受者能够相互作用,从而激活信号传递途径中重要的蛋白质反应。

蛋白质的结构 和 功能

蛋白质的结构 和 功能

蛋白质的结构和功能蛋白质是生物体内一类重要的生物大分子,它在细胞的结构和功能中发挥着重要的作用。

蛋白质的结构和功能紧密联系,其结构决定了其功能。

本文将从蛋白质的结构和功能两个方面进行探讨。

一、蛋白质的结构蛋白质的结构是由氨基酸残基通过肽键连接而成的多肽链。

氨基酸是蛋白质的基本组成单元,它由一种氨基基团、一种羧基和一个侧链组成。

蛋白质的结构可以分为四个层次:一级结构、二级结构、三级结构和四级结构。

1. 一级结构:一级结构是指蛋白质的氨基酸序列。

氨基酸的不同顺序决定了蛋白质的种类和特性。

例如,胰岛素由51个氨基酸组成,胰岛素的一级结构决定了它具有调节血糖的功能。

2. 二级结构:二级结构是指蛋白质中氨基酸残基的局部空间排列方式。

常见的二级结构有α螺旋和β折叠。

α螺旋是由氨基酸的肽键形成的螺旋结构,形状类似于螺旋状的弹簧。

β折叠是由氨基酸的肽键形成的折叠结构,形状类似于折叠的纸扇。

二级结构的形成对于蛋白质的稳定性和功能至关重要。

3. 三级结构:三级结构是指蛋白质整个分子的空间排列方式。

蛋白质的三级结构由多个二级结构单元相互作用而形成。

这些相互作用包括氢键、离子键、范德华力以及疏水效应等。

三级结构的稳定性和形状决定了蛋白质的功能。

4. 四级结构:四级结构是指由多个蛋白质分子通过非共价键结合而形成的复合物。

多个蛋白质分子通过相互作用形成稳定的功能单位。

例如,血红蛋白由四个亚基组成,每个亚基都与其他亚基相互作用,形成一个稳定的四聚体。

二、蛋白质的功能蛋白质作为生物体内的重要分子,在细胞的结构和功能中发挥着多种作用。

1. 结构功能:许多蛋白质在细胞中起到构建细胞结构的作用。

例如,胶原蛋白是皮肤、骨骼和血管等结缔组织的重要组成部分,维持了细胞的结构稳定性。

肌动蛋白和微丝蛋白是细胞骨架的主要成分,参与了细胞的形态维持和运动。

2. 酶功能:许多蛋白质具有酶活性,可以催化生物体内的化学反应。

酶是生物体内调控代谢的关键分子。

第2章蛋白质的结构与功能

第2章蛋白质的结构与功能

O
O
NH2-CH-C-N-CH-C
H H H OH
肽键
甘氨酰甘氨酸
* 肽是由氨基酸通过肽键缩合而形成的化 合物。
* 两分子氨基酸缩合形成二肽,三分子氨 基酸缩合则形成三肽……
* 由十个以内氨基酸相连而成的肽称为寡 肽(oligopeptide),由更多的氨基酸相连 形成的肽称多肽(polypeptide)。(分界..)
亮氨酸 leucine Leu L 5.98
异亮氨酸 isoleucine Ile I 6.02
苯丙氨酸 phenylalanine Phe F 5.48
脯氨酸 proline
Pro P 6.30
目录
2. 极性中性氨基酸
色氨酸 tryptophan Trp W 5.89
丝氨酸 serine
Ser S 5.68
高级 结构
一、蛋白质的一级结构
★定义(primary structure) 蛋白质的一级结构指在蛋白质分子中,从N端
至C端的氨基酸的排列顺序。
主要的化学键 肽键,有些蛋白质还包括二硫键。
氨基酸与多肽
(一)肽(peptide)
* 肽键(peptide bond)是由一个氨基酸的羧基与另一个氨基酸的-氨基脱水缩合 而形成的化学键。
细胞的各个部分都含有蛋白质。 含量高:蛋白质是细胞内最丰富的有机
分子,占人体干重的45%,某些组织含量更 高,例如脾、肺及横纹肌等高达80%。
2. 蛋白质具有重要的生物学功能
1)作为生物催化剂(酶) 2)代谢调节作用(TRH) 3)免疫保护作用:IgA,IgM, IgM, IgG; 4)物质的转运和存储(Hb) 5)运动与支持作用 6)参与细胞间信息传递

蛋白质的结构和功能

蛋白质的结构和功能

蛋白质的结构和功能蛋白质是生物体内重要的有机物质,其在细胞功能和生物体机体过程中发挥着关键作用。

蛋白质的结构和功能密不可分,下面将从蛋白质的结构以及其所承担的功能两个方面进行探讨。

一、蛋白质的结构蛋白质的结构可分为四个层次,分别是一级结构、二级结构、三级结构和四级结构。

1. 一级结构蛋白质的一级结构指由氨基酸残基的线性排列方式所决定的序列。

氨基酸的种类和顺序决定了蛋白质的特定功能和结构。

在水溶液中,氨基酸残基以离子形式存在,通过胺基和羧基之间的肽键连接起来形成多肽链。

2. 二级结构蛋白质的二级结构是指蛋白质中局部区域的空间构象,主要包括α-螺旋和β-折叠两种常见的结构。

α-螺旋是由多肽链的螺旋形状而成,通过氢键的形成保持稳定。

β-折叠则是由多个β折叠片段组合而成,也是通过氢键的形成维持稳定。

3. 三级结构蛋白质的三级结构是指蛋白质中整个多肽链的立体构象。

多肽链在二级结构的基础上进一步折叠和组装,形成复杂的三维结构。

这个结构的形成主要由各个氨基酸残基之间的相互作用所决定,包括疏水相互作用、氢键、电离相互作用、范德华力和二硫键等。

4. 四级结构蛋白质的四级结构是指由多个多肽链通过相互作用而形成的功能完整的蛋白质分子。

这些多肽链可以是相同的或不同的,它们之间通过各种各样的键连接在一起,形成复杂的结构。

二、蛋白质的功能蛋白质的结构决定了其功能。

蛋白质在生物体内扮演着多种重要的角色,包括酶、结构蛋白、运输蛋白和抗体等。

1. 酶酶是一类催化生物化学反应的蛋白质,可以加速化学反应发生的速率。

酶的活性与其结构密切相关,酶的活性位点具有与底物相互作用的特定结构。

2. 结构蛋白结构蛋白是细胞中的主要组成部分,为细胞提供了稳定的支持和形状。

它们形成了细胞的骨架,维持细胞的稳定性和形态。

3. 运输蛋白运输蛋白可以将物质从细胞内部输送到细胞外部,或者从细胞外部运输到细胞内部。

例如,血红蛋白可以运输氧气到全身各个组织和器官。

举例说明蛋白质空间结构与功能的关系

举例说明蛋白质空间结构与功能的关系

举例说明蛋白质空间结构与功能的关系蛋白质是生物体内功能最为多样和重要的大分子,它们在细胞内承担着许多生物学功能,例如酶催化、信号传导、运输物质、结构支持等。

蛋白质的功能可由其空间结构决定,根据蛋白质的不同结构类型和功能特点,可以从以下几个方面进行详细说明。

1.结构蛋白质的功能结构蛋白质是维持生物体形态和结构完整性的重要组成部分。

例如,胶原蛋白是组成骨骼、皮肤和血管等结构的主要成分,它们的扭曲螺旋结构为细胞和组织提供高度稳定性和机械强度。

肌动蛋白和微管蛋白等蛋白质则构成肌肉和细胞骨架,参与细胞运动和细胞分裂等生物学过程。

2.酶蛋白质的功能酶蛋白质是生物体内催化化学反应的重要媒介。

酶蛋白质具有特定的空间结构,使其能够在特定的环境条件下催化特定的生化反应。

例如,淀粉酶可以将淀粉分解为葡萄糖,使其能够被人体有效吸收和利用。

酶蛋白质的空间结构可以使其特异性选择底物,形成酶-底物复合物,并通过结构调控活性中心的构象变化来催化化学反应。

3.载体蛋白质的功能载体蛋白质参与物质在生物体内的转运和分布。

例如,血红蛋白是红细胞中的一种蛋白质,能够与氧气结合并将其运输到全身各个组织和器官。

血红蛋白的空间结构决定了其与氧气的结合特异性和亲和力,从而实现了氧气的有效运输。

类似地,血浆中的白蛋白可用于运输脂类和其他重要的生物活性分子。

4.信号蛋白质的功能信号蛋白质参与细胞内外的信号传导,并调控细胞生理功能。

例如,激素和细胞因子等信号分子与细胞表面的受体结合后,会激活信号蛋白质的活性,并传递信号给下游分子参与生物反应。

这些信号蛋白质具有多个功能模块,包括信号识别、信号传导和调节等。

蛋白质的空间结构决定了其与配体的结合能力和信号传导的效率。

5.抗体蛋白质的功能抗体是免疫系统中重要的蛋白质,能够识别和结合特定的抗原分子,并参与免疫反应。

抗体的空间结构形成了特异性抗原识别的结合位点,从而能够识别和结合特定的抗原分子,触发免疫反应。

抗体还可以激活免疫系统中的其他细胞,如吞噬细胞和自然杀伤细胞,以消除感染源或异常细胞。

蛋白质的结构与功能

蛋白质的结构与功能

蛋白质是生物体的重要组成成分(结构蛋白),蛋白质的一级结构与蛋白质功能有相适应性和统一性。

蛋白质空间结构与功能的关系:特定的空间结构是行使生物功能的基础。

空间结构决定着蛋白质的生物学功能。

蛋白质是生物体中含量最丰富的生物大分子,约占人体固体成分的45%,而在细胞中可达细胞干重的70%以上。

某些组织含量更高,脾、肺及横纹肌等高达80%。

更新快组织细胞每天都在不断地更新。

因此人体必须每天摄入一定量的蛋白质,作为构成和补充组织细胞的原料。

扩展资料:注意事项:1、蛋白质能调节渗透压。

正常人血浆和组织液之间的水分不断交换并保持平衡。

血浆中蛋白质的含量对保持平衡状态起着重要的调节作用。

2、如果膳食中长期缺乏蛋白质,血浆中蛋白质含量就会降低,血液中的水分便会过多地渗入到周围组织,出现营养性水肿。

3、蛋白质能供给能量。

这不是蛋白质的主要功能,不能拿肉当柴烧。

但在能量缺乏时,蛋白质也必须用于产生能量。

另外从食物中摄取的蛋白质,有些不符合人体需要,或者摄取数量过多,也会被氧化分解,释放能量。

蛋白质一级结构又称化学结构(primary structure),是指氨基酸在肽键中的排列顺序和二硫键的位置,肽链中氨基酸间以肽键为连接键。

蛋白质的一级结构是最基本的结构,它决定了蛋白质的二级结构和三级结构,其三维结构所需的全部信息都贮存于氨基酸的顺序之中。

二级结构(secondary structure)是指多肽链中彼此靠近的氨基酸残基之间由于氢键星湖作用而形成的空间结构。

三级结构(tertiary structure)是指多肽链在二级结构的基础上,进一步折叠,盘曲而形成特定的球状分子结构。

四级结构(quaternary structure)是由两条或者两条以上具有三级结构的多肽链聚合而成的具有特定三维结构的蛋白质构想。

不同的蛋白质,由于结构不同而具有不同的生物学功能。

蛋白质的生物学功能是蛋白质分子的天然构象所具有的性质,功能与结构密切相关。

蛋白质的结构及其功能

蛋白质的结构及其功能

蛋白质的结构及其功能蛋白质为生物高分子物质之一,具有三维空间结构,因而执行复杂的生物学功能。

蛋白质结构与功能之间的关系非常密切。

在研究中,一般将蛋白质分子的结构分为一级结构与空间结构两类。

一、蛋白质的一级结构蛋白质的一级结构(primary structure)就是蛋白质多肽链中氨基酸残基的排列顺序(sequence),也是蛋白质最基本的结构。

它是由基因上遗传密码的排列顺序所决定的。

各种氨基酸按遗传密码的顺序,通过肽键连接起来,成为多肽链,故肽键是蛋白质结构中的主键。

迄今已有约一千种左右蛋白质的一级结构被研究确定,如胰岛素,胰核糖核酸酶、胰蛋白酶等。

蛋白质的一级结构决定了蛋白质的二级、三级等高级结构,成百亿的天然蛋白质各有其特殊的生物学活性,决定每一种蛋白质的生物学活性的结构特点,首先在于其肽链的氨基酸序列,由于组成蛋白质的20种氨基酸各具特殊的侧链,侧链基团的理化性质和空间排布各不相同,当它们按照不同的序列关系组合时,就可形成多种多样的空间结构和不同生物学活性的蛋白质分子。

二、蛋白质的空间结构蛋白质分子的多肽链并非呈线形伸展,而是折叠和盘曲构成特有的比较稳定的空间结构。

蛋白质的生物学活性和理化性质主要决定于空间结构的完整,因此仅仅测定蛋白质分子的氨基酸组成和它们的排列顺序并不能完全了解蛋白质分子的生物学活性和理化性质。

例如球状蛋白质(多见于血浆中的白蛋白、球蛋白、血红蛋白和酶等)和纤维状蛋白质(角蛋白、胶原蛋白、肌凝蛋白、纤维蛋白等),前者溶于水,后者不溶于水,显而易见,此种性质不能仅用蛋白质的一级结构的氨基酸排列顺序来解释。

蛋白质的空间结构就是指蛋白质的二级、三级和四级结构。

(一)蛋白质的二级结构蛋白质的二级结构(secondary structure)是指多肽链中主链原子的局部空间排布即构象,不涉及侧链部分的构象。

1.肽键平面(或称酰胺平面,amide plane)。

Pauling等人对一些简单的肽及氨基酸的酰胺等进行了X 线衍射分析,得出图1-2所示结构,从一个肽键的周围来看,得知:(1)中的C-N键长0.132nm,比相邻的N-C单键(0.147nm)短,而较一般C=N双键(0.128nm)长,可见,肽键中-C-N-键的性质介于单、双键之间,具有部分双键的性质,因而不能旋转,这就将固定在一个平面之内。

蛋白质的结构与功能

蛋白质的结构与功能

蛋白质的结构与功能1、一级结构(primary structure)定义:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

理解:一级结构是蛋白质空间构象和特异生物学功能的基础,但不是决定蛋白质空间构象的唯一因素。

例子:牛胰岛素是第一个被测定一级结构的蛋白质分子,由英国化学家Frederick Sanger于1953年完成。

2、二级结构(secondary structure)定义:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象,但侧链会影响二级结构的形成。

所谓肽链主链骨架原子即N(氨基氮)、Cα(α-碳原子)和Co(羰基碳)3个原子依次重复排列。

重要概念:参与肽键的6个原子C1、C、O、N、H、C2位于同一平面,C1和C2在平面上所处的位置为反式(trans)构型,此同一平面上的6个原子构成了所谓的肽单元(peptide unit) 。

肽键具有一定的双键性质,不能自由旋转。

常见的蛋白质二级结构:-螺旋( -helix):为右手螺旋,每圈螺旋3.6个氨基酸,螺距5.44埃;侧链伸向螺旋外侧。

每个氨基酸残基的N—H与其氨基侧相间三个氨基酸残基的C=O形成氢键。

氢键方向与中心轴平行,螺旋结构被规则排布的氢键所稳定。

-螺旋常具有两性的特点。

-折叠(-pleated sheet):多肽链充分伸展,每个肽单元以为旋转点,依次折叠成锯齿状结构,氨基酸残基侧链交替地位于锯齿状结构的上下方。

两条以上肽链或一条肽链内的若干肽段的锯齿状结构可平行排列,走向可相同或相反。

β-转角和Ω环存在于球状蛋白质中。

二级结构可组成结构模体(structural motif):定义:在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个有规则的二级结构组合,被称为超二级结构(supersecondary structure)。

(结构模体=折叠=超二级结构)目前已知的组合有:αα,βαβ,ββ。

蛋白质的结构与功能解析

蛋白质的结构与功能解析

蛋白质的结构与功能解析蛋白质在生命体系中扮演着重要的角色,是构成绝大部分生物分子的关键元素之一。

从单细胞微生物到复杂的多细胞生物体,蛋白质在细胞内和细胞间承担着许多不同的生物学过程和调控功能。

蛋白质的发现和深入研究为我们更好地理解生命体系的功能提供了基础,但是要想深刻理解蛋白质的结构和功能,我们需要进一步了解蛋白质的基本组成单位和其空间结构。

1. 蛋白质的基本组成单位蛋白质是由氨基酸单元组成的长链聚合物,氨基酸分子具有两个基本结构:氨基组和羧基组。

当氨基组与羧基组反应时,它们失去一个水分子,形成了肽键,这个肽键连接起了氨基酸的羧基组和氨基组。

氨基酸的不同种类及顺序决定了蛋白质序列和结构的多样性。

目前已知的氨基酸有20种,它们的化学性质不同,因而在不同的生物学功能中扮演着不同的角色。

举个例子,赖氨酸、组氨酸和精氨酸是带电氨基酸,它们可以与其他带电氨基酸相互吸引而形成电荷间作用。

苯丙氨酸、酪氨酸和色氨酸是芳香族氨基酸,它们的芳香性决定了组成的蛋白质分子的特殊性质。

2. 蛋白质的空间结构蛋白质的空间结构是由其氨基酸序列决定的,可以分为四个层次:一级结构、二级结构、三级结构和四级结构。

一级结构是指蛋白质的氨基酸序列,不管蛋白质是什么样的,它的氨基酸序列是独一无二的。

二级结构是指蛋白质序列中局部结构的形成。

主要的二级结构包括α-螺旋和β-折叠。

螺旋结构通常是由螺旋状的氨基酸残基穿插在一起形成的,和DNA结构相似。

β-折叠通常是由两个或多个平行排列的氨基酸链通过氢键交错在一起形成的。

三级结构是指蛋白质分子的折叠状态,由多种二级结构通过各种交互作用(如氢键、范德瓦尔斯力、疏水作用和离子键等)组成。

三级结构决定了蛋白质的生物学功能,同时也决定了潜在的疾病。

四级结构是指由两个或多个聚合物相互作用形成的蛋白质超分子复合体,如血红蛋白。

3. 蛋白质的生物学功能蛋白质的空间结构和生物学功能紧密相关。

几乎每个类别的蛋白质都有一些基本的功能性质。

蛋白质的结构和功能

蛋白质的结构和功能

蛋白质的结构和功能蛋白质是生物体内最重要的分子之一。

它们在细胞结构、传递信息、代谢调节等方面都起着重要作用。

蛋白质由一系列氨基酸残基链构成,它们的空间结构和序列决定了它们的功能。

本文将介绍蛋白质的结构和功能。

一、蛋白质的结构蛋白质结构可以从四个层次来描述:1. 一级结构:蛋白质的一级结构是由多肽链上的氨基酸排列顺序决定的。

一级结构由肽键连接氨基酸,形成肽链,其三维结构确定蛋白质的稳定性和活性。

2. 二级结构:二级结构指一级结构中短距离的主链的空间排列方式。

主要由α-螺旋和β-折叠两种排列方式组成。

3. 三级结构:三级结构是蛋白质的立体结构,由氨基酸排列和相互作用所形成的空间结构。

其主要形式有:α-螺旋外的环折叠、β-折叠内的环折叠、未定型区、多肽链拱形折叠等。

4. 四级结构:四级结构又称为超分子结构,是由多个蛋白质分子或其他小分子构成的复合物。

此外,还有底物识别结构等。

二、蛋白质的功能蛋白质的功能多种多样,下面介绍几种分类:1. 结构蛋白:结构蛋白的主要作用是维持细胞和组织结构,保持生物体物理结构的稳定性。

同时,还有储存、传递信息等功能。

2. 酶:酶在生物催化过程中扮演着重要角色。

大多数化学反应需要在标准条件下进行,而酶可以在生物体内提供适宜的催化条件。

生物体中几乎所有的催化都是由酶完成的。

3. 抗体:抗体是一种由B细胞产生的蛋白质,具有识别和抵抗抗原的能力。

它们通过特定的结构来识别抗原,达到抵抗和清除抗原的作用。

4. 载体:载体是一种分子,能够绑定其他小分子或离子,并将其运输到细胞内或细胞外。

例子包括血红蛋白、肌红蛋白等。

三、结构与功能关系蛋白质结构决定了它的功能,改变结构通常也会影响到它的功能。

类似地,蛋白质的功能也可以通过调节结构来实现。

其方法包括改变氨基酸序列、改变外界条件以及调节与其他分子之间的相互作用等。

总之,蛋白质的结构和功能非常复杂,并且是相互关联的。

因此,对蛋白质进行深入的研究有助于更好地了解生命起源和生命体系的机制,也对制药、医学等领域的发展有重要意义。

蛋白质的一级结构和空间结构与功能的关系

蛋白质的一级结构和空间结构与功能的关系

蛋白质的一级结构和空间结构与功能的关系蛋白质,这个听起来高大上的词,其实在我们的生活中无处不在。

想象一下,咱们的身体就像一个精密的机器,蛋白质就是那把钥匙,打开了各种功能的大门。

一级结构,听起来复杂,但其实就像是蛋白质的“名字”,它由氨基酸拼成的小链子。

就好比你在微信上给朋友发消息,字母的顺序一变,意思就全变了,蛋白质也是如此。

不同的氨基酸顺序,造就了不同的蛋白质,进而影响它们的功能。

真是有趣吧!说到空间结构,嘿,那才是个大玩意儿。

想象一下你在拼乐高,拼得好好的,但最后没装对位置,整个作品就崩了。

蛋白质也是如此,它的三维结构可复杂了。

要是它的形状不对,功能就没法发挥。

举个例子,像酶这样的蛋白质,要和特定的底物结合,形状必须“对上眼”。

要是你非得用方块拼图去拼圆形的洞,哈哈,结果可想而知!所以,一级结构和空间结构的完美结合,就像是一场精心编排的舞蹈,缺一不可。

咱们的身体里,蛋白质不仅负责构建肌肉,还参与各种生化反应,真是个全能选手。

举个简单的例子,血红蛋白就是一个经典。

它的一级结构和空间结构决定了它能有效地携带氧气。

你想啊,要是血红蛋白的形状不对,那可就真的是“没气”了,生命的车也开不动了。

再比如,抗体,身体的“保镖”,形状决定了它能不能抓住入侵的细菌,真是个英雄角色。

有趣的是,蛋白质的功能不仅和它的结构有关,还有环境因素的影响。

温度、酸碱度,甚至盐浓度都可能让蛋白质“变脸”。

就像你在夏天和冬天穿的衣服不一样,蛋白质也需要在适合的环境中才能发挥最大的作用。

想象一下,你在热天穿着羽绒服,简直是自讨苦吃。

蛋白质也是一样,在不适宜的环境下,它可能变得不稳定,甚至失去功能。

咱们说到某些病症,很多时候也是因为蛋白质的结构出了问题。

像一些遗传病,就是因为基因变异导致蛋白质的一级结构发生改变。

结果就是,咱们的身体就像失去了指挥的乐队,乱得不可开交。

这可真让人感到无奈,想想看,咱们身体里的每一个小细胞都在忙碌,而蛋白质却可能因为小小的变化而功亏一篑。

蛋白质的结构与功能的关系

蛋白质的结构与功能的关系

蛋白质的结构与功能的关系蛋白质是生物体中最为重要的大分子有机化合物,担负着各种重要功能。

它们在生体内参与调节代谢、传递信息、结构支持、运输物质等多种生物学过程。

蛋白质的具体功能与其结构密切相关,而蛋白质的结构可以分为四个层次:初级结构、二级结构、三级结构和四级结构。

本文将从这四个层次出发,探讨蛋白质结构与功能之间的关系。

初级结构初级结构是指蛋白质中的氨基酸序列,是蛋白质最基本的结构。

蛋白质的功能很大程度上取决于其氨基酸序列。

氨基酸的种类和排列方式决定了蛋白质的化学性质和功能。

例如,氨基酸中的亲水性残基可以使蛋白质具有溶解性,从而在水相中发挥作用。

此外,氨基酸序列还决定蛋白质的电荷分布,从而影响其与其他分子之间的相互作用。

二级结构二级结构是指蛋白质链中多肽链的局部区域的空间形态。

常见的二级结构有α-螺旋和β-折叠。

二级结构通过氢键等非共价作用力将多肽链上的氨基酸残基连接在一起,形成特定的结构。

这些结构对蛋白质的稳定性和功能起着至关重要的作用。

例如,α-螺旋结构能够增加蛋白质的稳定性,在蛋白质的结构支持和受体配体结合中起到关键作用。

三级结构三级结构是指蛋白质的整体立体结构。

它由氨基酸链的二级结构之间的相互作用所决定。

三级结构的形成几乎由所有非共价作用力共同作用所致,例如氢键、离子键、范德华力和疏水相互作用等。

蛋白质的功能和稳定性取决于其三级结构的正确折叠。

任何对蛋白质结构的破坏可能导致蛋白质失去原有的功能。

四级结构四级结构是指两个或多个亚基(多肽链或聚合物链)在空间上的组织方式。

它表示了蛋白质分子中不同亚基之间的关系。

多肽链的组装形成蛋白质的四级结构,进一步决定了蛋白质的功能。

例如,酶的四级结构决定了其底物与催化活性位点的特异性结合。

综上所述,蛋白质的结构与功能之间密不可分。

蛋白质的功能依赖于其特定的结构,而蛋白质的特定结构是由其氨基酸序列决定的。

初级结构决定了氨基酸的种类和排列方式,二级结构形成了局部的空间结构,三级结构决定了整体立体结构,而四级结构则表示了不同亚基之间的组织方式。

蛋白质的结构和功能以及应用

蛋白质的结构和功能以及应用

蛋白质的结构和功能以及应用蛋白质是生命体中最重要的分子之一,它在细胞生命活动中起着重要的作用。

蛋白质的结构形式和功能多样,非常复杂,因此对于人体健康和医学研究的影响难以估量。

本文将重点探讨蛋白质的结构和功能以及其在医学和健康方面的应用。

一、蛋白质的结构蛋白质是由多条氨基酸串成的链状大分子。

一般来说,氨基酸有20种不同的类型,它们通过肽键连接成链状结构。

蛋白质分子的基本结构单元是肽链段,包括氨基末端、羧基末端和侧链,在这些不同的部分存在着不同的分子间相互作用,形成了蛋白质的空间结构,可以折叠成特定的三维形态,构成蛋白质的结构基础。

蛋白质的结构种类非常丰富,可以分为四个层次:一级结构、二级结构、三级结构和四级结构。

一级结构是氨基酸的线性排列,二级结构是氢键、疏水作用、离子作用等相互作用形成的α螺旋和β折叠,三级结构是蛋白质链段之间的相互作用,包括氢键、电荷作用、范德华力等,四级结构是完整的多肽链之间的相互作用。

二、蛋白质的功能蛋白质在生物体内有非常重要的功能,可以作为酶、激素、运输者、抗体、细胞信使等。

其中,酶是蛋白质中最重要的类别,它们在生物体内催化化学反应,使生物体代谢物质转化为所需的产物。

例入,胰岛素是由胰腺分泌的蛋白质类激素,在糖尿病等代谢异常状态下存在问题,会使酶的作用受阻,严重影响人体生理机能。

除了酶外,蛋白质的运输作用也同样重要。

如血红蛋白、筋肽等蛋白质可通过血液或细胞中的备用物质帮助输送氧气或二氧化碳,同时对人体内环境的调节也有着重要的作用。

三、蛋白质的应用蛋白质拥有广泛的应用价值,在健康和医学领域中使用极为广泛。

蛋白质在生物科技领域中的应用非常重要,例如生产生物药、治疗癌症等。

此外,生产膳食营养品也是蛋白质应用的重要方向,如蛋白粉、蛋白棒等都是常见的健身补品。

另外,蛋白质在生物大分子拟合研究、生物大分子质谱学、生物传感器、细胞工程等方面也得到了广泛的研究探索。

同时还广泛应用在纺织、造纸、食品、农药、染料、涂料等工业生产领域。

举例说明蛋白质一级结构、空间结构与功能之间的关系

举例说明蛋白质一级结构、空间结构与功能之间的关系

举例说明蛋白质一级结构、空间结构与功能之间的关系
蛋白质的结构与功能的关系
1.蛋白质一级结构与功能的关系(1)一级结构是空间构象的基础,蛋白质一级结构是空间构象和功能的基础。

(2)一级结构相似的蛋白质具有相似的高级结构与功能(3)氨基酸序列提供重要的生物进化信息
(4)重要蛋白质的氨基酸序列改变可引起疾病
若一级结构发生改变影响其功能,称分子病。

如血红蛋白β亚基的第6位氨基酸由谷氨酸转变成缬氨酸后,可导致镰刀形贫血。

但并非一级结构的每个氨基酸都很重要。

2.蛋白质高级结构与功能的关系
蛋白质空间构象与功能有密切关系。

生物体内蛋白质的合成、加工和成熟是一个复杂的过程,其中多肽链的正确折叠对其正确构象的形成和功能的发挥至关重要。

若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构象发生改变,仍可影响其功能,严重时可导致疾病的发生,称为蛋白质构象疾病医学教育|网搜集整理。

成年人红细胞中的血红蛋白主要由两条α肽链和两条β肽链组成(α2β2),α链含141个氨基酸残基,β链含146个氨基酸残基。

胎儿期主要为α2γ2,胚胎期主要为α2ε2.血红蛋白的4条肽链组成4个亚基,各亚基构象变化可影响亚基与氧的结合。

疯牛病是由朊病毒蛋白(prp)引起的一组人和动物神经的退行性病变,具有传染性、遗传性或散在发病的特点。

其致病的生化机制是生物体内正常α螺旋形式的prpc转变成了异常的β-折叠形式的prpsc.。

蛋白质的空间结构及功能

蛋白质的空间结构及功能

蛋白质的空间结构及功能蛋白质是生命体中最为重要的分子之一,其具有各种不同的功能。

大多数的蛋白质都拥有一个复杂的三维空间结构,这种结构在其功能中起着至关重要的作用。

蛋白质的空间结构蛋白质的空间结构通常被描述为四个不同层次的结构:一级、二级、三级和四级结构。

一级结构是蛋白质的最基本结构,它是由一条链形成的。

这条链包含了许多氨基酸残基,这些残基通过导致共价键的形成来连接在一起。

氨基酸分为20种,它们在一级结构中的顺序决定了蛋白质的一级结构。

二级结构是氨基酸残基的线性排列在空间中的三维结构,它可分为两种类型:α-螺旋和β-折叠。

α-螺旋是一种紧密螺旋的结构,其中C=O基团和N-H基团相互作用形成了氢键。

β-折叠通常是由两个或多个平行的肽链组成的。

三级结构指的是蛋白质中氨基酸残基在空间中的三维排列。

它通常由多个螺旋和β-折叠区域组成。

氨基酸残基之间的相互作用包括氢键、范德华力、离子键和疏水相互作用等。

四级结构是指蛋白质由多个多肽链组成的空间结构,这些多肽链能够相互作用。

例如,多个亚单位可以组成一个含有多个亚单位的蛋白质。

蛋白质的功能蛋白质的空间结构对其功能起着关键作用。

蛋白质结构决定了它们在生命体中的位置和作用方式。

酶是蛋白质中的一种。

酶通常负责催化化学反应。

在催化化学反应期间,酶的活性部位将氨基酸侧链的基团与底物中的化学键相互作用,从而加速化学反应。

抗体是蛋白质中的一种,它们是生命体中的免疫系统的组成部分。

抗体通常通过与病原体中的蛋白质结合来抵抗病原体。

激素也是蛋白质中的一种。

激素可以担任信使的角色,向细胞发送信号,激活或抑制特定的细胞过程。

例如,胰岛素是一种激素,它可以导致细胞对葡萄糖和葡萄糖转运体的活性提高。

结论蛋白质的空间结构是其功能的基础。

蛋白质的空间结构由其氨基酸序列决定,设计合理的蛋白质空间结构,能够创造出具有有益的生物学特性的蛋白质。

深入了解蛋白质的空间结构及其与功能之间的关系,将对生物技术、药物发展和其他许多领域产生重大影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质的空间结构和功能1.构象(conformation)指的是,一个由多个碳原子组成的分子,因单键的旋转而形成的不同碳原子上各取代基或原子的空间排列,只需单键的旋转即可造成新的构象。

多肽链主链在形式上都是单键。

因此,可以设想一条多肽主链可能有无限多种构象。

然而,一种蛋白质的多肽链在生物体正常的温度和pH下只有一种或很少几种构象,并为生物功能所必需。

这种天然的构象是什么样的因素促成的?答:①由于肽键因共振结构而使C—N键具有部分双键的性质,不能自由旋转,因而使得一条多肽主链构象的数目受到了极大限制。

②与位于相邻刚性平面交线上的Cα相连接的侧链基团的结构、大小和性质对于主链构象的形成及稳定有很大的影响,使多肽链主链构象数目又受到很大的限制。

因为Cα与两个刚性平面连接的单键的旋转度不同程度受到侧链的限制。

③各种侧链基团相互作用所形成的各种力使蛋白质在热力学上达到了一种最稳定的构象2.假若一条多肽链完全由丙氨酸构成,什么样的环境促使它很可能形成α–螺旋,是疏水环境还是亲水环境?答;一条多肽链呈α-螺旋构象的推动力是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。

在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。

如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。

疏水环境对于氢键的形成不能提供任何竞争,因此,更可能促进α-螺旋结构的形成。

3.以nm为单位计算α-角蛋白卷曲螺旋(coiled coil)的长度。

假定肽链是由100个残基构成。

答:α-角蛋白的每条肽链呈α-螺旋构象,而每个α-螺旋含 3.6个残基。

在α-角蛋白中,每轮螺旋的长度为0.51nm。

因此, α-角蛋白卷曲螺旋(coiled coil)的长度是:(100残基÷3.6个残基/轮)×0.51/轮=14.2nm4.一种叫做Schistosoma mansoni 寄生虫的幼虫能感染侵入人的皮肤。

这种幼虫分泌出能裂解的-Gly-Pro-X-Y-(X和Y可能是几种氨基酸中的任何一种)顺序中的X和Y之间肽键的酶。

为什么该酶活性对这种寄生虫侵入是重要的。

答:-Gly-Pro-X-Y-顺序频繁出现在胶原蛋白分子中,在身体的各部位都存在,包括皮肤。

由于该幼虫酶能催化胶原蛋白多肽链裂解,故该寄生虫能进入宿主皮肤而生存。

5.①是T rp还是Gln更有可能出现在蛋白质分子表面?②是Ser还是Val更有可能出现在蛋白质分子的内部?③是Leu还是Ile更少可能出现在α-螺旋的中间?④是Cys还是Ser更有可能出现在β-折叠中?答:蛋白质氨基酸残基在蛋白质结构中出现的位置与这些氨基酸残基的亲水性或疏水性相关。

亲水性残基(极性残基)通常位于蛋白质分子的表面,而疏水性残基(非极性残基)通常位于蛋白质分子疏水的内部。

①Gln是亲水性残基,它比Trp更有可能出现在蛋白质分子表面。

②V al是非极性残基,它比Ser更有可能位于蛋白质分子的内部。

③Ile在它的β碳位上有分支,不利于α-螺旋的形成,因此它通常不出现在α-螺旋中。

④侧链小的氨基酸残基常出现在β-折叠中,因为这有利于片层的形成。

所以Ser更有可能出现在β-折叠中。

6.下面的多肽哪种最有可能形成α-螺旋?哪种多肽最难以形成β-折叠?①CRAGNRKIVLETY;②SEDNFGAPKSILW;③QKASVEMA VRNSG答:多肽③最有可能形成α-螺旋,因为它的三个带电荷的残基(Lys,Glu,Arg)在该螺旋的一侧相间排成一行。

一个有邻近碱性残基(Arg和Lys)的多肽会使螺旋去稳定。

多肽②含有Gly和Pro,这两种氨基酸是螺旋的强破坏者。

Gly和Pro 的存在也会阻止β-折叠的形成。

所以多肽②最难以形成β-折叠。

7.胰岛素是由A、B两条链组成的,两条肽通过二硫键连接。

在变性条件下使二硫键还原,胰岛索的活性完全丧失。

当巯基被重新氧化后,胰岛素恢复的活性不到天然活性的10%请予以解释。

答:胰岛素是以前体的形式合成的。

前体分于是一条单一的肽链。

在前体合成及折叠后,切除前体分子的一部分(包括连接肽C肽),留下由二硫键连接的A和B两条肽链。

这样,天然的胰岛素由于缺少C肽,因而也就缺乏指导肽链折叠的某些所必需的信息。

所以当胰岛素变性和还原,随之复性,二硫键的形成是随机的。

在这种情况下是不能完全恢复到天然活性的。

这并不与氨基酸顺序指导蛋白质折叠的基本原则相矛盾。

8.对于密度均一的球状蛋白质来说,①随着蛋白质分子增大,其表面积/体积(A/V)的比例是增大还是减小?②随着蛋白质分子增大,其亲水侧链氨基酸残基与疏水侧链氨基酸残基的比例是增大还是减小?答:①对于密度均一的球状蛋白质来说,随着分子量(即分子大小)增大,其半径(r)也增大。

由于表面积=4πr2,体积=4/3πr3,因此从这个表达式来看,随着蛋白质分子量的增大,它的表面积/体积的比例减小了。

即随着蛋白质分子的增大,体积的增大比表面积增大更快。

②由于极性基团的亲水性,大多数分布在球状分子的表面,非极性侧链基团的疏水性,大多数聚集在球状分子的内部.由于随着分子量增大而体积增大,内部空间也增大。

因此内部就可以容纳更多的具疏水侧链基团的氨基酸残基。

所以随着球状蛋白质分子量的增大,亲水侧链氮基酸残基与疏水侧链氨基酸残基的比例将减小。

9.胎儿血红蛋白(Hb F)在相当于成年人血红蛋白(Hb A)β链143残基位置含有Ser,而成年人β链的这个位置是具阳离子的His残基。

残基143面向β亚基之间的中央空隙。

①为什么2,3-二磷酸甘油酸(2,3-BPG)同脱氧Hb A的结合比同脱氧Hb F更紧?②Hb F对2,3-BPG的低亲和力如何影响到Hb F对氧的亲和力?③Hb F的P50是18托(torr),Hb A的P50是26托。

基于这两个数值如何解释氧从母亲血液有效转运到胎儿。

答:①由于2,3-BPG是同脱氧Hb A中心空隙带正电荷的侧链结合,而脱氧Hb F缺少带正电荷的侧链(β链143位的His残基),因此2,3-BPG是同脱氧Hb A的结合比同脱氧Hb F的结合更紧。

②2,3-BPG稳定血红蛋白的脱氧形式,增高脱氧血红蛋白的份数。

由于Hb F同2,3-BPG亲和力比Hb A低,Hb F受血液中2,3-BPG影响小,分子的氧合形式的份数较大,因此Hb F在任何氧分压下对氧的亲和力都比Hb A大。

③在20―40氧分压下,Hb F对氧的亲和力比Hb A大,亲和力的这种差别允许氧从母亲血向胎儿有效转移。

10.在生理条件下,多聚赖氨酸呈随机卷曲的构象。

在什么条件下它可以形成α-螺旋?答:在生理条件下,赖氨酸残基的带增电荷的侧链彼此排斥,不能形成α-螺旋。

当它所处环境的pH上升超过它的侧链可界离基团的p K(>10.5)时才能形成α-螺旋。

11.某蛋白质用凝胶过滤法测定的表观分子量是90kD;用SDS-PAGE测定时,它的表观分子量是60kD,无论2-巯基乙醇是否存在。

哪种测定方法更准确?为什么?答:蛋白质的分子形状影响它在凝胶过滤时的行为。

分子形状较长的蛋白质在凝胶过滤时具有类似于分子较大的蛋白的行为。

用SDS-PAGE测定的蛋白质分子量应该是比较准确的,因为变形后的蛋白质的迁移速度只取决于它的分子大小。

12.请根据下面的信息确定蛋白质的亚基组成:①用凝胶过滤测定,分子量是200kD;②用SDS-PAGE测定,分子量是100kD;③在2-巯基乙醇存在下用SDS-PAGE测定,分子量是40kD和60kD。

答:凝胶过滤分离的蛋白质是处在未变性的状态,如果被测定的蛋白质的分子形状是相同的或者是相似的,所测定的分子量应该是较准确的。

SDS-PAGE测定蛋白质的分子量只是根据它们的大小。

但这种方法能破坏寡聚蛋白质亚基间的非共价作用力,使亚基解离。

在这种情况下,所测定的是亚基的分子量。

如果有2-巯基乙醇存在,则能破坏肽链内或肽链间的二硫键。

在这种情况下进行SDS-PAGE,所测定的分子量是亚基的分子量(如果亚基间没有二硫键)或者是肽链的分子量(如果亚基是由二硫键连接的几个肽链组成)。

根据题中给出的信息,该蛋白质的分子量是200kD,由两个大小相同的亚基(100kD)组成,每个亚基由两条肽链(40kD和60kD)借二硫键连接而成。

13.每分子人细胞色素c含有18分子的赖氨酸。

100克细胞色素c完全水解得到18.7克的赖氨酸。

求细胞色c的分子量。

答: 根据组分的百分含量求蛋白质的最低分子量可按下式计算:细胞色素c的真实分子量=最小分子量×某氨基酸数=684×18=12300. 这一结果与用物理方法测定的结果很接近。

3-14.有一种混合液含有五种多肽(P1、P2、P3、P4和P5),在pH8.5的条件下进行电泳分离,染色后揭示出如图2–6a的迁移图谱。

已知这五种多肽的p I是:P1为9.0,P2为5.5,P3为10.2,P4为8.2,P5为7.2。

并且已知它们的分子量都接近1200。

①请在图上鉴定出每条带相应的多肽;②现有一种p I为10.2的多肽(P6),它的分子量大约为600。

该肽若与上述五肽一起在pH8.5下电泳,请你指出它的位置。

[图2–6几种蛋白质的电泳迁移图(a)和它们迁移的相对位置(b)]答:①根据它们的等电点以及它们在pH8.5条件下所带净电荷的多少,很容易鉴定出它们在电泳图谱上的位置(图2-6b)。

②P6与P3具有相同的p I,即是说,在pH8.5的条件下,它们带有等量的净电荷。

但P6的分子量仅是P3的一半,它的迁移率是P3的2倍,电泳后它在支持物上位置应比P3更接近于负极(如图2-6b所示)。

(在一定粘度的介质中,在恒压下,带电颗粒的迁移率由电荷与颗粒大小的比例决定,即:μ(迁移率)∝(Q(电荷)/r(大小))。

为了在Q/r基础上估计出相对迁移率,可用物质的分子量去除p I-pH,p I-pH视为Q值的一种量度。

)15.一种纯净的蛋白质样品用普通的聚丙烯酰胺凝胶电泳(PAGE)在pH8.2条件下进行分析鉴定,得到如图2–7(A)的结果。

该蛋白质样品在用SDS处理后,接着用SDS-PAGE进行分析,得到如图2–7(B)的结果。

通过对上述两种电泳结果的比较,关于该蛋白质的结构你将得出什么样的结论?该蛋白质的等电点是低于pH8.2还是高于pH8.2?答:普通聚丙烯酰胺凝胶电泳分离蛋白质时主要是根据各组分的p I的差别。

图2-7(A)的结果只呈现单一的带,表明该蛋白质是纯净的。

由于SDS是一种带负电荷的阴离子去垢剂,并且具有长长的疏水性碳氢链。

它的这种性质不仅使寡聚蛋白质的亚基拆离,而且还能拆开肽链的折叠结构,并且沿伸展的肽链吸附在上面。

这样,吸附在肽链上的带负电荷的SDS分子使肽链带净负电荷,并且吸附的SDS的量与肽链的大小成正比。

相关文档
最新文档