微分方程数值解练习题课

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

计算物理学(刘金远)课后习题答案第6章:偏微分方程数值解法

计算物理学(刘金远)课后习题答案第6章:偏微分方程数值解法

第6章:偏微分方程数值解法6.1对流方程【6.1.1】考虑边值问题, 01,0(0,)0,(1,)1(,0)t x x u au x t u t u t u x x=<<>ìï==íï=î如果取:2/7x D =,(0.5),1,2,3j x j x j =-D =,8/49t D =,k t k t=D 求出111123,,u u u 【解】采用Crank-Nicolson 方法()11111111211222k k k k k k k k j j j j j j j j u u u u u u u u t x ++++-+-+éù-=-++-+ëûD D 11111113k k k k k kj j j j j j u u u u u u +++-+-+-+-=-+由边界条件:(0,)0x u t =,取100k ku u x-=D ,10,0,1,k ku u k ==L (1,)1u t =,41ku =-1 1 0 0 - (1+2s) -s 0 0 -s (1+2s) -s 0 -s (1+2s) -s 0 s L L L L 101210 0 0 0 (1-2s) s 0 0 s (1-2s) s 0 s ( 1 k n n u u s u u u +-éùéùêúêúêúêúêúêú=êúêúêúêúêúêúêúêúêúëûëûL L L L L 01211-2s) s 0 1 1kn u u u u -éùéùêúêúêúêúêúêúêúêúêúêúêúêúêúêúêúëûëûL 由初始条件:021(72j j u x j ==-,1,2,3j =,212()t s x D ==D -1 1 0 0 0-1 3 -1 0 0 0 -1 3 -1 0 -1 3 -1 0 1012340 0 0 0 01 -1 1 0 00 1 -1 1 0 1 -1 1 1 u u u u u éùéùêúêúêúêúêúêú=êúêúêúêúêúêúëûëû00123 0 1 1u u u u éùéùêúêúêúêúêúêúêúêúêúêúêúêúëûëû000117u u ==,0237u =,0357u =1112327u u -=,111000123123337u u u u u u -+-=-+=,11100234235317u u u u u -+-=-+=114591u =125191u =,136991u =6.2抛物形方程【6.2.1】分别用下面方法求定解问题22(,0)4(1)(0,)(1,)0u u t x u x x x u t u t 춶=ﶶïï=-íï==ïïî01,0x t <<>(1)取0.2x D =,1/6l =用显式格式计算1i u ;(2)取0.2,0.01x t D =D =用隐式格式计算两个时间步。

微分方程数值解习题(李立康)

微分方程数值解习题(李立康)

常微分方程习题 《李立康》习题1.用Euler 方法求初值问题⎩⎨⎧=-='0)0(21u tuu 在1=t 时的近似解(取41=h )。

2.初值问题1300u u u()⎧⎪'=⎨⎪=⎩ 有解3223/u(t )t ⎛⎫= ⎪⎝⎭。

但若用Euler 方法求解,对一切N T ,和HTh =,都只能得到N t u t , (2)1,0==,试解释此现象产生的原因。

3.用Euler 方法计算⎩⎨⎧=='1)0(u uu 在1=t 处的值,取161和41=h ,将计算结果与精确值e =)1(u 相比较。

4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(1243h O t u h -'''-;(2)当1<hL 时,其整体截断误差满足:)1(22--≤Lt n lT m e hLRe εε (3)方法具有二阶收敛速度且稳定。

5.导出用改进Euler 法求解⎩⎨⎧=='1)0(u uu 计算公式mmh h u ⎪⎪⎭⎫ ⎝⎛-+=22 取41=h 计算)1(u 的近似值,并与习题3的结果比较。

6.就初值问题⎩⎨⎧=+='0)0(u bat u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解bt t au +=22相比较。

7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(<h 。

8.对初值问题⎩⎨⎧=-='1)0(2u u u 用41=h 的Euler 方法求解,求出实际计算值t u 与真解tu +=11在)1(u 处的误差,并将它与定理2.3的估计式(2.22)式相比较。

9.证明:Runge-Kutta 方法中);,(h u t ϕ关于u 或t 满足Lipschitz 条件的充分条件是),(u t f 关于t 或u 满足Lipschitz 条件。

微分方程数值解习题课

微分方程数值解习题课

微分方程初值问题数值解习题课一、应用向前欧拉法和改进欧拉法求由如下积分2xt y e dt -=⎰所确定的函数y 在点x =0.5,1.0,1.5的近似值。

解:该积分问题等价于常微分方程初值问题2'(0)0x y e y -⎧=⎪⎨=⎪⎩其中h=0.5。

其向前欧拉格式为2()100ih i i y y he y -+⎧=+⎪⎨=⎪⎩改进欧拉格式为22()2(1)10()20ih i h i i h y y ee y --++⎧=++⎪⎨⎪=⎩将两种计算格式所得结果列于下表二、应用4阶4步阿达姆斯显格式求解初值问题'1(0)1y x y y =-+⎧⎨=⎩00.6x ≤≤ 取步长h=0.1.解:4步显式法必须有4个起步值,0y 已知,其他3个123,,y y y 用4阶龙格库塔方法求出。

本题的信息有:步长h=0.1;结点0.1(0,1,,6)i x ih i i === ;0(,)1,(0)1f x y x y y y =-+==经典的4阶龙格库塔公式为11234(22)6i i hy y k k k k +=++++1(,)1i i i i k f x y x y ==-+121(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+232(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+433(,)0.1 1.1i i i i k f x h y hk x y k =++=--+算得1 1.0048375y =,2 1.0187309y =,3 1.0408184y =4阶4步阿达姆斯显格式1123(5559379)24i i i i i i hy y f f f f +---=+-+-1231(18.5 5.9 3.70.90.24 3.24)24i i i i i y y y y y i ---=+-+++ 由此算出4561.0703231, 1.1065356, 1.1488186y y y ===三、用Euler 方法求()'1,0101x y e y x x y =-++≤≤=问步长h 应该如何选取,才能保证算法的稳定性?解:本题(),1xf x y e y x =-++ (),0,01x y f x y e x λ'==-<≤≤ 本题的绝对稳定域为111x h he λ+=-<得02x he <<,故步长应满足02,00.736he h <<<<四、 求梯形方法111[(,)(,)]2k k k k k k hy y f x y f x y +++=++的绝对稳定域。

《微分方程数值解法》复习、练习题

《微分方程数值解法》复习、练习题

《微分方程数值解法》复习、练习题第一章复习题1、建立差分格式的三个主要步骤(三个离散化)。

2、差分格式的相容性、收敛性概念。

3、Poisson 方程的5点菱形差分格式,矩形、非矩形区域情形边界条件的处理(离散化)。

4、对长方形区域作正方形网格剖分,求解Poisson 方程边值问题的五点菱形差分格式,按什么顺序对节点编号,可使差分方程带宽更窄?(按短方向排)5、差分方程有哪些共同特性,求解选用哪类方法?(大型稀疏,带状,主对角占优等,一般采用迭代法)多重网格等略。

6、极值原理。

7、5点菱形差分格式求解Poisson 方程第一边值问题的收敛性。

第一章练习题1、设有边值问题=?+??-=-==<<<<=?====x u n u u y u u y x x u y y x x 2,1122.00,3.00,2.003.00取h =0.1的正方形网格。

(1)用5点菱形格式在内点建立差分格式;(2)用截断误差为)(2h O 的方法离散化第三边界条件(有两种方式);(3)写出整理后的差分方程的矩阵形式=??????? ????????? ?D C B A u u u u2、定义方形算子如下:(),1,11,11,11,1,2142i j i j i j i j i j i j u u u u u u h---++-++=+++- 试讨论5点方形差分方程,,i j i j u f =逼近微分方程(,)u f x y ?=的截断误差是几阶?3、设有{}220,(,)0,1ln (1)u x y x y u x y ?Ω?=∈Ω=<,取h =1/3,列出5点方形差分格式所得的差分方程。

第二章复习题1、差分格式稳定性与收敛性的定义。

2、有关求特征值的几个结论。

3、判断稳定性的矩阵法和Fourier 分析法(Von-Neumann 条件)的应用。

4、显隐格式在一般情况下的优缺点。

5、熟悉古典显、隐格式,六点对称隐格式(C-N 格式)。

偏微分方程数值解期末试题及参考答案

偏微分方程数值解期末试题及参考答案

《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

微分方程数值解法答案

微分方程数值解法答案

微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。

解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。

这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。

习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。

同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。

微分方程相关习题和答案

微分方程相关习题和答案

微分方程相关习题和答案微分方程是数学中的一个重要分支,它研究的是函数与其导数之间的关系。

微分方程广泛应用于物理、工程、经济等领域,是解决实际问题的有力工具。

在学习微分方程的过程中,习题是不可或缺的一部分,通过解习题可以加深对微分方程理论的理解和掌握。

下面我将给大家介绍几个微分方程相关的习题和答案。

1. 题目:求解一阶线性微分方程y' + 2xy = 3x。

解答:这是一个一阶线性常微分方程,可以使用常数变易法求解。

首先,将方程改写成标准形式y' + p(x)y = q(x),其中p(x) = 2x,q(x) = 3x。

然后,求出齐次线性微分方程y' + 2xy = 0的通解y_h(x)。

通过分离变量法可得y_h(x) =Ce^{-x^2},其中C为常数。

接下来,我们猜测特解y_p(x)为形如y_p(x) = Ax + B的一次多项式。

将y_p(x)代入原方程,整理得到2Ax + 2(Ax + B)x = 3x,比较系数可得A = 3/2,B = -1/4。

因此,特解为y_p(x) = (3/2)x - 1/4。

最后,将通解和特解相加,得到原方程的通解为y(x) = Ce^{-x^2} + (3/2)x - 1/4,其中C为常数。

2. 题目:求解二阶常系数齐次线性微分方程y'' - 4y' + 4y = 0。

解答:这是一个二阶常系数齐次线性微分方程,可以使用特征方程法求解。

首先,写出特征方程r^2 - 4r + 4 = 0,并求出其特征根r_1 = r_2 = 2。

由于特征根相等,所以通解形式为y(x) = (C_1 + C_2x)e^{2x},其中C_1和C_2为常数。

如果题目给出了初始条件,可以利用初始条件求解出具体的解。

例如,若已知y(0) = 1和y'(0) = 2,代入通解中的x = 0和x = 0的导数,得到C_1 = 1和C_2 = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程初值问题数值解习题课一、使用向前欧拉法和改进欧拉法求由如下积分2xt y e dt -=⎰所确定的函数y 在点x =0.5,1.0,1.5的近似值。

解:该积分问题等价于常微分方程初值问题2'(0)0x y e y -⎧=⎪⎨=⎪⎩其中h=0.5。

其向前欧拉格式为2()100ih i i y y he y -+⎧=+⎪⎨=⎪⎩改进欧拉格式为22()2(1)10()20ih i h i i h y y ee y --++⎧=++⎪⎨⎪=⎩将两种计算格式所得结果列于下表二、使用4阶4步阿达姆斯显格式求解初值问题'1(0)1y x y y =-+⎧⎨=⎩00.6x ≤≤ 取步长h=0.1.解:4步显式法必须有4个起步值,0y 已知,其他3个123,,y y y 用4阶龙格库塔方法求出。

本题的信息有:步长h=0.1;结点0.1(0,1,,6)i x ih i i ===;0(,)1,(0)1f x y x y y y =-+==经典的4阶龙格库塔公式为 11234(22)6i i hy y k k k k +=++++1(,)1i i i i k f x y x y ==-+121(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+232(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+433(,)0.1 1.1i i i i k f x h y hk x y k =++=--+算得1 1.0048375y =,2 1.0187309y =,3 1.0408184y = 4阶4步阿达姆斯显格式1123(5559379)24i i i i i i hy y f f f f +---=+-+-1231(18.5 5.9 3.70.90.24 3.24)24i i i i i y y y y y i ---=+-+++由此算出4561.0703231, 1.1065356, 1.1488186y y y ===三、用Euler 方法求()'1,0101x y e y x x y =-++≤≤=问步长h 应该如何选取,才能保证算法的稳定性?解:本题(),1xf x y e y x =-++ (),0,01x y f x y e x λ'==-<≤≤ 本题的绝对稳定域为111x h he λ+=-<得02x he <<,故步长应满足02,00.736he h <<<< 四、 求梯形方法111[(,)(,)]2k k k k k k hy y f x y f x y +++=++的绝对稳定域。

证明:将Euler 公式用于试验方程'y y λ=,得到11[]2k k k k hy y y y λλ++=++整理11(1)22k k h h y y λλ+⎛⎫-=+ ⎪⎝⎭ 设计算k y 时有舍入误差,0,1,2,k k ε=,则有11(1)22k k h h λλεε+⎛⎫-=+ ⎪⎝⎭ 据稳定性定义,要想1k k εε+≤,只须1122h hλλ+≤-因此方法绝对稳定域为复平面h λ的整个左半平面(?),是A-稳定的。

五、对初值问题'(0)1y y y =-⎧⎨=⎩01x ≤≤ 证明:用梯形公式111[(,)(,)]2n n n n n n hy y f x y f x y +++=++求得的数值解为22nn h y h -⎛⎫= ⎪+⎝⎭并证明当步长0h →时,n y 收敛于该初值问题的精确解xn y e -=证明:由梯形公式,有1111[(,)(,)][]22n n n n n n n n n h hy y f x y f x y y y y ++++=++=+--整理,得122n n h y y h +-⎛⎫= ⎪+⎝⎭由此递推公式和初值条件,有02222n nn h h y y h h --⎛⎫⎛⎫== ⎪ ⎪++⎝⎭⎝⎭[0,1]x ∀∈,则有在区间[][]0,0,1x ⊆上有 n x x nh ==,步长xh n=,由前面结果有02222022lim lim lim 1222lim 12x nhn n n h xhh h xh h h y h h h e h →∞→∞→-++--→-⎛⎫⎛⎫==- ⎪ ⎪++⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥=-= ⎪⎢⎥+⎝⎭⎣⎦由x 的任意性,得所证。

六、对于微分方程'(,)y f x y =,已知在等距结点0123,,,x x x x 处的y 的值为0123,,,y y y y ,h 为步长。

试建立求4y 的线性多步显格式与与隐格式。

解:取积分区间24[,]x x ,对'(,)y f x y =两端积分:()()442242(,)x x x x y x y x dy f x y dx -==⎰⎰对右端(,)f x y 作123,,x x x 的二次插值并积分4242021*********(,)[()(,)()(,)()(,)]x x x x f x y dxl x f x y l x f x y l x f x y dx≈++⎰⎰112233123((,)(,)(,))337h f x y f x y f x y =-+ 得到线性4若对右端在34,x x 两点上作线性插值并积分,有424201331144(,)[()(,)()(,)]x x x x f x y dxl x f x y l x f x y dx≈+⎰⎰442(,)hf x y =由此产生隐格式()42442,y y hf x y =+七、证明线性多步法111(3)()2n n n y h f f αα+-+=++n n-1n-2(y -y )-y 存在α的一个值,使方法是4阶的。

解: 由本题的公式,有111(3)()2n n n y h f f αα+-=-+++n n-1n-2(y -y )+y11()n n n T y x h y ++=+-234(4)5[()'()''()'''()()()]2!3!4!n n n n n h h h y x hy x y x y x y x O h =+++++1[(()())(2)(3)(''())]2n n n n n y x y x h y x h h y y x h αα----+-+++-234(4)5[()'()''()'''()()()]2!3!4!n n n n n h h h y x hy x y x y x y x O h =+++++234(4)5()(()'()''()'''()()())2!3!4!n n n n n n h h h y x y x hy x y x y x y x O h αα+--+-++234(4)5(2)(2)(2)(()2'()''()'''()()())2!3!4!n n n n n h h h y x hy x y x y x y x O h --+-++23(4)51(3)('()'()''()'''()()())22!3!n n n n n h h h y x y x hy x y x y x O h α-++-+++2111[12(3)]'()[2(3)]''()222n n hy x h y x αααα=++-++--++31141[(3)]'''()6634n h y x αα+++-+ 2(4)51121[(3)]()()2424312n h y x O h αα+--+++ 34(4)5311()'''()(9)]()()41224n n h y x h y x O h αα=-+-++当α=9时,51()n TO h +=,局部截断误差是4阶的,故该多步法是4阶方法。

数值积分习题解答说明1.确定下列求积公式中的参数,使其代数精度尽可能高,并指出对应的代数精度(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰ (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰(3)()1121()12()3()/3f x dx f f x f x -≈-++⎡⎤⎣⎦⎰ (4)[][]20()(0)()/2(0)()hf x dx h f f h ah f f h ''≈++-⎰6.若用复化梯形公式计算10x I e dx =⎰问区间[0,1]应分成多少等份才能使截断误差不超过51102-⨯ ?若用复化辛普森公式,要达到同样的精度,区间[0,1]应分成多少等份?7.如果()0f x ''>,证明用梯形公式计算定积分()baI f x dx =⎰所得结果比准确值I 大,说明其几何意义。

10.构造Gauss 型求积公式100110()()()f x dx A f x A f x ≈+⎰11.用n=2,3的高斯-勒让德公式计算积分31sin x e xdx ⎰13.证明等式3524sin...3!5!n nn n ππππ=-+试依据sin(3,6,12)n n nπ=的值,用外推算法求π的近似值。

定理 6.4 设函数0()F h 逼近数*F 的余项为312*012312(),0p p p F F h h h h p p ααα-=+++<<<(6.23)则由()()11001(),011p p F qh q F h F h q q-=<<- ,q 为任意常数 定义的函数1()F h 也逼近*F ,且有()()3211*123()p p F F h h hαα-=++17. 确定数值微分公式的截断误差表达式00001()[4()3()(2)]2f x f x h f x f x h h'≈+--+ 答()23f h ξ'''。

相关文档
最新文档