微分方程数值解练习题课

合集下载

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析

微分方程基础练习题(简易型)含答案解析题目1. 解微分方程 $\frac{dy}{dx} = 3x^2 + 2x$,其中 $y(0)=1$。

2. 解微分方程 $\frac{dy}{dx} + y = x$,其中 $y(0)=1$。

3. 解微分方程 $\frac{dy}{dx} - 2y = -4$。

4. 解微分方程 $\frac{dy}{dx} + 9y = \sin x$。

答案解析1. 对微分方程两边同时积分,得到 $y = x^3+x+c$,其中$c$ 为任意常数。

由 $y(0)=1$ 可求出 $c=1$,所以 $y=x^3+x+1$。

2. 首先解齐次方程 $\frac{dy}{dx} + y = 0$,得到 $y=Ce^{-x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + y = x$,设其特解为 $y=ax+b$,代入方程得到 $a=\frac{1}{2}$,$b=\frac{1}{2}$。

因此通解为 $y=Ce^{-x}+\frac{1}{2}x+\frac{1}{2}$。

由 $y(0)=1$ 可得到 $C=\frac{1}{2}$,所以 $y=\frac{1}{2}(2e^{-x}+x+1)$。

3. 对微分方程两边同时积分,得到 $y = Ce^{2x}+2$,其中$C$ 为任意常数。

4. 首先解齐次方程 $\frac{dy}{dx} + 9y = 0$,得到 $y=Ce^{-9x}$,其中 $C$ 为任意常数。

对于非齐次方程 $\frac{dy}{dx} + 9y= \sin x$,由于 $\sin x$ 不是指数函数 $e^{kx}$ 的线性组合,所以采用常数变易法,设其特解为 $y=A\sin x + B\cos x$,代入方程得到 $A=-\frac{1}{82}$,$B=\frac{9}{82}$。

因此通解为 $y=Ce^{-9x}-\frac{1}{82}\sin x+\frac{9}{82}\cos x$。

计算物理学(刘金远)课后习题答案第6章:偏微分方程数值解法

计算物理学(刘金远)课后习题答案第6章:偏微分方程数值解法

第6章:偏微分方程数值解法6.1对流方程【6.1.1】考虑边值问题, 01,0(0,)0,(1,)1(,0)t x x u au x t u t u t u x x=<<>ìï==íï=î如果取:2/7x D =,(0.5),1,2,3j x j x j =-D =,8/49t D =,k t k t=D 求出111123,,u u u 【解】采用Crank-Nicolson 方法()11111111211222k k k k k k k k j j j j j j j j u u u u u u u u t x ++++-+-+éù-=-++-+ëûD D 11111113k k k k k kj j j j j j u u u u u u +++-+-+-+-=-+由边界条件:(0,)0x u t =,取100k ku u x-=D ,10,0,1,k ku u k ==L (1,)1u t =,41ku =-1 1 0 0 - (1+2s) -s 0 0 -s (1+2s) -s 0 -s (1+2s) -s 0 s L L L L 101210 0 0 0 (1-2s) s 0 0 s (1-2s) s 0 s ( 1 k n n u u s u u u +-éùéùêúêúêúêúêúêú=êúêúêúêúêúêúêúêúêúëûëûL L L L L 01211-2s) s 0 1 1kn u u u u -éùéùêúêúêúêúêúêúêúêúêúêúêúêúêúêúêúëûëûL 由初始条件:021(72j j u x j ==-,1,2,3j =,212()t s x D ==D -1 1 0 0 0-1 3 -1 0 0 0 -1 3 -1 0 -1 3 -1 0 1012340 0 0 0 01 -1 1 0 00 1 -1 1 0 1 -1 1 1 u u u u u éùéùêúêúêúêúêúêú=êúêúêúêúêúêúëûëû00123 0 1 1u u u u éùéùêúêúêúêúêúêúêúêúêúêúêúêúëûëû000117u u ==,0237u =,0357u =1112327u u -=,111000123123337u u u u u u -+-=-+=,11100234235317u u u u u -+-=-+=114591u =125191u =,136991u =6.2抛物形方程【6.2.1】分别用下面方法求定解问题22(,0)4(1)(0,)(1,)0u u t x u x x x u t u t 춶=ﶶïï=-íï==ïïî01,0x t <<>(1)取0.2x D =,1/6l =用显式格式计算1i u ;(2)取0.2,0.01x t D =D =用隐式格式计算两个时间步。

微分方程数值解习题(李立康)

微分方程数值解习题(李立康)

常微分方程习题 《李立康》习题1.用Euler 方法求初值问题⎩⎨⎧=-='0)0(21u tuu 在1=t 时的近似解(取41=h )。

2.初值问题1300u u u()⎧⎪'=⎨⎪=⎩ 有解3223/u(t )t ⎛⎫= ⎪⎝⎭。

但若用Euler 方法求解,对一切N T ,和HTh =,都只能得到N t u t , (2)1,0==,试解释此现象产生的原因。

3.用Euler 方法计算⎩⎨⎧=='1)0(u uu 在1=t 处的值,取161和41=h ,将计算结果与精确值e =)1(u 相比较。

4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(1243h O t u h -'''-;(2)当1<hL 时,其整体截断误差满足:)1(22--≤Lt n lT m e hLRe εε (3)方法具有二阶收敛速度且稳定。

5.导出用改进Euler 法求解⎩⎨⎧=='1)0(u uu 计算公式mmh h u ⎪⎪⎭⎫ ⎝⎛-+=22 取41=h 计算)1(u 的近似值,并与习题3的结果比较。

6.就初值问题⎩⎨⎧=+='0)0(u bat u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解bt t au +=22相比较。

7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(<h 。

8.对初值问题⎩⎨⎧=-='1)0(2u u u 用41=h 的Euler 方法求解,求出实际计算值t u 与真解tu +=11在)1(u 处的误差,并将它与定理2.3的估计式(2.22)式相比较。

9.证明:Runge-Kutta 方法中);,(h u t ϕ关于u 或t 满足Lipschitz 条件的充分条件是),(u t f 关于t 或u 满足Lipschitz 条件。

微分方程数值解习题课

微分方程数值解习题课

微分方程初值问题数值解习题课一、应用向前欧拉法和改进欧拉法求由如下积分2xt y e dt -=⎰所确定的函数y 在点x =0.5,1.0,1.5的近似值。

解:该积分问题等价于常微分方程初值问题2'(0)0x y e y -⎧=⎪⎨=⎪⎩其中h=0.5。

其向前欧拉格式为2()100ih i i y y he y -+⎧=+⎪⎨=⎪⎩改进欧拉格式为22()2(1)10()20ih i h i i h y y ee y --++⎧=++⎪⎨⎪=⎩将两种计算格式所得结果列于下表二、应用4阶4步阿达姆斯显格式求解初值问题'1(0)1y x y y =-+⎧⎨=⎩00.6x ≤≤ 取步长h=0.1.解:4步显式法必须有4个起步值,0y 已知,其他3个123,,y y y 用4阶龙格库塔方法求出。

本题的信息有:步长h=0.1;结点0.1(0,1,,6)i x ih i i === ;0(,)1,(0)1f x y x y y y =-+==经典的4阶龙格库塔公式为11234(22)6i i hy y k k k k +=++++1(,)1i i i i k f x y x y ==-+121(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+232(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+433(,)0.1 1.1i i i i k f x h y hk x y k =++=--+算得1 1.0048375y =,2 1.0187309y =,3 1.0408184y =4阶4步阿达姆斯显格式1123(5559379)24i i i i i i hy y f f f f +---=+-+-1231(18.5 5.9 3.70.90.24 3.24)24i i i i i y y y y y i ---=+-+++ 由此算出4561.0703231, 1.1065356, 1.1488186y y y ===三、用Euler 方法求()'1,0101x y e y x x y =-++≤≤=问步长h 应该如何选取,才能保证算法的稳定性?解:本题(),1xf x y e y x =-++ (),0,01x y f x y e x λ'==-<≤≤ 本题的绝对稳定域为111x h he λ+=-<得02x he <<,故步长应满足02,00.736he h <<<<四、 求梯形方法111[(,)(,)]2k k k k k k hy y f x y f x y +++=++的绝对稳定域。

《微分方程数值解法》复习、练习题

《微分方程数值解法》复习、练习题

《微分方程数值解法》复习、练习题第一章复习题1、建立差分格式的三个主要步骤(三个离散化)。

2、差分格式的相容性、收敛性概念。

3、Poisson 方程的5点菱形差分格式,矩形、非矩形区域情形边界条件的处理(离散化)。

4、对长方形区域作正方形网格剖分,求解Poisson 方程边值问题的五点菱形差分格式,按什么顺序对节点编号,可使差分方程带宽更窄?(按短方向排)5、差分方程有哪些共同特性,求解选用哪类方法?(大型稀疏,带状,主对角占优等,一般采用迭代法)多重网格等略。

6、极值原理。

7、5点菱形差分格式求解Poisson 方程第一边值问题的收敛性。

第一章练习题1、设有边值问题=?+??-=-==<<<<=?====x u n u u y u u y x x u y y x x 2,1122.00,3.00,2.003.00取h =0.1的正方形网格。

(1)用5点菱形格式在内点建立差分格式;(2)用截断误差为)(2h O 的方法离散化第三边界条件(有两种方式);(3)写出整理后的差分方程的矩阵形式=??????? ????????? ?D C B A u u u u2、定义方形算子如下:(),1,11,11,11,1,2142i j i j i j i j i j i j u u u u u u h---++-++=+++- 试讨论5点方形差分方程,,i j i j u f =逼近微分方程(,)u f x y ?=的截断误差是几阶?3、设有{}220,(,)0,1ln (1)u x y x y u x y ?Ω?=∈Ω=<,取h =1/3,列出5点方形差分格式所得的差分方程。

第二章复习题1、差分格式稳定性与收敛性的定义。

2、有关求特征值的几个结论。

3、判断稳定性的矩阵法和Fourier 分析法(Von-Neumann 条件)的应用。

4、显隐格式在一般情况下的优缺点。

5、熟悉古典显、隐格式,六点对称隐格式(C-N 格式)。

偏微分方程数值解期末试题及参考答案

偏微分方程数值解期末试题及参考答案

《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

微分方程数值解法答案

微分方程数值解法答案

微分⽅程数值解法答案包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。

解答问题关键在过程,能够显⽰出你已经掌握了书上的内容,知道了解题⽅法。

这次考试题⽬的类型:20分的选择题,主要是基本概念的理解,后⾯有五个⼤题,包括差分格式的构造、截断误差和稳定性。

习题⼀1.略2. y y x f -=),(,梯形公式:n n n n n n y hh y y y h y y )121(),(2111+-+=+-=+++,所以0122)1(01])121[()121()121(y hh y h h y h h y hhn h h n n n +--+--+-+=+-+==+-+= ,当0→h 时,x n e y -→。

同理可以证明预报-校正法收敛到微分⽅程的解.3.局部截断误差的推导同欧拉公式;整体截断误差:++++++-++≤1),())(,(11111n nx x n n n n n n n dx y x f x y x f R εε11)(++-++≤n n n y x y Lh R ε,这⾥R R n ≤ ⽽111)(+++-=n n n y x y ε,所以 R Lh n n +=-+εε1)1(,不妨设1()]11111[1111101---++-+-+-≤≤-+-=n n n n Lh Lh Lh R Lh Lh R Lh εεε ]1[2)(02)(00-+≤--x X L x X L eLh R eε4.中点公式的局部截断误差: dx x y x f hx y h x f x y x f yx y n n x x n n n n n n))](,(2)(,2())(,([)(11*1?+++-=-++dx x y x f hx y h x f h x y h x f h x y x y dxx y x f hx y h x f hx y h x f h x y h x f x y x f n n n n x x n n n n n n n x x n n n n n n n n))](,(2)(,2())2(,2([)]2()([))](,(2)(,2())2(,2())2(,2())(,([11++-++++'-'=++-+++++-=??++所以上式为+--+''=?++dx hx x x y e n nx x n n n )2()(11θdx x y x f h x y h x f h x y h x f n n n n x x n n n n))](,(2)(,2())2(,2([1++-++?+ 3218)(LMh h x y Lh e n n ≤+''≤+?中点公式的整体截断误差:dx y x f hy h x f x y x f y x y y x y n n x x n n n n n n n n)],(2,2())(,([)()(111?+++-+-=-++dxy x f hy h x f x y x f h x y h x f x y x f hx y h x f x y x f y x y n n n n n n n n x x n n n n n n n n))],(2,2()))(,(2)(,2()))(,(2)(,2())(,([)(1++-+++++-+-=?+因⽽n n n L h Lh R εεε)21(1+++≤+,R L h Lh n n +++≤-122)21(εε≤≤])21()21(1[2)21(1222222022-+++++++--+++n nL h Lh L h Lh Lh Lh RL h Lh ε )1(00-+≤--x X L x X L e LhR eε 5.略 6.略 7.略8.(1)欧拉法:2.0≤h ;四阶Runge-Kutta ⽅法:278.0≤h (2)欧拉法:3 54≤h ;四阶Runge-Kutta ⽅法:3556.5≤h(3)欧拉法:1≤h ;四阶Runge-Kutta ⽅法:278.0≤h 9.略 10.略习题21.略 2.略 3.略4.差分格式写成矩阵形式为:n n M n M n n n M n M n n e u u u u r t r r r t r r r t r r r t u u u u +?--------= --+-+-++12211221121212121 αβαααβαααβαααβ矩阵的特征值为:)cos(221Mj r r t j πααβλ+-?-=,要使格式稳定,则特征值须满⾜t c j ?+≤1λ,即21≤r α5.利⽤泰勒展式可以得到古典隐式差分格式的截断误差为)(2h t O +?。

微分方程相关习题和答案

微分方程相关习题和答案

微分方程相关习题和答案微分方程是数学中的一个重要分支,它研究的是函数与其导数之间的关系。

微分方程广泛应用于物理、工程、经济等领域,是解决实际问题的有力工具。

在学习微分方程的过程中,习题是不可或缺的一部分,通过解习题可以加深对微分方程理论的理解和掌握。

下面我将给大家介绍几个微分方程相关的习题和答案。

1. 题目:求解一阶线性微分方程y' + 2xy = 3x。

解答:这是一个一阶线性常微分方程,可以使用常数变易法求解。

首先,将方程改写成标准形式y' + p(x)y = q(x),其中p(x) = 2x,q(x) = 3x。

然后,求出齐次线性微分方程y' + 2xy = 0的通解y_h(x)。

通过分离变量法可得y_h(x) =Ce^{-x^2},其中C为常数。

接下来,我们猜测特解y_p(x)为形如y_p(x) = Ax + B的一次多项式。

将y_p(x)代入原方程,整理得到2Ax + 2(Ax + B)x = 3x,比较系数可得A = 3/2,B = -1/4。

因此,特解为y_p(x) = (3/2)x - 1/4。

最后,将通解和特解相加,得到原方程的通解为y(x) = Ce^{-x^2} + (3/2)x - 1/4,其中C为常数。

2. 题目:求解二阶常系数齐次线性微分方程y'' - 4y' + 4y = 0。

解答:这是一个二阶常系数齐次线性微分方程,可以使用特征方程法求解。

首先,写出特征方程r^2 - 4r + 4 = 0,并求出其特征根r_1 = r_2 = 2。

由于特征根相等,所以通解形式为y(x) = (C_1 + C_2x)e^{2x},其中C_1和C_2为常数。

如果题目给出了初始条件,可以利用初始条件求解出具体的解。

例如,若已知y(0) = 1和y'(0) = 2,代入通解中的x = 0和x = 0的导数,得到C_1 = 1和C_2 = 1。

微分方程数值解法数值计算实验题目

微分方程数值解法数值计算实验题目

y
x
数 值 解 和 精 确 解 的 误 差 曲 面 (N=8)
0.05
u
0
-0.05 1 4 0.5 1 0 3 2 0
y
xቤተ መጻሕፍቲ ባይዱ
数 值 解 和 精 确 解 的 误 差 曲 面 (N=16)
0.02
0.01
u
0
-0.01
-0.02 1 4 0.5 1 0 3 2 0
y
x
数 值 解 和 精 确 解 的 误 差 曲 面 (N=32)
y
x
Δu -0.0006 -0.0000 0.0006 -0.0009 -0.0000 0.0009 -0.0006 -0.0000 0.0006
程序运行中,请稍等…… =================================================================== i 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000 3.0000 3.0000 3.0000 j xi yj u(精确) u1(数值) ------------------------------------------------------------------1.0000 0.7854 0.2500 -0.0265 -0.0271 2.0000 3.0000 1.0000 2.0000 3.0000 1.0000 2.0000 3.0000 0.7854 0.7854 1.5708 1.5708 1.5708 2.3562 2.3562 2.3562 0.5000 0.7500 0.2500 0.5000 0.7500 0.2500 0.5000 0.7500 -0.0000 0.0265 -0.0375 -0.0000 0.0375 -0.0265 -0.0000 0.0265 -0.0000 0.0271 -0.0384 -0.0000 0.0384 -0.0271 -0.0000 0.0271

微分方程数值解法 第四版课后答案

微分方程数值解法 第四版课后答案

§2 一维差分格式 P671. 用有限体积法导出逼近微分方程(2.2.1)的差分方程。

2. 构造逼近(")"(')',()'()0,()'()0pu qu ru fu a u a u a u a++=====的中心差分格式。

§3 矩形网的差分格式P751. 用有限体积法构造逼近方程()[((,(2.3.21)u u k u k k f x x y y∂∂∂∂-∇∇=-+=∂∂∂∂ 的第一边值问题的五点差分格式,这里min (,)0.k k x y k =≥>2. 用有限体积法构造逼近方程(2.3.21)的第二边值问题的五点差分格式。

§4 三角形网的差分格式 P802. 构造逼近方程()[()()],(2.3.21)u u k u k k f x x y y∂∂∂∂-∇∇=-+=∂∂∂∂的三角网差分格式。

第三章 抛物型方程的有限差分法§1 最简差分格式P112 2题§2 稳定性与收敛性P121 1题P121 2题§3 Fourier方法 P127 1题§4 判别差分格式稳定性的代数准则P132 3题第四章 双曲型方程的有限差分法§1 波动方程的差分逼近 P158 1题P158 2题§3 初值问题的差分逼近P174 3 (4.3.32)第五章 边值问题的变分形式与Ritz-Galerkin法§1 二次函数的极值 P185 1题§3 两点边值问题 P198 1题P198 3题§4 二阶椭圆边值问题 P205 3题P205 4题。

微分方程数值解――

微分方程数值解――
微分方程数值解――
第二章习题
1.设 为 的一阶广义导数,试用类似办法定义 的 阶广义导数 ( )。
解:对一维情形,函数的广义导数是通过分部积分来定义的。
我们知, 的一阶广义导数位 ,如果满足
类似的, 的 阶广义导数为 ,如果有
2.试建立与边值问题
等价的变分问题。
证明:

对方程 两边同乘以 ,再关于 在 上积分 ,得
其中
记 , 。于是我们得到以下等价变分问题的提法:
设 是原边值问题 的解的充分必要条件是,它是以下变分问题的解:
,其中
这个等价性是容易证明的。事实上,上述推导过程已经将充分性证明了,我们只要就必要性予以证明。注意到 ,由其反推,便可证得必要性。
3.对边值问题
其中 , , ,
建立虚功原理或极小位能原理。
解:
由题意,试探函数空间
检验函数空间
虚功原理:设 是原问题的解,当且仅当 是以下变分问题的解
其中, ,
证明:必要性
设 是原问题的解,对方程 两边同乘以 ,再关于 在 上积分 ,得
其中


则有
充分性
设 是变分问题 的解,即
由 式,
特别,取 ,则 ,
于是, ,所以由变分法基本引理知, ,即 式成立。
将 代入 得到
于是得到
即 式成立。
综上,等价性得到证明。
如要建立极小位能原理,则首先要对原边值问题齐次化。

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

计算物理学(刘金远)第5章:微分方程(课后习题及答案)

5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。

经典偏微分方程课后习题答案

经典偏微分方程课后习题答案

第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。

取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。

u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。

偏微分方程习题及答案

偏微分方程习题及答案

偏微分方程习题及答案【篇一:偏微分方程数值解法期末考试题答案】题答案及评分标准学年学期:专业:班级:课程:教学大纲:使用教材:教材作者:出版社:数学与应用数学数学偏微分方程数值解法《偏微分方程数值解法》教学大纲(自编,2006)《偏微分方程数值解法》陆金甫、关治清华大学出版社一、判断题(每小题1分,共10分)1、(o)2、(o)3、(x)4、(x)5、(o)6、(o)7、(o)8、(x)9、(x) 10、(o)二、选择题(每小题2分,共10分) 11、(d) 12、(a) 13、(c) 14、(b)15、(c)三、填空题(每小题2分,共20分)?2?216、2?2??x1?x2?2?2 17、a=[4 5 9;23 5 17;11 23 1] 18、y=exp(-t/3)*sin(3*t) ?xn19、help 20、zeros(m,n)21、inva(a)*b或者a/b22、a=sym([cos(x-y),sin(x+y);exp(x-y),(x-1)^3])?(s)?1?(s)?c[??(s)]2?023、a[?2(s)]2?2b?224????v(?)ed? 25、i?xu(xj,tn?1)?u(xj,tn)?四、计算题:(每小题12分,共36分)?u?u?0(x?r,t?0)的有限差分方程(两层显示26、写成对流方程?a?t?x格式,用第n层计算第n+1层),并把有限差分方程改写为便于计算的迭代格式???/h为网格比。

解:在点(xj,tn)处,差分方程为?1un?unjj??anunj?1?ujh?0(j?0,?1,?2,,n?0,1,2,)(8分)便于计算的形式为?1nnn???/h (4分) un?u?a?(u?ujjj?1j),?u?2u?a2的有限差分方程(中心差分格式,用第n层27、写出扩散方程?t?x计算第n+1层),并把有限差分方程改写为便于计算的迭代格式,???/h2为网格比。

第六章微分方程习题详解

第六章微分方程习题详解

第六章微分方程习题详解习题六答案详解三、1.(1)分离变量 22sec sec d tan tan y xy dx y x=-两边积分 22sec sec d tan tan y xy dx y x =-??11dtan tan tan tan y d x y x =-?? 微分方程的通解: t a n t a n y x C =;(2) 211()22x y y '-=分离变量2112dy dx y x=- 两边积分 2112dy dx y x =-??微分方程的通解: 11ln()2x C y =-+;(3)分离变量d 1010xy y dx =;两边积分 d 1010x y ydx =??微分方程的通解: 10100x y C -++=;(4)分离变量 23(1)y dy x dx +=-两边积分 23(1)y dy x dx +=-?? 微分方程的通解: 241134y y x C +=-+;(5)分离变量 2y x e dy e dx = ,两边积分 2y x e dy e dx =??微分方程的通解: 212y x e e C =+02012e e C ?=+12C =微分方程的特解: 21122y x e e =+;(6)分离变量 l n s i n d y d xy y x = 两边积分 l n s i n d y d xy y x=?? 微分方程的通解: l n c s c c o t y C x x=-ln csccot22e C ππ=-1C =微分方程的特解: l n c s c c o t y x x =-;(7) ()s i n c o s ,()x P x x Q xe -== cos cos sin ()xdx xdxx y e e e dx C --??=+?微分方程的通解: s i n ()x y e x C -=+ ;(8)d ln d y y y x x x= ,y dy duu u xx dx dx ==+ ln duu x u u dx +=(ln 1)du dxu u x=-(ln 1)du dxu u x =-??ln 1u Cx -=微分方程的通解: ln 1yxC x =+;(9) ,y d y d uu u x x d x d x==+1du u x u dx u +=+1du x dx u =dxudu x =dxudu x =?? 21ln 2u x C =+ 微分方程的通解:21()ln 2yx C x =+212()ln121C =+ 2C = 微分方程的特解:21()ln 22y x x=+;(10) 123y y x x x'+=++112[(3)]dx dx x x y e x e dx C x-=+++?微分方程的通解:32113[2]32y x x x C x =+++;(11) t a n t a n [s i n 2]x d x x d xy e x e d x C -??=+?cos [2sin ]y x xdx C =+?微分方程的通解:cos (2cos )y x x C =-+;(12) 33[8]dx dxy e e dx C -??=+?微分方程的通解:338[]3x x y e e C -=+303082[]3e e C -??=+23C =-微分方程的特解:3382[]33x x y e e -=-;(13) ()1s i n,()x P x Q x x x == 11sin ()dx dx x xx y e e dx C x-??=+?微分方程的通解:1(cos )y x C x=-+11(cos )C ππ=-+C π=微分方程的特解:1(cos 1)y x x π=-+- ;(14)1ln dx x dy y y-= ()11,()ln P y Q y y y=-=11()()1[]ln dydyyy x e e dy C y---??=+?微分方程的通解:(ln ln )x y y C =+;(15)令211,du dyu y dx y dx==-du3d xu x x+=- 33(())xdx xdxu e x e dx C -??=-+?2232321(())x x x d x C e=-+?221()3x x e e C -=-+微分方程的通解: 22332211()3x x e e C y -=-+ ;(16)令4514,du dyu y dx y dx==-du44d u x x+=- 44((4))dx dxu e x e dx C -??=-+?44((4))x x e x e dx C -=-+? 4441()4x x x e xe e C -=-++ 微分方程的通解: -4x 44411=e ()4xx xe e C y-++。

微分方程数值解问题复习题

微分方程数值解问题复习题
一个作为代表,即可)(补考用) 解答提示: 考虑对试验方程
dy = λ y 运用这些格式。作为课程设计问题之一,具体的步 dx
骤已经在上课的时候讲过,请自己写上。例如,对于经典四级四阶 Runge-Kutta 格式,我们如此求其绝对稳定区域。 经典四级四阶 Runge-Kutta 格式为
1 ⎧ ⎪ yn +1 = yn + 6 h( K1 + 2 K 2 + 2 K 3 + K 4 ) ⎪ ⎪ K1 = f ( xn , yn ) ⎪ 1 1 ⎪ ⎨ K 2 = f ( xn + h, yn + hK1 ) 2 2 ⎪ 1 1 ⎪ ⎪ K 3 = f ( xn + 2 h, yn + 2 hK 2 ) ⎪ ⎪ ⎩ K 4 = f ( xn + h, yn + hK 3 )
3
⎧ ⎧ ⎪1 − c1 − c2 = 0 ⎪c1 + c2 = 1 ⎪ ⎪ 1 ⎪1 ⎪ 3 根据 en +1 = O(h ) ,必须 ⎨ − a2 c2 = 0 ,也就是 ⎨a2 c2 = 。 2 ⎪2 ⎪ 1 ⎪1 ⎪ − c2b21 = 0 b21c2 = ⎪ ⎪ ⎩2 2 ⎩
1 令 c1 = c2 = , a2 = b21 = 1 ,就得到了预报-校正格式: 2 1 ⎧ ⎪ yn +1 = yn + 2 h( K1 + K 2 ) ⎪ ⎨ K1 = f ( xn , yn ) ⎪ K = f ( x + h, y + hK ) n n 1 ⎪ 2 ⎩ 6.求二级二阶,三级三阶,四级四阶 Runge-Kutta 格式的绝对稳定区域。(分别选
⎛t ⎞ ⎛ t ⎞ t (t − 1) ⋅⋅⋅ (t − j + 1) ⎛t ⎞ ,特别地, ⎜ ⎟ = 1 , ⎜ ⎟ = t 。 ⎜ ⎟= j! ⎝0⎠ ⎝ 1⎠ ⎝ j⎠ a j = (−1) j ∫ −t (−t − 1) ⋅⋅⋅ (−t − j + 1) 1 1 dt = ∫ t (t + 1) ⋅⋅⋅ (t + j − 1)dt 0 j! j! 0

偏微分方程数值解期末试题及参考答案

偏微分方程数值解期末试题及参考答案

《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

第六章_常微分方程初值问题的数值解法_习题课

第六章_常微分方程初值问题的数值解法_习题课

h2 h3 y ( x n ) y ( x n ) O(h 4 ) 2 6 而且 y ( x n ) f ( x n , y ( x n )) , y ( x n 1 ) f ( x n 1 , y ( x n 1 )) ,对 y ( x n 1 ) 也在 x n 处作 Talor 展开, y ( x n 1 ) y ( x n ) hy ( x n )
湖北民族学院理学院《数值计算方法》教学辅导材料
陈以平编写
h2 h3 y ( x n ) y ( x n ) O(h 4 ) 2 6 h h h2 h3 y ( x n ) y ( x n ) y ( x n ) y ( x n ) y ( x n ) O(h 4 ) 2 2 2 12 h3 y ( x n ) O(h 4 ) O(h 3 ) 12 h3 所以,梯形公式是 2 阶方法,其截断误差的主项是 y ( x n ) 。 12 y ( x n ) hy ( x n )
y k (0.9 0.1y k sin x k ) 0.1( y k 1 y k 1 sin x k 1 )
2
当 k=0,x0=1, y0=1 时,x1=1.2,有 y y (. . y sin x ) (. sin ) .
y f ( x, y ) 3.求解初值问题 欧拉法的局部截断误差是( y ( x ) y 改进欧拉法的局部截断误差是( ); 四阶龙格-库塔法的局部截断误差是( ). (A)O(h2) (B)O(h3) (C)O(h4) (D)O(h5)
4. 改进欧拉法的平均形式公式是( ) y p y k hf ( x k , y k ) y p y k hf ( x k , y k ) (B) y c y k hf ( x k , y p ) .(A) y c y k hf ( x k , y p ) y k ( y p y c ) y k ( y p y c ) y p y k hf ( x k , y k ) y p y k hf ( x k , y k ) (C) y c y k hf ( x k , y p ) (D) y c y k hf ( x k , y p ) y k h ( y p y c ) y k ( y p y c ) (D) 答案:

微分方程数值解法(戴嘉尊)习题解答

微分方程数值解法(戴嘉尊)习题解答

+
R Lh
(eL( X
− x0 )
−1)
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月
成都信息工程学院>>精品课程>>微分方程数值解
11、解:令 f(x,y)=-y+x+1
y y y x y x y x = + h(− + +1) = (1− h) + h( +1) = 0.9 + + 0.1
0.0988*1.0e-3
0.9
0.4973
0.4972
0.0640*1.0e-3
1
0.5002
0.5000
0.1773*1.0e-3
2.解:显然, y = e−x 是原初值问题的准确解。 由梯形公式得
整理可得: 于是:
yn+1
=
yn
+
h 2
[
f
(
xn
,
yn
)
+
f
(xn+1, yn+1)]
=
yn
+
h 2
成都信息工程学院>>精品课程>>微分方程数值解
微分方程数值解 习题解答
杨韧 吴世良(编)
成都信息工程学院 数学学院
二 O 一 O 年四月编写
电子文档制作:成都信息工程学院 数学学院 杨韧 吴世良,2010 年 4 月

成都信息工程学院>>精品课程>>微分方程数值解

第一章 常微分方程数值解 ......................................................................3 第二章 抛物型方程的差分方法 ..............................................................8 第三章 椭圆型方程的差分方法 ............................................................16 第四章 双曲型方程的差分方法 ............................................................25

微分方程数值解法(李荣华3版)第二章习题答案(大)

微分方程数值解法(李荣华3版)第二章习题答案(大)

第二章习题课(2007.4.28)习题1.求两点边值问题22sin , 0142(0)0, (1)0xLu u u x u u ππ⎧''=-+=<<⎪⎨⎪'==⎩(1.1)的线性有限元解函数(区间等距剖分成2段或3段),要求在计算总刚度矩阵和总荷载向量时,所涉及的定积分用两种方法: 1. 精确求解;2. 用中矩形公式近似计算。

解:第一步:写出原问题(1.1)的等价变分形式(基于虚功原理)试探函数空间和检验函数空间均为:11(){ |(), ()0 }E H I u u H I u a =∈=.在(1.1)的第一个式子两边同时乘以检验函数空间1()E H I 中的任意元素v ,再在区间(0,1)I =上积分,可得21112sin42xu vdx uvdx vdx ππ''-+=⎰⎰⎰ (1.2)其中111011[(1)(1)(0)(0)]u vdxu v dx vu u v dx v u v u u v dx'''''-=-''''=--''=⎰⎰⎰⎰分部积分(1.3)将(1.3)代入(1.2),可得211()2sin42xu v uv dx vdx ππ''+=⎰⎰记21010(,)()4()2sin 2a u v u v uv dx x f v vdxππ⎧''=+⎪⎪⎨⎪=⎪⎩⎰⎰ 则可以得到原问题(1.1)的等价变分问题:求1()E u H I ∈,使得1(,)(), ()Ea u v f v v H I =∀∈. (1.4)第二步:线性有限元空间的构造1.网格剖分(这里以等距剖分3段为例)2.一次Lagrange 有限元空间的定义1{ ():|(),1,2,3, (0)0 }E i h h h e i h V u C I u P e i u =∈∈==.3. Lagrange 节点基函数的构造113, [0,]312()23, [,]330,x x x x x φ⎧∈⎪⎪⎪=-∈⎨⎪⎪⎪⎩在别处 ; 21231, [,]332()33, [,1]30,x x x x x φ⎧-∈⎪⎪⎪=-∈⎨⎪⎪⎪⎩在别处; 3232, [,1]()30,x x x φ⎧-∈⎪=⎨⎪⎩ 在别处.4.空间E hV 中元素的(整体)表示记 (), 1,2,3i h i u u x i ==,则对E hh u V ∀∈,有31()()h j j j u x u x φ==∑ (1.5)第三步:写出线性有限元方程将原变分问题(1.4)中1()EHI 的试探函数子空间和检验函数子空间均取为E h V ,则可以得到原问题(1.1)的近似变分问题:求 E hhu V ∈,使得 (,)(), E h h h h h a u v f v v V =∀∈. (1.6)利用(1.5)并将 h v 取为(), 1,2,3i x i φ=则上述近似变分问题等价于求123,,u u u R ∈,使得31(,)(), 1,2,3j j i i j a u f i φφφ===∑⇔ 31(,)(), 1,2,3j i j i j a u f i φφφ===∑⇔ 31(,)(), 1,2,3i j j i j a u f i φφφ===∑ 写成矩阵形式AU b =其中111213212223313233(,)(,)(,)(,)(,)(,)(,)(,)(,)a a a A a a a a a a φφφφφφφφφφφφφφφφφφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,123u U u u ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 123()()()f b f f φφφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中(a ) 精确求解以11(,)a φφ和1()f φ的计算为例:212211110122222223311111031222222233103(,)[()]4[()][()]44[3(3)][(3)(23)]44a dxdx dxx dx x dx πφφφφππφφφφππ'=+''=+++=++-+-=⎰⎰⎰⎰⎰1221(,)(,)a a φφφφ==,1331(,)(,)a a φφφφ==,22(,)a φφ=2332(,)(,)a a φφφφ==,33(,)a φφ=11101233103()2sin2 2sin (3)2sin (23)22xf dxx x x dx x dx πφφππ==+-=⎰⎰⎰(b )中矩形公式近似求解中矩形公式:()()()2baa bg x dx b a g +≈-⎰.以11(,)a φφ和1()f φ的计算为例:222222112221111(,)[3(3)][(3)(23)]34634211 (9)(9)3163162 (9)316a ππφφπππ≈++-+-=+++=+ 111111162()2sin (3)2sin (23)32632222 sin sin32438f ππφππ≈+-=+习题2.导出下面边值问题1122(), ()(), ()()d du Lu p qu f a x bdx dx u a u a u b u b αβαβ⎧=-+=<<⎪⎨⎪''+=+=⎩ (2.1)的线性有限元方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程初值问题数值解习题课一、使用向前欧拉法和改进欧拉法求由如下积分2xt y e dt -=⎰所确定的函数y 在点x =0.5,1.0,1.5的近似值。

解:该积分问题等价于常微分方程初值问题2'(0)0x y e y -⎧=⎪⎨=⎪⎩其中h=0.5。

其向前欧拉格式为2()100ih i i y y he y -+⎧=+⎪⎨=⎪⎩改进欧拉格式为22()2(1)10()20ih i h i i h y y ee y --++⎧=++⎪⎨⎪=⎩将两种计算格式所得结果列于下表二、使用4阶4步阿达姆斯显格式求解初值问题'1(0)1y x y y =-+⎧⎨=⎩00.6x ≤≤ 取步长h=0.1.解:4步显式法必须有4个起步值,0y 已知,其他3个123,,y y y 用4阶龙格库塔方法求出。

本题的信息有:步长h=0.1;结点0.1(0,1,,6)i x ih i i ===;0(,)1,(0)1f x y x y y y =-+==经典的4阶龙格库塔公式为 11234(22)6i i hy y k k k k +=++++1(,)1i i i i k f x y x y ==-+121(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+232(,)0.05 1.0522i i i i hk hk f x y x y k =++=--+433(,)0.1 1.1i i i i k f x h y hk x y k =++=--+算得1 1.0048375y =,2 1.0187309y =,3 1.0408184y = 4阶4步阿达姆斯显格式1123(5559379)24i i i i i i hy y f f f f +---=+-+-1231(18.5 5.9 3.70.90.24 3.24)24i i i i i y y y y y i ---=+-+++由此算出4561.0703231, 1.1065356, 1.1488186y y y ===三、用Euler 方法求()'1,0101x y e y x x y =-++≤≤=问步长h 应该如何选取,才能保证算法的稳定性?解:本题(),1xf x y e y x =-++ (),0,01x y f x y e x λ'==-<≤≤ 本题的绝对稳定域为111x h he λ+=-<得02x he <<,故步长应满足02,00.736he h <<<< 四、 求梯形方法111[(,)(,)]2k k k k k k hy y f x y f x y +++=++的绝对稳定域。

证明:将Euler 公式用于试验方程'y y λ=,得到11[]2k k k k hy y y y λλ++=++整理11(1)22k k h h y y λλ+⎛⎫-=+ ⎪⎝⎭ 设计算k y 时有舍入误差,0,1,2,k k ε=,则有11(1)22k k h h λλεε+⎛⎫-=+ ⎪⎝⎭ 据稳定性定义,要想1k k εε+≤,只须1122h hλλ+≤-因此方法绝对稳定域为复平面h λ的整个左半平面(?),是A-稳定的。

五、对初值问题'(0)1y y y =-⎧⎨=⎩01x ≤≤ 证明:用梯形公式111[(,)(,)]2n n n n n n hy y f x y f x y +++=++求得的数值解为22nn h y h -⎛⎫= ⎪+⎝⎭并证明当步长0h →时,n y 收敛于该初值问题的精确解xn y e -=证明:由梯形公式,有1111[(,)(,)][]22n n n n n n n n n h hy y f x y f x y y y y ++++=++=+--整理,得122n n h y y h +-⎛⎫= ⎪+⎝⎭由此递推公式和初值条件,有02222n nn h h y y h h --⎛⎫⎛⎫== ⎪ ⎪++⎝⎭⎝⎭[0,1]x ∀∈,则有在区间[][]0,0,1x ⊆上有 n x x nh ==,步长xh n=,由前面结果有02222022lim lim lim 1222lim 12x nhn n n h xhh h xh h h y h h h e h →∞→∞→-++--→-⎛⎫⎛⎫==- ⎪ ⎪++⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥=-= ⎪⎢⎥+⎝⎭⎣⎦由x 的任意性,得所证。

六、对于微分方程'(,)y f x y =,已知在等距结点0123,,,x x x x 处的y 的值为0123,,,y y y y ,h 为步长。

试建立求4y 的线性多步显格式与与隐格式。

解:取积分区间24[,]x x ,对'(,)y f x y =两端积分:()()442242(,)x x x x y x y x dy f x y dx -==⎰⎰对右端(,)f x y 作123,,x x x 的二次插值并积分4242021*********(,)[()(,)()(,)()(,)]x x x x f x y dxl x f x y l x f x y l x f x y dx≈++⎰⎰112233123((,)(,)(,))337h f x y f x y f x y =-+ 得到线性4若对右端在34,x x 两点上作线性插值并积分,有424201331144(,)[()(,)()(,)]x x x x f x y dxl x f x y l x f x y dx≈+⎰⎰442(,)hf x y =由此产生隐格式()42442,y y hf x y =+七、证明线性多步法111(3)()2n n n y h f f αα+-+=++n n-1n-2(y -y )-y 存在α的一个值,使方法是4阶的。

解: 由本题的公式,有111(3)()2n n n y h f f αα+-=-+++n n-1n-2(y -y )+y11()n n n T y x h y ++=+-234(4)5[()'()''()'''()()()]2!3!4!n n n n n h h h y x hy x y x y x y x O h =+++++1[(()())(2)(3)(''())]2n n n n n y x y x h y x h h y y x h αα----+-+++-234(4)5[()'()''()'''()()()]2!3!4!n n n n n h h h y x hy x y x y x y x O h =+++++234(4)5()(()'()''()'''()()())2!3!4!n n n n n n h h h y x y x hy x y x y x y x O h αα+--+-++234(4)5(2)(2)(2)(()2'()''()'''()()())2!3!4!n n n n n h h h y x hy x y x y x y x O h --+-++23(4)51(3)('()'()''()'''()()())22!3!n n n n n h h h y x y x hy x y x y x O h α-++-+++2111[12(3)]'()[2(3)]''()222n n hy x h y x αααα=++-++--++31141[(3)]'''()6634n h y x αα+++-+ 2(4)51121[(3)]()()2424312n h y x O h αα+--+++ 34(4)5311()'''()(9)]()()41224n n h y x h y x O h αα=-+-++当α=9时,51()n TO h +=,局部截断误差是4阶的,故该多步法是4阶方法。

数值积分习题解答说明1.确定下列求积公式中的参数,使其代数精度尽可能高,并指出对应的代数精度(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰ (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰(3)()1121()12()3()/3f x dx f f x f x -≈-++⎡⎤⎣⎦⎰ (4)[][]20()(0)()/2(0)()hf x dx h f f h ah f f h ''≈++-⎰6.若用复化梯形公式计算10x I e dx =⎰问区间[0,1]应分成多少等份才能使截断误差不超过51102-⨯ ?若用复化辛普森公式,要达到同样的精度,区间[0,1]应分成多少等份?7.如果()0f x ''>,证明用梯形公式计算定积分()baI f x dx =⎰所得结果比准确值I 大,说明其几何意义。

10.构造Gauss 型求积公式100110()()()f x dx A f x A f x ≈+⎰11.用n=2,3的高斯-勒让德公式计算积分31sin x e xdx ⎰13.证明等式3524sin...3!5!n nn n ππππ=-+试依据sin(3,6,12)n n nπ=的值,用外推算法求π的近似值。

定理 6.4 设函数0()F h 逼近数*F 的余项为312*012312(),0p p p F F h h h h p p ααα-=+++<<<(6.23)则由()()11001(),011p p F qh q F h F h q q-=<<- ,q 为任意常数 定义的函数1()F h 也逼近*F ,且有()()3211*123()p p F F h h hαα-=++17. 确定数值微分公式的截断误差表达式00001()[4()3()(2)]2f x f x h f x f x h h'≈+--+ 答()23f h ξ'''。

相关文档
最新文档