列方程组解应用题一(含答案)

合集下载

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

六年级奥数应用专题《列方程解应用题》全国通用版(有答案)

列方程解应用题知识框架方程,是一种顺向的“程序”,即设出未知数之后,完全可以根据题目叙述,把各个量翻译出来,找出等量关系划等号即可.一、列方程解应用题的要点(1)设出用哪个未知量表示题目中提到的其他量比较方便,就选择哪个未知量作为未知数.如果只设一个不能进行有效的表达,就再设一两个.(2)翻译用设出的未知数,逐个对应地翻译题目中提到的其他各个量.(3)等量按照题目所述,找出并构建等量关系.等量中很容易忽视的是“不变量”和“相同量”,一定要敏感.【提示】有时虽然设出未知数之后等式列出来了,但方程不好解. 此时,可考虑重设未知数、重列方程或采取其他方法,甚至可以考虑先把问题的目标表达式找出来,“设而不求”——不占而屈人之兵.二、列方程解应用题的优势和局限性关系比较复杂的问题,使用方程,通常可以达到事半功倍的效果.但需要注意的是,方程“单飞”有时无力,需要结合线段图、列表法等,能够发挥更加明显的作用.重难点(1)重点:未知数的选设,其他量的表达,等量关系的寻找(2)难点:未知数的选设,等量关系的寻找,不定方程和不定方程组解的讨论例题精讲一、列一般方程解应用题【例 1】已知足球、篮球、排球三种球平均每个35元.篮球比排球每个贵10元,足球比排球每个贵8元.问:每个篮球多少元?【考点】列方程解应用题【难度】1星【题型】解答【解析】设每个排球x元,则每个篮球为x+10元,每个足球x+8元,由已知列方程:x+x+8+x+10=35×3,15解得x=29.所以每个篮球x+10=29+10=39元.【答案】29【巩固】 有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设开始共有x 人,5x+10=4×1.5x-2, 解得x=12,所以这些糖共有12×5+10=70块.【答案】70【例 2】 一个分数 ,分子与分母的和是122,如果分子、分母郡减去19,得到的分数约简后是 .那么原来的分数是多少?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 方法一:设这个分数为122aa -,则分子、分母都减去19为19191==(122)191035a a a a -----,即5-95=103-a a ,解得33a =,则122-33=89.所以原来的分数是3389方法二:设这个分数为变化后为5a a ,那么原来这个分数为19519a a ++,并且有(19)(519)a a +++=122, ,解得.=14.所以原来的分数是3389. 【答案】3389【巩固】 如下左图中的短除式所示,一个自然数被8除余1,所得的商被8除余1,再把第二次所得的商被8除后余7,最后得到的一个商是a .如下右图中的短除式表明:这个自然数被17除余4,所得的商被17除余15,最后得到的一个商是a 的2倍.求这个自然数.【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 由题意知()()878181172174,a a +⨯+⨯+=+++⎡⎤⎣⎦整理得512a+457=578a+259,即66a=198,a=3.于是,[(80+1)×8+1]× 8+1=1993.【答案】1993【例 3】 一条船往返于甲、乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶.已知船在静水中的速度为8千米/时,平时逆行与顺行所用的时间比为2∶1.某天恰逢暴雨,水流速度为原来的2倍,这条船往返共用9时.问:甲、乙两港相距多少千米?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两港相距x 千米,原来水流速度为a 千米/时根据题意可知,逆水速度与顺水速度的比为2∶1,即(8-a )∶(8+a )=1∶2,于是有8+a=2(8-a),解得a=38再根据暴雨天水流速度变为2a 千米/时,则有92828=-++axa x把a=38代入,得938283828=⨯-+⨯+x x解得x=20.【答案】20【巩固】 如图,沿着边长为90米的正方形,按逆时针方向,甲从A 出发,每分钟走65米,乙从B 出发,每分钟走72米.当乙第一次追上甲时在 正方形的哪一条边上?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设追上甲时乙走了x 分.依题意,甲在乙前方3×90=270(米),故有72x =65x+270.解得7270=x .在这段时间内乙走了712777727072=⨯(米).由于正方形边长为90米,共四条边,故由,可以推算出这时甲和乙应在正方形的DA 边上. 【答案】DA 边上二、 列一般方程组解应用题【例 4】用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?【考点】列方程解应用题【难度】3星【题型】解答【解析】设用x张铁皮制盒身,y张铁皮制盒底.⎩⎨⎧=⨯=+yxyx43216150解得xy==⎧⎨⎩8664所以86张铁皮制盒身,64张铁皮制盒底.【答案】86;64【巩固】运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程解应用题【难度】3星【题型】解答【解析】设乙车运x箱,每箱装y个苹果,列表如下:(x+4)(y-3)-xy=3xy-(x-4)(y+5)=5化简为:4y-3x=15, ①5x-4y=15, ②①+②,得:2x=30,于是x=15.将x=15代人①或②,可得:y=15.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:12×19+15×15+20×11=673(个).【答案】673【例 5】有甲、乙、丙、丁4人,每3个人的平均年龄加上余下一人的年龄分别为29,23,2l和17.这4人中最大年龄与最小年龄的差是多少?⎧⎨⎩【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 设这些人中的年龄从大到小依次为x 、y 、z 、w ,①+②+③十④得:2(x +y+z+w )=90, 则3x y z w+++=15…………………………………………⑤①-⑤得:2143x = , x =21; ④-⑤得:223z =, z=3; 所以最大年龄与最小年龄的差为x w - =21—3=18(岁) 【答案】18三、 列不定方程或不定方程组解应用题【例 6】 新发行的一套邮票共3枚,面值分别为20分、40分和50分,小明花5.00元买了15张.问:其中三种面值的邮票各多少张?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 根据题意,设面值20分的x 张,面值40分的y 张,面值50分的z 张,可列方程得152********x y z x y z ++=⎧⎨++=⎩解得672x y z =⎧⎪=⎨⎪=⎩所以20分的6张,40分的7张,50分的2张【答案】6;7;2【巩固】 某次数学竞赛准备了22支铅笔作为奖品发给获得一、二、三等奖的学生,原计划一等奖每人发6支,二等奖每人发3支,三等奖每人发2支.后来又改为一等奖每人发9支,二等奖每人发4支,三等奖每人发1支.问:获一、二、三等奖的学生各几人?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 根据题意,设一等奖x 人,二等奖y 人,三等奖z 人,可列方程得632229422x y z x y z ++=⎧⎨++=⎩解得125x y z =⎧⎪=⎨⎪=⎩所以,一等奖1人,二等奖2人,三等奖5人.【答案】1;2;5【例 7】 工程队要铺设78米长的地下排水管道,仓库中有3米和5米长的两种管子.问:可以有多少种不同取法?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 根据题意,设3米管子x 根,5米管子y 根,可列方程得3578x y +=解得260x y =⎧⎨=⎩或213x y =⎧⎨=⎩或166x y =⎧⎨=⎩或119x y =⎧⎨=⎩或612x y =⎧⎨=⎩或115x y =⎧⎨=⎩所以共有6种取法.【答案】6【巩固】 用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法? 【考点】列方程解应用题 【难度】4星 【题型】解答 【解析】 根据题意,设5分有x 个,2分有y 个,1分有z 个,可列方程得52100x y z ++=5分取20个,有1种.5分取19个,2分有3种取法(2个、1个、0个),共3种. 5分取18个,共6种.(同上) 5分取17个,共8种. 5分取16个,共11种. ......根据规律不难求出共有1+3+6+8+11+13+16+18+21+23+26+28+31+33+36+38+41+43+46+48+51 =18+58+98+138+178+51 =490+51 =541【答案】541【例 8】 某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设男职工x 人,孩子y 人,则女职工3y -x 人(注意,为何设孩子数为y 人,而不是设女工为y 人),那么有()131036x y x y +-+=216,化简为336x y +=216,即12x y +=72. 有122436486054321x x x x x y y y y y ⎧=⎧====⎧⎧⎧⎪⎨⎨⎨⎨⎨=====⎩⎩⎩⎪⎩⎩. 但是,女职工人数为3y x -必须是自然数,所以只有125x y =⎧⎨=⎩时,33y x -=满足.那么男职工数只能为12名.【答案】12【巩固】 一居民要装修房屋,买来长0.7米和O.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:O.7+O.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设0.7米,0.8米两种木条分别x ,y 根,则0.7x +0.8y =3.4,3.6……,即7x +8y =34,36,37,38,39. 将系数,常数对7取模,有y ≡6,l ,2,3,4(mod 7),于是y 最小分别取6,1,2,3,4.但是当y 取6时,8×6=48超过34,x 无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.【答案】3.4【例 9】 某人在公路上行走,往返公共汽车每隔4分就有一辆与此人迎面相遇,每隔6分就有一辆从背后超过此人.如果人与汽车均为匀速运动,那么汽车站每隔几分发一班车?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设汽车站每隔x 分发一班车,某人的速度是v1,汽车的速度为v2,依题意得由①、②,得将③代入①,得x =4.8所以汽车站每隔4.8分钟发一班车 【答案】4.8【巩固】 某地收取电费的标准是:若每月用电不超过50千瓦时,则每千瓦时收5角;若超过50千瓦时,则超出部分按每千瓦时8角收费.某月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少千瓦时电?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意可知,因为3元3角既不是5角的整数倍,也不是8角的整数倍.所以甲用的电超过50千瓦时,乙用的电没有超过50千瓦时,设甲用的电超过50千瓦时的部分为x 千瓦时电,乙用的电与50千瓦时相差y 千瓦时电,可列方程得8533x y +=解得15x y =⎧⎨=⎩所以甲用了50+1=51(千瓦时)的电,乙用了50-5=45(千万时)的电.【答案】51;45【例 10】 某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设每班有a(30<a≤45)名学生,每人平均捐款x 元(x 是整数),依题意有:x(14a+35)=1995.于是14a+35|1995.又3l <a≤45,所以469<14a+35≤665,而1995=3×5×7×19,在469与665之间它的约数仅有665,故14a+35=665,x=3,平均每人捐款3元.【答案】3【巩固】 一次数学竞赛中共有A 、B 、C 三道题,25名参赛者每人至少答对了一题.在所有没有答对A 的学生中,答对B 的人数是答对C 的人数的两倍,只答对问题A 的人数比既答对A 又至少答对其他一题的人数多1.又已知在所有恰好答对一题的参赛者中,有一半没有答对A .请问有多少学生只答对B?【考点】列方程解应用题 【难度】4星 【题型】解答【解析】 设不只答对A 的为x 人,仅答对B 的为y 人,没有答对A 但答对B 与C 的为z 人.解得:253233x y z x-⎧=⎪⎨⎪=-⎩,,6,y z x ≥≥x =7时,y 、z 都是正整数,所以7,6,2x y z ===. 故只答对B 的有6人. 【答案】6课堂检测【随练1】 有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒.问:队伍有多长?【考点】经济问题 【难度】2星 【题型】解答 【解析】 设通讯员从末尾赶到排头用了x 秒,依题意得2.6x-1.4x=2.6(650-x )+1.4(650-x )解得x =500所以队伍长为(2.6-1.4)×500=600(米)【答案】600【随练2】 六(1)班举行一次数学测验,采用5级计分制(5分最高,4分次之,以此类推).男生的平均成绩为4分,女生的平均成绩为3.25分,而全班的平均成绩为3.6分.如果该班的人数多于30人,少于50人,那么有多少男生和多少女生参加了测验?【考点】列方程解应用题 【难度】3星 【题型】解答 【解析】 设该班有x 个男生和y 个女生,于是有4x+3.25y=3.6(x+y ),化简后得8x=7y.从而全班共有学生在大于30小于50的自然数中,只有45可被15整除,所以推知x =21,y=24. 【答案】21;24【随练3】 (1)将50分拆成10个质数之和,要求其中最大的质数尽可能大,则这个最大质数是多少?(2)将60分拆成10个质数之和,要求其中最大的质数尽可能小,则这个最大的质数是多少?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 (1)首先确定这10个质数或其中的几个质数可以相等,不然10个互不相等的质数和最小为2+3+5+7+11+13+17+19+23+29,显然大于50. 所以,其中一定可以有某几个质数相等. 欲使最大的质数尽可能大,那么应使最小的质数尽可能小,最小的质数为2,且最多可有9个2,那么最大质数不超过50—2×9=32,而不超过32的最大质数为31. 又有82502222331=++++++个,所以满足条件的最大质数为31.(2)最大的质数必大于5,否则10个质数的之和将不大于50. 所以最大的质数最小为7,为使和为60,所以尽可能的含有多个7.60÷7=8……4,8760=7+7+7++7+4个,而4=2+2,恰好有8760=7+7+7++7+2+2个.即8个7与2个2的和为60,显然其中最大的质数最小为7.【答案】31;7【随练4】 在同一路线上有4个人:第一个人坐汽车,第二个人开摩托车,第三个人乘助力车,第四个人骑自行车,各种车的速度是固定的,坐汽车的12时追上乘助力车的,14时遇到骑自行车的,而开摩托车的相遇是16时.开摩托车的遇到乘助力车的是17时,并在18时追上了骑自行车的,问骑自行车的几时遇见乘助车的?【考点】经济问题 【难度】4星 【题型】解答【解析】 设汽车、摩托车、助力车、自行车的速度分别为a ,b ,c ,d ,设在12时骑自行车的与坐汽车的距离为x ,骑自行车的与开摩托车的之间的距离为y .有(①+③)×2一(②+④),得 310()x c d =+,即10()3x c d =+ 设骑自行车的在t 时遇见骑助力车的,则 (12)(),x t c d =-⨯+即10123t -=,所以1153t =. 所以骑自行车的在15时20分遇见骑助力车的. 【答案】15时20分家庭作业【作业1】 甲、乙、丙、丁四人今年分别是16、12、11、9岁.问:多少年前,甲、乙的年龄和是丙、丁年龄和的2倍?【考点】列方程解应用题 【难度】2星 【题型】解答 【解析】 设x 年前,甲乙的年龄和是丙、丁年龄和的2倍.16+12-2x=2×(11+9-2x), 解得x=6.所以,6年前,甲、乙的年龄和是丙、丁年龄和的2倍.【答案】6【作业2】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【考点】列方程解应用题 【难度】2星 【题型】解答【解析】 设这列火车的速度是x 米/秒,依题意列方程,得(x-1)×22=(x-3)×26.解得x=14.所以火车的车身长为(14-1)×22=286(米).【答案】286【作业3】 小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 设套中小鸡x 次,套中小猴y 次,则套中小狗(10-x-y )次.根据得61分可列方程9x+5y+2(10-x-y )=61,化简后得7x=41-3y.显然y 越小,x 越大.将y=1代入得7x=38,无整数解;若y=2,7x=35,解得x=5.【答案】5【作业4】 袋子里有三种球,分别标有数字2,3和5,小明从中摸出几个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设摸出标有数字2的x 个,摸出标有数字3的y 个,摸出标有数字5的z 个,可列方程得23543x y z ++=,x 最大为所求.解得2010x y z =⎧⎪=⎨⎪=⎩所以,摸出标有数字2的最多为20个.【答案】20【作业5】 小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面,在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【考点】列方程解应用题 【难度】3星 【题型】解答【解析】 根据题意,设白天见面的次数为x ,晚上见面的次数为y ,可列方程得3561x y +=白天见面最多时,波斯猫叫声最少.即x 最大为所求.解得125x y =⎧⎨=⎩所以,波斯猫至少叫125327+⨯=(声).【答案】27【作业6】小明买红、蓝两支笔,共用了17元.两种笔的单价都是整数元,并且红笔比蓝笔贵.小强打算用35元来买这两种笔(也允许只买其中一种),可是他无论怎么买,都不能把35元恰好用完.那么红笔的单价是多少元?【考点】列方程解应用题【难度】3星【题型】解答【解析】如下表先枚举出所有可能的单价如表1.再依次考虑:首先,不能出现35的约数.否则只买这种笔就可以刚好用完35元,所以含有7,5,1的组合不可能.然后,也不能出现35—17=18的约数.否则先各买一支需17元,那么再买这种笔就可以花去18元,一共花35元.所以含有9,6,3,2的组合也不可能.所以,只有13+4的组合可能,经检验13x+4y=35这个不定方程确实无自然数解.所以红笔的单价为13元.【答案】13。

列方程(组)、不等式(组)解应用题参考答案

列方程(组)、不等式(组)解应用题参考答案

列方程(组)、不等式(组)解应用题1、某城市按以下规定收取每月的水费:用水量不超过6吨,按每吨1.2元收费;如果超过6吨,未超过部分仍按每吨1.2元收取,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?2、江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量.3、植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?4、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?5、一群学生前往位于青田县境内的滩坑电站建设工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色与红色的安全帽一样多,而每位女生看到白色的安全帽是红色的2倍.根据这些信息,请你推测这群学生共有多少人?6、A 、B 两地相距40km ,甲骑自行车从A 地出发1小时后,乙也从A 地出发,用相当于甲的1.5的速度追赶,当追到B 地时,甲比乙先到20分钟,求甲、乙两人的速度.7、 某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?8、北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)9、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.10、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?。

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

三元一次方程组解应用题专项练习题(有标准答案)ok

三元一次方程组解应用题专项练习题(有标准答案)ok
故原来的三位数是287.
15、解:设甲乙丙各植树x,y,z棵树,根据题意得:
X+y+z=50x=25
Y= (x+z)解得:y=10
X=y+z z=15
16、解:设共获得金牌、银牌、铜牌分别为x、y、z块,
根据题意,得x+y+z=100
x=2y+9
z=y+7,
解得x=51 y=21 z=28,
∴获得金牌、银牌、铜牌分别为51、21、28块.
则□、△、○分别代表什么数字?并说明理由
18、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18
只,有118条腿和20对翅膀.每种小虫各几只?
19、有大、中、小三辆车共载乘客180人,已知大型车载客人数比中型车载个人数的3倍还
多1人,小型车载客人数比中型车载客人数的二分之一还少1人,则大中小三辆车分别
下面是两位同学的对话:
小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!
小华:是呀,我们的银牌也不少啊,只比铜牌少7块!
你知道我们共获得金牌、银牌、铜牌各多少块吗?
17、如图中的□、△、○分别代表一个数字,且满足以下三个等式:
□+□+△+○=17
□+△+△+○=14
□+△+○+○=13,
a+b+c=36.
求这个方程的整数解,
消去c,得7a+5b=36,
7a只能取7,14,21,28,
5b只能取5,10,15,20,25,
这些数中,只有21+15=36,没有其它的情况了,

方程组解应用题(习题及答案)

方程组解应用题(习题及答案)

方程组解应用题(习题)例题示范例1:小明和小丽两人同时到一家水果店买水果.小明买了1kg 苹果和2kg梨,共花了26元;小丽买了2kg苹果和1kg梨,共花了28元.则苹果和梨每千克的价格各为多少?列表梳理信息:苹果x元梨y元总价小明1226小丽2128过程书写:解:设每千克苹果的价格是x元,每千克梨的价格是y元,根据题意得,226 228 x yx y+=⎧⎨+=⎩解得,108 xy=⎧⎨=⎩答:每千克苹果的价格是10元,每千克梨的价格是8元.巩固练习1.解下列三元一次方程组.(1)1226310x y zx y zx y z++=⎧⎪+-=⎨⎪-+=⎩(2)2343327231x y zx y zx y z-+=⎧⎪-+=⎨⎪+-=⎩2.小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少”.请你帮助小明解决他的问题.3.医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?4.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.则两种客房各租住了多少间?5.某服装厂要生产一批同样型号的运动服,已知每3米长的某种布料可做2件上衣或3条裤子.现有此种布料600米,请你帮助设计一下,如何分配布料,才能使运动服成套且不致于浪费,此时能生产多少套运动服?6.小明和小亮做加法游戏,小明在一个加数后面多写了一个0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341.原来两个加数分别是多少?思考小结1.解一元一次方程应用题和二元一次方程组应用题的关键在于找等量关系,一元一次方程应用题需要找______组等量关系,二元一次方程组应用题需要找______组等量关系;表示等量关系的常见关键词有:恰好,___________________________.2.结合下图梳理本章知识,并回答下列问题:①解二元一次方程组的基本思想是________________,可以通过_____________,________________把二元一次方程组转化为一元一次方程来解.②解决二元一次方程组应用题需要对信息进行梳理,梳理信息的常见手段有_________,__________.【参考答案】 巩固练习1.(1)345xyz=⎧⎪=⎨⎪=⎩(2)132xyz=⎧⎪=-⎨⎪=-⎩2.萝卜3元/斤,排骨18元/斤3.甲原料28克,乙原料30克4.三人间8间,两人间13间5.360米布料生产上衣,240米布料生产裤子,此时能生产240套运动服6.原来两个加数分别是21和32思考小结1.一;两;刚好,同时,共需,相同等2.①消元,代入消元法,加减消元法②列表,画线段图。

三元一次方程组解应用题专项练习88题(有答案) ok

三元一次方程组解应用题专项练习88题(有答案) ok

三元一次方程组解应用题专项练习88题(有答案)1.为了组织一个50人的旅游团开展“乡间民俗”游,旅游团住村民家,住宿客房有三人间、二人间、单人间三种,收费标准是三人间每人每晚20元,二人间每人每晚30元,单人间每人每晚50元,旅游团共住20间客房,旅游团如何安排住宿才能够使得住宿费最低,并说明理由.2.有三种物品,每件的价格分别是2元、4元和6元,现在用60元买这三种物品(三种物品均需买到),总数共买16件,而钱要恰好用完,则价格为6元的物品最多买几件?价格为2元的物品最少买几件?3.琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.4.某电脑公司有A型、B型、C型三种型号的电脑,其中A型每台5000元、B型每台4000元、C型每台3000元,某中学现有资金100000元,计划全部用从这家电脑公司购进30台两种型号的电脑,请你设计几种不同的购买方案供这个学校选择,并说明理由.5.已知△ABC的周长为48cm,最长边与最短边之差为14cm,另一边与最短边之和为25cm,求△ABC各边的长.6.已知某体育公司有A型、B型、C型三种型号的健身器材,其中价格分别是A型每台5000元、B型每台3000元、C型每台2000元.某单位计划将87000元钱全部用于从该公司购进其中两种不同型号的健身器材36台.请你设计几种不同的购买方案供学校选择,并说明理由.7.大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例:今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?8.有收录机、钢笔和书包三种物品,若购买收录机3台,钢笔6支,书包2个共需302元,若购买收录机5台,钢笔11支,书包3个共需508元,则购买收录机、钢笔、书包各一个需要_________元.9.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:家电名称空调彩电冰箱工时产值(千元) 4 3 2问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高最高产值是多少?(以千元为单位)10.甲,乙,丙三人各有邮票若干枚,要求互相赠送.先由甲送给乙,丙,所给的枚数等于乙,丙原来各有的邮票数;然后依同样的游戏规则再由乙送给甲,丙现有的邮票数,最后由丙送给甲,乙现有的邮票数.互相送完后,每人恰好各有64枚.你能知道他们原来各有邮票多少枚吗?说出你的思考过程.11.某公园门票规定为:每人20元,30人以上的团体购票,每人18元,每30人优惠1人免费(不足30人的余数不优惠).今有甲、乙、丙三支旅游团前来参观,若甲、乙两旅游团合起来作为一个团体购票,应购门票3834元,若乙、丙两旅游团合起来作为一个团体购票,应购门票4788元,若甲、丙两旅游团合起来作为一个团全购票,应购门票5220元,求三个旅游团共有多少人?12.一辆客车、一辆货车和一辆小轿车在同一条直线上朝同一方向行驶,在某一时刻,货车在中,客车在前,小轿车在后,且它们的距离相等,走了10分钟,小轿车追上了货车;又走了5分钟,小轿车追上客车,问再过几分钟,货车追上了客车?13.江堤边发生管涌,江水不断涌到堤边一原本干凅的池塘,假定每分钟涌出的水量相同,如果用两台抽水机抽水,40分钟可以抽完池塘里的蓄水;如果用4台抽水机抽水,16分钟可以抽完;如果要在10分钟内将池塘里的蓄水抽完,那么至少需要抽水机多少台?14.编号为1到25的25个弹珠被分放在两个篮子A和B中.15号弹珠在篮子A中,把这个弹珠从篮子A移至篮子B中,这时篮子A中的弹珠号码数的平均数等于原平均数加,篮子B中弹珠号码数的平均数也等于原平均数加.问原来在篮子A中有多少个弹珠?15.2011年3月10日12时58分云南盈江县发生5.8级地震,有1.8万人等待安置.如图(1)是某中学学生捐款情况制成的条形图,图(2)是该中学学生人数分布统计表.(1)该校共有学生_________人;(2)该校学生平均每人捐款_________元(精确到0.01元);(3)在得知灾区急需帐篷后,学校立即与厂家联系购买帐篷送往灾区.已知用9万元刚好可以从厂家购进帐篷500顶.该厂家生产三种不同规格的帐篷,出厂价分别为甲种帐篷每顶150元,乙种帐篷每顶210元,丙种帐篷每顶250元.①若学校同时购进其中两种不同规格的帐篷,则学校的购买方案有哪几种?②若学校想同时购进三种不同规格的帐篷,必须每种帐篷都有,而且帐篷10顶打包成一件,所以每种帐篷数都要求是10的倍数.请你研究一下是否可行?如果可行请给出符合条件的设计方案;若不可行,请说明理由.某中学学生数分布表年级初一初二初三人数493 479 47816.某电器公司计划装运甲、乙、丙三种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电)下表所示为装运甲、乙、丙三种家电的台数及利润.(1)若用8辆汽车装运乙、丙两种家电190台到A地销售,问装运的汽车各多少辆?(2)计划用20辆汽车装运甲、乙、丙三种家电720台到B地销售,如何安排装运,可使公司获得36.6万元的利润?甲乙丙每辆汽车能装满的台数40 20 30每台家电可获利润(万元) 0.05 0.07 0.0417.有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需34.5元;若购甲4件,乙10件,丙1件,共需42.00元,现在购甲、乙、丙各一件共需多少元?18.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元.10万元资本全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?19.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:农作物品种每公顷需劳动力每公顷需投入资金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?20.某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的,甲组植树的株数恰是乙组与丙组的和,问每组各植树多少株?21.现有A、B、C三种型号的产品出售,若售A3件,B2件,C1件,共得315元;若售A1件,B2件,C3件,共得285元.问售出A、B、C各一件共得多少元?22.一头猪卖银币,一头山羊卖银币,一头绵羊卖银币,有人用100个银币买了100头牲畜,问买了猪、山羊、绵羊各几头?23.根据下面的等式,求出妈妈买回来的鱼、鸡、菜各花了多少钱?鸡+鸭+鱼+菜=35.4元鸡+鱼+菜=20.4元鸭+鱼+菜=21.4元鸭+菜=17元.24.新学期开学了,小丽买了10本练习本、4支铅笔、1块橡皮共花去16.8元;小华买了9本练习本、5支铅笔、3块橡皮共花去18.2元;小明练习本、铅笔、橡皮想各买一件,请你帮他算算共需多少钱?25.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,求黄花一共用了多少朵?26.在第29届北京奥运会上,中国体育健儿共获得奖牌100枚,令国人振奋,世界瞩目,下面是两位同学的对话:小明:太厉害了,我们在金牌榜上居第一位,金牌比银牌的2倍还多9块!小华:是呀,我们的银牌也不少啊,只比铜牌少7块!你知道我们共获得金牌、银牌、铜牌各多少块吗?27.某体育彩票经销商计划从省体育彩票中心购进彩票20000张.已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.若经销商同时购进两种不同型号的彩票20000张,共用去45000元,请你设计出几种不同的进票方案供经销商选择,并说明理由.28.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件、乙10件、丙1件共需420元.问购甲、乙、丙各5件共需多少元?29.已知,甲乙丙三个数的和为26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.30.一对夫妇现在年龄的和是其子女年龄和的6倍,他们两年前年龄和是子女两年前年龄和的10倍,6年后他们的年龄和是子女6年后年龄和的3倍,问这对夫妇共有多少个子女?31.王明在超市用74元钱买了苹果、梨、香蕉三种水果共15.5/kg,苹果比梨多2kg,已知苹果5元/kg,梨5.5元/kg,香蕉4元/kg.王明买了苹果、梨、香蕉各多少/kg?32.已知甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的等于丙数的.求这三个数.33.某选择题共有10小题,评分标准如下:选对得4分,选错倒扣2分,不选得0分.已知小王选择题的得分是28分,且选对的题数是选错题数的4倍,问小王选对、选错、不选的题各有几个?34.一个三位数,各位数字和为6,百位数字是个位数字的2倍,将原数个位数字与百位数字对调后得的数比原数小198,求这个三位数.35.从甲地到乙地,先平路再上坡后下坡,汽车在平路上每小时行走30千米,上坡路每小时行28千米,下坡路每小时行走35千米.甲、乙两地路程是142千米,从甲到乙用4小时,而乙到甲用4小时42分钟,求这段路的上坡路,下坡路,平路有多少千米?36.学校决定对数学竞赛优胜者进行奖励,获胜者共25人,其中获省里奖的每人奖励价值为200元的奖品,获得市里奖的每人奖励价值50元的奖品,共花去2000元,那么你知道获得省、市奖的学生各有多少人?37.从A地到B地骑车要走上坡、下坡、平路三个路段,全程9km,某人上坡每小时4千米,下坡每小时8千米,平路每小时6千米,如图,他从A地到B地用了1小时,从B到A地用了1小时,求A地到B地,上坡、下坡、平路各是多少千米?38.三人合办一企业,共投资143万元,投资最多的与投资最少的钱数的比为5:3,问第三个人最多投资多少万元?最少投资多少万元?39.某班参加一次智力竞赛,共a,b,c三题,每题或者得满分或者得0分.其中题a满分20分,题b、题c满分分别为25分.竞赛结果,每个学生至少答对了一题,三题全答对的有1人,答对其中两道题的有15人,答对题a 的人数与答对题b的人数之和为29,答对题a的人数与答对题c的人数之和为25,答对题b的人数与答对题c的人数之和为20,问这个班的平均成绩是多少分?40.某城市有一段马路需要整修,这段马路的长不超过3500米.今有甲、乙、丙三个施工队,分别施工人行道、非机动车道和机动车道.他们于某天零时同时开工,每天24小时连续施工.若干天后的零时,甲完成任务;几天后的18时,乙完成任务,自乙队完成的当天零时起,再过几天后的8时,丙完成任务,已知三个施工队每天完成的施工任务分别为300米、240米、180米,问这段路面有多长?41.某农场300名职工种51公顷土地,分别种植水稻、蔬菜和棉花,种植这些农作物每亩所需工人数和预计产值如下表所示,设水稻、蔬菜和棉花的种植面积分别为x公顷、y公顷和z公顷.(1)用含x的式子表示y和z;(2)若总产值p(万元)满足:360≤p≤370,且x、y、z均为正整数,这个农场怎样安排三种农作物的种植面积才能取得最优效益?农作物每公顷所需人数每公顷预计产值水稻 4 4.5万元蔬菜8 9万元棉花 5 7.5万元42.有三个乒乓球代表队,不同的代表队队员之间都要进行一场比赛,同一代表队的队员互不比赛,参加比赛的三个代表队共有10名队员,共比赛了31场,求每个代表队各有几名队员?43.某电器商场欲用9万元购进某种品牌的电冰箱50台,已知该品牌的电冰箱有甲、乙、丙三种不同型号,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.商场销售一台电冰箱的获利情况分别为:甲种150元,乙种200元,丙种250元.(1)若商场准备同时购进其中两种不同型号的电冰箱,请你设计出最佳进货方案;(2)若商场准备同时购进三种不同型号的电冰箱,请你设计出最佳进货方案.44.某公司董事会决定拨出40万元款项作为奖金,全部用于奖励本年度评出的一、二、三等奖的职工,原定一等奖每人5万元,二等奖每人3万元,三等奖每人2万元.定好一、二、三等奖的人数后,为了重奖对公司有突出贡献的人,改为一等奖每人15万元,二等奖每人4万元,三等奖每人1万元(仍正好把40万元奖励完),问该公司本年度获得一、二、三等奖的职工分别有多少人?45.有甲、乙、丙三种零件,若购甲种零件3件,乙种零件7件,丙种零件1件,共需315元,或购甲种零件4件,乙种零件10件,丙种零件1件,共需420元.问购甲、乙、丙各1件共需多少元?46.甲乙两邮递员分别从A,B两地同时以匀速相向而行,甲比乙多走了18千米(km),相遇后甲走4.5小时到达B地,乙走8小时到A地,求A,B两地的距离.47.从两个重量分别为12千克(kg)和8千克,且含铜的百分数不同的合金上切下重量相等的两块,把所切下的每块和另一块剩余的合金放在一起,熔炼后两个合金含铜的百分数相等.求所切下的合金的重量是多少千克?48.一个三位数,如果把它的个位数字与百位数字交换位置,那么所得的新数比原数小99,且各位数字之和为14,十位数字是个位数字与百位数字之和.求这个三位数.49.某人乘汽车,他看到第一块里程碑上写着一个两位数(表示千米);经过1小时,他看到第二块里程碑写的两位数恰好是第一块里程碑上的数字互换了;又经过1小时,他看到第三块里程碑上写着一个三位数,这个三位数恰好是第一块里程碑上的两位数中间加上一个0,问汽车的速度是多少?50.今有浓度为5%,8%,9%的甲、乙、丙三种盐水分别为60克,60克,47克,现要配制浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?51.甲、乙、丙三个容器中盛有含盐比例不同的盐水.若从甲、乙、丙中各取出重量相等的盐水,将它们混合后就成为含盐10%的盐水;若从甲和乙中按重量之比为2:3来取,混合后就成为含盐7%的盐水;若从乙和丙中按重量之比为3:2来取,混合后就成为含盐9%的盐水.求甲、乙、丙三个容器中盐水含盐的百分数.52.有三块合金,第一块是60%的铝和40%的铬,第二块是10%的铬和90%的钛,第三块是20%的铝、50%的铬和30%的钛,现将它们铸成一块含钛45%的新的合金,问在新的合金中,铬的百分比为多少?53.已知:青铜含有80%的铜、4%锌和16%锡,而黄铜是铜和锌的合金.今有黄铜和青铜的混合物一块,其中含有74%的铜、16%锌和10%锡.求黄铜含有铜和锌之比.54.某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.根据上表的表格中的数据,求a、b、c.55.有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,至多放牧几头牛?56.若干人参加智力竞赛游戏,一共有3道题:第1题20分,后两道每道均为25分.每个人对每道题,要么答对得满分,要么答错得0分.结束时的统计结果是:每个人至少答对了1题,3题全答对的只有1人,答对两题的有15人;且答对第1题与答对第2题的人数和为29,答对第2题与答对第3题的人数和为20,答对第1题与答对第3题的人数和为25.求这次竞赛的平均成绩.57.组装甲、乙、丙3种产品,需用A、B、C3种零件.每件甲需用A、B各2个;每件乙需用B、C各1个;每件丙需用2个A和1个C.用库存的A、B、C3种零件,如组装成p件甲产品、q件乙产品、r件丙产品,则剩下2个A和1个B,C恰好用完.求证:无论怎样改变生产甲、乙、丙的件数,也不能把库存的A、B、C3种零件都恰好用完.58.有一水库,在单位时间内有一定量的水流进,同时也向外放水,按现在的进出水量,水库中的水可使用40天,因最近在水源的地方降雨,流入水库的水量增加20%,如果放水量增加10%,则仍可使用40天,如果按原来的放水量放水,可使用多少天?59.从两个重量分别为7千克和3千克,且含铜百分数不同的合金上切下重量相等的两块,把切下的每一块和另一块剩余的合金放在一起,熔炼后两块合金含铜百分数相等,求所切下的合金的重量是多少?60.教师节,甲、乙、丙三个班的学生到花店买花送给自己的班主任.已知甲班买了3枝玫瑰,7枝康乃馨,1枝百合花,付了14元;乙班买了4枝玫瑰,10枝康乃馨,1枝百合花,付了16元.若丙班买上面三种花各3枝,求丙班应付多少元.61.初一年级共举行了24次数学测验,共出了426道考题,每次出题数有25道,有20道,也有16道,问:其中考25道题的测验举行了多少次?62.合肥寿春中学和合肥滨湖寿春中学系同属合肥寿春教育品牌之下的两大核心办学机构,今年同时招生.计划两校共招初一新生45个班共1800人,合肥寿春中学只招小班,合肥滨湖寿春中学招收小班和大班,且小班数量是大班数量的2倍.小班每班36人,大班每班人数在70﹣75人间,求两校计划各招多少班?63.有一片牧场,草每天都在匀速生长(草每天增长量相等).如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧16头牛,几天可以吃完牧草.64.7公斤桃子的价钱等于1公斤苹果和2公斤梨的价钱,7公斤苹果的价钱等于10公斤梨和1公斤桃子的价钱,则购买12公斤苹果所需的钱可以购买梨_________公斤.65.小鹏对八年级甲、乙、丙三个班的女生进行统计,他发现甲班比乙班女生多4人,乙班比丙班女生多1人;如果把甲班的第一组调至乙班,乙班的第一组调至丙班,丙班的第一组调至甲班,则三个班的女生人数恰好相等;已知丙班第一组共有2个女生,设甲班原有女生x人.(1)原来乙班有女生_________人,丙班有女生_________人(用x的代数式表示)(2)若设甲班第一组有y名女生,乙班第一组有z名女生,请你用代数式分别表示出调整后甲,乙,丙各班的女生人数.(3)问甲、乙两班第一组各有几个女生?66.某个商店出售ABC三种生日贺卡,已知A种贺卡每张0.5元,B种贺卡每张1元,C种贺卡每张2.5元.营业员统计三月份的经营情况如下:三种贺卡共卖出150张,收入合计180元,则该商店3月份出售C种贺卡至少多少张?67.某人用15元钱买了20张邮票,其中有1元,8角,2角的邮票.问他可能有多少种不同的买法?68.某专卖店有A、B、C三种袜子,若买A种4双、B种7双、C种1双共需26元;若买A种5双、B种9双,C种1双共需32元,问A、B、C三种袜子各买1双共需多少元?69.兴隆货车配货站有长途货车若干辆,计划要装运A、B、C三种不同型号的商品.已知每辆长途货车的容积为38m3,每件A种型号商品的体积为3m3,每件B种型号商品的体积为4m3,每件C种型号商品的体积为6m3.(1)每辆货车安排装运A、B、C三种型号商品,使货车刚好装满,则有几种装运方案?(2)如果装运每件A种型号商品运费50元,装运每件B种型号商品运费60元,装运每件C种型号商品运费65元,货主应选择哪种方案装运比较省钱?70.过年时,小刚领来家做客的表弟到文具店购物,他用自己50元的“压岁钱”给表弟买了圆珠笔、铅笔和方格本三种文具共100件.已知一支圆珠笔5元,一支铅笔0.1元,一个方格本1元,那么,这100件文具中,三种文具各多少?71.现有三包杂拌糖,由甲、乙、丙三种水果糖按不同比例混合而成.第一包中含甲种水果糖60%和乙种水果糖40%,第二包中含乙种水果糖10%和丙种水果糖90%,第三包中含甲种水果糖20%、乙种水果糖50%和丙种水果糖30%.先从三包中各取适量杂拌糖,重新混合,得到1千克含丙种水果糖45%的杂拌糖.(1)试用新得到的杂拌糖中所含第一包杂拌糖的质量表示其中所含第二包杂拌糖的质量;(2)求新杂拌糖中所含第二包杂拌糖的质量范围.72.甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学?73.今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?74.某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)75.某地区举办初中数学联赛,有A,B,C,D四所中学参加,选手中,A,B两校共16名;B,C两校共20名;C,D两校共34名,并且各校选手人数的多少是按A,B,C,D中学的顺序选派的,试求各中学的选手人数.76.甲、乙、丙三人共解出100道数学题,每人都解出其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题,试问:难题多还是容易题多?(多的比少的)多几道题?77.四十只脚的蜈蚣和三个头的龙在同一个笼中,共有26个头和298只脚,如果40只脚的蜈蚣只有一个头,那么三个头的龙有几只脚?78.五个人要完成某项工作,如果甲、乙、丙三人同时工作需6小时;甲、丙、戊三人同时工作需3小时;甲、丙、丁三人同时工作需7.5小时;乙、丙、戊同时工作,需用5小时,问五个人同时工作需用多少小时完成?79.永强加工厂接到一批订单,为完成订单任务,需用a米长的材料440根,b米长的材料480根,可采购到的原料有三种,一根甲种原料可截得a米长的材料4根,6米长的材料8根,成本为60元;一根乙种原料可截得a米长的材料6根,b米长的材料2根,成本为50元;一根丙种原料可截得a米长的材料4根,b米长的材料4根,成本为40元.问怎样采购,可使材料成本最低?80.某人家的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14405,将前三位数组成的数与后五位数组成的数相加得16970,求此人家的电话号码.81.已知甲、乙、丙三人.甲单独做一件工作的时间是乙丙两人合作做这件工作所用时间的a倍,乙独做这件工作是甲丙两人合作做这件工作的b倍.求丙单独做这件工作是甲乙两人合作做这件工作所需时间的几倍?82.有一水池,池底有泉水不断涌出,要将满池的水抽干,用12台水泵需5小时,用10台水泵需7小时,若要在2小时内抽干,至少需水泵几台?83.汽车在相距74千米的甲、乙两地之间往返行驶,因行程有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,从乙地到甲地需要2小时48分钟,已知汽车在平地每小时行驶30千米,上坡路每小时行驶20千米,下坡每小时行驶40千米,求甲地到乙地地行驶过程中平路、上坡、下坡各是多少?。

列方程解应用题50题(有答案)

列方程解应用题50题(有答案)

题(有答案)50列一元一次方程解应用题列一元一次方程解应用题的一般步骤3()找出等量关系:找出能够表示本题含义的相等关系.2()审题:弄清题意.1()设出未知数,列出方)解方程:解所列4(然后利用已找出的等量关系列出方程.•程:设出未知数后,表示出有关的含字母的式子,是否符合实际,检•)检验,写答案:检验所求出的未知数的值是否是方程的解,5(的方程,求出未知数的值.(假设和答时注意写单位)验后写出答案.:市场经济、打折销售问题1知能点商品利润)商品利润率=2()商品利润=商品售价-商品成本价1(商品成本价元一双,八折出售后60某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价 1. ,问这种皮鞋标价是多少元?优惠价是多少元?40%商家获利润率为这种服装每件的元,15结果每件仍获利折优惠卖出,8又以后标价,40%一家商店将某种服装按进价提高2. 进价是多少?元,这种自行车每50后标价,又以八折优惠卖出,结果每辆仍获利45%一家商店将一种自行车按进价提高3. )元,那么所列方程为(x辆的进价是多少元?若设这种自行车每辆的进价是)1+80%×(A.45%x - x = 50 )1+45%×(x-x=50 B. 80% x - x = 50 )1-45%×(x = 50 D.80%)1+45%×(C. x-80%1200元,出售时标价为800.某商品的进价为4元,后来由于该商品积压,商店准备打折出售,但要保持利润,则至多打几折.5%率不低于.经顾客投拆后,,然后在广告中写上“大酬宾,八折优惠”40%.一家商店将某种型号的彩电先按原售价提高5 元的罚款,求每台彩电的原售价.2700倍处以每台10拆法部门按已得非法收入的方案选择问题:2知能点经粗加工后销售,每吨利润可达•元,1000.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为6 1吨,该公司的加工生产140元,当地一家公司收购这种蔬菜7500元,经精加工后销售,每吨利润涨至4500但两种加工方式•吨,6吨,如果进行精加工,每天可加工16如果对蔬菜进行精加工,每天可加工能力是:天将这批蔬菜全部销售或加工完毕,为此公司研制了三种15不能同时进行,受季度等条件限制,公司必须在可行方案:方案一:将蔬菜全部进行粗加工.在市场上直接销售.•方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,天完成.15方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好你认为哪种方案获利最多?为什么?分钟,再付1元月基础费,然后每通话50•“全球通”使用者先缴.某市移动通讯公司开设了两种通讯业务:70.2电话费.若一个月元(这里均指市内电话)0.4分钟需付话费1•“神州行”不缴月基础费,每通话元;元.y元和y分钟,两种通话方式的费用分别为x内通话21.之间的函数关系式(即等式)x与y,y)写出1(12)一个月内通话多少分钟,两种通话方式的费用相同?2(元,则应选择哪一种通话方式较合算?120)若某人预计一个月内使用话费3(.某地区居民生活用电基本价格为每千瓦时8千瓦时,则超过部分按基本电价的a元,若每月用电量超过0.40 .a元,求30.72千瓦时,共交电费84)某户八月份用电1(收费。

(完整版)列方程解应用题练习(附答案)

(完整版)列方程解应用题练习(附答案)

小学列方程解应用题1、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

解:设乙有书x本,则甲有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X-60=X+603、有甲、乙两缸金鱼,甲缸的金鱼条数是乙缸的一半,如从乙缸里取出9条金鱼放人甲缸,这样两缸鱼的条数相等,求甲缸原有金鱼多少条.解:设乙缸有X条,则甲缸有1/2X条X-9=1/2X+94、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求甲乙两地的距离.解:设计划时间为X小时60×(X-1)=40×(X+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)-X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×(X+6)=60×(X-4)7、甲仓存粮32吨,乙仓存粮57吨,以后甲仓每天存人4吨,乙仓每天存人9吨.几天后,乙仓存粮是甲仓的2倍?解:设X天后,乙仓存粮是甲仓的2倍(32+4X)×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9—X)=99、甲、乙两个粮仓存粮数相等,从甲仓运出130吨、从乙仓运出230吨后,甲粮仓剩粮是乙粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/(50-40)=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克(X+2.2)元2.5×(X+2.2)+2X=13.612、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为X,则个位上的数字为2X,这个原两位数为(10X+2X)10×2X+X=(10X+2X)+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为X,则十位数字为(X-1)X+(X-1)=[X+10×(X-1)] ×0.215、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x个(x—2)+ (x+2)+ (x÷2)+ 2x=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为X(25-1)÷2X=317、甲、乙分别从相距18千米的A、B两地同时同向而行,乙在前甲在后.当甲追上乙时行了1.5小时.乙车每小时行48千米,求甲车速度.解:设甲车速度为X小时/小时(X-48)×1.5=1818、甲、乙两车同时由A地到B地,甲车每小时行30千米,乙车每小时行45千米,甲车先出发2小时后乙车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为X千米(X-30×2)/30=X/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工X个零件6X=12×(3+6)20、有甲、乙两桶油,甲桶油再注入15升后,两桶油质量相等;如乙桶油再注人145升,则乙桶油的质量是甲桶油的3倍,求原来两桶油各有多少升.解:设甲桶原来有X升油,则乙桶原来有(X-15)升油X+15+145=3X21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解:设细木工每人得X元(200×6+X)/(6+1)=X-30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程组解应用题(一)
列一元一次方程解应用题,同学们已经在课本上学习了。

今天我们主要和同学们共同研究如何列方程组解应用题。

较好地掌握这一解题思路是提高解答较难应用题的重要方法,这个内容共安排两讲,这一讲研究学习如何解方程组。

(一)思路指导:
例1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?
分析与解答:依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。

两个等量关系是:A 做盒身张数+做盒底的张数=铁皮总张数
B 制出的盒身数×2=制出的盒底数
解:设用x 张铁皮制盒身,y 张铁皮制盒底。

x y x y +=⨯=⎧⎨⎩
1501162432…………()() 像上面这组方程,我们叫它二元一次方程组。

你知道什么是方程组了吗?又怎样求出这两个未知数呢?
这里我们主要介绍两种方法:
[第一种方法:代入法]
由(1)式得 x y =-1503……()
把(3)代入(2)得
()16150243⨯-⨯=y y
48003243-=y y
43324800y y +=
754800y =
y =64
把y =64代入方程(3)得x =-=1506486
x y ==⎧⎨⎩8664
答:用86张白铁皮做盒身,64张白铁皮做盒底。

你知道怎样用代入法解方程组了吗?请有条理地说一说。

试一试,看谁学会了。

(1)x y x y -=+=⎧⎨⎩683125 (2)323413674x y x y +=-=⎧⎨⎩
(1)题是刘莉和王颖合作完成的。

(2)题是吴可非完成的,请你认真阅读她们的解题过程,判断是否正确?
(1)x y x y -=+=⎧⎨⎩683125……①
……②
解:由①得x y =+6……③
把③代入方程②得:
()863125++=y y
4883125++=y y
1112548y =-
1177y =
y =7
把y =7代入③得 x =+=6713
所以x y ==⎧⎨⎩
137是方程组的解。

(2)323413674x y x y +=-=⎧⎨⎩……①……②
解:由①得x y =-3423
……③ 把③代入方程②得
133423674⨯-⎛⎝ ⎫⎭
⎪-=y y 13341323
674⨯-⨯-=y y 4422618222--=y y
44220y =
y =5
把y =5代入③得 x =-⨯=34253
8 所以x y ==⎧⎨⎩
85是该方程的解。

经检查他们做得完全正确,你判断对了吗?
[第二种方法:消去法]
例2. 323413674x y x y +=-=⎧⎨⎩……①
……②
解:根据题意可先做如下变化:
用①⨯3得 96343x y +=⨯……③ 用②③+得 +-=13674x y ……② 22x =176
x =÷17622 x =8
把x =8代入方程①得 38234⨯+=y y =5
所以x y ==⎧⎨⎩
85是方程组的解。

例3. 32255305x y x y +=-=⎧⎨⎩
……①……②.
解:①⨯3得 9675x y +=……③ ②⨯2得 1061x y -=……④ ④③+得 1976x =
x =4
把x =4代入①得 34225⨯+=y
22512y =- y =65. 所以x y ==⎧⎨⎩465
.是方程组的解。

请你说一说如何用“消去法”解方程组。

[答题时间:30分钟]
(二)独立完成:
根据题目特点选择方法解下面方程组。

1. x y x y +=+=⎧⎨⎩
923232. 2. x y y x +=-=⎧⎨⎩31510218 3. 31045554353x y x y +=+=⎧⎨⎩.. 4. 23235
6485x y x y -=+=⎧⎨⎩.. 5. 551352366x y x y +=+=⎧⎨⎩..
【试题答案】
(二)独立完成:
根据题目特点选择方法解下面方程组。

1.
x y
x y
+=
+=



9
23232.
x
y
=
=



38
52
.
.
用代入法解较好。

2.
x y
y x
+=
-=



315
10218
x
y
=
=



6
3
用代入法解。

3.
310455
54353
x y
x y
+=
+=



.
.
x
y
=
=



45
32
.
.
用消元法解。

4.
232
356485
x y
x y
-=
+=


⎩..
x
y
=
=



7
4
用消元法解。

5.
55135
2366
x y
x y
+=
+=



.
.
x
y
=
=



15
12
.
.
用消元法解。

相关文档
最新文档