杆件的轴向受力和变形

合集下载

第二章 轴向拉伸和压缩

第二章  轴向拉伸和压缩

第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。

§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。

按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。

对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。

由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。

根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。

若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。

同样也可以从脱离体的平衡条件来确定。

二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。

要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。

要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。

二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

二建考试必备-建筑结构与设备(7) 杆件的基本变形与组合变形

第二节杆件的基本变形与组合变形一、轴向拉伸与压缩1.轴力与轴向变形轴向拉(压)杆件横截面上的内力只有轴力,轴力可采用截面法求得。

轴力的正负号一般规定为:拉力为正,压力为负。

轴力沿杆轴方向的变化采用轴力图表示。

依据平面假设,轴向拉(压)杆件的变形沿整个横截面是均匀的,因而应力在横截面上也是均匀分布的(图3-8)。

横截面上应力的计算式为:式中N 一轴力;A ―横截面面积。

在弹性变形范围内,轴向拉(压)杆的伸长(缩短)量与杆所受轴力、杆的长度成正比,与杆的抗拉(压)刚度EA 成反比,即【例3-4】计算图3-9(a)时所示轴向受力杆件的内力,作出内力图,并判断整个杆件的变形是伸长还是缩短。

E A=常数。

在BC段内任一截面处截开,取右侧部分为隔离体(图3-9b ) ,由平衡条件可得:同理,在AB 段内任一截面处截开,取右侧部分为隔离体(图3 -9c),由平衡条件可得因整个杆件的EA=常数,AB 段的杆长虽为BC 段的一半,但其所受的拉力为BC 段的3 . 5 / 1 . 5 ≈2 . 3 倍,因此AB 段的伸长量大于BC 段的缩短量,整个杆件的变形是伸长的。

2.温度改变的影响自然界中的物体普遍存在热胀冷缩的现象,杆件结构也是一样。

例如图 3 -10 ( a )所示的杆件,若其温度升高Δt,因没有多余约束(即为静定),故杆件可以自由地伸缩,并不会产生内力或反力。

在温度改变作用下,杆件的伸长量△l 与杆长l及温度改变量△t 成正比,即:式中α——材料的线膨胀系数。

对于图3 一10 ( b )的杆件,若温度升高△t,由于杆件两端固定(即为超静定),阻止了杆件的自由伸缩,这样杆内将产生温度应力。

显然,如果该杆温度升高(△t>0 ) ,则杆内将产生压力;若温度降低(△t < 0 ),则杆内将产生拉力。

二、剪切当杆件的某一截面受一对相距很近,方向相反的横向力作用时,杆件在该截面处将发生剪切变形。

例如图3-11所示的螺栓连接件,当钢板受拉力P 作用时,螺栓将在截面m-m处承受剪力,并产生剪切变形。

杆件的基本变形形式

杆件的基本变形形式
工程实际中常见的组合变形形式有:斜弯曲(或称 双向弯曲)、拉(压)与弯曲的组合、弯曲与扭转的组 合等。
斜弯曲(或称双向弯曲)
压缩与弯曲的组合
弯曲与扭转的组合
建筑力学
谢谢观看!
4. 弯曲
如果直杆在两端各受到一个外力偶Me的作用,且二者 的大小相等、转向相反、作用面都与包含杆轴的某一纵向 平面重合,或者是受到在纵向平面内作用的垂直于杆轴线 的外力作用时,杆件的轴线就要变弯,这种变形称为弯曲。
纯弯曲
横力弯曲
1.2 组合变形
组合变形——同时发生两种或两种以上基本变形形式 的组合。
2. 剪切
如果直杆上受到一对大小相等、方向相反、作用线 平行且相距很近的外力沿垂直于杆轴线方向. 扭转
如果在直杆的两端各受到一个外力偶Me的作用, 且二者的大小相等、转向相反、作用面与杆件的轴线 垂直,那么杆件的横截面绕轴线发生相对转动,这种 变形称为扭转。
建筑力学
杆件的基本变形形 式
杆件的基本变形形式
1.1 基本变形
1. 轴向拉伸和压缩 2. 剪切 3. 扭转 4. 弯曲
1. 轴向拉伸和压缩
如果在直杆的两端各受到一个外力F的作用,且二 者的大小相等、方向相反、作用线与杆件的轴线重合, 那么杆的变形主要是沿轴线方向的伸长或缩短,这种变 形称为轴向拉伸或压缩。

杆件受力变形及其应力分析

杆件受力变形及其应力分析

第三章 杆件受力变形及其应力分析§3-1 概 述一、构件正常工作的基本要求为了保证机器或工程结构的正常工作,构件必须具有足够的承受载荷的能力(简称承载能力)。

为此,构件必须满足下列基本要求。

1畅足够的强度例如,起重机的钢丝绳在起吊不超过额定重量时不应断裂;齿轮的轮齿正常工作时不应折断等。

可见,所谓足够的强度是指构件具有足够的抵抗破坏的能力。

它是构件首先应满足的要求。

图3-1 构件刚度不够产生的影响2畅足够的刚度在某些情况下,构件受载后虽未破裂,但由于变形过量,也会使机械不能正常工作。

图3-1所示的传动轴,由于变形过大,将使轴上齿轮啮合不良,轴颈和轴承产生局部磨损,从而引起振动和噪声,影响传动精度。

因此,所谓足够的刚度是指构件具有足够的抵抗弹性变形的能力。

应当指出,也有某些构件反而要求具有一定的弹性变形能力,如弹簧、仪表中的弹性元件等。

3畅足够的稳定性例如千斤顶中的螺杆等类似的细长直杆,工作时当压力较小时,螺杆保持直线的平衡形式;当压力增大到某一数值时,螺杆就会突然变弯。

这种突然改变原有平衡形式的现象称为失稳。

因此,所谓足够的稳定性是指构件具有足够的保持原有平衡形式的能力。

上述的基本要求均与构件的材料、结构、截面形状和尺寸等有关。

所以,设计时在保证构件正常工作的前提下,还应合理地选择构件的材料和热处理方法,并尽量减小构件的尺寸,以做到材尽其用,减轻重量和降低成本。

二、变形固体及其基本假设自然界中的一切物体在外力作用下或多或少地总要产生变形。

在本书第二章中,由于物体产生的变形对所研究的问题影响不大,所以在该章中把所有物体均视为刚体。

而在图3-1中,如果轴上任一横截面的形心,其径向位移只要达到0畅0005l (l 为轴的支承间的距离),尽管此时构件变形很小,但该轴已失去了正常工作的条件。

因为这一微小变形是影响构件能否正常工作的主要因素。

因此,在本章中所研究的一切物体都是变形固体。

在对构件进行强度、刚度和稳定性的计算时,为了便于分析和简化计算,常略去变形固体的·75·一些影响不大的次要性质。

杆件的基本变形形式

杆件的基本变形形式

杆件的基本变形形式
杆件的基本变形形式有以下几种:
1. 拉伸和压缩:当杆件受到沿其轴向的力时,杆件会发生拉伸或压缩变形。

拉伸时杆件长度增加,压缩时杆件长度减小。

2. 剪切:当杆件受到垂直于其轴向的力时,杆件会发生剪切变形。

剪切变形表现为杆件的横截面发生相对错动。

3. 扭转:当杆件受到绕其轴线的力矩时,杆件会发生扭转变形。

扭转变形使得杆件的横截面绕轴线旋转。

4. 弯曲:当杆件受到垂直于其轴线的横向力时,杆件会发生弯曲变形。

弯曲变形导致杆件的轴线发生弯曲。

这些基本变形形式是杆件在不同加载条件下的主要响应方式。

在工程和力学领域中,了解杆件的基本变形形式对于设计和分析结构非常重要。

通过对这些变形形式的研究,可以确定杆件在负载下的应力、应变分布以及可能的破坏模式。

需要注意的是,实际工程结构中的杆件可能同时受到多种变形形式的组合作用。

例如,在一个梁的设计中,可能同时存在弯曲和剪切变形。

因此,在分析杆件的变形和应力时,需要综合考虑各种变形形式的影响。

希望这些信息对你有所帮助!如果你有其他问题,请随时提问。

直杆的基本变形

直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。

公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。

受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。

3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。

受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。

4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。

材料力学第04章 杆件变形分析

材料力学第04章 杆件变形分析
桁架的变形通常用节点的位移(displacement)表示,现以 下图所示桁架为例,说明桁架节点位移的分析方法。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。

简述轴向拉压杆的受力特点和变形特点

简述轴向拉压杆的受力特点和变形特点

简述轴向拉压杆的受力特点和变形特点
轴向拉压杆是一种受到拉力或压力作用的杆件。

其受力特点主要
有两点:
1. 受力方向:轴向拉压杆受力方向与其轴线方向相同或相反。

当受到拉力时,轴向拉压杆会向外展开;当受到压力时,轴向拉压杆
会向内收缩。

受力方向与轴线方向共线,使得杆件能够承受较大的拉
力或压力。

2. 受力均匀:轴向拉压杆受力均匀分布在其截面上。

由于受力
方向与轴线方向相同或相反,杆件内部的各个截面上的应力相对均匀。

这样的受力特点能够保证杆件的强度和刚度。

轴向拉压杆的变形特点主要有两点:
1. 长度变化:轴向拉压杆在受到拉力或压力作用时会发生长度
的变化。

当受到拉力时,轴向拉压杆会发生伸长变形;当受到压力时,轴向拉压杆会发生缩短变形。

杆件的长度变化与受力的大小成正比。

2. 弯曲变形:轴向拉压杆在受力作用下有可能发生弯曲变形。

当受到较大的压力或拉力时,杆件可能会产生塑性弯曲或弹性弯曲。

这种变形可能会影响杆件的稳定性和工作性能。

综上所述,轴向拉压杆的受力特点是受力方向与轴线方向相同或
相反,受力均匀;变形特点是发生长度变化和有可能出现弯曲变形。

这些特点需要在杆件的设计和使用过程中进行考虑,以保证其性能和
安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档