材料力学 杆件的变形计算

合集下载

材料力学例题

材料力学例题
C
0.75m 1m
A
D 1.5m
B
F
横梁BC为刚杆,自重Q=2KN,力P=10KN可在横 梁BC上自由移动。AB杆的许用应力为[σ]=100MP a,设计AB杆的横截面面积。如果AB杆采用直径 为10毫米的细丝,需要几根?
P C
30°

• [例] 长为 L=2m 的圆杆受均布力偶 m=20Nm/m 的作用,如图,若杆的内外径之比为 =0.8 ,
例题 空心圆杆AB和CD杆焊接成整体结构,受力如图.AB杆的外径 D=140mm,内外 径之比α= d/D=0.8,材料的许用应力[] = 160MPa。试用第三强度理论校核AB杆的 强度。 解:(1)外力分析 将力向AB杆的B截面形心简化得
10kN
0.8m A
B D
F 25kN
M e 15 1 . 4 10 0 . 6 15 kN m
G=80GPa ,许用剪应力 []=30MPa,试设计杆
的外径;若[]=2º /m ,试校核此杆的刚度,并
求右端面转角。
[例题] 某传动轴设计要求转速n = 500 r / min,输入功率P1 = 500 马力, 输出功率分别 P2 = 200马力及 P3 = 300马力,已 知:G=80GPa ,[ ]=70M Pa,[ ]=1º /m ,试确定: ①AB 段直径 d1和 BC 段直径 d2 ? ②若全轴选同一直径,应为多少? ③主动轮与从动轮如何安排,轴的受力合理? P2 A 500 B 400 P3 C
y Me A x B l/2 F1
F2
D F2 D M e C ( F1 F 2 ) 2 2 20 F2 kN 3 F 20kN
轴产生扭转和垂直纵向对称面内的平 面弯曲

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

工程材料力学第四章轴向拉压杆的变形

工程材料力学第四章轴向拉压杆的变形
§4-5 轴向拉(压)杆的变形·胡克定律
拉(压)杆的纵向变形 (轴向变形) 基本情况下(等直杆,两端受轴向力):
纵向总变形Δl = l1-l (反映绝对变形量)
l 纵向线应变 (反映变形程度) l
1
fl
f ( x x)
x
f
l
x
x
沿杆长均匀分布 的荷载集度为 f 轴力图
fx
微段的分离体
y
pbd 2b 0
pd 2
13
所以
pd (2 10 Pa)(0.2m) -3 2 2(510 m)
6
4010 Pa 40 MPa
6
14
2.
如果在计算变形时忽略内压力的影响,则可认为
薄壁圆环沿圆环切向的线应变e(周向应变)与径向截面上
的正应力s 的关系符合单轴应力状态下的胡克定律,即
ν
亦即
- n
低碳钢(Q235):n = 0.24~0.28。
7
思考:等直杆受力如图,已知杆的横截面面积A和材料的 弹性模量E。
1.列出各段杆的纵向总变形ΔlAB,ΔlBC,ΔlCD以及整个 杆纵向变形的表达式。
2.横截面B, C及端面D的纵向位移与各段杆的纵向总变
形是什么关系?
uB L1
22
作业:4-7,4-91 Pa ~ 2.101011 Pa 200GPa ~ 210GPa
l 1 FN 胡克定律的另一表达形式: l E A




E
←单轴应力状态下的胡克定律
6
横向变形因数(泊松比)(Poisson’s ratio)
单轴应力状态下,当应力不超过材料的比例极限时,

材料力学常用基本公式

材料力学常用基本公式

面积A,拉应力为正)d,拉伸后试样直径 d1)纵向线应变和横向线应变外力偶P 功率, n 转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式杆件横截面轴力F N,横截面1.2.3.4.5.6.7.8.9.10.11.12.泊松比胡克定律受多个力作用的杆件纵向变形计算公式轴向拉压杆斜截面上的正应力与切应力计算公式夹角a 从x 轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距 l1 ;拉伸前试样直径承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料延伸率截面收缩率剪切胡克定律拉压弹性模量,塑性材料切变模量G,切应变gE、泊松比和切变模量圆截面对圆心的极惯性矩( a)实心圆b)空心圆)G之间关系式圆轴扭转时横截面上任一点切应力计算公式圆截面周边各点处最大切应力计算公式扭转截面系数,( a)实心圆扭矩T,所求点到圆心距离r )13.14.15.16.17.18.19.20.21.22.23.24.薄壁圆管(壁厚 δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式圆轴扭转角 与扭矩 T 、杆长 l 、 扭转刚度 GH p 的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时等直圆轴强度条件受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式平面应力状态下斜截面应力的一般公式b )空心圆25.26. 27. 28. 29. 30.31.32.33.或 塑性材料或 扭转圆轴的刚度条件 ? ;脆性材料平面应力状态的三个主应力 主平面方位的计算公式 ,面内最大切应力 三向应力状态最大切应力 广义胡克定律 四种强度理论的相当应力34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之 和的关系式平行移轴公式(形心轴 z c 与平行轴 z 1的距离为 a ,图形面积为 A )纯弯曲梁的正应力计算公式45. 46.47.48.49. 50.51.52.53.54., 组合图形的形心坐标计算公式 截面图形对轴 z 和轴y 的惯性半径 ?矩形、圆形、空心圆形的弯曲截面系数几种常见截面的最大弯曲切应力计算公式( 轴 z 的静矩, b 为横截面在中性轴处的宽度)为中性轴一侧的横截面对中性横力弯曲最大正应力计算公式工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式 圆形截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件弯曲梁危险点上既有正应力 σ 又有切应力 τ 作用时的强度条件 或,梁的挠曲线近似微分方程 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式55.56.57.58.59. 60.61.62.63.64.65. 66.算公式偏心拉伸(压缩) 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 几种常见截面梁的弯曲切应力强度条件梁的转角方程梁的挠曲线方程圆截面杆横截面上有两个弯矩 和 同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件 等截面细长压杆在四种杆端约束情况下的临界力计算公式 压杆的约束条件:( a )两端铰支 μ =l( b )一端固定、一端自由 μ =2( c )一端固定、一端铰支d )两端固定 μ =0.567.68.69.70.71.72.73. 74. 75. 76. 77.μ=0.778.压杆的长细比或柔度计算公式79.细长压杆临界应力的欧拉公式80.欧拉公式的适用范围81.压杆稳定性计算的安全系数法82.压杆稳定性计算的折减系数法83. 关系需查表求得3截面的几何参数4应力和应变5应力状态分析6内力和内力图7强度计算刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总、应力与强度条件1、拉压maxmax2、剪切max3、4、挤压挤压圆轴扭转P挤压A挤压TWtmax平面弯曲①maxM maxy t maxI z*③ Q max S z max②t max5、斜弯曲max M z M yW z W yW z maxtmaxt maxmax注意:“5”与“ 6”两式仅供参考 ②第四强度理论r4w 2 3 n 2M w 20.75M n 2r4 w 3 n WWz二、变形及刚度条件1拉压LNLNLN i L iN ( x) dxEA EA LEA2扭转TLT i L i T x dx T 180 0( /GI pGI pGI pL GI p3弯曲(1) 积分法 : EIy ''( x) M(x) E Iy '(x) EI (x) M(x)dx CEIy ( x) [ M (x)dx]dx Cx D(2)叠加法 : f P 1,P 2 ⋯= f P 1 f P 2 +⋯, P 1, P 2 = P 1 P 2 ⋯M 2L =M i 2L i =M 2xdx2EI 2EI i 2EI(5)卡氏第二定理 ( 注:只给出线性弹性弯曲梁的公式 ) 三、应力状态与强度理论 1、 二向应力状态斜截面应力2、 二向应力状态极值正应力及所在截面方位角 3、 二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为 4504、 三向应力状态的主应力: 1 2 36、拉(压)弯组合 maxNM7、圆轴弯扭组合:①第三强度理论M w 2 M n2Wz(3)基本变形表 ( 注意:以下各公式均指绝对值,使用时要根据具体情 况赋予正负号 )ML3EI, A MLA6EIBA PL 216EI qL3 24EI (4)弹性变形能 ( 注:以下只给出弯曲构件的变形能 响, 其他变形与此相似 ,不予写出 ) 并忽略剪力影 B最大剪应力 : max1 325、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变) (2)、表达形式之二(用应变表示应力) 6、三向应力状态的广义胡克定律 强度理论 1) r1 1 1 bnb2)r 3 1 3五、动载荷(只给出冲击问题的有关公式)能量方程TVU7、 sn s8、平面应力状态下的应变分析sin 2x y x y1)2 2xys i n222tg2 0 xyxy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类) ① 细长受压杆 p ② 中长受压杆 p ③ 短粗受压杆s2EI minPcr 2PcrL2cr a b“ cr ”2Ecr22、关于柔度的几个公式 或 b2Epasb3、惯性半径公式 i I Az短边长度 ))圆截面 i d4,矩形截面 i min b12(b 为2cos 2xyc o 2s2冲击系数 K d 1 1 2hst (自由落体冲击)K dgv0st(水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状) 442 d D 4 d132 DI P 2dA =2、惯性矩平移轴公式32。

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

工程力学(材料力学)6拉压杆件的强度与变形问题

工程力学(材料力学)6拉压杆件的强度与变形问题

机械制造中的拉压杆件
机械制造中的拉压杆件主要用于 实现运动传递、力的传递和变形 等,如连杆、活塞杆、传动轴等。
这些杆件需要在高速、高温、重 载等极端条件下工作,因此需要 具备优异的力学性能和耐久性。
在机械制造中,拉压杆件的设计 和制造需要精确控制尺寸、形状 和材料,以确保其工作性能和可
靠பைடு நூலகம்。
其他工程领域中的拉压杆件
总结词
新型材料如碳纤维复合材料、钛合金等具有高强度、轻质等优点,在拉压杆件中得到广 泛应用。
详细描述
随着科技的不断发展,新型材料如碳纤维复合材料、钛合金等逐渐应用于拉压杆件的制 作。这些新型材料具有高强度、轻质、耐腐蚀等优点,能够提高杆件的力学性能和使用
寿命。
高性能的拉压杆件设计
总结词
通过优化设计,可以显著提高拉压杆件的性能。
刚度分析
对杆件的刚度进行分析, 可以确定其变形程度和承 载能力,为结构设计提供 依据。
拉压杆件的稳定性问题
稳定性定义
01
稳定性是指杆件在受到载荷作用时,保持其平衡状态的能力。
稳定性分析
02
通过稳定性分析,可以确定杆件在受到载荷作用时是否会发生
失稳现象,以及失稳的临界载荷。
稳定性要求
03
在工程应用中,杆件的稳定性需要满足一定的要求,以保证结
强度失效准则
当拉压杆件内部的应力达到或超过材料的屈服极限时,杆件会发生屈服失效, 丧失承载能力。
拉压杆件的强度计算
静力分析
根据外力的大小和方向,以及杆件的几何尺寸和材料属性,计算杆件内部的应力 分布。
动力分析
考虑动载荷的影响,分析杆件在振动、冲击等动态过程中的应力变化。
拉压杆件的强度校核

工程力学-第7章-轴向拉压杆件的强度与变形计算

工程力学-第7章-轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院
7
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽
斜拉桥承受拉力的钢缆 车 学 院
8
Guang Zhou Auto College
工程力学
第7章 轴向拉压杆件的强度与变形计算
广 州 汽 车 学 院9来自 7-1轴向拉压杆横截面上的应力
胡克定律



工程力学
17
轴向拉压的变形分析
P
P
A 细长杆受拉会变长变细,
P
B 受压会变短变粗
C 长短的变化,沿轴线方向, 称为纵向变形
l+Dl l
d-Dd d
D 粗细的变化,与轴线垂直,
称为横向变形
P
P
P
7-3轴向拉压杆的变形计算 胡克定律
工程力学
Guang Zhou Auto College
变形量的代数和:


Δ
l

FNi li FNi ADlEADA+i
=Dl AD DlDE DlEB Dl
FNDElDE + FNEBlEB + FNBClBC
BC

Ec AAD
Ec ADE
Es AEB
Es ABC
=1.2106 m 0.6106 m 0.285106 m 0.428106 m
广
承受轴向载荷的拉(压)杆在工程中的

应用非常广泛。

由汽缸、活塞、连
杆所组成的机构中,不

仅连接汽缸缸体和汽缸
盖的螺栓承受轴向拉力,

带动活塞运动的连杆由

第四章 杆件的变形计算

第四章 杆件的变形计算

3)分别作AC1和BC2的垂线交于C0
A F B 30oC2 C
Cx CC2 0.277mm C y CC1 / sin30 CC 2 cot30
C1
1.44mm
C点总位移:
Cy
C C y C x 1.47mm
(此问题若用圆弧精确求解)
2
2
Cx
C0
T3 C
1)根据题意,首先画出扭矩图
T1 d1 A Mx N· m B T2 d2 C T3
2)AB 段单位长度扭转角:
1400
800
AB
M xAB GI pAB
+
x
1400 4 π 0.06 80 10 9 32 0.01375rad / m
3)BC 段单位长度扭转角: M xBC BC
M xi li j i 1 GI pi
n
请注意单位长度扭转角和相对扭转角的区别
例4-3 一受扭圆轴如图所示,已知:T1=1400N· m, T2=600N· m, T3=800N· m, d1=60mm,d2=40mm,剪切弹性模量G=80GPa,计 算最大单位长度扭转角。
T1 d1 A
T2 d2 B
第四章
• • • • •
杆件的变形计算
本部分主要内容:
拉压杆的轴向变形 圆轴的扭转变形与相对扭转角 梁的弯曲变形、挠曲线近似微分方程 用积分法求梁的弯曲变形 用叠加法求梁的弯曲变形
第一节 拉压杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 而其横向变形相应变细或变粗 杆件在轴线方向的伸长

泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系

第7章 杆件的变形与刚度

第7章  杆件的变形与刚度

32Tmax ⋅180 4 32 × 2000 ×180 d ≥4 = ×103 = 83.5mm G[θ ]⋅ π 2 80 ×109 × 0.3π 2
该圆轴直径应选择:d =83.5mm.
[例2]图示圆轴,已知mA =1.4kN.m, mB =0.6kN.m, mC =0.8kN.m;d1 =40mm,d2 =70mm; l1 =0.2m,l2 =0.4m; [τ]=60MPa,[θ]=1°/m,G=80GPa;试校核该轴的强度和刚 度,并计算两端面的相对扭转角。 mC
D
解:本题应分4段考虑。 π D4 I P1 = I P 2 = 32
d
A
a
1
2
B 3 b b
4
a
C
32 π D3 Wt1 = Wt 2 = 16 d4 π D3 (1 − 4 ) Wt 3 = Wt 4 = 16 D
I P3 = I P 4 =
π
(D4 − d 4 )
0.5kN.m 0.3kN.m 0.8kN.m 4 1 2 3
16mC

○ 1kN.m
π [τ ]
16 × 2000 3 = ×10 6 π 60 ×10
3
= 55.4mm
mA A
mB
mC
⑵按刚度条件
l1
B l C 2
2kN.m

○ 1kN.m
θ max = T ⋅ 180 ≤ [θ ] (°/m) GI p π π 4 Tmax 180 IP = d ≥ ⋅ 32 G[θ ] π
d2
mA
d1
mB
解: ⑴按强度校核
C
l2
A l1 B
0.6kN.m
T1 16mB τ1 = = Wt1 π d13 16 × 600 = = 47.7 MPa < [τ ] 3 π ×4

《材料力学》2-4拉(压)杆的变形.胡克定律

《材料力学》2-4拉(压)杆的变形.胡克定律
拉(压)杆的变形.胡克定律`
杆件在轴向拉压时:
沿轴线方向产生伸长或缩短——纵向变形 横向尺寸也相应地发生改变——横向变形
1、纵向变形
LLL 绝对变形
线应变: 受力物体变形时,一点处沿 某一方向微小线段的相对变 形
当杆沿长度均匀变形时
L L
纵向线应变 (无量纲)
y
C
O
x
A
B
z △x
当杆沿长度非均匀变形时
αD
B1 BB2C1 C
FNCD
F
A
C
a
CC1
CL CCD ccooss
C
C1
L/2
L/2
B
mA 0
FNCD
2F
cos
B1
LC FD LFN1 2CEL D A cLC o DsFCD
2Fa
EAcos2
B
4Fa
EAco3s
移δB。1、已经测出CD杆的轴向应变ε;2、已知CD杆 的抗拉刚度EA.
1. 已知ε
LCD
a
LCDa
D
FNCD
Fa
A
C 刚杆
B
L C1
L
2
2
B1
B2LCD 2a
2. 已知EA
LCD
FNCDa EA
mA 0
FNCD2F
B 2L 2 LC FN DCD 4EFFAaL0
例题
2.12
B
图示的杆系是由两根圆截面钢杆铰接而成。已知
L AB L AC F N EA L A C 2 EF c A o Ls
A
A AA
L AC
cos
FL
2EAcos2

材料力学第6章拉压杆件的应力变形分析与强度设计

材料力学第6章拉压杆件的应力变形分析与强度设计

解:首先分析钢杆和铝筒的受力:钢杆BC承受拉伸,铝筒承受 压缩。C点的位移等于钢杆的伸长量与铝筒的压缩量之和:
Rigid plate
F´P B
FP AsB Ea
Aa Es
Fixed rigid plate
A
FP
l l
C F´P
第2类习题 变形计算
长为1.2m、横截面面积为1.10×10-3m2的铝制筒放置在固定刚块上,直径 为15.0mm的钢杆BC悬挂在铝筒顶端的刚性板上,若二者轴线重合、载荷作 用线与轴线一致,且已知钢和铝的弹性模量分别为Es = 200GPa,Ea = 70GPa, FP = 60kN。试求钢杆上C处位移。
50mm。求铝板与钢板横截面上的最大正应力。
steel aluminum
Rigid plate
FNs

Es As Es As Ea Aa
FP
FNa

Ea Aa Es As Ea Aa
FP
TSINGHUA UNIVERSITY
1.复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式
图示由铝板和钢板组成的复合材料柱,纵向截荷FP通过刚性平板沿着柱的中心线施加 在其上。试:
1.导出复合材料柱横截面上正应力与FP、b0、b1、h和Ea、Es之间的关系式; 2.已知FP = 385kN;Ea = 70GPa,Es = 200GPa;b0 = 30mm,b1 = 20mm,h =
50mm。求铝板与钢板横截面上的最大正应力。
铝板
a
FNa EaFP
Aa
b0hsE2b1haE
钢板
s A F s N sE sb 0 h E sE F P a2 b 1 hb 0 hs E E sF 2 P b 1 haE

《材料力学》课程中杆件内力与变形计算的Matlab实现

《材料力学》课程中杆件内力与变形计算的Matlab实现

《材料力学》课程中杆件内力与变形计算的Matlab实现李春锋;蒲兴龙;于彬;杨旭辉;王丽【摘要】杆件的内力与变形计算是材料力学课程教学的主要任务之一,其确定往往涉及较大的计算量,学生在学习中易形成重计算而轻力学原理与力学思想的学习观念。

将Matlab科学计算软件引入材料力学课程,将杆件内力与变形中比较繁杂的数学运算由计算机完成,一方面能使学生将大量时间用于掌握力学原理和力学思想,提高教学质量和教学效果,另一方面对培养学生用计算机解决问题与创新能力的提高有着积极的推动作用,为相关力学类课程的教学与学习提供一些参考。

%Internal forces and deformation calculation of the prismatic bar is one of the main tasks of mechanics of materials,and its calculation often takes much time. Hence, many students spend much time learning the calculation but neglect the learning of the mechanical calculation principle and mechanics. However, there’re solutions of putting the Matlab scientific computing software into the material mechanics course and making more complex mathematical operations done by the computer on internal forces and deformation calculation, which enable students to focus on the principles of mechanics and mechanical thinking,which also improve teaching quality and teaching effectiveness. In addition, students are promoted to use computers actively to solve problems and to improve their innovation capability. And the solutions also provide some reference for the teaching and learning of other mechanics courses.【期刊名称】《河西学院学报》【年(卷),期】2015(000)002【总页数】12页(P55-65,9)【关键词】材料力学;内力;变形;Matlab;计算【作者】李春锋;蒲兴龙;于彬;杨旭辉;王丽【作者单位】河西学院土木工程学院,甘肃张掖734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000;河西学院土木工程学院,甘肃张掖 734000【正文语种】中文【中图分类】O3材料力学课程是土木、机械等专业的核心基础课程,传统力学类课程教学及学习过程中经常要面对大量而繁杂的数学计算,使得教学、学习过程中容易产生重计算而轻视或忽略力学模型的建立及力学原理的学习,其已经暴露出许多不尽如人意的方面,国内很多理工科院校在材料力学课程的教学中进行了较多的探讨与研究.将计算机技术与现代数值计算方法引入材料力学课程的教学,给力学类课程的教学提供了新的教学视野,对提高教学质量,加强学生力学建模与力学原理思想及培养学生创新思维提供了积极的因素.Matlab软件以其强大的计算与图形仿真能力正逐渐成为理工科大学本科生、硕士生、博士生必需掌握的基本技能之一,国内很多学者已将其引入到力学类课程教学中并取得了丰富的成果.罗义银、邓旭辉等[1-4]通过运用Matlab来分析运动学、动力学问题来讲述Matlab在理论力学教学中的运用,李银山[5-6]将 Maple软件作为学习理论力学、材料力学的工具,并将之编写为教材,王玉山等[7]介绍了Matlab在材料力学超静定问题求解及梁变形可视化中的应用,张宁等[8]利用Simmechanics对曲柄连杆机构进行了运动学和动力学仿真,敖文刚[9]利用Matlab设计了虚拟实验可视化用户界面,可将分析结果以曲线动画和表格表达出来.内力与变形计算是《材料力学》课程教学的重要内容,采用Matlab软件进行较为系统的构件、简单结构内力与变形计算的研究还不是很多,较系统的对材料力学课程中的拉压、扭转、弯曲及梁的剪力与弯矩问题进行计算机分析仿真,并利用Matlab自身强大的数据图形处理能力对分析结果以图形输出,使学生能在课堂上直观了解工程实际问题的处理过程,既可提高学生的学习兴趣,又可增强学生对工程实际的感性认识和解决工程问题的能力,对《材料力学》课程的教学方法改革将有着重要的补充意义.1.1 静定问题1.1.1 拉(压)杆件计算的Matlab仿真(1)计算方法拉压杆的内力与应力计算是《材料力学》课程四种基本计算内容之一.对于常见的杆系结构,其求解往往涉及线性方程组的求解,耗时耗力.运用Matlab软件只需针对所建立力学模型列出方程(组),运用Matlab软件下的solve命令即可得到结果.其计算的基本思路可概括如下:①确定荷载;②画受力分析图;③静力平衡方程,求解.(2)举例与Matlab仿真计算例题1:如图1所示,实心圆钢杆AB和AC在点A铰接连接,在A点作用有铅垂向下的力F= 35KN.已知杆AB和AC的直径分别为d1=12mm和d2=15mm,钢的弹性模量E=210Gpa.试求各杆轴力及A点的铅垂位移.Matlab程序:%考虑节点位移问题;以水平向右为X正方向1.1.2 等直圆杆的扭转计算与Matlab仿真(1)计算方法等直圆杆扭转时的应力计算,需要先从变形几何方面和物理方面两方面确定切应力在横截面上的分布规律,然后再考虑静力平衡进行求解.几何方面通过一点处切应变随该点在横截面上的位置变化而变化的规律,通过下面公式计算.在物理方面,由剪切胡克定律可知,在线弹性范围内,切应力与切应变成正比计算,即在静力学方面,由合力矩原理可得扭矩T.结合三方面便可算出等直圆杆在扭转时的切应力.其计算的基本思路可概括为:①确定作用在圆杆上的外力偶;②列静力平衡方程;③求解并画扭矩图.(2)举例与Matlab仿真计算例题2:一传动轴如图2所示,其转速n=300r/min,主动轮输入的功率P1=500kW.若不计轴承摩擦所耗的功率,三个从动轮输出的功率分别为P2=150kW,P3=150kW及P4=200kW,试做轴的扭矩图.运行结果:如图2所示.1.1.3 静定梁的计算与仿真(1)计算方法梁截面内力求解的基本方法是截面法,工程常根据梁截面内力图以确定梁构件的配筋计算图,依据所绘制梁的内力图,一方面可直观地确定出梁的“危险点”、“危险截面”.另一方面是完成梁的截面尺寸设计和强度、刚度校核的关键环节.其计算的基本思路可概括如下:①计算支座约束力;②建立剪力函数(剪力的单位kN);③建立弯矩函数(弯矩的单位kN·m);④绘制剪力图;⑤绘制弯矩图;(2)举例与Matlab仿真计算例题3:已知简支梁上均布荷载与力偶共同作用时,Me=4KN.m,q=0.2KN/m,l=10m,b=2m,绘制其剪力及弯矩图,计算简图如图3所示.运行结果:如图3所示.1.2 超静定问题1.2.1 拉(压)杆件超静定问题计算与Matlab仿真(1)计算方法实际工程中,大多数杆件结构为超静定结构,其特点是未知力的数目多于独立静力平衡方程的数目,在计算时首先要确定体系的超静定次数,根据变形协调条件,得出补充方程,再依据平衡条件求出未知力,最后得到结构体系的内力图,计算思路简单,但计算量非常之大.其常用基本计算思路可概括如下:①确定荷载;②画受力分析图,确定超静定次数并列静力平衡方程;③建立杆件的变形方程(几何关系);④建立物理方程(力与变形之间的关系);⑤求解.(2)举例与Matlab仿真计算例题4:如图4所示,支架承受荷载F=10KN,1、2、3各干由同一材料制成,其横截面积分别为A1=100mm2,A2=150mm2和A3=200mm2.试求各杆轴力.1.2.2 扭转超静定计算与Matlab仿真(1)计算方法扭转变形是结构体系中杆件的基本变形之一,工程中的大部分构件在正常工作阶段需考虑其扭转效应,扭转超静定问题比简单的扭转问题更为复杂,需要考虑杆件在扭转时的几何条件、物理条件,然后联合求解.其计算的基本思路可概括如下:①确定荷载;②画受力分析图,确定超静定次数并列静力平衡方程;③建立杆件的变形方程(几何关系);④建立物理方程(力与变形之间的关系);⑤联合求解.(2)举例与Matlab仿真计算例题5:如图5所示,圆截面杆AC的直径d1=100mm,A端固定,在截面B承受外力偶矩Me= 7kN.m,截面C的上、下两点处的直径均为d2=20mm的圆杆EF、GH铰接.已知各杆件材料相同,弹性常数间的关系为G=0.4E.试求杆AC的最大切应力.Matlab程序:%考虑杆件的扭转问题1.2.3 简单超静定梁的计算与Matlab仿真(1)计算方法在超静定梁的计算中,需要运用变形计算法来对其求解,确定超静定次数是解决此问题的首要条件,超静定次数决定了补充方程的个数,将梁所受的约束去掉加为未知力,根据叠加原理求解此问题.其解决思路可概括如下:①确定超静定次数;②确定静定基(去约束,加未知力);③建立补充方程(变形条件);④联合静力方程求解;⑤绘制内力图.(2)举例与Matlab仿真计算例题6:如图6所示,矩形梁AB受到均布荷载q=5kN/m的作用,其梁的截面尺寸为b=250mm,h=500mm,梁的跨度为l=6m,弹性模量E=210Gpa.绘制梁的内力图.2.1 拉(压)杆件的变形计算与Matlab仿真(1)计算方法拉压杆件的变形计算主要以轴向变形与横向变形为主,其主要计算思路可概括如下:①确定荷载,用截面法确定杆件的轴力.②由于材料力学范围内主要讨论线弹性范围内变形,故广义胡克定律成立,可用下述公式来计算出轴线方向的变形.③由所求的轴向变形根据泊松比即可计算出杆件在拉压时的横向变形.(2)举例与Matlab仿真计算例题7:图7所示结构中AB为水平放置的刚性杆,杆1、2、3材料相同,其弹性模量为E= 210Gpa,已知l=1m,A1=A2=A3=100mm2,F=20kN.求C点的水平位移与铅垂位移.解题思路:设图示中各杆件受拉为正,C点因各杆变形而引起X方向位移,Y方向位移.①由胡克定律,得杆件变形表达式为:②节点的变形几何关系为:式中,ls表示水平位移,lv表示竖直位移,由于3杆为刚性杆,故不发生形变.③由于以上计算均为线性方程,可利用Matlab矩阵左除命令求解.2.2 等直圆杆的扭转变形计算与Matlab仿真(1)计算方法等直圆杆扭转时的变形为一端固定不动,另一端相对固定端扭转角来表现.主要计算思路如下:①确定扭矩,运用截面法通过已知的外力偶确定杆件内部的扭矩.②根据已知杆件尺寸确定杆件极惯性矩IP.③圆轴扭转的变形(扭转角)可根据下列公式确定.对于扭转问题来说,通常极惯性矩的计算是在扭转变形计算中是非常繁琐且耗费大量时间,而在Matlab中只需根据不同类型的杆件来选择相应的计算方法,之后便是矩阵形式的线性方程组的运用,大大的简化了复杂的计算过程.(2)举例与Matlab仿真计算例题8:已知Ma=5.4kN.m,Mb=1.8kN.m,Mc=3.6kN.m,G=80×103pa,D=125mm,d=100mm,计算扭转角Φ.解题思路:首先,通过外力偶计算杆件扭矩T.其次,由于是空心圆杆,故采用下列公式来计算其极惯性矩.最后,将求得的极惯性矩以及扭矩代入扭矩下述公式,即可计算出杆件的转角. 2.3 静定梁的变形计算与Matlab仿真(1)计算方法静定梁变形的主要指标是:挠度和转角.其主要的计算思路如下:①确定荷载,确定杆件上作用的剪力及弯矩.②写出杆件的弯矩方程.③对弯矩方程一次积分得到转角方程且含有未知常数C,再次积分得到杆件的挠度方程且含有未知常数C和D.④利用杆件特殊位置的挠度与转角的边界条件,求出未知数C,D.⑤将所求位置点代入挠度转角方程,即可得到所求的挠度与转角方程.在静定梁的变形计算中最为繁琐之处在于采用积分方法确定挠度与转角的方程,积分会耗费大量的时间且容易出错,运用Matlab强大的计算能力,可以用计算机来计算积分,从而得到变形方程,节省大量时间.(2)举例与Matlab仿真计算例题9:如图8所示,一悬臂梁在端部受集中力F=10kN作用,其梁的截面尺寸为b=250mm,h= 500mm,梁的跨度为l=3m,弹性模量E=210Gpa.求梁的转角和挠度并绘制变形曲线.通过上面分析可以看出,《材料力学》课程中引入Matlab编程功能,进行杆件或杆系结构内力与变形计算将对课程的教学与学生学习、创新能力的培养有着积极的作用,具体为:(1)使学生从力学类课程繁杂的数学手算中解脱出来,将课程学习的主要精力集中到力学建模与力学分析思路的养成上,把繁杂的计算任务交给计算机去完成. (2)通过Matlab科学计算平台,引导学生建立数值求解的思想和方法,提高学生的工程素养与工程意识.(3)Matlab软件在课程教学中的引进,有利于提高教学效率,加强学生对基本概念和原理的理解,为学生创新思维的发挥拓展了广阔的空间,给学生自主学习和研究性学习提供了一个良好的平台,为相关力学类课程教学与学习提供一些参考.【相关文献】[1]罗义银.机械类专业理论力学教学改革的发展与思考[J].力学与实践,2000,22(3):56-57.[2]邓旭辉,张平,肖攀.Matlab在理论力学教学中应用[J].力学与践,2006,28(5):82-83.[3]胡超,程建钢.《理论力学》多媒体仿真教学实验[J].力学与实践,2003,25(1):67-70.[4]李校兵,扬芳,王军.Matlab在理论力学教学中的应用[C].2009力学课程报告论坛论文集,2009:63-65.[5]李银山.Maplel理论力学[M].北京:机械工业出版社,2006.[6]李银山.Maplel材料力学[M].北京:机械工业出版社,2009.[7]王玉山,王锐.Matlab在材料力学超静定问题求解及梁变形可视化中的应用[J].石河子大学学报,2007,25(1):109-111.[8]张宁,田杰,陈奇.基于simmechanics的曲柄压力机机构仿真分析[J].宜春学院学报,2013,35(3):35-36.[9]敖文刚.基于Matlab的可视化理论力学虚拟实验[J].重庆工商大学学报:自然科学版,2012,29(9):101-105.[10]孙训方,方孝淑,关来泰.材料力学(Ⅰ)[M].北京:高等教育出版社,2013.。

材料力学 杆件的变形计算

材料力学 杆件的变形计算

40kN A
60kN B
20kN C
400
400
9
40kN A
60kN B
20kN
C
1)求出轴力,并画出轴力图
400
400
FN KN 40
2)求伸长量
+
x l l AB lBC

20
l AB
FNABl AB EAAB
40 10 3 400 200 10 3 800
0.1mm
伸长
lBC
ቤተ መጻሕፍቲ ባይዱ
FNBC l BC EABC
x0 x
5、杆的横向变形:
ac ac ac
6、x点处的横向线应变:
ac
ac
2
二、拉压杆的弹性定律
1、等内力拉压杆的弹性定律
P
P
2、变内力拉压杆的弹性定律
NN((xx))
x dx 内力在n段中分别为常量时
dL PL A
dL PL NL EA EA
※“EA”称为杆的抗拉压刚度。
(dx) N ( x)dx EA( x)
C
C2
C1
因此,C节点变形后将位于C3点
C3 C0
由于材料力学中的小变形假设,可
以近似用C1和C2处的圆弧的切线来代替 圆弧(以切代弧法),得到交点C0
14
[解]
1)分析节点C,求AC和BC的轴力(均预
A
先设为拉力)
F
B
30oC2
C
C1
y
FAC
F
30
FBC
C x
FAC sin 30 F 0 FAC 2F 80kN 拉 伸长
是刚刚走到这个知识领域的边缘,然而一旦对它有了充分的认 识,就将会在我们面 前展现出一个迄今为止只被人们神话般

《材料力学》第十二章-求变形的能量法

《材料力学》第十二章-求变形的能量法

3 虚功的计算 外力:P1, P2,……, 虚位移:a1, a2,……., 外力虚功: 内力:N, M,… 虚变形:
We=P1a1+P2a2+……..
内力虚功:
由 We=Wi
虚功原理是最一般的功能原理
对于梁,施加单位力P=1, 力P产生的内力 则有:
莫尔定理
小结: 1 变形位能的概念 2 卡氏定理 3 莫尔定理 4 互等定理 5 虚功原理 作业:12.19, 12.20
2 ( x)
2G
L
dv
2 w ( x)
L
2E
dv
内力表达的变形位能
应力表达的变形位能


1. 变形位能是状态函数 (同最终的力和变形有关)
11
2. 变形位能的计算不能用叠加原理
如何解释交叉项? 单独作用时 则 交叉项是两个载荷相互作用的外力功
〈解释1〉
载荷
在载荷
引起的位移上做的功
⑤ 莫尔积分必须遍及整个结构

A
求等截面直梁C点的挠度和转角(例 12.3 [P356])
q B x a C
A
P0 =1
B
a
a
C
a
解:①画单位载荷图 ②求内力
qx2 M ( x ) aqx 2
③变形
q A x a C B A P0 =1 B
a
a
C
a
对称性
④求转角,重建坐标系(如图)
q
A
§12–3 莫尔定理 Mohr Theory
q(x)
A
在实载荷下得到
相应内力如弯矩为M(x) 如何计算任一点A的位移? 1、 在A点加虚单位力

材料力学 杆件的变形计算

材料力学 杆件的变形计算
必知弓力三石者,当弛其弦以绳缓擐之者,谓不张之,别以 一条 绳系两箭,乃加物一石张一尺、二石张二尺、三石张三 尺。其中 “两萧” 就是指弓的两端。 胡:郑老先生讲“每加物一石,则张一尺”。和我讲的完全是同一 个意思。您比我早1500 中就记录下这种正比关系,的确了不起, 真是令人佩服之至』我在1686 年《关于中国文字和语言的研究 和推测》一文中早就推崇过贵国的古代文化:“目前我们还只 是刚刚走到这个知识领域的边缘,然而一旦对它有了充分的认 识,就将会在我们面 前展现出一个迄今为止只被人们神话般
B
30oC2
C
C1
1.44mm
胡:请问,“ 弛其弦,以绳缓援之” 是什么意思 ?
郑:这是讲测量弓力时,先将弓的弦 松开,另外用绳子松松地套住弓 的两端,然后加重物,测量。
胡:我明白了。这样弓体就没有初始应力,处于自然状态。
郑:后来,到了唐代初期,贾公彦对我的注释又作了注疏,他说: 郑又云假令弓力胜三石,引之 中三尺者,此即三石力弓也。
400
400
FN KN 40
2)求伸长量
+
x l l AB lBC

20
l AB
FNABl AB EAAB
40 10 3 400 200 10 3 800
0.1mm
伸长
lBC
FNBC l BC EABC
20103 400 0.167mm
200103 240
缩短
l lAB lBC 0.1 0.167 0.067mm 缩短
A
1m
F
B
30o
C
分析
A
B
通过节点C的受力分析可以判断AC 杆受拉而BC杆受压,AC杆将伸长,而 F BC杆将缩短。

材料力学公式汇总

材料力学公式汇总

材料力学常用公式MJgi = 9 549 TJ1. 外力偶矩计算公式(P功率,n转速)2. 弯矩、剪力和荷载集度之间的关系式『Mg —叭㈤dx2既飢3. 轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正)4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a从x轴正方向逆时针转至外法线的方位角为正)b.=辛軒casa= CTcna^ <f = —(1 + c口當2®5. 纵向变形和横向变形(拉伸前试样标距I,拉伸后试样标距I1 ;拉伸前试样直径d,拉伸后试样直径di)6. 纵向线应变和横向线应变r = sincr= crcDs<rsina =7.泊松比2328. 胡克定律9. 受多个力作用的杆件纵向变形计算公式S - =1 xLOO%13.延伸率 1A -爭-1xlQO%14. 截面收缩率A15. 剪切胡克定律 (切变模量 G 切应变g )匸” 16.拉压弹性模量E 、泊松比'和切变模量G 之间关系式E2(1+ v)(b )空心圆10.承受轴向分布力或变截面的杆件,纵向变形计算公11.轴向拉压杆的强度计算公式12. . 许用应力 性材料% =込脆性材料17.圆截面对圆心的极惯性矩(a )实心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩19.圆截面周边各点处最大切应力计算公式(b )空心圆21.薄壁圆管(壁厚 8< R/10 , Ro 为圆管的平均半_ T 径)扭转切应力计算公式'注耳22.圆轴扭转角二与扭矩T 、杆长I 、扭转刚度GH 的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或卩24.等直圆轴强度条件25. 塑性材料"1 = (D •界 阿[叫脆性材料[r] = (0T 8-L0)[cr] 26.扭转圆轴的刚度条件? s 侥L<1^1或T ,所求点到圆心距离 r )20.扭转截面系数(a )实心圆 1“TL27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式G.十6 CT — (Tcr = --------------- - 十 -------------- cns2ar — sinlcr■>|H]fl再29.平面应力状态的三个主应力叼二吉巧一叭円+°i )l叼=云|“ —叭巧十込)]0*=030.主平面方位的计算公式沁吗“玉-碍一円31. 宀土兰三面内最大切应力232.受扭圆轴表面某点的三个主应力33. 三向应力状态最大与最小正应力 °maji 二 °1qirin 二 °3534. 三向应力状态最大切应力 t,H'35. 广义胡克定律36. 四种强度理论的相当应力=°i弔二巧一叭还+巧)殆=硏—円|%二普[何-阿f晋何-碍F十何一巧)'】37. 一种常见的应力状态的强度条件込3 = J/ +4F < 0] 込厶二Jc/ 十痒< [tr]_刀毘38. 组合图形的形心坐标计算公式39. 任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式41. 平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)' □+宀cr 二42. 纯弯曲梁的正应力计算公式43. 横力弯曲最大正应力计算公式40. 截面图形对轴z和轴y的惯性半径」MA44. 矩形、圆形、空心圆形的弯曲截面系数3245. 几种常见截面的最大弯曲切应力计算公式(;—为中性轴一侧的横截面对中性轴z的静矩,b为横截面在46. 矩形截面梁最大弯曲切应力发生在中性轴处弘= lbh = l~^47. 工字形截面梁腹板上的弯曲切应力近似公式48. 轧制工字钢梁最大弯曲切应力计算公式49. 圆形截面梁最大弯曲切应力发生在中性轴处50. 圆环形薄壁截面梁最大弯曲切应力发生在中性轴52. 几种常见截面梁的弯曲切应力强度条件处51. 弯曲正应力强度条件260.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩 5和-同时作用时62. 占皿W 誌阿乔而訥53.弯曲梁危险点上既有正应力a 又有切应力T 作用时的强度条件 爼 」”14工、1叫 或 込丄 b 鳥L 兰[E54. 55. 梁的挠曲线近似微分方程 梁的转角方程56. 梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式> = £li_ 58. 59.偏心拉伸(压缩)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式5 -亠 ‘ | 厂 T°l强度计算公式占血+尸二占祠+可+严如d 2w_ A/U )计=—[f “djcdx 4-C.JC + /J 】63. 弯拉扭或弯压扭组合作用时强度计算公式 % =十记=J (氐+乐尸+4说<[cr\ c^4 = 2十卅=加M +丐尸+玩< [E64. 剪切实用计算的强度条件65. 挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力F =輕计算公式,(阳 67. (b )一端固定、一端自由 1 =2 (c ) 一端固定、 一端铰支 1 =0.7(d )两端固定(1 =0.5\L压杆的长细比或柔度计算公式I*1• >7?遲 细长压杆临界应力的欧拉公式%丑只工召=药匡压杆的约束条件:(68. 69. 欧拉公式的适用范围a )两端铰支卩=1F 站 cr^A n = ------ = -------- >70. 71. 压杆稳定性计算的安全系数法 72.压杆稳定性计算的折减系数法 73.「卩关系需查表求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa, ν = 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上的正应力 σ (b) 螺栓的横向变形△d
解:1) 求横截面正应力 :
ε=
∆l 0.04 = = 7.41×10-4 l 54
l = 54 mm ,di = 15.3 mm, E=200 GPa, ν = 0.3, △l =0.04 mm
∆ac = a ′c′ − ac
∆ac ε′ = ac
二、拉压杆的弹性定律 1、等内力拉压杆的弹性定律 P P
PL NL dL = = EA EA
PL dL ∝ A
2、变内力拉压杆的弹性定律
N(x) N(x)
x dx dx 内力在n段中分别为常量时 内力在 段中分别为常量时
※“EA”称为杆的抗拉压刚度。 ※“ ”称为杆的抗拉压刚度。
C1
C点总位移: 点总位移:
∆C = ∆C y + ∆C x = 1.47mm
2 2
C0
Cx
(此问题若用圆弧精确求解) 此问题若用圆弧精确求解)
∆C x = 0.278mm ∆C y = 1.44mm
第二节 圆轴的扭转变形及相对扭转角
为 dx 的两个相邻截面之间有相对转角dϕ 的两个相邻截面之间有相对转角d
800 π × 0.04 4 80 ×109 32 = 0.03978rad / m
综合两段, 综合两段,最大单位扭转角应在BC 段 为 0.03978 rad/m
例4-5 图示一等直圆杆, 图示一等直圆杆,已知 d =40mm a =400mm G =80GPa, ϕ DB=1O , 求 : 1) 最大切应力 2)ϕ AC
C3
C0
[解 ]
1)分析节点C,求AC和BC的轴力(均预 分析节点C,求AC和BC的轴力 的轴力( 先设为拉力) 先设为拉力)
FAC C2
30
F
C1
FBC
C
FAC sin 30° − F = 0 FAC = 2 F = 80kN 拉
− FBC − FAC cos 30° = 0 FBC = −40 3kN

伸长 缩短
[解 ]
2)求AC和BC杆分别的变形量 AC和BC杆分别的变形量
∆l AC
FAC l AC = CC1 = E1 A1
C2
C1
80 × 10 3 × 1000 / cos30° = 0.481mm = 3 200 × 10 × 960
∆l BC
FBC l BC = CC 2 = E 2 A2
− 40 3 × 10 3 × 1000 = = −0.277mm 3 10 × 10 × 25000
[解 ]
3)分别作AC1和BC2的垂线交于C0 分别作AC 的垂线交于C
∆C x = CC2 = 0.277mm ∆C y = CC1 / sin30° + CC 2 cot30°
C2
= 1.44mm
第三节 梁的变形
1、梁的变形 梁在平面内弯曲时,梁轴线从原来沿 x 轴方向的直线变 梁在平面内弯曲时, 挠曲线。 平面内的曲线,该曲线称为挠曲线 成一条在 xy 平面内的曲线,该曲线称为挠曲线。 某截面的竖向位移,称为 某截面的竖向位移, 该截面的挠度 该截面的挠度 某截面的法线方向与x 某截面的法线方向与x轴 的夹角称为该截面的转角 的夹角称为该截面的转角 挠度和转角的大小和截面所处的 x 方向的位 置有关, 的函数。 置有关,可以表示为关于 x 的函数。 挠度方程(挠曲线方程) w = f1 ( x)或y = f1 ( x ) 挠度方程(挠曲线方程) 转角方程
1)求出轴力,并画出轴力图 求出轴力, 2)求伸长量
∆l = ∆l AB + ∆l BC
40 × 10 3 × 400 FNAB l AB = = 0.1 mm 伸长 ∆l AB = 3 200 × 10 × 800 EAAB FNBC l BC − 20 × 10 3 × 400 ∆l BC = = = −0.167mm 缩短 3 EABC 200 × 10 × 240 ∆l = ∆l AB + ∆l BC = 0.1 − 0.167 = −0.067mm 缩短
N ( x )d x ∆ (dx ) = EA ( x ) N ( x )dx dL = ∫ ∆ (dx ) = ∫ L L EA ( x )
dL =

n
i =1
N iLi E i Ai
3、单向应力状态下的弹性定律
∆ (dx ) 1 N ( x) 1 ε = = = σ dx E A( x ) E
1 即: ε = σ E
4、泊松比(或横向变形系数) 泊松比(或横向变形系数)
ε′ ν = ε
或 : ε ′ = −νε
泊松比ν 泊松比ν 、弹性模量 E 、切变模量G 都是材料的弹性常数, 切变模量G 都是材料的弹性常数, 可以通过实验测得。对于各向同性材料, 可以通过实验测得。对于各向同性材料,可以证明三者之间存 在着下面的关系
“ 胡:请问, 弛其弦,以绳缓援之”
是什么意思 ? 郑:这是讲测量弓力时,先将弓的弦 松开,另外用绳子松松地套住弓 的两端,然后加重物,测量。 胡:我明白了。这样弓体就没有初始应力,处于自然状态。
Байду номын сангаас
郑:后来,到了唐代初期,贾公彦对我的注释又作了注疏,他说: 郑又云假令弓力胜三石,引之 中三尺者,此即三石力弓也。 必知弓力三石者,当弛其弦以绳缓擐之者,谓不张之,别以 一条 绳系两箭,乃加物一石张一尺、二石张二尺、三石张三 其中 “ 两萧” 就是指弓的两端。 尺。 胡:郑老先生讲“每加物一石,则张一尺”。和我讲的完全是同一 个意思。您比我早1500 中就记录下这种正比关系,的确了不起, 真是令人佩服之至』我在1686 年《关于中国文字和语言的研究 和推测》一文中早就推崇过贵国的古代文化: 目前我们还只 是刚刚走到这个知识领域的边缘,然而一旦对它有了充分的认 识,就将会在我们面 前展现出一个迄今为止只被人们神话般 地加以描述的知识王国”。

例题4 例题4-1: 如图所示阶梯形直杆,已知该杆AB段横截面面积 段横截面面积A 如图所示阶梯形直杆,已知该杆AB段横截面面积A1=800mm2, BC段横截面面积A2=240mm2,杆件材料的弹性模量E=200GPa, BC段横截面面积 段横截面面积A 杆件材料的弹性模量E=200GPa, 求该杆的总伸长量。 求该杆的总伸长量。
第四章 杆件的变形计算
第一节 拉(压)杆的轴向变形
直杆在其轴线的外力作用下,纵向发生伸长或缩短变形, 直杆在其轴线的外力作用下,纵向发生伸长或缩短变形,而其横 向变形相应变细或变粗 横截面
1、杆的纵向总变形: 杆的纵向总变形:
a c a´ c´
b d
∆x
d L = L1 − L
2、线应变: 线应变: 单位长度的线变形 P
分析 通过节点C的受力分析可以判断AC 通过节点C的受力分析可以判断AC 杆受拉而BC杆受压 AC杆将伸长 杆受压, 杆将伸长, 杆受拉而BC杆受压,AC杆将伸长,而 BC杆将缩短。 BC杆将缩短 杆将缩短。
C1
因此,C节点变形后将位于C3点 因此, 节点变形后将位于C 由于材料力学中的小变形假设 由于材料力学中的小变形假设,可 小变形假设, 以近似用C 以近似用C1和C2处的圆弧的切线来代替 圆弧(以切代弧法),得到交点C ),得到交点 圆弧(以切代弧法),得到交点C0
在一段轴上,对单位长度扭转角公式进行积分, 在一段轴上,对单位长度扭转角公式进行积分, 就可得到两端相对扭转角ϕ 。
l M dϕ Mx θ= ϕ = ∫ x dx = 0 GI dx GI p p Mx Mxl ϕ= 为常数时: 当 为常数时: GI p GI p
同种材料阶梯轴扭转时: 同种材料阶梯轴扭转时: 相对扭转角的单位: 相对扭转角的单位: rad
E G= 2(1+ν )
公式的适用条件
Fl ∆l = N EA
1)线弹性范围以内,材料符合胡克定律 线弹性范围以内, 2)在计算杆件的伸长时,l 长度内其FN、A、l 均应 在计算杆件的伸长时, 长度内其F 为常数,若为变截面杆或阶梯杆, 为常数,若为变截面杆或阶梯杆,则应进行分段计 算或积分计算。 算或积分计算。
σ = Eε = 200 ×103 × 7.41×10−4 = 148.2 MPa
2) 螺栓横向变形
ε' = − = −2.22 ×10−4 νε
∆d = ε' di = −0.0034 mm
螺栓直径缩小 0.0034 mm
例4-3 节点位移问题 如图所示桁架,钢杆AC的横截面面积 的横截面面积A 如图所示桁架,钢杆AC的横截面面积A1=960mm2,弹性模量 E1=200GPa。木杆BC的横截面面积A2=25000mm2,长1m,弹性模 =200GPa。木杆BC的横截面面积 的横截面面积A 1m, =10GPa。求铰接点C的位移。 kN。 量E2=10GPa。求铰接点C的位移。F = 80 kN。
1)画出扭矩图 2)求最大切应力 首先要求出M 首先要求出M 的数值
ϕ DB = ϕ DC + ϕCB
180° M xDC l DC M xCB lCB = + π GI p GI p
180° 3Ma = = 1° π GIp πGIp M= 540a
πGIp M= 540a
∆l = ∫
l
FNdx EA(x)
FNili ∆l = ∑ i=1 EA i
n
是谁首先提出弹性定律 弹性定律是材料力学等固体力学一个非常重要的基础。一般 认为它是由英国科学家胡克(1635一1703)首先提出来的,所以通 常叫做胡克定律。其实,在胡克之前1500年,我国早就有了关于 力和变形成正比关系的记载。 东汉经学家郑玄(127—200)对《考工记·弓人》中“量其力, 有三均”作了 这样的注释:“假令弓力胜三石,引之中三尺,弛 其弦,以绳缓擐之,每加物一石,则张一尺。” (图)
相关文档
最新文档