《圆的认识》情境导入教学设计
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
师:欣赏完刚才四个同学画的圆以后,你们发现四个人的作品有什么不一样吗?
(四个圆的大小不一样,画在纸上的位置也不一样)
师小结:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚上。
(学生练习用圆规画圆)
3.探讨圆心。
(1)教师示范画一个完整的圆,然后对圆讲解:用圆规画圆时,针尖所在的点叫做圆心。
二、教学目标
1、通过学生的画圆、剪圆、折圆等活动,使学生认识圆,发解圆的各部分名称,掌握圆的特征以及半径、直径的关系,理解圆心、半径、直径的作用。
2、在画圆、剪圆、折圆等活动中,培养学生的观察、分析、辨析、概括能力。
三、学习者特征分析
学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。
(2)请同学们拿出你们的学具,上下对折、打开,出现一条折痕;左右对折、打开,又出现一条折痕;换个方向再对折、打开,如此做几次,你们发现了什么?
(这几条折痕相交于一点)
师指出:这一点就是圆心。
什么叫圆心?学生回答后出示概念。
师明确:圆中心的这一点叫做圆心,圆心一般用字母O表示。
引导学生在学具圆上标注圆心。
师:圆把我们的世界点缀得如此美妙、神奇。今天就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题:圆的认识)
参与对话,激活思维
通过师生对话,引导学生思考同时导入课题
二、探究感悟,掌握特征
1.直观感受圆的曲线特征。
师:老师给每个小组都发了一个布袋,里面放了一些以前学过的平面图形卡片,闭上眼睛,你能很快摸出圆吗?把你的想法和小组内的成员说一说。
三、巩固练习,提升反馈
1.判断。
(1)两端都在圆上的线段叫做直径。()
(2)圆心到圆上任意一点的距离都相等。()
(3)半径4厘米的圆比直径3厘米的圆大。()
(4)两条半径可以组成一条直径。()
2.想一想,车轮为什么做成圆形的?车轴放在哪?
学生在赏圆、折圆
、画圆等一系列活动中,感受圆的曲线特征,并在画圆的过程中认识圆的特征、认识圆的半径、圆心、直径,通过小组活动和交流,进而懂得圆的半径和直径之间的关系,从而懂得根据圆心来确定圆的具体位置以及根据半径来确定圆的大小
学生独立练习,并在练习中巩固所学的圆的知识
通过欣赏圆知道圆在生活中的作用,并学会欣赏圆的美,同时在老师的引导下和小组合作交流中,逐步掌握圆心、半径、直径等圆的概念
通过练习,巩固所学知识,形成基本的技能和技巧
七、信息技术应用
在本节课中,为了配合教学,我使用了教学课件和实物圆片,主要应用如下:
首先在导入环节,通过师生对话,配合课件展示,有效的引导学生进入课题,同时激发学生的学习兴趣。其次是在自主探究环节,通过课件提出要求,给学生以一定的提示,让学生的探究具有更加明确的方向,接着在小结环节,通过课件配合进行小结,在进行知识呈现的同时,有效的提高了教学效率,最后是在练习环节,通过课件呈现问题,方便学生对照检查,有效的提高了学习效率。
学生每四人一组尝试画圆,看谁的方法多。
学生自由画,稍后,老师评价学生画的圆:说一说你是怎样画的?用了什么方法?
(学生用手画,借助圆形物体画,用圆规画)
师:比较一下,用什么方法画的圆比较好?(圆规画圆)
(2)尝试画圆。
学生操作,每个学生用圆规在白纸上画一个圆。
学生完成后,教师让学生每四人一组,把四个人画的圆放在一起,相互欣赏。
活动后汇报:你为什么一下就能说出摸到的是圆?圆和我们学过的其他的平面图形有什么区别?
师:(结合学生的回答)圆是由一条曲线围成的封闭图形。
师:请同学们再次闭上眼睛摸着圆的边,想象一下圆的形状。
2.交流反馈,形成概念。
(1)自学画圆。
我们先研究圆的画法:
师:刚才同学们已经认识了圆,那么,想不想把它画出来呢?
(2)说一说什么叫直径。学生回答后出示概念及表示方法。
教师边示范边讲解。
师:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
(3)请同学们仔细观察,想一想:直径应具备哪些条件?在同一个圆中,可以画几条直径?所有的直径长度都相等吗?
学生讨论后,全班汇报。
师小结:直径通过圆心,并且两个端点都在圆上;在同一个圆中有无数条直径,所有的直径长度都相等。
(4)设疑:刚才同学们画的圆有大有小,你们认为它与什么有关?
学生小组之间讨论后全班汇报。
师小结:圆的大小是由圆的半径决定的。
5.探讨直径。
(1)小组合作。拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?
(这些线段的长度相等)
师小结:像这样的线段我们把它叫做直径。
情境导入教学设计
课题:《圆》
学科:小学数学
教学对象:六年级
课时:1源自文库时
设计者:温军超
单位:赣源中学
一、教学内容分析
本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,
都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。
(3)设疑:同学们刚才画的圆的位置不一样,你们认为这是由什么决定的?
学生同桌之间讨论后汇报。
圆心决定圆的位置。
4.探讨半径。
(1)小组合作。在你的学具圆上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?
(这些线段的长度都相等)
师小结:像这样的线段我们把它叫做半径。
6.在同圆或等圆中直径和半径的关系。
学生用尺子独立量出自己手中圆的直径和半径长度,看它们之间有什么关系,然后讨论测量结果,找出直径与半径之间的关系。
师生共同小结:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d=2r或r=。
设计意图:让学生经历动手操作、观察发现的过程,在操作、观察中认识圆的各部分名称,发现圆的基本特征,理解和掌握同一个圆中直径与半径之间的关系,体验自主感悟新知的过程。
四、教学重点及难点
认识圆及其特征,能够正确地用圆规画圆。
五、情境导入使用资源
课件及实物圆片
六、情境导入实施步骤
教师活动
学生活动
设计意图
一、创设情境,激趣导入
师:同学们,老师手里拿的是什么?(圆)关于圆,同学们一定不会感到陌生,请你们想一想,生活中你们在哪里见到过圆?
师:圆在生活中随处可见,让我们一起来欣赏一下吧。(课件播放教材57页主题图)
(2)用自己的话说一说什么叫半径?学生回答后出示概念及表示方法。
教师边示范边讲解。
师:连接圆心和圆上任意一点的线段叫做半径。半径一般用字母r表示。
(3)请同学们仔细观察,想一想:半径应具备哪些条件?在同一个圆中,可以画几条半径?所有的半径长度都相等吗?
学生讨论后,全班汇报。
师小结:半径是一端在圆心,另一端在圆上的线段;在同一个圆中有无数条半径,所有的半径长度都相等。
(四个圆的大小不一样,画在纸上的位置也不一样)
师小结:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚上。
(学生练习用圆规画圆)
3.探讨圆心。
(1)教师示范画一个完整的圆,然后对圆讲解:用圆规画圆时,针尖所在的点叫做圆心。
二、教学目标
1、通过学生的画圆、剪圆、折圆等活动,使学生认识圆,发解圆的各部分名称,掌握圆的特征以及半径、直径的关系,理解圆心、半径、直径的作用。
2、在画圆、剪圆、折圆等活动中,培养学生的观察、分析、辨析、概括能力。
三、学习者特征分析
学生将在这个单元中,结合动手操作、比较、测量等多种数学活动,更深入的理解、掌握圆的特点,进一步发展空间观念。
(2)请同学们拿出你们的学具,上下对折、打开,出现一条折痕;左右对折、打开,又出现一条折痕;换个方向再对折、打开,如此做几次,你们发现了什么?
(这几条折痕相交于一点)
师指出:这一点就是圆心。
什么叫圆心?学生回答后出示概念。
师明确:圆中心的这一点叫做圆心,圆心一般用字母O表示。
引导学生在学具圆上标注圆心。
师:圆把我们的世界点缀得如此美妙、神奇。今天就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?(板书课题:圆的认识)
参与对话,激活思维
通过师生对话,引导学生思考同时导入课题
二、探究感悟,掌握特征
1.直观感受圆的曲线特征。
师:老师给每个小组都发了一个布袋,里面放了一些以前学过的平面图形卡片,闭上眼睛,你能很快摸出圆吗?把你的想法和小组内的成员说一说。
三、巩固练习,提升反馈
1.判断。
(1)两端都在圆上的线段叫做直径。()
(2)圆心到圆上任意一点的距离都相等。()
(3)半径4厘米的圆比直径3厘米的圆大。()
(4)两条半径可以组成一条直径。()
2.想一想,车轮为什么做成圆形的?车轴放在哪?
学生在赏圆、折圆
、画圆等一系列活动中,感受圆的曲线特征,并在画圆的过程中认识圆的特征、认识圆的半径、圆心、直径,通过小组活动和交流,进而懂得圆的半径和直径之间的关系,从而懂得根据圆心来确定圆的具体位置以及根据半径来确定圆的大小
学生独立练习,并在练习中巩固所学的圆的知识
通过欣赏圆知道圆在生活中的作用,并学会欣赏圆的美,同时在老师的引导下和小组合作交流中,逐步掌握圆心、半径、直径等圆的概念
通过练习,巩固所学知识,形成基本的技能和技巧
七、信息技术应用
在本节课中,为了配合教学,我使用了教学课件和实物圆片,主要应用如下:
首先在导入环节,通过师生对话,配合课件展示,有效的引导学生进入课题,同时激发学生的学习兴趣。其次是在自主探究环节,通过课件提出要求,给学生以一定的提示,让学生的探究具有更加明确的方向,接着在小结环节,通过课件配合进行小结,在进行知识呈现的同时,有效的提高了教学效率,最后是在练习环节,通过课件呈现问题,方便学生对照检查,有效的提高了学习效率。
学生每四人一组尝试画圆,看谁的方法多。
学生自由画,稍后,老师评价学生画的圆:说一说你是怎样画的?用了什么方法?
(学生用手画,借助圆形物体画,用圆规画)
师:比较一下,用什么方法画的圆比较好?(圆规画圆)
(2)尝试画圆。
学生操作,每个学生用圆规在白纸上画一个圆。
学生完成后,教师让学生每四人一组,把四个人画的圆放在一起,相互欣赏。
活动后汇报:你为什么一下就能说出摸到的是圆?圆和我们学过的其他的平面图形有什么区别?
师:(结合学生的回答)圆是由一条曲线围成的封闭图形。
师:请同学们再次闭上眼睛摸着圆的边,想象一下圆的形状。
2.交流反馈,形成概念。
(1)自学画圆。
我们先研究圆的画法:
师:刚才同学们已经认识了圆,那么,想不想把它画出来呢?
(2)说一说什么叫直径。学生回答后出示概念及表示方法。
教师边示范边讲解。
师:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
(3)请同学们仔细观察,想一想:直径应具备哪些条件?在同一个圆中,可以画几条直径?所有的直径长度都相等吗?
学生讨论后,全班汇报。
师小结:直径通过圆心,并且两个端点都在圆上;在同一个圆中有无数条直径,所有的直径长度都相等。
(4)设疑:刚才同学们画的圆有大有小,你们认为它与什么有关?
学生小组之间讨论后全班汇报。
师小结:圆的大小是由圆的半径决定的。
5.探讨直径。
(1)小组合作。拿出你的学具圆,用尺子沿着一条折痕画出一条线段,再画几条,用尺子量一量这些线段,你发现了什么?
(这些线段的长度相等)
师小结:像这样的线段我们把它叫做直径。
情境导入教学设计
课题:《圆》
学科:小学数学
教学对象:六年级
课时:1源自文库时
设计者:温军超
单位:赣源中学
一、教学内容分析
本单元内容是在学生学过了直线图形的认识和面积计算,以及圆的初步认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,
都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的有关知识的学习,不仅加深学生对周围事物的理解,提高解决简单实际问题的能力,也为以后学习圆柱、圆锥等知识和绘制简单统计图打好基础。
(3)设疑:同学们刚才画的圆的位置不一样,你们认为这是由什么决定的?
学生同桌之间讨论后汇报。
圆心决定圆的位置。
4.探讨半径。
(1)小组合作。在你的学具圆上任意找一点,连接圆心和这一点得到一条线段,你还能画出这样的线段吗?再画几条,用尺子量一量这些线段,你发现了什么?
(这些线段的长度都相等)
师小结:像这样的线段我们把它叫做半径。
6.在同圆或等圆中直径和半径的关系。
学生用尺子独立量出自己手中圆的直径和半径长度,看它们之间有什么关系,然后讨论测量结果,找出直径与半径之间的关系。
师生共同小结:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d=2r或r=。
设计意图:让学生经历动手操作、观察发现的过程,在操作、观察中认识圆的各部分名称,发现圆的基本特征,理解和掌握同一个圆中直径与半径之间的关系,体验自主感悟新知的过程。
四、教学重点及难点
认识圆及其特征,能够正确地用圆规画圆。
五、情境导入使用资源
课件及实物圆片
六、情境导入实施步骤
教师活动
学生活动
设计意图
一、创设情境,激趣导入
师:同学们,老师手里拿的是什么?(圆)关于圆,同学们一定不会感到陌生,请你们想一想,生活中你们在哪里见到过圆?
师:圆在生活中随处可见,让我们一起来欣赏一下吧。(课件播放教材57页主题图)
(2)用自己的话说一说什么叫半径?学生回答后出示概念及表示方法。
教师边示范边讲解。
师:连接圆心和圆上任意一点的线段叫做半径。半径一般用字母r表示。
(3)请同学们仔细观察,想一想:半径应具备哪些条件?在同一个圆中,可以画几条半径?所有的半径长度都相等吗?
学生讨论后,全班汇报。
师小结:半径是一端在圆心,另一端在圆上的线段;在同一个圆中有无数条半径,所有的半径长度都相等。