算法分析与设计实验四回溯法
算法设计与分析实验指导4_回溯法
![算法设计与分析实验指导4_回溯法](https://img.taocdn.com/s3/m/e9c4846a011ca300a6c390fc.png)
防卫点
角色
1
2
3
4
5
1
60
40
80
50
60
2
90
60
80
70
20
3
30
50
40
50
80
4
90
40
30
70
5
60
80
90
60
50
2.0-1背包问题(选做)
编程实现0-1背包问题的回溯算法。
数据文件见附件。
四、实验报告
1.实验报告只写实验⑴。
2.写出算法思想、主要程序代码、算法复杂性分析。
void Print1(Type a[],int n)
{
for(int i=1; i<=n; i++)
cout<<a[i]<<' ';
cout<<endl;
}
三、实验内容及要求:
1.排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为Aij。试设计一个布阵方案,使总的攻击力最大。
void TwoDimArray(Type** &p,int r,int c)
{
p=new Type *[r];
for(int i=0; i<r; i++)
p[i]=new Type[c];
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
回溯法的实验报告
![回溯法的实验报告](https://img.taocdn.com/s3/m/a6edde485e0e7cd184254b35eefdc8d377ee140a.png)
一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。
二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。
其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。
通过这种方法,可以找到问题的所有解,或者找到最优解。
四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。
(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。
(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。
回朔法实验报告
![回朔法实验报告](https://img.taocdn.com/s3/m/276debdfe43a580216fc700abb68a98271feac9e.png)
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法设计与分析:回溯法-实验报告
![算法设计与分析:回溯法-实验报告](https://img.taocdn.com/s3/m/d6c736a5767f5acfa0c7cdb8.png)
应用数学学院信息安全专业班学号姓名实验题目回溯算法实验评分表指导教师评分标准序号评分项目评分标准满分打分1 完成度按要求独立完成实验准备、程序调试、实验报告撰写。
202 实验内容(1)完成功能需求分析、存储结构设计;(2)程序功能完善、可正常运行;(3)测试数据正确,分析正确,结论正确。
303 实验报告内容齐全,符合要求,文理通顺,排版美观。
404 总结对实验过程遇到的问题能初步独立分析,解决后能总结问题原因及解决方法,有心得体会。
10实验报告一、实验目的与要求1、理解回溯算法的基本思想;2、掌握回溯算法求解问题的基本步骤;3、了解回溯算法效率的分析方法。
二、实验内容【实验内容】最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。
【回溯法解题步骤】1、确定该问题的解向量及解空间树;2、对解空间树进行深度优先搜索;3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。
4、达到叶结点时记录下当前最优解。
5、实验数据n,m,]][[jiw,]][[ji c的值由自己假设。
三、算法思想和实现【实现代码】【实验数据】假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。
总价不超过7(c<=7)。
部件重量表:重量供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 2 2部件3 3 4 1部件价格表:价格供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 3 1部件3 1 1 3【运行结果】实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。
四、问题与讨论影响回溯法效率的因素有哪些?答:影响回溯法效率的因素主要有以下这五点:1、产生x[k]的时间;2、满足显约束得x[k]值的个数;3、计算约束函数constraint的时间;4、计算上界函数bound的时间;5、满足约束函数和上界函数约束的所有x[k]的个数。
算法分析与设计实验报告--回溯法
![算法分析与设计实验报告--回溯法](https://img.taocdn.com/s3/m/3b12b41d657d27284b73f242336c1eb91a37339c.png)
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
实验报告4.回溯算法
![实验报告4.回溯算法](https://img.taocdn.com/s3/m/fd95481652ea551810a687a6.png)
算法设计与分析实验报告实验名称_____回溯算法_____学院________数学与计算机学院____ 班级_______信科00000___________ 学号_______6666666666__________ 姓名_____000000________________ 2016年月日{if(((a+b)==24)||((a-b)==24)||((a*b)==24)||(b!=0&&a%b==0&&a/b==24)){//如果经过上面的计算得到解while(!route.empty()){node now=route.front();printf("%d%c%d=%d\n",now.a,now.oper,now.b,now.sum);//依次输出前面的计算过程route.pop();}if((a+b)==24){if(b>a) swap(a,b);printf("%d+%d=%d\n",a,b,a+b);}if((a-b)==24) printf("%d-%d=%d\n",a,b,a-b);if((a*b)==24) {if(b>a) swap(a,b);printf("%d*%d=%d\n",a,b,a*b);}if(a%b==0&&b!=0&&(a/b)==24) printf("%d/%d=%d\n",a,b,a/b);//a/b比较特殊,要求结果必须是整数flag=true;//表示找到解,一旦找到任何一个解就退出}return ;}queue <node> temp=route;node x;x.a=a,x.b=b,x.sum=a+b,x.oper='+';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a+b,num[cur+1],temp);//(((a*b)*c)*d) 模型temp=route;x.a=a,x.b=b,x.sum=a*b,x.oper='*';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a*b,num[cur+1],temp);temp=route;x.a=a,x.b=b,x.sum=a-b,x.oper='-';temp.push(x);dfs(cur+1,a-b,num[cur+1],temp);if(b!=0&&a%b==0){//a/b需要验证合法性temp=route;x.a=a,x.b=b,x.sum=a/b,x.oper='/';temp.push(x);dfs(cur+1,a/b,num[cur+1],temp);}temp=route;x.a=b,x.b=num[cur+1],x.sum=b+num[cur+1],x.oper='+';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b+num[cur+1],temp);//a*((b*c)*d) 模型temp=route;x.a=b,x.b=num[cur+1],x.sum=b*num[cur+1],x.oper='*';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b*num[cur+1],temp);temp=route;x.a=b,x.b=num[cur+1],x.sum=b-num[cur+1],x.oper='-';temp.push(x);dfs(cur+1,a,b-num[cur+1],temp);if(num[cur+1]!=0&&b%num[cur+1]==0) {temp=route;x.a=b,x.b=num[cur+1],x.sum=b/num[cur+1],x.oper='/';temp.push(x);dfs(cur+1,a,b/num[cur+1],temp);}}int main(){//freopen("point24.in","r",stdin);//输入输出重定向//freopen("point24.out","w",stdout);queue <node> t;scanf("%d %d %d %d",&num[0],&num[1],&num[2],&num[3]);while(!flag){dfs(1,num[0],num[1],t);printf("%d %d %d %d\n",num[0],num[1],num[2],num[3]);if(!next_permutation(num,num+4)) break;}if(!flag) printf("No answer!\n");system("pause");return 0;}。
算法实验报告:回溯法(C语言)
![算法实验报告:回溯法(C语言)](https://img.taocdn.com/s3/m/7af87aba998fcc22bdd10d2f.png)
实验报告
(2015/ 2016学年第一学期)
课程名称算法设计与分析
实验名称回溯法
实验时间2016年5月5日指导单位计算机软件学院
指导教师费宁
学生姓名罗熊班级学号B14050123
学院(系)自动化专业自动化
实验报告
NQUEENS(0);
printf("%d", sum);
system("pause");
return 0;
}:
实验结果:
四、实验小结
回溯法以深度优先次序生成状态空间树中的结点,并使用剪纸函数减少实际生成的结点数,回溯法是一种广泛适用的算法设计技术。
是要问题的解是元组形式,可用状态空间树描述,并采用判定函数识别答案结点,就能采用回溯法求解。
回溯法使用约束函数剪去不含可行解的分枝。
当使用回溯法求最优化问题时,需要设计界限函数用于剪去分枝。
五、指导教师评语
成绩批阅人日期。
回溯与分支限界算法设计
![回溯与分支限界算法设计](https://img.taocdn.com/s3/m/092764f5be1e650e52ea99df.png)
算法设计与分析实验报告1.骑士游历问题(采用回溯法):在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次。
若给定起始位置(x0,y0),编程探索出一条路径,沿着这条路径马能遍历棋盘上的所有单元格。
2. 行列变换问题(采用分支限界法):给定两个m n方格阵列组成的图形A和图形B,每个方格的颜色为黑色或白色,如下图所示。
行列变换问题的每一步变换可以交换任意2行或2列方格的颜色,或者将某行或某列颠倒。
上述每次变换算作一步。
试设计一个算法,计算最少需要多少步,才能将图形A变换为图形B。
图形A图形B}}实例:2. 行列变换问题的程序:package ;import graph{static int sour, dest;//sour是图形的初始整数,dest是图形的目的整数static int ans[]=new int[1<<16];//静态变量(即全局变量),用于存放图形变换的路径int m=4,n=4,x;int row[]=new int[4];int col[]=new int[4];void setx(int x){=x;}int getx(){return ;}x/=2;}}}public static void output(int N){if(N=={outb(N);return;}output[N]);//[N]存放着从初始值到目的值的遍历路径outb(N);}}实例:实验成绩:指导教师:年月日精心搜集整理,。
实验四 回溯算法
![实验四 回溯算法](https://img.taocdn.com/s3/m/b3843afaba0d4a7302763a7d.png)
三、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
提高题一:用回溯法求解跳马问题
一、实验要求 1、 掌握回溯法的基本原理。 2、 使用回溯法编程,求解跳马问题 二、实验内容 1、 问题描述: 在 N*N 棋盘上有 N2 个格子, 马在初始位置 (X0, Y0) , 按照象棋中马走 “日” 的规则,使马走遍全部格子且每个格子仅经过一次。编程输出马的走法。 2、 给出算法描述。 编程实现,给出 N=5, (X0,Y0)=(1,1)时的运行结果。 二、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
四、实验总结与体会
教师评 价
优
良
中
及格
不及格
教师签名
日期
中国矿业大学计算机学院实验报告
课程名称 算法设计与分析 实验名称 2.实验内容 5.流程图 实验四 回溯算法 3:1.实验目的 4.运行结果
基本题一:符号三角形问题
一、实验目的 1、掌握符号三角形问题的算法; 2、初步掌握回溯算法; 二、实验内容 下面都是“-” 。 下图是由 14 个“+”和 14 个“-”组成的符号三角形。2 个同号下面都是 “+” ,2 个异号下面都是“-” 。 + + - + - + + + - - - - + - + + + - + + - + - + 在一般情况下,符号三角形的第一行有 n 个符号。符号三角形问题要求对于给定的 n,计 算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。
三、实验结果 通过实验编程,运行程序输入数据后,得到如下结果:
基本题二:0—1 背包问题
实验4 回溯算法
![实验4 回溯算法](https://img.taocdn.com/s3/m/b8f8719c680203d8ce2f2430.png)
《算法设计与分析》实验报告实验4 回溯算法一、实验目的:掌握回溯算法的设计思想与设计方法。
二、实验环境1、硬件环境CPU:Intel(R) Celeron(R) CPU 1007U @ 1.5GHz内存:4G硬盘:500G2、软件环境操作系统:Windows7编程环境:Visual C++ 6.0编程语言:C三、实验内容1、问题有一个背包,最大限重为C,有n个物品,重量分别为W=<w1, w2, …, w n>,要求找出一个装载方案,使得放入背包物品的重量最大。
输出装载方案和该方案下的背包所装物品总重量。
2、数据结构(1)解的结构一维数据(1)<0 1 0 1 1 1 1>(2) <0 0 1 0 1 1 0>(2)搜索空间的结构3、算法伪代码ReBack(i)1、If i>n then<x1,x2,x3,...xn>是解2、Else while Si≠∅do3、Xi Si中最小值4、SiSi-{Xi}5计算Si+16ReBack(i+1)4、算法分析时间复杂度:O(2n)空间复杂度:O(n)5、关键代码(含注释)#include<stdio.h>int n,c,bestp;//物品的个数,背包的容量,最大重量int w[10000],x[10000],bestx[10000];//w[i]物品的重量,x[i]暂存物品的选中情况,bestx[i]物品的选中情况void Backtrack(int i,int cw){ //cw当前包内物品重量int j;if(i>n)//回溯结束{if(cw>bestp){bestp=cw;for(i=0;i<=n;i++) bestx[i]=x[i];}}elsefor(j=0;j<=1;j++){x[i]=j;if(cw+x[i]*w[i]<=c){cw+=w[i]*x[i];Backtrack(i+1,cw);cw-=w[i]*x[i];}}}6、实验结果(1)输入:C=152,n=7,W=<90, 80, 40, 30, 20, 12, 10> 输出:(2)输入:C=954,n=7,W=<2, 23, 163, 241, 311, 479, 487> 输出:四、实验总结(心得体会、需要注意的问题等)回溯算法也称试探法,是一种系统的搜索问题的解的方法。
算法分析实验报告--回溯法
![算法分析实验报告--回溯法](https://img.taocdn.com/s3/m/f06f26f1f90f76c661371ab9.png)
《算法设计与分析》实验报告回溯法姓名:XXX专业班级:XXX学号:XXX指导教师:XXX完成日期:XXX一、试验名称:回溯法(1)写出源程序,并编译运行(2)详细记录程序调试及运行结果二、实验目的(1)掌握回溯算法思想(2)掌握回溯递归原理(3)了解回溯法典型问题三、实验内容(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度(3)数字全排列问题四、算法思想分析(1)编写一个简单的程序,解决8皇后问题(2)批处理作业调度[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。
每一个作业Ji都有两项任务需要分别在2台机器上完成。
每一个作业必须先由机器1处理,然后再由机器2处理。
作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。
对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。
则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。
要求输入:1、作业数2、每个作业完成时间表:要求输出:1、最佳完成时间2、最佳调度方案提示提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。
(3)数字全排列问题:任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。
如N=3时,共有以下6种排列方式:123,132,213,231,312,321。
注意:数字不能重复,N由键盘输入(N<=9)。
五、算法源代码及用户程序(1)编写一个简单的程序,解决8皇后问题N皇后问题代码1:#include<stdio.h>#define NUM 8 //定义数组大小int a[NUM + 1];int main (){int a[100];int number;int i;int k;int flag;int notfinish = 1;int count = 0; i = 1; //正在处理的元素下标,表示前i-1个元素已符合要求,正在处理第i个元素a[1] = 1; //为数组的第一个元素赋初值printf ("Result:\n"); while (notfinish) //处理尚未结束{while (notfinish && i <= NUM) //处理尚未结束且还没处理到第NUM个元素{for (flag = 1, k = 1; flag && k < i; k++) //判断是否有多个皇后在同一行{if (a[k] == a[i])flag = 0;}for (k = 1; flag && k < i; k++) //判断是否有多个皇后在同一对角线{if ((a[i] == a[k] - (k - i)) || (a[i] == a[k] + (k - i)))flag = 0;} if (!flag) //若存在矛盾不满足要求,需要重新设置第i个元素{if (a[i] == a[i - 1]) //若a[i]的值已经经过一圈追上a[i-1]的值{i--; //退回一步,重新试探处理前的一个元素if (i > 1 && a[i] == NUM){a[i] = 1; //当a[i]的值为NUM时将a[i]的值置1}else if (i == 1 && a[i] == NUM){notfinish = 0; //当第一位的值达到NUM时结束}else{a[i]++; //将a[i]的值取下一个值}}else if (a[i] == NUM){a[i] = 1;}else{a[i]++; //将a[i]的值取下一个值}}else if (++i <= NUM) //第i位已经满足要求则处理第i+1位{if (a[i - 1] == NUM) //若前一个元素的值为NUM则a[i]=1 {a[i] = 1;}else{a[i] = a[i - 1] + 1; //否则元素的值为前一个元素的下一个值}}}if (notfinish){++count;printf ((count - 1) % 3 ? "[%2d]:" : "\n[%2d]:", count);for (k = 1; k <= NUM; k++) //输出结果{printf (" %d", a[k]);} if (a[NUM - 1] < NUM) //修改倒数第二位的值{a[NUM - 1]++;}else{a[NUM - 1] = 1;} i = NUM - 1; //开始寻找下一个满足条件的解}}//whileprintf ("\n");return 0;}(2)批处理作业调度import java.util.*;public class FlowShop{static int n; //作业数static int f1; //机器1完成处理时间static int f; //完成时间和static int bestf; //当前最优值static int[][] m; //各作业所需要的处理时间static int[] x; //当前作业调度static int[] bestx; //当前最优作业调度static int[] f2; //机器2完成处理时间public static void trackback(int i) {if (i == n) {for (int j = 0; j < n; j++) {bestx[j] = x[j];}bestf = f;} else {for (int j = i; j < n; j++) {f1 += m[x[j]][0];if (i > 0) {f2[i] = ((f2[i - 1] > f1) ? f2[i - 1] : f1) + m[x[j]][1]; } else {f2[i] = f1 + m[x[j]][1];}f += f2[i];if (f < bestf) {swap(x, i, j);trackback(i + 1);swap(x, i, j);}f1 -= m[x[j]][0];f -= f2[i];}}}private static void swap(int[] x, int i, int j) {int temp = x[i];x[i] = x[j];x[j] = temp;}private static void test() {n = 3;int[][] testm = {{2, 1}, {3, 1}, {2, 3}};m = testm;int[] testx = {0, 1, 2};x = testx;bestx = new int[n];f2 = new int[n];f1 = 0;f = 0;bestf = Integer.MAX_V ALUE;trackback(0);System.out.println(Arrays.toString(bestx)); System.out.println(bestf);}public static void main(String[] args){test();System.out.println("Hello World!");}}(3)数字全排列问题#include "stdio.h"#include "conio.h"int num,cont=0;main(){ int i,n,a[30];printf("enter N :");scanf("%d",&num);for(i=1;i<=num;i++)a[i]=i;perm(a,1);printf("\n%d",cont);getch();}int perm(int b[], int i){int k,j,temp;if(i==num){for(k=1;k<=num;k++)printf("%d ",b[k]);printf("\t");cont++;}elsefor(j=i;j<=num;j++){temp=b[i];b[i]=b[j],b[j]=temp;perm(b,i+1);temp=b[i];b[i]=b[j],b[j]=temp;}return(0);}六、实验结果与思想这次的实验是回溯法,我也对回溯法有了一个基本印象,所谓回溯法,就是把所有的可行解都遍历一遍,遇到不可行的就回溯到上一步,然后通过添加约束条件和限界条件就可以得到最优解。
算法实验四 回溯法
![算法实验四 回溯法](https://img.taocdn.com/s3/m/e3caae7ff242336c1eb95eea.png)
sum=0;
x=newint[n+1];
//尝试第一行的所有位置
for(inti=0;i<=n;i++)
x[i]=0;
backtrack(1);
returnsum;
}
privatestaticvoidbacktrack(intt) {
if(t>n)sum++;
else
for(inti=1;i<=n;i++){//从第一行开始往下放置,放置陈功继续
xi @{0,1},1<=i<=n
用回溯法解装载问题时,用子集树表示其解空间显然是最合适的。可行性约束函数可剪去不满足约束条件(
(w1x1+w2x2+...+wixi)<= c1)的子树。在子集树的第j+1层的节点Z处,用cw记当前的装载重量,即cw=(w1x1+w2x2+...+wjxj),当cw>c1时,以节点Z为根的子树中所有节点都不满足约束条件,因而该子树中解均为不可行解,故可将该子树剪去。
【算法描述】
importjava.util.Scanner;
publicclassNQueen {
staticintn;//皇后个数
staticintx[];//当前解,表示x[i]表示第i行皇后位置
staticlongsum;//当前已找到的可行方案数
publicstaticvoidmain(String[] args) {
1.首先将第一艘轮船尽可能装满。
2.将剩余的集装箱装上第二艘轮船。
将第一艘轮船尽可能的装满等价于选取全体集装箱的子集,使该子集中集装箱的重量之和最接近c1。因此,等价于一个特殊的0-1背包问题。因此是一棵子集树。
回溯法
![回溯法](https://img.taocdn.com/s3/m/a48b9ebbfd0a79563c1e724d.png)
算法实验报告四回溯法实验一、实验目的及要求利用回溯方法设计指派问题的算法,掌握回溯法的基本思想和算法设计的基本步骤。
要求:设计指派问题的回溯算法,注意回溯算法解决此问题要找出问题所有的可行解,然后一次比较保留问题的最优解(即最少耗费的解),并输出结果。
利用c语言(c++语言)实现算法,给出程序的正确运行结果。
(必须完成)指派问题描述:n个雇员被指派做n件工作,使得指派第i个人做第i件工作的耗费为ci,j,找出一种指派使得总耗费最少。
二、算法描述输入一个二维矩阵如下:352 4675 3374 5854 6其中行代表第几个雇员,列代表第几项工作,利用非递归的回溯算法实现,有主函数中定义k为第几个雇员,k的取值为集合{1,2,3,4}中元素。
且为行,列用a[k]表示,表示第几项工作。
定义耗费数组,一般项为c[i][j]],则c[k][a[k]]就可表示第k个人做第a[k]个工作。
由于同一个工作不能被两个人做或者说每个人只能做不同的工作,因此若设行排列固定,则a[k]!=a[j],其中从j=1变到=k-1即第k个人只能做1项的工作。
即他在做第a[k]项工作时要保证前面的工作都没做。
开始:For k =1 to 4a[k]=0;end for;k=1;while k>=1while a[k]<=3a[k]=a[k]+1;v=v+c[k][a[k]];for(j=1;j<=k-1;j++)if(a[k]!=a[j])标记合法与部分解;else标记非法解,剪掉部分;If a[k]为合法解then 输出当前指派和当前最小耗费Else if a[k]为部分解then k=k+1{前进}End while;a[k]=0;k=k-1;v=v-c[k][a[k]];{回溯}End while;输出每次求得的耗费,求出最小的即调用min(s[])函数,并将最小耗费cost输出;结束三、调试过程及运行结果调试过程中出现的问题:虽然按照回溯算法所给的模式写完了程序,却不对,经单步调试发现是我的程序结构混乱,部分解和合法解还有非法解之间的条件处理那有问题,因为通过一个循环要保证一个人只能做一项工作,而且要做别人没做过的工作,此条件对于部分解、合法解都要求,而当它不满足时应跳出作另外处理。
算法之回溯法实现
![算法之回溯法实现](https://img.taocdn.com/s3/m/209f943858fb770bf78a55e8.png)
实验4 回溯法实现一、实验目标:1.熟悉回溯法应用场景及实现的基本方法步骤;2.学会回溯法的实现方法和分析方法:二、实验内容1. 旅行售货员问题:当结点数为4,权重矩阵为,求最优路径及开销。
2. 0-1背包问题:对于n=5,C=10,vi={6,3,5,4,6},wi={2,2,6,5,4},计算xi及最优价值V。
分别利用动态规划、回溯法和分支限界法解决此问题,比较并分析这三种算法实现!三、实验过程1.源代码旅行售货员问题(回溯法):#include<iostream>using namespace std;class travel //回溯{friend int TSP(int **, int[], int, int);void Backtrack(int i);int n, //顶点数*x,*bestx;int **a,cc,bestc,NoEdge;};void Swap(int a, int b){int temp;temp = a;a = b;b = temp;return;}void travel::Backtrack(int i){if (i == n){if (a[x[n - 1]][x[n]] != NoEdge && a[x[n]][1] != NoEdge &&(cc + a[x[n - 1]][x[n]] + a[x[n]][1]) < bestc || bestc == NoEdge)for (int j = 1; j <= n; j++) bestx[j] = x[j];bestc = cc + a[x[n - 1]][x[n]] + a[x[n]][1];}}else{for (int j = i; j <= n; j++){if (a[x[i - 1]][j] != NoEdge && a[x[n]][1] != NoEdge&& (cc + a[x[i - 1]][x[j]] < bestc || bestc == NoEdge)) {swap(x[i], x[j]);cc += a[x[i - 1]][x[i]];Backtrack(i + 1);cc -= a[x[i - 1]][x[i]];swap(x[i], x[j]);}}}}int TSP(int** a,int v[], int n, int NoEdge){travel Y;Y.x = new int[n + 1];for (int i = 1; i <= n; i++)Y.x[i] = i;Y.a = a;Y.n = n;Y.bestc = NoEdge;Y.bestx = v; = 0;Y.NoEdge = NoEdge;Y.Backtrack(2);delete[] Y.x;return Y.bestc;}int main(){int const max = 10000;cout << "请输入节点数:" << endl;int n;cin >> n;int *v = new int[n];//保存路径int NoEdge = 0;int **p = new int*[max];for (int i = 0; i < n+1; i++)//生成二维数组p[i] = new int[n+1];cout << "请依次输入各城市之间的路程:" << endl;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> p[i+1][j+1];cout << "最短路径长度:" << TSP(p, v, 4, 1000) << endl;cout << "路径为:";for (int i = 1; i < 5; i++)cout << v[i] <<' ';cout << endl;return 0;}运行截图:旅行售货员问题(分支限界法):#include<iostream>using namespace std;#define MAX_CITY_NUMBER 10 //城市最大数目#define MAX_COST 1000 //两个城市之间费用的最大值int City_Graph[MAX_CITY_NUMBER][MAX_CITY_NUMBER];//表示城市间边权重的数组int City_Size; //表示实际输入的城市数目int Best_Cost; //最小费用int Best_Cost_Path[MAX_CITY_NUMBER];//结点typedef struct Node {int lcost; //优先级int cc; //当前费用int rcost; //剩余所有结点的最小出边费用的和int s; //当前结点的深度,也就是它在解数组中的索引位置int x[MAX_CITY_NUMBER]; //当前结点对应的路径struct Node* pNext; //指向下一个结点}Node;//堆typedef struct MiniHeap {Node* pHead; //堆的头}MiniHeap;//初始化void InitMiniHeap(MiniHeap* pMiniHeap) {pMiniHeap->pHead = new Node;pMiniHeap->pHead->pNext = NULL;}//入堆void put(MiniHeap* pMiniHeap, Node node) {Node* next;Node* pre;Node* pinnode = new Node; //将传进来的结点信息copy一份保存//这样在函数外部对node的修改就不会影响到堆了pinnode->cc = ;pinnode->lcost = node.lcost;pinnode->pNext = node.pNext;pinnode->rcost = node.rcost;pinnode->s = node.s;pinnode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pinnode->x[k] = node.x[k];}pre = pMiniHeap->pHead;next = pMiniHeap->pHead->pNext;if (next == NULL) {pMiniHeap->pHead->pNext = pinnode;}else {while (next != NULL) {if ((next->lcost) >(pinnode->lcost)) { //发现一个优先级大的,则置于其前面pinnode->pNext = pre->pNext;pre->pNext = pinnode;break; //跳出}pre = next;next = next->pNext;}pre->pNext = pinnode; //放在末尾}}//出堆Node* RemoveMiniHeap(MiniHeap* pMiniHeap) {Node* pnode = NULL;if (pMiniHeap->pHead->pNext != NULL) {pnode = pMiniHeap->pHead->pNext;pMiniHeap->pHead->pNext = pMiniHeap->pHead->pNext->pNext;}return pnode;}//分支限界法找最优解void Traveler() {int i, j;int temp_x[MAX_CITY_NUMBER];Node* pNode = NULL;int miniSum; //所有结点最小出边的费用和int miniOut[MAX_CITY_NUMBER];//保存每个结点的最小出边的索引MiniHeap* heap = new MiniHeap; //分配堆InitMiniHeap(heap); //初始化堆miniSum = 0;for (i = 0; i<City_Size; i++) {miniOut[i] = MAX_COST; //初始化时每一个结点都不可达for (j = 0; j<City_Size; j++) {if (City_Graph[i][j]>0 && City_Graph[i][j]<miniOut[i]) {//从i到j可达,且更小miniOut[i] = City_Graph[i][j];}}if (miniOut[i] == MAX_COST) {// i 城市没有出边Best_Cost = -1;return;}miniSum += miniOut[i];}for (i = 0; i<City_Size; i++) { //初始化的最优路径就是把所有结点依次走一遍Best_Cost_Path[i] = i;}Best_Cost = MAX_COST; //初始化的最优费用是一个很大的数pNode = new Node; //初始化第一个结点并入堆pNode->lcost = 0; //当前结点的优先权为0 也就是最优pNode->cc = 0; //当前费用为0(还没有开始旅行)pNode->rcost = miniSum; //剩余所有结点的最小出边费用和就是初始化的miniSumpNode->s = 0; //层次为0pNode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pNode->x[k] = Best_Cost_Path[k]; //第一个结点所保存的路径也就是初始化的路径}put(heap, *pNode); //入堆while (pNode != NULL && (pNode->s) < City_Size - 1) {//堆不空不是叶子for (int k = 0; k<City_Size; k++) {Best_Cost_Path[k] = pNode->x[k]; //将最优路径置换为当前结点本身所保存的}/** * pNode 结点保存的路径中的含有这条路径上所有结点的索引* * x路径中保存的这一层结点的编号就是x[City_Size-2]* * 下一层结点的编号就是x[City_Size-1]*/if ((pNode->s) == City_Size - 2) { //是叶子的父亲int edge1 = City_Graph[(pNode->x)[City_Size -2]][(pNode->x)[City_Size - 1]];int edge2 = City_Graph[(pNode->x)[City_Size - 1]][(pNode->x)[0]];if (edge1 >= 0 && edge2 >= 0 && (pNode->cc + edge1 + edge2) < Best_Cost) {//edge1 -1 表示不可达//叶子可达起点费用更低Best_Cost = pNode->cc + edge1 + edge2;pNode->cc = Best_Cost;pNode->lcost = Best_Cost; //优先权为 Best_CostpNode->s++; //到达叶子层}}else {//内部结点for (i = pNode->s; i<City_Size; i++){ //从当前层到叶子层if (City_Graph[pNode->x[pNode->s]][pNode->x[i]] >= 0) { //可达//pNode的层数就是它在最优路径中的位置int temp_cc = pNode->cc +City_Graph[pNode->x[pNode->s]][pNode->x[i]];int temp_rcost = pNode->rcost - miniOut[pNode->x[pNode->s]];//下一个结点的剩余最小出边费用和//等于当前结点的rcost减去当前这个结点的最小出边费用if (temp_cc + temp_rcost<Best_Cost) { //下一个结点的最小出边费用和小于当前的最优解,说明可能存在更优解for (j = 0; j<City_Size; j++) { //完全copy路径,以便下面修改temp_x[j] = Best_Cost_Path[j];}temp_x[pNode->x[pNode->s + 1]] = Best_Cost_Path[i];//将当前结点的编号放入路径的深度为s+1的地方temp_x[i] = Best_Cost_Path[pNode->s + 1];//将原路//径中的深度为s+1的结点编号放入当前路径的//相当于将原路径中的的深度为i的结点与深度W为s+1的结点交换Node* pNextNode = new Node;pNextNode->cc = temp_cc;pNextNode->lcost = temp_cc + temp_rcost;pNextNode->rcost = temp_rcost;pNextNode->s = pNode->s + 1;pNextNode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pNextNode->x[k] = temp_x[k];}put(heap, *pNextNode);delete pNextNode;}}}}pNode = RemoveMiniHeap(heap);}for (int k = 0; k<City_Size; k++) {//复制路径Best_Cost_Path[k] = temp_x[k];}}int main() {cout << "请输入节点数:" << endl;cin >> City_Size;cout << "请依次输入各城市之间的距离" << endl;for (int i = 0; i < City_Size; i++)for (int j = 0; j < City_Size; j++){cin >> City_Graph[i][j];if (City_Graph[i][j] == 0)City_Graph[i][j] = 1000;}Traveler();cout <<"最短路径长度:" <<Best_Cost << endl;cout << "路径为:";for (int i = 0; i < 4; i++)cout << Best_Cost_Path[i]+1 << ' ';return 0;}运行截图:0-1背包问题(动态规划):#include<iomanip>#include<iostream>using namespace std;void knapsack(int v[], int *w, int c, int n, int**m) {int jmax = min(w[n] - 1, c); //1) 仅可选物品n时,容量为j的子问题的最优值for (int j = 0; j <= jmax; j++) m[n][j] = 0; //注意j为整数for (int j = w[n]; j <= c; j++) m[n][j] = v[n];for (int i = n - 1; i>0; i--) { //2) 逐步增加物品数至n及容量至cjmax = min(w[i] - 1, c); //仅可选物品i时,容量为j的子问题的最优值for (int j = 0; j <= jmax; j++) m[i][j] = m[i + 1][j];for (int j = w[i]; j <= c; j++) m[i][j] = max(m[i + 1][j], m[i + 1][j - w[i]] + v[i]);}m[1][c] = m[2][c]; //处理物品1,最后一件的边界情况if (c >= w[1]) m[1][c] = max(m[1][c], m[2][c - w[1]] + v[1]);}void traceback(int **m, int *w, int c, int n, int *x){for (int i = 1; i<n; i++) {if (m[i][c] == m[i + 1][c])x[i] = 0; //二者相等说明物品i不装入else {x[i] = 1;c = c - w[i];}x[n] = (m[n][c]) ? 1 : 0;}}int max(int a, int b){return a > b ? a : b;}int min(int a, int b){return a > b ? b : a;}int main(){int n, c;cout << "请输入物品数:" << endl;cin >> n;cout << "请输入背包容量:" << endl;cin >> c;int *v = new int[n + 1];int *w = new int[n + 1];cout << "请输入物品重量数组:" << endl;for (int i = 1; i < n + 1; i++)cin >> w[i];cout << "请输入物品价值数组:" << endl;for (int i = 1; i < n + 1; i++)cin >> v[i];int **p = new int*[n + 1];//子问题最优解for (int i = 1; i < n + 1; i++)p[i] = new int[c+1];int *x = new int[n + 1];knapsack(v, w, c, n, p);traceback(p, w, c, n, x);cout << "m(i,j):" << endl;for (int i = 5; i > 0; i--){for (int j = 0; j < 11; j++)cout <<setw(2)<< p[i][j] << ' ';cout << endl;}cout << "xi = ";for (int i = 1; i < 6; i++)cout << x[i] << ' ';cout << endl;cout << "V=" << p[1][c] << endl;for (int i = 1; i < n + 1; i++)//delete delete p[i];delete p;delete v, w;return 0;}运行截图:0-1背包问题(回溯法)#include<iostream>using namespace std;int n, c, bestp; //物品的个数,背包的容量,最大价值int p[10000], w[10000], x[10000], bestx[10000]; //物品的价值,物品的重量,x[i]暂存物品的选中情况,物品的选中情况void Backtrack(int i, int cp, int cw){ //cw当前包内物品重量,cp当前包内物品价值int j;if (i>n) //回溯结束{if (cp>bestp){bestp = cp;for (i = 0; i <= n; i++) bestx[i] = x[i];}}elsefor (j = 0; j <= 1; j++){x[i] = j;if (cw + x[i] * w[i] <= c){cw += w[i] * x[i];cp += p[i] * x[i];Backtrack(i + 1, cp, cw);cw -= w[i] * x[i];cp -= p[i] * x[i];}}}int main(){int i;bestp = 0;cout << "请输入物品数:" << endl;;cin >> n;cout << "请输入背包容量:" << endl;cin >> c;cout << "请输入物品重量数组:" << endl;;for (i = 1; i <= n; i++)cin >> w[i];cout << "请输入物品价值数组:" << endl;for (i = 1; i <= n; i++)cin >> p[i];Backtrack(1, 0, 0);cout << "V = "<< bestp << endl;cout << "xi = ";for (i = 1; i <= n; i++)cout << bestx[i] << ' ';cout << endl;system("pause");return 0;}运行截图:0-1背包问题(分支限界法):#include <iostream>using namespace std;class Object {friend int Knapsack(int *, int *, int, int, int *); public:int operator <= (Object a) const {return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};class bbnode {friend class Knap;friend int Knapsack(int *, int *, int, int, int *);private:bbnode * parent; //指向父节点的指针int LChild; //如果是左儿子结点取1,也即说明该物品已装进背包};class HeapNode {friend class Knap;friend class MaxHeap;public:operator int()const { return uprofit; };private:int uprofit, //结点的价值上界profit; //结点所相应的价值int weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *ptr; //指向该活结点在子集树中相应结点的指针};class MaxHeap {public:MaxHeap(int maxElem){HeapElem = new HeapNode*[maxElem + 1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap {//Knapsack主函数功能:解决初始化、求解最优值和最优解、回收内存friend int Knapsack(int *, int *, int, int, int *);public:int MaxKnapsack();private:MaxHeap * H;//Bound辅助Maxknapsack函数:计算结点价值上界int Bound(int i);//AddLiveNode辅助Maxknapsack函数:将活结点插入子集树和优先队列中void AddLiveNode(int up, int cp, int cw, int ch, int level);bbnode *E; //指向扩展结点的指针int c; //背包容量int n; //物品总数int *w; //物品重量数组(以单位重量价值降序)int *p; //物品价值数组(以单位重量价值降序)int cw; //当前装包重量int cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){//极端情况下暂未考虑,比如堆容量已满等等int i = 1;for (i = ++size; i / 2 > 0 && HeapElem[i / 2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i / 2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){//极端情况下暂未考虑if (size >0){N = HeapElem[1];//从堆顶开始调整int i = 1;while (i < size){if (((i * 2 + 1) <= size) && HeapElem[i * 2]->uprofit > HeapElem[i * 2 + 1]->uprofit){HeapElem[i] = HeapElem[i * 2];i = i * 2;}else{if (i * 2 <= size){HeapElem[i] = HeapElem[i * 2];i = i * 2;}elsebreak;}}if (i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}int Knap::MaxKnapsack(){H = new MaxHeap(1000);bestx = new int[n + 1];//初始化,为处理子集树中的第一层做准备,物品i处于子集树中的第i层int i = 1; //生成子集树中的第一层的结点E = 0; //将首个扩展点设置为null,也就是物品1的父节点cw = 0;cp = 0;int bestp = 0; //当前最优值int up = Bound(1); // 选取物品1之后的价值上界//当选择左儿子结点时,上界约束up不用关心,重量约束wt 需要考虑。
实验四回溯算法和分支限界法(精)
![实验四回溯算法和分支限界法(精)](https://img.taocdn.com/s3/m/4b0dcba1c77da26925c5b0ec.png)
实验四回溯算法和分支限界法0-1背包问题一、实验目的:1、掌握0-1背包问题的回溯算法;2、进一步掌握回溯算法。
二、实验内容给定n和物品和一人背包,物品i的重量是wi,其价值为vi,问如何选择装入背包的物品,使得装入背包的物品的总价值最大?三、实验步骤1、代码// HS_ALG.cpp : Defines the entry point for the console application.//#include#includeusing namespace std;// 物体结构体typedef struct{float w; //物品重量float p; //物品价值float v; //背包体积int id; //物品个数}OBJECT;bool cmp(OBJECT a, OBJECT b{ //比较两物品体积return a.v>b.v;}float knapsack_back(OBJECT ob[], float M, int n, bool x[]{ //回溯法int i,k;float w_cur, p_total, p_cur, w_est, p_est;bool *y = new bool[n+1];// 计算物体的价值重量比for(i=0; i<=n; i++{ob[i].v = ob[i].p/ob[i].w;y[i] = false;}// 按照物体的价值重量比降序排列sort(ob, ob+n, cmp;// 初始化当前背包中的价值、重量w_cur = p_cur = p_total = 0;// 已搜索的可能解的总价值初始化k = 0;while(k>=0{w_est = w_cur; p_est = p_cur;// 沿当前分支可能取得的最大价值for( i=k; iw_est += ob[i].w;if(w_estp_est += ob[i].p;}else{p_est += ((M-w_est+ob[i].w/ob[i].w*ob[i].p; break;}}// 估计值大于上界if(p_est>p_total{for(i=k; iif(w_cur+ob[i].w<=M{// 可装入第i个物体w_cur = w_cur + ob[i].w;p_cur = p_cur + ob[i].p;y[i] = true;}else{// 不能装入第i个物体y[i] = false;break;}}if(i>=n{// n个物体已经全部装入if(p_cur>p_total{// 更新当前上限p_total = p_cur;k = n;// 保存可能的解for(i=0; ix[i] = y[i];}}}else{// 继续装入物体k = i+1;}}else{// 估计值小于上界时while((i>=0&&(!y[i]i--; // 沿着右分支结点方向回溯直到左分支结点if(i<0break; // 到达根结点算法结束else{ // 修改当前值w_cur -= ob[i].w;p_cur -= ob[i].p;y[i] = false;k = i+1; // 搜索右分支子树}}}//delete y;return p_total;}int main({int n;float m;cout<<"请输入背包载重:";cin>>m;cout<<"请输入物品个数:";cin>>n;OBJECT* ob = new OBJECT[n];{cout<<"请输入物品的重量、价格:"< for(int i=0; icin>>ob[i].w>>ob[i].p;ob[i].id = i+1;}}bool* x = new bool[n];float v = knapsack_back(ob, m, n, x; {cout<<"最优方案:"<for(int i=0; iif(x[i]cout<<"["<}cout<cout<<"物品总价值为:"<}return 0;}2、结果执行成功.3、结果分析。
回溯法实验报告
![回溯法实验报告](https://img.taocdn.com/s3/m/3121317c0812a21614791711cc7931b765ce7bd6.png)
回溯法实验报告回溯法实验报告一、引言回溯法是一种经典的算法解决方法,广泛应用于组合优化、图论、人工智能等领域。
本实验旨在通过实际案例,深入探讨回溯法的原理、应用和优化方法。
二、实验背景回溯法是一种通过不断尝试和回退的方式,寻找问题的解的方法。
它适用于那些问题空间巨大且难以直接求解的情况。
回溯法通过逐步构建解空间树,深度优先地搜索可能的解,并在搜索过程中剪枝,以提高搜索效率。
三、实验过程我们选择了一个经典的回溯法问题——八皇后问题作为实验案例。
该问题要求在一个8x8的棋盘上放置8个皇后,使得它们两两之间无法互相攻击。
我们采用了递归的方式实现回溯法,并通过剪枝操作来减少搜索空间。
具体实验步骤如下:1. 定义一个8x8的棋盘,并初始化为空。
2. 从第一行开始,逐行放置皇后。
在每一行中,尝试将皇后放置在每一个位置上。
3. 检查当前位置是否与已放置的皇后冲突。
如果冲突,则回溯到上一行,并尝试下一个位置。
4. 如果成功放置了8个皇后,则找到了一个解,将其保存。
5. 继续尝试下一个位置,直到所有可能的解都被找到。
四、实验结果通过实验,我们找到了92个不同的解,符合八皇后问题的要求。
这些解展示了八皇后问题的多样性,每个解都有其独特的棋盘布局。
五、实验分析回溯法的优点在于可以找到所有解,而不仅仅是一个解。
然而,在问题空间较大时,回溯法的搜索时间会变得非常长。
因此,为了提高搜索效率,我们可以采用一些优化方法。
1. 剪枝操作:在搜索过程中,当发现当前位置与已放置的皇后冲突时,可以立即回溯到上一行,而不是继续尝试下一个位置。
这样可以减少不必要的搜索。
2. 启发式搜索:通过引入启发函数,可以在搜索过程中优先考虑最有希望的分支,从而更快地找到解。
例如,在八皇后问题中,可以优先考虑放置在当前行与已放置皇后冲突最少的位置。
3. 并行计算:对于一些复杂的问题,可以利用并行计算的优势,同时搜索多个分支,从而加快搜索速度。
六、实验总结通过本次实验,我们深入了解了回溯法的原理和应用。
回溯与分支限界算法设计
![回溯与分支限界算法设计](https://img.taocdn.com/s3/m/54ef6f866c175f0e7cd137ff.png)
算法设计与分析实验报告1.骑士游历问题(采用回溯法):在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次。
若给定起始位置(x0,y0),编程探索出一条路径,沿着这条路径马能遍历棋盘上的所有单元格。
2. 行列变换问题(采用分支限界法):给定两个m n方格阵列组成的图形A和图形B,每个方格的颜色为黑色或白色,如下图所示。
行列变换问题的每一步变换可以交换任意2行或2列方格的颜色,或者将某行或某列颠倒。
上述每次变换算作一步。
试设计一个算法,计算最少需要多少步,才能将图形A变换为图形B。
图形A图形B2. 行列变换问题的程序:package .t8;import java.util.LinkedList;import java.util.Scanner;class graph{static int sour, dest;//sour是图形的初始整数,dest是图形的目的整数static int ans[]=new int[1<<16];//静态变量(即全局变量),用于存放图形变换的路径int m=4,n=4,x;int row[]=new int[4];int col[]=new int[4];void setx(int x){this.x=x;}int getx(){return this.x;}void rowx(){//将一个整数划分成四行二进制int y;for(int i=0;i<m;i++){y=1;row[i]=0;for(int j=0;j<n;j++){if((x&1)!=0) //如果x的最低位是1row[i]|=y;y<<=1;x>>=1;}}}}实例:总结实验心得体会:掌握回溯法解决问题的一般步骤。
学会使用回溯法解决实际问题。
掌握分支限界法解决问题的基本思想。
算法分析设计回溯法求解装载问题实验报告
![算法分析设计回溯法求解装载问题实验报告](https://img.taocdn.com/s3/m/442abe3443323968011c92e4.png)
(mi-1)
,|Si| =mi,i=1,2,…,n。从根开始,
让 T 的第 I 层的每一个结点都有 mi 个儿子。这 mi 个儿子到它们的双亲的边,按从左到右的 ,xi+1
(2)
,…,xi+1
,i=0,1,2,…,n-1。照这种构造方式,E
中的一个 n 元组(x1,x2,…,xn)对应于 T 中的一个叶子结点,T 的根到这个叶子结点的路 径上依次的 n 条边的权分别为 x1,x2,…,xn,反之亦然。另外,对于任意的 0≤i≤n-1,E 中 n 元组(x1,x2,…,xn)的一个前缀 I 元组(x1,x2,…,xi)对应于 T 中的一个非叶子 结点,T 的根到这个非叶子结点的路径上依次的 I 条边的权分别为 x1,x2,…,xi,反之亦 然。特别,E 中的任意一个 n 元组的空前缀() ,对应于 T 的根。 因而, 在 E 中寻找问题 P 的一个解等价于在 T 中搜索一个叶子结点, 要求从 T 的根到该
叶子结点的路径上依次的 n 条边相应带的 n 个权 x1,x2,…,xn 满足约束集 D 的全部约束。 在 T 中搜索所要求的叶子结点, 很自然的一种方式是从根出发, 按深度优先的策略逐步深入, 即依次搜索满足约束条件的前缀 1 元组(x1i) 、前缀 2 元组(x1,x2) 、…,前缀 I 元组(x1, x2,…,xi) ,…,直到 i=n 为止。 在回溯法中, 上述引入的树被称为问题 P 的状态空间树; 树 T 上任意一个结点被称为问 题 P 的状态结点; 树 T 上的任意一个叶子结点被称为问题 P 的一个解状态结点; 树 T 上满足 约束集 D 的全部约束的任意一个叶子结点被称为问题 P 的一个回答状态结点, 它对应于问题 P 的一个解。
实验四 回溯法(图的着色问题)
![实验四 回溯法(图的着色问题)](https://img.taocdn.com/s3/m/d523d8b61a37f111f1855b5a.png)
图的着色问题是由地图的着色问题引申而来的: 用m种颜色为地图着色,使得地图上的每一个 区域着一种颜色,且相邻区域颜色不同。 问题处理:如果连接,就可以把一 个区域图抽象为一个平面图。 地图(map)中地区的相邻关系,在图(graph) 中用边表示。
对应的邻接矩阵
0 0 1 2 3 4 0 1 1 0 1 1 1 0 1 0 1 2 1 1 0 1 0 3 0 0 1 0 1 4 1 1 0 1 0
class MGraph { public: MGraph(int v,int s); void mColoring(int m,int *x); //一维数组x,存放1~n个顶点的颜色 ~MGraph(); private: void NextValue(int k,int m,int *x); void mColoring (int k,int m,int *x); int **a; //二维数组a,存储图的邻接矩阵 int n,e; //n表示图的顶点数,e表示边数 };
}
void MGraph::NextValue(int k,int m,int *x) { //本函数在[1,m]中为x[k]确定一个值最小的,且不与其邻接点冲突的颜色
//x[k]=0 表示没有可用颜色,颜色从1开始编号
do {
x[k]=(x[k]+1) % (m+1); //尝试下一种颜色 if (x[k]==0) return; //已经试完所有颜色,没有可用颜色 for (int j=0; j<k; j++) if (a[k][j] && x[k] == x[j]) break;
无向图G
【实验内容与要求】
算法分析与设计实验4 回溯法(淮海工学院)
![算法分析与设计实验4 回溯法(淮海工学院)](https://img.taocdn.com/s3/m/9aa5e0d4ce2f0066f53322b1.png)
淮海工学院计算机工程学院实验报告书课程名:《算法分析与设计》题目:实验4 回溯算法班级:*******学号:201*******姓名:***实验4 回溯算法实验目的和要求(1)掌握回溯法的设计思想;(2)掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;(3)考察回溯法求解问题的有效程度。
(4)设计可能解的表示方式,构成解空间树;(5)设计回溯算法完成问题求解;(6)设计测试数据,统计搜索空间的结点数;实验内容给定n 种物品和一个容量为C 的背包,物品i 的重量是wi , 其价值为vi ,0/1背包问题是如何选择装入背包的物品(物品不可分割),使得装入背包中物品的总价值最大? 实验环境Turbo C 或VC++实验学时2学时,必做实验数据结构与算法核心源代码#include <iostream.h>struct bag{double w;double cw,cp,bestp;};struct goods{double wc,pc;int v; };void paixu(goods g[],int n){int i,j;double temp;∑=ji k k afor(i=0;i<n-1;i++){for(j=n-1;j>i;j--){if((g[j].pc/g[j].wc)>(g[j-1].pc/g[j-1].wc)){temp=g[j].pc;g[j].pc=g[j-1].pc;g[j-1].pc=temp;temp=g[j].wc;g[j].wc=g[j-1].wc;g[j-1].wc=temp;}}}}void backtruck(int i,int n,goods g[],bag *b){if(i>=n&&b->cw<=b->w){if(b->bestp<b->cp)b->bestp=b->cp;}if(i<n&&b->cw<=b->w){b->cw=b->cw+g[i].wc;b->cp=b->cp+g[i].pc;backtruck(i+1,n,g,b);b->cw=b->cw-g[i].wc;b->cp=b->cp-g[i].pc;backtruck(i+1,n,g,b);}}void main(){goods g[100];bag b;int n,i;cout<<"输入背包容量:";cin>>b.w;cout<<"物品数量:";cin>>n;cout<<"输入物品的质量:";for(i=0;i<n;i++){g[i].v=1;cin>>g[i].wc;}cout<<"输入物品价值:";for(i=0;i<n;i++){g[i].v=1;cin>>g[i].pc;}paixu(g,n);b.bestp=0;b.cw=0;b.cp=0;backtruck(0,n,g,&b);cout<<"最优价值:";cout<<b.bestp<<endl;}实验结果实验体会*********************************************************************** *************************************************************************** *************************************************************************** **。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 回溯法
实验目的
1. 掌握回溯法的基本思想方法;
2. 了解适用于用回溯法求解的问题类型,并能设计相应回溯法算法;
3. 掌握回溯法算法复杂性分析方法,分析问题复杂性。
预习与实验要求
1. 预习实验指导书及教材的有关内容,掌握回溯法的基本思想;
2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;
3. 认真听讲,服从安排,独立思考并完成实验。
实验设备与器材
硬件:PC 机
软件:C++或Java 等编程环境
实验原理
回溯法是最常用的解题方法,有“通用的解题法”之称。
当要解决的问题有若干可行解时,则可以在包含问题所有解的空间树中,按深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的搜索,继续查找该结点的兄弟结点,若它的兄弟结点都不包含问题的解,则返回其父结点——这个步骤称为回溯。
否则进入一个可能包含解的子树,继续按深度优先的策略进行搜索。
这种以深度优先的方式搜索问题的解的算法称为回溯法。
它本质上是一种穷举法,但由于在搜索过程中不断略过某些显然不合适的子树,所以搜索的空间大大少于一般的穷举,故它适用于解一些组合数较大的问题。
回溯法也可以形式化地描述如下:假设能够用n 元组()n i x x x x ,,,,,21 表示一个给定问题P 的解,其中i i S x ∈。
如果n 元组的子组()i x x x ,,,21 ()n i <满足一定的约束条件,则称为部分解。
如果它已经是满足约束条件的部分解,则添加11++∈i i S x 形成新的子组()121,,,,+i i x x x x ,并检查它是否满足约束条件,若仍满足则继续添加22++∈i i S x ,并以此类推。
如果所有的11++∈i i S x 都不满足约束条件,那么去掉1+i x ,回溯到i x 的位置,并去掉当前的i x ,另选一个i i S x ∈',组成新的子组()i x x x ',,,21 ,并判断其是否满足约束条件。
如此反复下去,直到得到解或者证明无解为止。
实验内容
以下几个问题选做一项:
1.实现n皇后问题的回溯算法,作时空复杂性分析。
2.实现分派问题的回溯算法,作时空复杂性分析。
问题描述如下:给n个人分派n件工作,COST(i, j)为把工作j分配给第i个人的成本,要求在给每个人分派一件不同工作的情况下使总成本最小。
3.写一进行连续邮资问题求解的回溯算法,上机实现该算法并作时空复杂性分析。
4.实现哈密尔顿回路(旅行售货员问题)的回溯算法。
要求:
(1)选择合适的数据结构来表示问题;
(2)确定出对问题的解空间树的深度优先搜索停止的条件(即开始回溯的条件);
(3)根据回溯法的基本原理,写出求解问题的伪码算法;
(4)编制C++或JA V A等高级语言程序实现伪码算法;
(5)上机运行程序,验证算法的正确性,作时空复杂性分析。
实验报告
1.描述回溯法的基本原理和形式化描述;
1.写出用回溯法实现n皇后问题、分派问题、邮票问题、哈密尔顿回路问题的伪码算
法,写出算法所用到的主要数据结构,简要画出各问题的解空间树以及搜索过程,
确定搜索停止的条件(即开始回溯的条件);
2.得出结果,并写出算法的时间复杂性和空间复杂性。
3.详细填写完成实验的收获和得失,实验过程中遇到的问题、解决的办法、实验心得
以及对该实验的建议和意见。