算法分析与设计实验报告 (2)

合集下载

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。

实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。

它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。

回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。

2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。

它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。

3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。

4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

通过回溯法可以求解出所有的可能解。

实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。

从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。

当搜索到第八行时,获取一组解并返回。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。

合并排序和快速排序是两种经典而常用的排序算法。

本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。

二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。

然后,再将这些单个元素两两合并,形成一个有序数组。

合并排序的核心操作是合并两个有序的数组。

1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。

2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。

无论最好情况还是最坏情况,合并排序的复杂度都相同。

合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。

三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。

然后,递归地对这两个子数组进行排序,最后得到有序数组。

快速排序的核心操作是划分。

1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。

2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。

最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。

快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。

四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

算法设计与分析实验报告(中南民族大学)

算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。

主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。

2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。

3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。

实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。

对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。

如果有必要,合并这些问题的解,以得到原始问题的解。

求解矩阵相乘的DAC算法,使用了strassen算法。

DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。

3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。

他们想把参与者们尽可能分为实力相当的两支队伍。

每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。

4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。

每个作业J都有两项任务分别在两台机器上完成。

每个作业必须先由机器1处理,再由机器2处理。

作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。

对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。

批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。

(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。

(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。

(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。

三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。

四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。

算法分析实验报告

算法分析实验报告

《算法设计与分析》实验报告分治策略一、试验名称:分治策略( 1) 写出源程序,并编译运行( 2) 详细记录程序调试及运行结果二、实验目的(1) 了解分治策略算法思想(2) 掌握快速排序、归并排序算法(3) 了解其他分治问题典型算法三、实验内容(1) 编写一个简单的程序,实现归并排序。

(2) 编写一段程序,实现快速排序。

(3) 编写程序实现循环赛日程表。

设有n=2k 个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表: (1)每个选手必须与其它n-1 个选手各赛一次( 2)每个选手一天只能赛一场( 3)循环赛进行n-1 天四、算法思想分析(1) 编写一个简单的程序,实现归并排序。

将待排序元素分成大小大致相同的 2 个子集合,分别对 2 个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。

(2) 编写一段程序,实现快速排序。

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

(3) 编写程序实现循环日赛表。

按分治策略,将所有的选手分为两组,n 个选手的比赛日程表就可以通过为n/2 个选手设计的比赛日程表来决定。

递归地用对选手进行分割,直到只剩下 2 个选手时,比赛日程表的制定就变得很简单。

这时只要让这 2 个选手进行比赛就可以了。

五、算法源代码及用户程序(1) 编写一个简单的程序,实现归并排序。

#include<iostream>#include<>#define MAX 10using namespace std;void merge(int array[],int p,int q,int r){int i,k;int begin1,end1,begin2,end2;int* temp = new int[r-p+1];begin1 = p;end1 = q;begin2 = q+1;end2 = r;k = 0;while((begin1 <= end1)&&(begin2 <= end2)){if(array[begin1] < array[begin2]){temp[k] = array[begin1];begin1++;}else{temp[k] = array[begin2];begin2++;}k++;}while(begin1 <= end1) {temp[k++] = array[begin1++];while(begin2 <= end2){temp[k++] = array[begin2++];}for(i = 0;i < (r-p+1);i++){array[p+i] = temp[i];}delete[](temp);}void merge_sort(int data[],int left,int right){if(left < right){int mid = (left + right)/2;merge_sort(data,left,mid);merge_sort(data,mid + 1,right); merge(data,left,mid,right);}}void main(){int number[MAX] = {0};srand(time(NULL));printf(" 排序前:");for(int i = 0; i < MAX; i++) {number[i] = rand() % 100; printf("%d ", number[i]);}cout<<endl;merge_sort(number,0,9);printf(" 排序后:");for(int j = 0; j < MAX; j++) { printf("%d ", number[j]);}(2) 编写一段程序,实现快速排序。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

算法设计与分析实验报告

算法设计与分析实验报告
定义如下标识符:
ቤተ መጻሕፍቲ ባይዱCost(L)=+
Cost(R)=+
如果用W(i,j)表示Q(i)+的和,于是可以得到检索树T的预期成本是:
P(k)+Cost(L)+Cost(R)+W(0.k-1)+W(k,n),
如果T是最优的,则上式必定为最小值。则必须有Cost(L)=C(0,k-1)和Cost(R)=C(k,n),而且k应该选择使得P(k)+ C(0,k-1)+ C(k,n)+W(0,k-1)+W(k,n)最下的k值。
2.最优二分检索树问题设计分析
已知一个固定的标识符集合,希望产生一个构造二分检索树的方法。可以预料,同一个标识符集合有不同的二分检索树,而不同的二分检索树有不用的性能特征。由于一般的检索树具有不同的概率,另外,也要做一些不成功的检索,即对不在这棵树中标识符的检索。假定给出的标识符集合为{},其中,设P(i)是对 的检索概率,Q(i)是正被检索的标识符X的概率,而标识符X满足 <X<,1<=i<=n,那么就是不成功的概率。明显的有=1.
算法设计与分析实验报告
山东技术科技学院
一、
1.掌握贪心方法、动态规划的基本思想
2.了解适用贪心方法、动态规划的问题类型,并能设计相应的贪心法算法
3.掌握贪心算法、动态规划算法时间空间复杂度分析,以及问题复杂性分析方法
二、
1.实现单源点生成最短路径的贪心方法,完善算法,求出长度,并推导路径上的结点序列
1
主函数main
FindWays()函数流程图
Ni=n
Y
Length=0
Y
N
1
2.

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。

本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。

2. 实验背景在现代社会中,算法的应用无处不在。

无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。

因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。

3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。

通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。

4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。

在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。

4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。

在本实验中,我们将选择经典的冒泡排序算法作为实现对象。

冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。

通过多次迭代,最终实现整个数组的排序。

4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。

具体步骤如下:1.遍历待排序数组,从第一个元素开始。

2.比较当前元素与下一个元素的大小。

3.如果当前元素大于下一个元素,则交换它们的位置。

4.继续比较下一个元素,直到遍历完整个数组。

5.重复上述步骤,直到没有需要交换的元素。

4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。

我们可以准备一组随机的数字作为输入,并对算法进行测试。

通过比较输入和输出结果,我们可以判断算法是否正确。

同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。

在本实验中,我们将使用时间复杂性分析来评估算法的效率。

4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。

算法分析实验报告总结

算法分析实验报告总结

一、实验背景随着计算机技术的飞速发展,算法在计算机科学领域扮演着越来越重要的角色。

为了提高算法的效率,减少算法的时间复杂度和空间复杂度,算法分析成为计算机科学的重要研究方向之一。

本次实验旨在通过实际操作,分析几种常见算法的时间复杂度和空间复杂度,从而加深对算法性能的理解。

二、实验目的1. 理解算法的时间复杂度和空间复杂度的概念;2. 掌握常见算法的时间复杂度和空间复杂度分析方法;3. 分析不同算法的性能差异,为实际应用提供参考。

三、实验内容1. 算法选择本次实验选择了以下几种常见算法进行分析:(1)冒泡排序(Bubble Sort)(2)选择排序(Selection Sort)(3)插入排序(Insertion Sort)(4)快速排序(Quick Sort)(5)归并排序(Merge Sort)2. 实验方法(1)数据准备:随机生成不同规模的测试数据,如1000、2000、3000、4000、5000个元素;(2)算法实现:分别用C++语言实现上述五种算法;(3)性能测试:对每种算法进行性能测试,记录每种算法在不同数据规模下的执行时间;(4)结果分析:根据测试结果,分析每种算法的时间复杂度和空间复杂度。

四、实验结果与分析1. 冒泡排序冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

在实验中,随着数据规模的增加,冒泡排序的执行时间急剧增加。

当数据规模达到5000时,执行时间已超过30秒。

2. 选择排序选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

实验结果表明,选择排序的执行时间与冒泡排序相似,当数据规模达到5000时,执行时间也超过30秒。

3. 插入排序插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

实验结果显示,插入排序的执行时间与冒泡排序和选择排序相似,当数据规模达到5000时,执行时间超过30秒。

4. 快速排序快速排序的平均时间复杂度为O(nlogn),空间复杂度为O(logn)。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告1. 引言本实验报告旨在介绍算法设计与分析的相关内容。

首先,我们将介绍算法设计的基本原则和步骤。

然后,我们将详细讨论算法分析的方法和技巧。

最后,我们将通过一个实例来演示算法设计与分析的过程。

2. 算法设计算法设计是解决问题的关键步骤之一。

它涉及确定问题的输入和输出,以及找到解决方案的具体步骤。

以下是算法设计的一般步骤:2.1 理解问题首先,我们需要全面理解给定问题的要求和约束。

这包括确定输入和输出的格式,以及问题的具体要求。

2.2 制定算法思路在理解问题后,我们需要制定解决问题的算法思路。

这涉及确定解决问题的高层次策略和步骤。

通常,我们使用流程图、伪代码等工具来表示算法思路。

2.3 编写算法代码在制定算法思路后,我们可以根据思路编写实际的算法代码。

这可能涉及选择适当的数据结构和算法,以及编写相应的代码来实现解决方案。

2.4 调试和测试编写算法代码后,我们需要进行调试和测试,以确保算法的正确性和可靠性。

这包括检查代码中可能存在的错误,并使用不同的测试样例来验证算法的正确性。

3. 算法分析算法分析是评估算法性能的过程。

它涉及确定算法的时间复杂度和空间复杂度,以及评估算法在不同输入情况下的执行效率。

3.1 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长的速度。

常见的时间复杂度包括常数时间复杂度 O(1)、线性时间复杂度 O(n)、对数时间复杂度 O(log n)、平方时间复杂度 O(n^2) 等。

通过分析算法中的循环、递归等关键部分,可以确定算法的时间复杂度。

3.2 空间复杂度空间复杂度是衡量算法所需空间随输入规模增长的速度。

它通常用于评估算法对内存的使用情况。

常见的空间复杂度包括常数空间复杂度 O(1)、线性空间复杂度 O(n)、对数空间复杂度 O(log n) 等。

通过分析算法中的变量、数组、递归栈等关键部分,可以确定算法的空间复杂度。

3.3 执行效率评估除了时间复杂度和空间复杂度外,我们还可以通过实验和测试来评估算法的执行效率。

算法分析与设计实验报告 完整版

算法分析与设计实验报告 完整版

《算法分析与设计》课程实验实验报告专业:计算机科学与技术班级:姓名:学号:完成时间:2009年6月15日实验一算法实现一一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对分治法、贪心算法的理解。

二、实验内容:掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。

三、实验题1. 【伪造硬币问题】给你一个装有n个硬币的袋子。

n个硬币中有一个是伪造的。

你的任务是找出这个伪造的硬币。

为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。

试用分治法的思想写出解决问题的算法,并计算其时间复杂度。

2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。

售货员希望用数目最少的硬币找给小孩。

假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。

给出一种找零钱的贪心算法。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序1.伪造硬币问题源程序://c语言实现#include<stdio.h>#include<stdlib.h>#include<math.h>#define N 100#define N1 12//只能判断是否相等的天平void solve(int coin[],int count,int first,int last) {if (count==2) {printf("无法判断\n");return;}if (first==last) {//只有一个硬币时候printf("假币的序号为%d, 假币的重量为%d\n", first, coin[first]);}else if(last-first==1){ //如果只剩下两个硬币(此时count不为)if (first > 0) { //不是最开始的硬币if (coin[first] == coin[0]) //如果第first和第个相等,说明first 位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}else if(last<count-1){ //不是最后的硬币if (coin[first]==coin[count-1]) //如果第first和最后一个相等,说明last位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}}else if (first<last){int temp=(last-first+1)/3; //将硬币分为三组int sum1=0, sum2=0;for(int i=0;i<temp;i++){sum1+=coin[first+i];sum2+=coin[last-i];}if (sum1==sum2){ //两边的总重相等,在中间,递归solve(coin,count,first+temp,last-temp);}else {//在两边,不在中间if (sum1==coin[first+temp]*temp){ //左边的和中间的相等,在右边,递归solve(coin,count,last-temp+1,last);}else {solve(coin,count,first,first+temp-1); //右边的和中间的相等,在左边,递归}}}}void main() {int i;int coin[N]; //定义数组coin用来存放硬币重量for(i=0;i<N;i++) //初始化数组coin[i]=0; //所用硬币初始值为coin[N1]=1; //第N1个设置为,即伪币int cnt = N;printf("硬币个数:%d\n",cnt);solve(coin,cnt,0,cnt-1);}2找零钱问题(1)零钱个数无限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1};int a[5];int money,i,j;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){a[i]=money/T[i];money=money%T[i];}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}(2)当零钱个数有个数限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1}; //硬币的面值int a[5]; //用来记录找钱的个数int count[]={1,2,10,1000}; //各个面值硬币的个数int money,i;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){if(money>T[i]*count[i]){ //当剩余钱数大于当前硬币总值a[i]=count[i]; //当前硬币个数取现有的最大值money=money-T[i]*count[i];}else{a[i]=money/T[i];money=money%T[i];}}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}六、实验结果1伪造硬币问题运行结果:硬币个数:100假币的序号为12, 假币的重量为1截图:2找零钱问题(1、硬币个数无限制)运行结果:输入钱数:67找钱结果:硬币: 25 | 10 | 5 | 1 |个数: 2 | 1 | 1 | 2 |截图:3找零钱问题(2、硬币个数有限制,其中硬币个数限制分别为1,2,10和1000。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。

⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。

2.⽤动态规划的⽅法实现0/1背包问题。

3.⽤分⽀限界法实现0/1背包问题。

4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。

三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。

采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。

该递归函数采⽤回溯法求出所有解。

main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。

对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。

所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。

这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。

实验报告2

实验报告2

实验报告21.综述计算机常用算法设计1.穷举法的基本思想是根据题目的部分条件确定答案的大致范围,并在此范围内对所有可能的情况逐一验证,直到全部情况验证完毕。

若某个情况验证符合题目的全部条件,则为本问题的一个解;若全部情况验证后都不符合题目的全部条件,则本题无解。

穷举法也称为枚举法。

2.回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。

但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

3.能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。

特别地,当规模N=1时,能直接得解。

4.在计算机科学中,分治法是一种很重要的算法。

字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……5.贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。

6.动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。

不像搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。

动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。

算法设计与分析实验报告

算法设计与分析实验报告

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。

本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。

二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。

给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。

三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。

1. 暴力法暴力法是一种朴素的解决方法。

它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。

然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。

2. 动态规划法动态规划法是一种高效的解决方法。

它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。

对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。

通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。

最后,我们返回dp数组中的最大值即为所求的最大子序列和。

该算法的时间复杂度为O(n),效率较高。

四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。

1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。

为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。

2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。

同时,我们还对两种算法的运行时间进行了比较。

结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。

五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。

我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法分析与设计上机实验报告课程名称:算法分析与设计班级:实验日期:姓名:学号:指导教师:许晓华实验名称:最优二叉搜索树实验地点:主楼1114实验成绩:一、实验目的及要求1.进一步掌握最优二叉树的含义。

2.掌握最优二叉树的结构特征。

3.认真阅读和掌握动态规划法秋最有搜索二叉树实验的程序。

4.上机运行本程序。

5.保存和打印出程序的运行结果,并结合程序进行分析。

6.按照你二叉树的操作需要,可重新改写主程序并运行,请上交文件清单和运行结果二、实验环境及设备微机一台:Intel 酷睿2双核操作系统:Microsoft Windows XP Professional工具软件:Microsoft Visual C++ 6.0三、实验内容及实验步骤动态规划——最优二叉查找树1,问题描述:给定一个有序序列K={k1<k2<k3<,……,<kn}和他们被查询的概率P={p1,p2,p3,……,pn},要求构造一棵二叉查找树T,使得查询所有元素的总的代价最小。

对于一个搜索树,当搜索的元素在树内时,表示搜索成功。

当不在树内时,表示搜索失败,用一个“虚叶子节点”来标示搜索失败的情况,因此需要n+1个虚叶子节点{d0<d1<……<dn}。

其中d0表示搜索元素小于k1的失败结果,dn表示搜索元素大于kn的失败情况。

di(0<i<n)表示搜索节点在ki和k(i+1)之间时的失败情况。

对于应di的概率序列是Q={q0,q1,……,qn}。

2,问题分析:在二叉树中T内搜索一次的期望代价为:E[T]=(depth(ki)+1)*pi //对每个i=1~n,搜索成功情况+(depth(di)+1)*qi //对每个i=0~n,搜索失败情况3,问题求解:动态规划步骤一:寻找最优子结构。

一个最优二叉树的子树必定包含连续范围的关键字ki~kj,1<=i<=j<=n,同时也必须含有连续的虚叶子节点di-1~dj。

如果一棵最优二叉查找树T有一棵含有关键字ki~kj的子树T',那么,T'也是一棵最优查找树,这通过剪贴思想可以证明。

现在开始构造最优子结构:在ki~kj中,选定一个r,i<=r<=j,使以kr为根,ki~k(r-1)和k(r+1)~kj为左右孩子的最优二叉树。

注意r=i或者r=j的情况,表示左子树或右子树只有虚叶子节点。

步骤二:一个递归解。

定义e[i,j]为一棵包含关键字ki~kj的最优二叉树的期望代价。

当j=i-1时没有真实的关键在,只有虚叶子节点d(i-1)。

于是:当j=i-1时,e[i,i-1]=q(i-1)。

当j>=i时,需要选择合适的kr作为根节点,然后其余节点ki~K(r-1)和k(r+1)~kj构造左右孩子。

这时要考虑左右孩子这些节点成为一个节点的子树后,它的搜索代价的变化:根据E[T]的计算,得知它们的期望代价增加了“子树中所有概率的总和”w。

w[i,j]=pl // 对每个l=i~j+ql //对每个l=i-1~j于是当j>=i时,e[i,j]=pr + (e[i,r-1]+w[i,r-1])+(e[r+1,j]+w[r+1,j]) = e[i,r-1] + e[r+1,j]+w[i,j];步骤三:计算最优二叉树的期望代价e[i,j]=q(i-1) //如果j=i-1min(e[i,r-1] + e[r+1,j]+w[i,j]),如果i<=j,其中i<=r<=jw[i,j] =q(i-1) 如果j=i-1w[i,j]=w[i,j-1]+pj+qj 如果i<=j实现代码如下:view plaincopy to clipboardprint?1 #include <iostream>2 using namespace std;34 #define MAXNUM 1005 #define MAX 655366 //p中为有序关键字k1到k5的搜索概率,k1<k2<k3<k4<k57 double p[MAXNUM] = {0.00,0.15,0.10,0.05,0.10,0.20};8 double q[MAXNUM] = {0.05,0.10,0.05,0.05,0.05,0.10};9 void optimal_bst(double e[][MAXNUM],int root[][MAXNUM],double w[][MAXNUM],int n)10 {11 int i =0,j=0;12 //针对左或右孩子为空树情况初始化13 for(i = 1;i<=n+1;i++)14 {15 e[i][i-1] = q[i-1];16 w[i][i-1] = q[i-1];17 }18 int l = 0;19 //计算顺序如下:根据计算式:e[i,j] = e[i,r-1]+e[r+1,j首先计算节点个数为1的最优二叉树的代价e[1,1],e[2,2]……接着计算节点个数为1的最优二叉树的代价e[1,2],e[2,3]…………最后计算结点个数为n的最优二叉树的代价e[1,n],利用之前保存的较少结点最优二叉树的结果。

20 for(l = 1;l<=n;l++)21 {22 for(i = 1;i<=n-l+1;i++)23 {24 j = i+l-1;25 e[i][j] = MAX;26 w[i][j] = w[i][j-1] + p[j]+q[j];27 for(int r = i;r<=j;r++)28 {29 do uble t = 0;30 t = e[i][r-1]+e[r+1][j] + w[i][j];31 if (t<e[i][j])32 {33e[i][j]= t;34root[i][j] = t;35 }36 }3738 }39 }4041 }42 int main()43 {44 double e[MAXNUM][MAXNUM];45 int root[MAXNUM][MAXNUM];46 double w[MAXNUM][MAXNUM];4748 optimal_bst(e,root,w,5);4950 for(int i =1;i<=6;i++)51 {52 for(int j = 0;j<=5;j++)53 {54 cout << e[i][j] << " ";55 }56 cout << endl;57 } 这是一个经典的动态规划问题(但厉害的是其中带有一个很神奇的定理),问题是这样的:已知二叉搜索树中每个节点的访问概率,问这棵树整体的搜索时间最短是多少(此时称为最优二叉搜索树)。

众所周知,在二叉搜树中,一次搜索的时间等于待访问节点的深度。

所以整体的搜索时间为:节点i的访问概率 * 节点i的深度所以如果要整体搜索时间最短,则访问概率高的节点应该比较靠近根节点。

乍一听,好像是哈夫曼编码。

但是不同的是,这是二叉搜索树,所有节点的左右顺序(这里指中序遍历的顺序)不能变化。

所以无法像哈夫曼编码那样一味地把概率高的节点往上移(那是一个贪心算法)。

那该怎么办呢?其实我们只要想到这样一个递推关系:一棵树如果是最优二叉搜索树,那么要么它是空树,要么它的左、右子树也是最优二叉搜索树。

这样就得到了动态规划的解法:For size = 1到nFor 所有包含size个元素的子树For 该子树的所有节点i找出其中一个i,使当它为根节点时,左、右子树的最短搜索时间之和最小。

那么该子树的访问时间就是:左、右子树的最短搜索时间之和 + 所有节点的访问概率之和(因为所有节点都下降了一层)。

可见,这个算法的时间复杂度是O(n^3)。

但是有一个神奇的定理,可以把算法的时间效复杂度降到O(n^2),如下:设一个子树的节点为i ~ j(当然,这里说的i ~ j都是从小到大排好序的),则当它是最优二叉搜索树时的根节点root(i, j)满足:root(i, j - 1) <= root(i, j) <= root(i + 1, j)。

这样一来,上面那个算法的第3个For就可以不用循环子树中的所有节点了,只要循环另两个子树的根节点之间的范围就可以了。

而这个范围根据实践表明是很小的。

所以整体的时间复杂度就相当于两层For循环而已。

===========================================//最优二叉搜索树的动态规划算法代码如下:#include <stdio.h>#include <stdlib.h>#include <assert.h>#include <string.h>typedef struct matrix{int row;int col;} matrix;typedef struct minCost{int cost;int mid;} minCost;minCost** func(matrix* mt, ssize_t count){int i, j, step, min, temp, mid;minCost **rows;rows = (minCost **)malloc(count*(sizeof(minCost*)));for(i=0;i<count;i++)rows[i] = (minCost *)malloc((count-i)*sizeof(minCost));for(i=0;i<count;i++){rows[i][0].cost=0;rows[i][0].mid=-1;}for(step=1;step<count;step++)for(j=0;j<count-step;j++){min=mt[j].row*mt[j].col*mt[j+step].col+rows[j][0].cost+rows[j+1][step-1].cost;mid=j;for(i=1;i<step;i++){temp=rows[j][i].cost+rows[j+i+1][step-i-1].cost+mt[j].row*mt[j+i].col*mt[j+step].col;if(min>temp){min=temp;mid=j+i;}}rows[j][step].cost=min;rows[j][step].mid=mid;}printf("%d, %d\n", rows[0][count-1].cost, rows[0][count-1].mid); return rows;}void rel(minCost **mc, ssize_t count){int i;for(i=0;i<count;i++)free(mc[i]);free(mc);}int main(int argc, char *argv[]){minCost **temp;matrix ma[]={{30,35},{35,15},{15,5},{5,10},{10,20},{20,25}};temp=func(ma, sizeof(ma)/sizeof(ma[0]));rel(temp, sizeof(ma)/sizeof(ma[0]));return 0;}四、调试过程及实验结果上程序调试运行的结果为:15125 , 2虽然使用动态规划法可以构造出最优二叉搜索树,但on3的时间复杂性仍然显得太高。

相关文档
最新文档