均值不等式公式完全总结归纳

合集下载

均值不等式公式完全总结归纳(非常实用)

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结材料归纳(非常实用)

均值不等式公式完全总结材料归纳(非常实用)

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式四个及证明

均值不等式公式四个及证明

均值不等式公式四个及证明1.算术均值-几何均值不等式(AM-GM不等式):对于非负实数 a1, a2, ..., an,有以下不等式成立:(a1+a2+...+an)/n ≥ √(a1*a2*...*an)证明:当n=2时,不等式成立。

因为(a1+a2)/2≥√(a1*a2),即a1+a2≥2√(a1*a2)。

假设当 n=k 时,不等式成立,即(a1+a2+...+ak)/k ≥√(a1*a2*...*ak)。

现在考虑 n=k+1 的情况,即要证明(a1+a2+...+ak+ak+1)/(k+1) ≥ √(a1*a2*...*ak*ak+1)。

根据已知条件,我们有:(a1+a2+...+ak+ak+1)/(k+1) = [(a1+a2+...+ak)/k]*(k/(k+1)) + ak+1/(k+1)由归纳假设,(a1+a2+...+ak)/k ≥ √(a1*a2*...*ak)。

因此,上式可以表示为:(a1+a2+...+ak+ak+1)/(k+1) ≥ (√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1)根据加权平均不等式,我们有:(√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1) ≥√(a1*a2*...*ak*ak+1)因此,不等式成立。

2. 广义均值不等式(Cauchy不等式):对于非负实数 a1, a2, ..., an 和 b1, b2, ..., bn,有以下不等式成立:(a1^p+a2^p+...+an^p)^(1/p) * (b1^q+b2^q+...+bn^q)^(1/q) ≥ a1*b1+a2*b2+...+an*bn其中,p和q是正实数,满足1/p+1/q=1证明:当n=2时,不等式成立。

因为(a1^p+a2^p)^(1/p)*(b1^q+b2^q)^(1/q)≥a1*b1+a2*b2假设当 n=k 时,不等式成立,即 (a1^p+a2^p+...+ak^p)^(1/p) * (b1^q+b2^q+...+bk^q)^(1/q) ≥ a1*b1+a2*b2+...+ak*bk。

均值不等式公式完全总结归纳(非常实用)讲解学习

均值不等式公式完全总结归纳(非常实用)讲解学习

均值不等式公式完全总结归纳(非常实用)均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

均值不等式公式完全总结归纳(非常实用)精编版

均值不等式公式完全总结归纳(非常实用)精编版
应用一:求最值
例1:求下列函数的值域
(1)y=3x2+ (2)y=x+
解:(1)y=3x2+ ≥2 = ∴值域为[ ,+∞)
(2)当x>0时,y=x+ ≥2 =2;
当x<0时, y=x+ = -(-x- )≤-2 =-2
∴值域为(-∞,-2]∪[2,+∞)
解题技巧
技巧一:凑项
例已知 ,求函数 的最大值。
法一:a= ,ab= ·b=
由a>0得,0<b<15
令t=b+1,1<t<16,ab= =-2(t+ )+34∵t+ ≥2 =8
∴ab≤18 ∴y≥ 当且仅当t=4,即b=3,a=6时,等号成立。
法二:由已知得:30-ab=a+2b∵a+2b≥2 ∴ 30-ab≥2
令u= 则u2+2 u-30≤0,-5 ≤u≤3
当 ,即 时, (当且仅当x=1时取“=”号)。
技巧四:换元
解析二:本题看似无法运用均值不等式,可先换元,令t=x+1,化简原式在分离求最值。
当 ,即t= 时, (当t=2即x=1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
∴ ≤3 ,ab≤18,∴y≥
点评:①本题考查不等式 的应用、不等式的解法及运算能力;②如何由已知不等式 出发求得 的范围,关键是寻找到 之间的关系,由此想到不等式 ,这样将已知条件转换为含 的不等式,进而解得 的范围.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W= + 的最值.

均值不等式公式完全总结归纳

均值不等式公式完全总结归纳

均值不等式公式完全总结归纳1.算术平均数不等式:对于任意非负实数 a1, a2, ..., an,有以下不等式成立:(1/n) * (a1 + a2 + ... + an) >= [(a1^n + a2^n + ... + an^n) / n]^(1/n)等号成立的条件是 a1 = a2 = ... = an。

2.几何平均数不等式:对于任意正实数 a1, a2, ..., an,有以下不等式成立:(1/n) * (a1 + a2 + ... + an) >= (a1 * a2 * ... * an)^(1/n)等号成立的条件是 a1 = a2 = ... = an。

3.加权算术平均数不等式:对于任意非负实数 a1, a2, ..., an 和正实数 w1, w2, ..., wn (满足 w1 + w2 + ... + wn = 1),有以下不等式成立:w1 * a1 + w2 * a2 + ... + wn * an >= (a1^w1 * a2^w2 * ... * an^wn)等号成立的条件是 a1 = a2 = ... = an。

4.加权几何平均数不等式:对于任意正实数 a1, a2, ..., an 和正实数 w1, w2, ..., wn(满足 w1 + w2 + ... + wn = 1),有以下不等式成立:w1 * a1 + w2 * a2 + ... + wn * an >= (a1^w1 * a2^w2 * ... * an^wn)等号成立的条件是 a1 = a2 = ... = an。

5.平方平均数不等式:对于任意非负实数 a1, a2, ..., an,有以下不等式成立:(n * (a1^2 + a2^2 + ... + an^2))^(1/2) >= (a1 + a2 + ... + an) / n等号成立的条件是 a1 = a2 = ... = an。

均值不等式公式完全总结归纳

均值不等式公式完全总结归纳
2
30-2b -2 b +30b ab= ·b= b+1 b+1 16
2
t
t
t

t
=8
∴ ab≤18
∴ y≥
1 当且仅当 t=4,即 b=3,a=6 时,等号成立。 18 ∴ 30-ab≥2 2 ab
法二:由已知得:30-ab=a+2b∵ a+2b≥2 2 ab 2 令 u= ab 则 u +2 2 u-30≤0, -5 2 ≤u≤3 2 1 ∴ ab ≤3 2 ,ab≤18,∴y≥ 18 点评:①本题考查不等式
1 1 的最小值.并求 x,y 的值 x y
技巧六:整体代换 多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。 。 2:已知 x 0, y 0 ,且 错解 : ..
1 9 1 ,求 x y 的最小值。 x y
1 x 9 1 9 9 1 , x y x y 2 2 xy 12 y x y xy
x 2 7 x 10 ( x 1) 的值域。 x 1
解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。

,即
时, y 2 (x 1)
4 5 9 (当且仅当 x=1 时取“=”号)。 x 1
技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令 t=x+1,化简原式在分离求最值。
x
1 2 3x · 2 = 6 ∴值域为[ 6 ,+∞) 2x x· 1 =2; x x· 1 x =-2
1 1 当 x<0 时, y=x+ = -(- x- )≤-2 x x ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知 x

均值不等式的公式

均值不等式的公式

均值不等式的公式
四个均值不等式:
a+b≥2ab;
√(ab)≤(a+b)/2;
a+b+c≥(a+b+c)/3;
a+b+c≥3×三次根号abc
公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几
何平均数不超过算术平均数,算术平均数不超过平方平均数。

1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)
2、几何平均数:Gn=(a1a2...an)^(1/n)
3、算术平均数:An=(a1+a2+...+an)/n
4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n
这四种平均数满足Hn≤Gn≤An≤Qn的式子即为均值不等式。

这种方法将一个有n 个变量与k 个约束条件的最优化问题转换为
一个有n + k个变量的方程组的极值问题,其变量不受任何约束。

这种方
法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。

此方法的证明牵涉到偏微分,全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

均值不等式公式完全总结归纳(非常实用)

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当ba =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b ab a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均值不等式归纳总结1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x xx x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』应用一:求最值例1:求下列函数的值域(1)y=3x 2+12x 2(2)y=x+1x解:(1)y=3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。

技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t=时,459y t t≥⨯=(当t=2即x =1时取“=”号)。

评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。

即化为()(0,0)()Ay mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x=+的单调性。

例:求函数224y x =+的值域。

24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t>⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t=+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。

所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。

练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =.;3.203x <<,求函数y =的最大值. 条件求最值1.若实数满足2=+b a ,则b a 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且b a 33⋅定值,因此考虑利用均值定理求最小值,解: b a 33和都是正数,b a 33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6.变式:若44log log 2x y +=,求11x y+的最小值.并求x,y 的值技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

2:已知0,0x y >>,且191x y+=,求x y +的最小值。

错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y⎛⎫+=++≥ ⎪⎝⎭故()min 12x y += 。

错因:解法中两次连用均值不等式,在x y +≥x y =,在19x y +≥19x y=即9y x =,取等号的条件的不一致,产生错误。

因此,在利用均值不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。

正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y x x y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。

变式: (1)若+∈R y x ,且12=+y x ,求yx 11+的最小值(2)已知+∈R y x b a ,,,且1=+yb xa ,求y x +的最小值技巧七已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22。

同时还应化简1+y 2 中y 2前面的系数为 12 , x 1+y 2 =x2·1+y 22=2 x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式: x ·12 +y 22 ≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。

法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15 令t =b +1,1<t <16,ab =-2t 2+34t -31t=-2(t +16t )+34∵t +16t≥2t ·16t=8∴ ab ≤18 ∴ y ≥ 118 当且仅当t =4,即b =3,a =6时,等号成立。

法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab 令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a +b2≤a 2+b 22,本题很简单3x +2y ≤ 2(3x )2+(2y )2 = 2 3x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。

W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20 ∴ W ≤20 =2 5 变式: 求函数15()22y x =<<的最大值。

解析:注意到21x -与52x -的和为定值。

2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。

故max y =评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。

总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。

相关文档
最新文档