质粒DNA的酶切鉴定

合集下载

质粒DNA的酶切鉴定原理

质粒DNA的酶切鉴定原理

质粒DNA的酶切鉴定原理质粒DNA的酶切鉴定是一种常用的实验方法,用于确定质粒DNA的大小和纯度。

酶切鉴定是通过用特定的限制性内切酶切割质粒DNA,然后利用琼脂糖凝胶电泳分离DNA片段,并通过染色或脱染观察分离结果。

限制性内切酶是一类特殊的酶,它们能够识别DNA的特定序列,并在该序列上切割DNA分子,产生特定的DNA片段。

酶切鉴定的原理主要包括限制性内切酶的选择、质粒DNA酶切、琼脂糖凝胶电泳和染色观察。

首先,选择适当的限制性内切酶。

限制性内切酶是依据其能够识别的特定DNA 序列而命名的。

在酶切鉴定中,通常使用两个不同的限制性内切酶,因为单个限制性内切酶的选择性有限。

选择限制性内切酶时需考虑酶切位点的位置和数量,以及酶切位点的特异性和完整性。

其次,进行质粒酶切。

通常将质粒DNA与适当的缓冲液和限制性内切酶混合,反应一段时间。

反应结束后,通过热灭活限制性内切酶,停止酶切反应。

酶切反应完成后,会得到经限制性内切酶切割的DNA片段。

然后,进行琼脂糖凝胶电泳分离。

琼脂糖凝胶电泳是一种常用的DNA分子量测定方法。

它通过将DNA样品加入琼脂糖凝胶槽中,在电场作用下,DNA片段按照大小被分离。

较小的DNA片段在电场中移动更快,较大的DNA片段移动较慢。

通过检测琼脂糖凝胶上的DNA迁移距离,可以获得质粒DNA的分子量信息。

最后,通过染色观察和图像分析来确定质粒DNA的大小和纯度。

琼脂糖凝胶电泳结束后,通常需要染色来显示DNA片段。

常见的染色剂有溴化乙锭和SYBR Green等。

经过染色的琼脂糖凝胶可以进行观察和记录,并通过分析软件对分离的DNA片段进行测量和分析,得到质粒DNA的大小和纯度信息。

总之,质粒DNA酶切鉴定是通过限制性内切酶切割质粒DNA,然后通过琼脂糖凝胶电泳分离和染色观察来确定质粒DNA的大小和纯度。

这种方法简便易行,可用于快速鉴定质粒DNA的酶切效果和测定其分子量。

酶切鉴定-BamHI and EcoRI

酶切鉴定-BamHI and EcoRI

注意事项
1. 直接在抽提的质粒 直接在抽提的质粒DNA管中加入酶切体系。 管中加入酶切体系。 管中加入酶切体系 2. 为使微量操作更精确,可以4个人(8 tubes)一起做 为使微量操作更精确,可以 个人 个人( )一起做9 体系混合液,然后再分装10ul于各质粒管中。 于各质粒管中。 份酶切 体系混合液,然后再分装 于各质粒管中 3. 上样时要小心操作,防止样品溢出。 上样时要小心操作,防止样品溢出。 4. 接触凝胶时,因其中含有EB或荧光染料,要戴手套, 接触凝胶时,因其中含有 或荧光染料 要戴手套, 或荧光染料, 废物丢弃要在固定位置。不接触凝胶时不需戴手套! 废物丢弃要在固定位置。不接触凝胶时不需戴手套! 5. EB是极强致癌物!小心! 是极强致癌物!小心! 是极强致癌物
限制性内切 酶切割DNA 酶切割
A: Strategy of construction
f1 ori Ampr pGEX Vector (4900 bp)
BamH I EcoR I
B: The product of PCR
1 2 3
4900 bp
X-gene cDNA
Primer1
740 bp
Primer2
体积( ) 体积(µl) 10 2 1 1 1 5 20
酶切一小时后,每管加入 酶切一小时后,每管加入5 ul的6xloading 的 buffer,中止反应,混匀。 ,中止反应,混匀。 20~25 ul上样,在一个泳道中加入 ul DNA 上样, 上样 在一个泳道中加入10 Marker。 。
核酸电泳 根据核酸的解离性质, 根据核酸的解离性质,用中性或偏碱性的缓冲液使核 酸解离成阴离子,置于电场中便向阳极移动, 酸解离成阴离子,置于电场中便向阳极移动,这就是 电泳。 电泳。 凝胶电泳有许多优点:简单、快速、灵敏、成本低。 凝胶电泳有许多优点:简单、快速、灵敏、成本低。 常用的凝胶电泳有琼脂糖 琼脂糖(agarose)凝胶电泳和聚丙烯 凝胶电泳和 常用的凝胶电泳有琼脂糖 凝胶电泳 酰胺(poly-acrylamide)凝胶电泳。可以在水平或垂直 凝胶电泳。 酰胺 凝胶电泳 的电泳槽中进行。 的电泳槽中进行。凝胶电泳兼分子筛和电泳双重效 果,所以分离效率很高。 所以分离效率很高。

质粒dna酶切实验报告

质粒dna酶切实验报告

质粒dna酶切实验报告实验目的:通过酶切实验分析质粒DNA的结构和性质。

实验原理:酶切是利用限制性内切酶切割特定的DNA序列的方法。

限制性内切酶是一种从细菌体内提取的一类酶,具有切割DNA的特异性。

实验步骤:1.实验准备:准备好所需试剂,包括限制性内切酶、缓冲液、质粒DNA等。

2.酶切反应:在一个离心管中,依次加入适量的缓冲液、质粒DNA、限制性内切酶及适量的蒸馏水,混匀后转入恒温水浴中进行酶切反应。

3.电泳分离:将酶切后的DNA溶液取出一定量,加入适量的电泳样品缓冲液,用于电泳分离。

4.染色观察:将分离出的DNA胶片浸泡于DNA染色剂中,染色后进行观察。

实验结果:通过电泳分离和染色观察,我们可以看到质粒DNA在电场作用下被分离成多个带状。

每个带状代表着一段特定长度的DNA序列,不同的长度代表着不同的DNA片段。

实验分析:1.酶切结果:酶切后的DNA片段的长度可以根据电泳结果得出。

通过比对DNA 片段与已知DNA序列的长度,我们可以推断得到质粒DNA的特异性序列。

如果我们使用了多种限制性内切酶,那么在电泳结果中会出现更多的带状。

2.质粒结构:通过酶切实验可以初步了解质粒DNA的基本结构。

如果酶切结果显示出多个相同长度的DNA片段,说明质粒DNA具有对称的环状结构。

如果酶切结果显示出不同长度的DNA片段,那么质粒DNA可能是线性的。

3.酶切效率:酶切效率是指限制性内切酶切割质粒DNA的效率。

酶切效率越高,产生的DNA片段长度越精确。

如果酶切反应时间过长或者酶切温度不合适,都可能导致酶切效率下降。

实验结论:通过质粒DNA酶切实验,我们可以初步了解质粒DNA的结构和性质。

这对于进一步研究质粒DNA的功能和应用具有重要意义。

质粒酶切反应实验报告

质粒酶切反应实验报告

一、实验目的1. 学习并掌握质粒DNA的提取方法。

2. 掌握限制性核酸内切酶的酶切原理和操作方法。

3. 通过琼脂糖凝胶电泳分析酶切结果,鉴定质粒DNA的酶切位点。

二、实验原理质粒DNA是细菌染色体外的DNA分子,常用于基因克隆和分子生物学研究。

限制性核酸内切酶(RE)是一种可以识别并切割特定DNA序列的酶,常用于分子生物学实验中。

本实验通过提取质粒DNA,利用限制性核酸内切酶进行酶切反应,并通过琼脂糖凝胶电泳分析酶切结果,以鉴定质粒DNA的酶切位点。

三、实验材料与试剂1. 实验材料:大肠杆菌菌株(含有目的质粒)、限制性核酸内切酶、琼脂糖、DNA 分子量标准、TAE电泳缓冲液、琼脂糖凝胶电泳仪、PCR仪等。

2. 试剂:Tris-HCl缓冲液、EDTA、NaCl、蛋白酶K、SDS、酚/氯仿、异丙醇、70%乙醇等。

四、实验步骤1. 质粒DNA的提取(1)取适量大肠杆菌菌株,加入适量无菌水,用玻璃棒轻轻搅拌,制成菌悬液。

(2)向菌悬液中加入适量的Tris-HCl缓冲液、EDTA和蛋白酶K,充分混匀。

(3)将菌悬液放入65℃水浴中,孵育30分钟。

(4)向菌悬液中加入适量的SDS和酚/氯仿,充分混匀。

(5)12,000 r/min离心10分钟,取上清液。

(6)向上清液中加入等体积的异丙醇,混匀,室温静置2小时。

(7)12,000 r/min离心10分钟,弃去上清液。

(8)向沉淀中加入70%乙醇,混匀,室温静置5分钟。

(9)12,000 r/min离心10分钟,弃去上清液。

(10)将沉淀溶于适量的无菌水中,即为质粒DNA。

2. 酶切反应(1)取适量的质粒DNA,加入适量的限制性核酸内切酶,混匀。

(2)将混合液置于37℃水浴中,孵育适当时间。

(3)酶切反应结束后,加入适量的EDTA,终止反应。

3. 琼脂糖凝胶电泳分析(1)配制琼脂糖凝胶,加入适量的DNA分子量标准。

(2)将酶切反应产物加入琼脂糖凝胶孔中,进行电泳。

质粒DNA的提取酶切及检测

质粒DNA的提取酶切及检测

加入150uL溶液III(轻轻混匀),冰上静置5min质粒DNA复性
12000rpm,离心5min,取上清记录体积到一新管
上清加等体积的酚:氯仿:异戊醇(振荡混匀)
12000rpm,离心15min,取上清记录体积到一新管
(可省略)上清加等体积的氯仿:异戊醇(振荡混匀)
12000rpm,离心2min,取上清记录体积到一新管
醋酸中和NaOH,因为长时间的碱性条 件会打断DNA。
▪ 平衡酚:氯仿(1:1)
作用:酚使蛋白质的变性,但是水饱和酚 的比重略比水重,不利于含质粒的水相的 回收;但加入氯仿后可以增加比重,使得 酚/氯仿始终在下层,方便水相的回收。
▪ 乙醇:除去DNA水化层,使DNA沉淀
▪ TE缓冲液:溶解DNA
Relaxed circle Linearized form Super-coiled form
四、实验结果与讨论
根据观察结果,绘图。 分析自提质粒的情况以及酶切情况。
相关知识
基因工程又称DNA重组技术 外源基因通过体外重组后,导入受体细胞内, 使这个基因能够在受体细胞内复制、转录、翻 译、表达的操作
包括基因的分离、重组、转移、基因在受体细 胞内的保持、转录、翻译表达等全过程
基因工程四要素:目的基因、工具酶、载体、 受体细胞
常用到的工具酶
限制性内切酶 连接酶 聚合酶 逆转录酶 DNA酶和RNA酶
平头末端: II型酶切割方式的另一种是在同一位置 上切割双链,产生平头末端。例如EcoRV 的识别位置是:
5’…… GAT’|ATC …… 3’
3’…… CTA’|TAG …… 5’
切割后形成5’…… GAT和ATC …… 3’、 3’…… CTA和TAG …… 5’。这种末端同 样可以通过DNA连接酶连接起来。

质粒DNA的提取与酶切电泳鉴定.ppt

质粒DNA的提取与酶切电泳鉴定.ppt
8、彻底弃上清,将管口敞开倒置于卫生纸上使所有液体流出,加入 1ml70%乙醇洗沉淀一次,4℃下12000 rpm离心2分钟。
9、吸除上清液,将管倒置于卫生纸上使液体流尽,室温开盖放置1015min,使乙醇挥发殆尽。
10、将沉淀溶于30-50μl TE缓冲液(pH8.0,含20μg/mlRNaseA)中, 储于-20℃冰箱中。
5、加入350μl预冷的溶液Ⅲ,盖紧管口,反复颠倒离心管5次,出现白色 沉淀,使沉淀混匀, 4℃ 12000rpm 离心10分钟。
6、上清液移入干净离心管中,加入等体积的酚/氯仿(1:1),振荡混 匀,4℃下12000 rpm离心2分钟。
7、将上层水相移入干净离心管中,加入2倍体积的无水乙醇,振荡混 匀后室温放置2分钟,然后4℃下12000 rpm离心5分钟。
2、取2 ml培养液倒入1.5ml EP管中(分次加入,离心), 4℃ 12000 rpm 离心30s -1min,弃去上清;
3、用涡旋混匀器使菌体沉淀重悬浮于250μl冰预冷的溶液Ⅰ。
4、加入新配制的溶液Ⅱ250μl,盖紧管口,快速温和颠倒离心管5次,菌 液变得透亮,以混匀内容物(千万不要振荡)。
11、 酶切鉴定并将没有酶切的质粒与酶切的质粒进行琼脂糖凝胶电泳。 (酶切体系一般1-2ul提取的质粒,10×buffer,相应的酶,余下加水, 一般鉴定所用的酶切体系建议10ul)
质粒提取关键:
基因组DNA与质粒DNA的有效分离 (碱裂解法)
高pH使质粒DNA和染色体DNA变性,同时沉淀蛋白 质。再将pH值调至中性,质粒DNA较小,很容易复性 成双链。而染色体DNA较大,不会复性,缠结成网状 不溶物质,从而可以通过离心除去。
注意事项:
实验方法
碱裂解法

质粒DNA提取、定量、酶切与PCR鉴定

质粒DNA提取、定量、酶切与PCR鉴定

限制性内切酶
影响酶切反应的因素
➢ 底物DNA的纯度:主要污染DNA 的某些物质,如酚、氯仿、乙醇等 均能抑制酶反应; ➢ 反应系统:主要是反应缓冲液中的离子强度,如NaCl和Mg2+, 合适 离子强度可以激发酶切反应; ➢ 反应体积:一般应尽量小,且酶切反应中甘油浓度应低于5%; ➢ 保温时间与温度:温度改变会使酶识别错误;
DNA样品较纯,符合实验要求 RNA污染 有蛋白质或其它杂质的污染
实验仪器
核酸蛋白检测仪(Eppendorf BioPhotometer plus)
比色杯
数据处理
测量次数 1 2 3
平均值
质粒DNA浓度
(μg/ml)
Ratio值
(A260/A280)
定量检测
第三部分 酶切鉴定
DNA Restriction Enzyme Digestion
溶液反应温度 升至中温72℃ ,在 Taq酶作 用下,以dNTP 为原料,引物 为复制起点, 模板DNA的一 条单链在解链 和退火之后延 伸为一条双链
延伸
72˚C
实验原理
变性
95˚C
加热使模板DNA 在高温下90℃-95 变性,双链解链
退火
Tm-5˚C
降低溶液温 度,使合成 引物在低温 (35-70℃, 一般低于模 板Tm值的5℃ 左右),与 模板DNA互补 退火形成部 分双链
✓ 注意:我们接下来要用的eppendorf公司生产的紫外分光光 度计,会根据样品的稀释倍数自动算出质粒DNA的最终浓度 和Ratio值.
实验方法
2.根据在260nm以及在280nm的读数比值估计核酸的 纯度(Ratio=A260/A280)
• Ratio= 1.8 • Ratio>1.9 • Ratio<1.6

质粒DNA酶切及琼脂糖电泳分析鉴定

质粒DNA酶切及琼脂糖电泳分析鉴定

质粒DNA的酶切及琼脂糖凝胶电泳分析鉴定一目的学习质粒的酶切及电泳分析。

二原理限制性内切酶可以识别双链DNA特定位点,并产生特异的切割,形成粘性末端或平末端,这样有利于DNA片段再连接。

限制性内切酶对环状质粒DNA有多少切点,酶切后就能产生多少个片段。

因此,鉴定酶切后的片段在电泳凝胶的区带数,就可以推断切点的数目;从片段迁移率的大小可以判断酶切片段大小的差别。

用已知相对分子量DNA为对照,通过电泳迁移率的比较,可以粗略地测出分子形状相同的未知DNA的相对分子质量。

质粒DNA在细胞内有三种构象:①共价闭环DNA,常以超螺旋形式存在;②如果两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成开环DNA;③线状DNA,双链DNA断开成线状。

电泳时,三种构象中,共价闭环DNA迁移率最大,其次是线状DNA和开环DNA。

因此在本实验中,质粒在电泳中呈现2~3条区带。

三试剂与主要仪器(一)试剂1.Eco RⅠ酶2.λ DNA3.TBE缓冲液(5×):用时需稀释10倍4.点样缓冲液Loading buffer(10×):0.25%溴酚蓝,40%甘油5.溴乙啶(EB):10mg/ml溴乙啶注意:该试剂具致癌作用,用时要小心。

6.琼脂糖(二)仪器1.电泳仪系统2.紫外灯3.恒温水浴箱四操作步骤(一)质粒DNA酶切1.按下表将各种试剂分别加入每个Eppendorf管中,要注意管号。

管号①②③质粒DNA 10 10 10Eco RⅠ/ μl 1 1酶切Buffer(10×)/ μl 2 2 2ddH2O/ μl8 7 6RNA酶 1 2.加样后混匀,置于37℃水浴中,保温2小时。

然后每个管中加入4 μl Loading buffer。

(二)琼脂糖凝胶电泳1 琼脂糖凝胶的制备称取0.4g琼脂糖加入40ml 0.5×TBE缓冲液中,加热熔解。

冷却至65℃时加入2μl EB,混匀。

实验3质粒DNA的酶切鉴定

实验3质粒DNA的酶切鉴定

实验三质粒DNA的酶切鉴定南京大学生命科学院一、实验目的1、学习和掌握限制性内切酶的特性2、学习酶解的操作方法,初步理解限制性内切酶是DNA重组技术的关键工具3、进一步熟练掌握琼脂糖凝胶电泳的方法二、实验原理限制性核酸内切酶是一种工具酶,这类酶的特点是能够识别双链DNA分子特异性核酸序列,并能在这个特异性核苷酸序列内切断DNA双链,形成一定长度和顺序的DNA 片段。

限制性核酸内切酶是体外剪切基因片段的重要工具,与核酸聚合酶、连接酶以及末端修饰酶等一起称为工具酶。

限制性核酸内切酶不仅是DNA重组中重要的工具,而且还可以用于基因组酶切图谱的鉴定。

寄主控制的限制与修饰现象限制与修饰系统是细胞的一种防卫手段。

各种细菌都能合成一种或几种能够切割DNA双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。

这种现象被称为寄主控制的限制与修饰现象。

限制性核酸内切酶的类型及特性按限制酶的组成、与修饰酶活性关系以及切断核酸的情况不同,分为三类:第一类(I型)限制性内切酶能识别专一的核苷酸顺序,并在识别点附近的一些核苷酸上切割DNA分子中的双链,但是切割的核苷酸顺序没有专一性,是随机的。

这类限制性内切酶在DNA重组技术或基因工程中用处不大,无法用于分析DNA结构或克隆基因。

这类酶如EcoB、EcoK等。

第二类(II型)限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。

由于这类限制性内切酶的识别和切割的核苷酸都是专一的。

因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。

这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10个和11个核苷酸的。

II 型限制性内切酶的识别顺序是一个回文对称顺序,即有一个中心对称轴,从这个轴朝二个方向“读”都完全相同。

高中生物质粒DNA的酶切鉴定(28页)公开课ppt课件

高中生物质粒DNA的酶切鉴定(28页)公开课ppt课件
质粒DNA的酶切鉴定
实验目的
1、学习限制性内切酶的特性 2、掌握酶解和琼脂糖凝胶电泳的操作方法
高中教材分析
限制性核酸内切酶
限制性核酸内切酶是一类能识别双链 DNA 分子特
异性核酸序列的DNA水解酶,是体外剪切基因片段的
重要工具,常与核酸聚合酶、连接酶以及末端修饰酶
等一起称为工具酶。 限制性核酸内切酶还可以用于基因组酶切图谱的鉴 定。
2)限制性核酸内切酶的类型及特性
第一类(I型)限制性内切酶能识别专一的核苷酸顺 序,并在识别点附近 1000 bp 的一些核苷酸上切割 DNA分子中的双链,但是切割的核苷酸顺序没有专 一性,是随机的。这类限制性内切酶在DNA重组技 术或基因工程中用处不大,无法用于分析DNA结外观察 分析仪 上观察酶切的结果。
琼脂糖凝胶电泳
琼脂糖凝胶电泳是利用琼脂糖溶化再凝固后能 形成带有一定孔隙的固体基质的特性,其密度取 决于琼脂糖的浓度。在电场的作用下及中性pH的 缓冲条件下带负电的核酸分子就可以向阳极迁移。
BamH I
5’-GGATCT-3’ 3’-CCTAGA-5’
Sau 3A
BglⅡ
19
5) 影响内切酶切割效率的因素 (1) DNA的纯度; (2) DNA的甲基化程度; (3) 酶切消化反应的温度; (4) DNA的分子结构; (5) 溶液中离子浓度及种类; (6) 缓冲液的 pH值。
质粒
EcoR1
1) 寄主控制的限制与修饰现象 2) 核酸限制性内切酶的类型和特征 4) 同裂酶和同尾酶 5) 核酸限制性内切酶的命名法 6) 影响核酸限制性内切酶活性的因素
1)寄主控制的限制与修饰现象 restriction modification system

质粒DNA的酶切和琼脂糖凝胶电泳鉴定

质粒DNA的酶切和琼脂糖凝胶电泳鉴定

质粒DNA的酶切和琼脂糖凝胶电泳鉴定[实验原理]限制性内切酶识别短的DNA序列并在识别序列内或旁侧特异性切割双链DNA。

对环状DNA有多少切口,就能产生多少个酶解片段,因此鉴定酶切后的片段在电泳凝胶中的区带数,就可以推断酶切口的数目,从片段的迁移率可以大致判断酶切片段大小的差别。

DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。

DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。

由于糖—磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。

在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。

具有不同的相对分子质量的DNA片段泳动速度不一样,可进行分离。

DNA分子的迁移速度与相对分子质量的对数值成反比关系。

凝胶电泳不仅可分离不同相对分子质量的DNA,也可以分离相对分子质量相同,但构型不同的DNA分子。

如上次实验提取的质粒,有3种构型:超螺旋的共价闭合环状质粒DNA(covalently closed circular DNA,简称CCCDNA),开环质粒DNA,即共价闭合环状质粒DNA 1条链断裂,(open circular DNA,简称OCDNA),线状质粒DNA,即共价闭合环状质粒DNA 2条链发生断裂(linear DNA,简称L DNA)。

这3种构型的质粒DNA分子在凝胶电泳中的迁移率不同。

因此电泳后呈3条带,超螺旋质粒DNA泳动最快,其次为线状DNA,最慢的为开环质粒DNA。

[仪器、材料与试剂](一)仪器与材料恒温水浴槽、电泳仪、电泳槽、紫外线透射仪、移液枪、质粒、HindI II酶、EcoRI酶(二) 试剂1 000 mL 5xTBE:Tris 54 g硼酸27.5 g 0.5 mol/L EDTA 20 mL(pH 8.0)凝胶加样缓冲液(6x):溴酚蓝0.25%蔗糖40%琼脂糖溴化乙锭溶液(EB) 0.5ug/mL[实验步骤](一) 酶切取5uLDNA溶液,加1uL酶切缓冲液,EcoRI酶1uL(2U),无菌水补至总体积10uL,37保温3h,加凝胶上样缓冲液(6X)2uL,准备下个实验进行电泳,分析质粒DNA的限制性酶切图谱。

质粒dna酶切实验报告

质粒dna酶切实验报告

质粒dna酶切实验报告质粒DNA酶切实验报告引言:质粒DNA酶切是分子生物学实验中常用的一项技术,它通过利用特定的酶切酶将质粒DNA分割成特定的片段,从而方便进行进一步的实验操作。

本实验旨在通过质粒DNA酶切实验,探究酶切酶的作用机制以及其在分子生物学研究中的应用。

材料与方法:1. 实验所需材料:质粒DNA、酶切酶、缓冲液、酶切反应管、电泳装置等。

2. 实验步骤:a. 准备实验所需材料,并保持无菌环境。

b. 将质粒DNA与酶切酶、缓冲液混合,进行酶切反应。

c. 将反应产物进行电泳分离。

d. 观察电泳结果并进行分析。

结果与讨论:通过实验观察,我们可以得到以下结果和讨论。

1. 酶切反应结果:在酶切反应中,我们将质粒DNA与酶切酶一起进行反应。

根据酶切酶的特异性,我们可以得到特定的DNA片段。

通过电泳分离,我们可以观察到不同大小的DNA片段。

2. 酶切酶的作用机制:酶切酶是一种特殊的酶,它能够识别DNA序列上的特定碱基序列,并在该序列上切割DNA链。

这种特异性识别和切割的能力使得酶切酶在分子生物学研究中得到广泛应用。

常见的酶切酶有EcoRI、BamHI等。

3. 实验应用:质粒DNA酶切在分子生物学研究中有着广泛的应用。

首先,通过酶切反应,我们可以将质粒DNA切割成特定的片段,从而方便进行进一步的实验操作,如克隆、测序等。

其次,酶切反应也可以用于检测DNA的特定序列,如PCR产物的验证等。

此外,酶切酶还可以用于DNA指纹图谱的构建、基因突变的研究等。

4. 实验注意事项:在进行质粒DNA酶切实验时,需要注意以下几点:a. 保持实验环境的无菌,避免外源性DNA的污染。

b. 选择适当的酶切酶和缓冲液,以确保酶切反应的有效性和特异性。

c. 控制酶切反应的时间和温度,避免过度切割或不完全切割。

结论:质粒DNA酶切是一项重要的分子生物学实验技术,通过酶切酶的作用,我们可以将质粒DNA切割成特定的片段,从而方便后续的实验操作。

质粒酶切实验报告讨论

质粒酶切实验报告讨论

一、实验背景质粒是细菌染色体外的DNA分子,广泛存在于细菌、真菌、植物和动物细胞中。

质粒DNA在分子生物学研究中具有重要意义,如基因克隆、基因表达、基因编辑等。

质粒酶切实验是分子生物学实验中的一项基础技术,通过限制性核酸内切酶(限制酶)切割质粒DNA,得到特定的DNA片段,从而实现基因克隆、基因表达等目的。

本实验旨在通过质粒酶切实验,对提取的质粒DNA进行酶切,并利用琼脂糖凝胶电泳技术检测酶切结果,以验证实验的准确性。

二、实验方法1. 质粒DNA提取(1)采用碱裂解法提取质粒DNA,具体操作如下:① 将含有质粒的细菌培养至对数生长期,收集菌液。

② 向菌液中加入溶菌酶,37℃水浴30分钟,使细胞壁破裂。

③ 加入等体积的碱液(NaOH),混匀,室温放置5分钟。

④ 加入等体积的冰乙酸,混匀,室温放置5分钟。

⑤ 12,000 r/min离心5分钟,取上清液。

⑥ 加入2倍体积的无水乙醇,混匀,室温放置15分钟。

⑦ 12,000 r/min离心10分钟,弃上清液。

⑧ 加入1ml 70%乙醇洗涤沉淀,12,000 r/min离心5分钟。

⑨ 弃上清液,将沉淀溶于50μl TE缓冲液中。

(2)检测质粒DNA浓度和纯度,具体操作如下:① 使用紫外分光光度计测定质粒DNA在260nm和280nm处的吸光度值。

② 根据公式计算质粒DNA浓度和纯度。

2. 质粒DNA酶切(1)选择合适的限制酶,根据质粒DNA序列设计酶切位点。

(2)配制酶切反应体系,包括质粒DNA、限制酶、缓冲液等。

(3)将反应体系置于37℃水浴中酶切反应4小时。

3. 琼脂糖凝胶电泳检测(1)配制琼脂糖凝胶,加入适量的溴化乙锭(EB)。

(2)将酶切后的质粒DNA样品和DNA分子量标准样品加入琼脂糖凝胶孔中。

(3)100V电压电泳1小时。

(4)紫外灯下观察并拍照记录电泳结果。

三、实验结果与分析1. 质粒DNA提取结果通过紫外分光光度计检测,质粒DNA浓度为100ng/μl,纯度为1.8(A260/A280),符合实验要求。

基因工程实验2:质粒DNA的酶切及电泳鉴定

基因工程实验2:质粒DNA的酶切及电泳鉴定

• 星号活力*
二、实验原理——琼脂糖凝胶电泳
• 1、琼脂糖凝胶
• 琼脂糖加热溶解后冷却,形成孔径结构,成为良好的电泳 介质。其孔径大小由琼脂糖的浓度决定。
• 浓度越高,孔隙越小,其分辨能力也就越强; • 琼脂糖凝胶分辨DNA片段的范围为0.2 kb~50 kb之间,常 用0.3%~2%浓度的琼脂糖凝胶,可分辨300 bp~5000 bp 的DNA片段。 • 低熔点(LMP)琼脂糖,熔点为62℃~65℃的琼脂衍生物, 一旦熔解,可在37℃下持续保持液体状态达数小时之久, 在25℃下也可持续保持液体状态约10分钟。LMP琼脂糖 可用来回收DNA分子,用于DNA片段的制备电泳。
四、实验步骤
• 1、质粒DNA的酶解(单酶切)
EcoR I 酶切位点:G’ AATTC
2、琼脂糖凝胶电泳
1、 0.8%琼脂糖凝胶的制备:称取0.16 g琼脂糖,置于锥形 瓶中,加入20 mL 0.5*TBE稀释液。(一个制胶板的量) 加热直至琼脂糖溶解。摇匀,冷却至60℃(不烫手),加 入溴化乙锭1μL (终浓度0.5 μg/mL)充分摇匀。 2、胶板的制备: 取有机玻璃内槽,洗净(注意保护电极丝)、晾干。 将有机玻璃内槽置于一水平位置,插好梳子。 将冷却至60℃左右的琼脂糖凝胶液,小心地倒在有机玻璃 内槽上,注意排气泡,使整个有机玻璃板表面形成均匀的胶 层。室温下静置,待凝固完全后,轻轻垂直拔出梳子。 用滴管将样品槽内注满TBE稀释液以防止干裂。制备好胶 板后将铺胶的有机玻璃内槽放在电泳槽中使用。 3、加样(见下表)
•(5)电泳缓冲液 •目前有3种缓冲液适用于天然双链DNA的电泳:TAE、TBE和 TPE •(6)EB
三、实验材料
• 1、仪器和材料 • 电泳仪,电泳槽,制胶板,锥形瓶(100 mL或 50 mL),紫外检测仪/凝胶成像系统,一次性 手套,Ep管,取液器及无菌吸头,水浴锅 • 2、试剂 • (1) 质粒pMD18-T DNA • (2) DL2000 Plus • (3) EcoRI酶 (EcoRI酶解反应缓冲液10×) • (4) 琼脂糖 • (5) 溴乙锭(10 mg/mL贮藏液) • (6) TBE缓冲液(0.5×) • (7) 酶反应终止液(10×)

重组质粒双酶切鉴定结果

重组质粒双酶切鉴定结果

重组质粒双酶切鉴定结果
质粒双酶切鉴定是一种用于确定质粒DNA序列的技术。

通过
使用限制性内切酶对质粒进行酶切,然后运用电泳分析,可以获得关于质粒DNA序列的信息。

重组质粒双酶切鉴定结果通常包括以下内容:
1. 双酶切酶的酶切模式:双酶切鉴定通常使用两种限制性内切酶来进行酶切。

酶切模式描述了每个酶切酶在质粒上切割的位置,包括切割位点及其与质粒线性DNA的相对位置。

2. 酶切产物的大小:通过电泳将酶切后的质粒DNA进行分离,可以得到一系列的DNA片段。

通过估算这些片段的大小,可
以进一步确定酶切酶的切割位点以及质粒DNA的序列。

3. 酶切图谱:酶切图谱是通过将电泳分离的酶切产物进行可视化的图像,通常以荧光标记或放射性标记的方式进行。

酶切图谱可以帮助鉴定质粒的酶切模式,确认切割位点,以及评估酶切的效果。

通过分析重组质粒双酶切鉴定结果,可以确定质粒的基本结构和序列信息。

这对于研究质粒的功能和用途,以及进行基因工程和生物技术研究都具有重要意义。

质粒dna酶切实验报告

质粒dna酶切实验报告

质粒dna酶切实验报告实验报告:质粒DNA酶切实验一、实验目的1. 熟悉质粒DNA的抽提方法及质量检测方法。

2. 掌握酶切反应中各种试剂的使用方法和浓度。

3. 学习构建质粒的操作技术,合理选择酶切酶和酶切条件,成功制备目标DNA 片段。

二、实验原理质粒是宿主细胞负责复制、分离和基因表达的非必需DNA分子,通常还携带有特定的基因片段。

酶切反应是一种通过酶解水解代表性结构的方法,主要应用于DNA检测、分析和改造等方面。

在质粒DNA酶切实验中,需要先将质粒DNA利用DNA抽提试剂提取,之后与适当的酶切酶混合进行酶切反应,最终得到目标DNA片段。

三、实验步骤1. 取200µl E.coli DH5α预菌液,离心5min,弃去上清液,用PBS洗菌2次。

2. 加入200µl胰蛋白酶,37°C水浴混合反应5min,离心1min,上清液弃掉。

3. 加入200µl重组核酸缓冲液,同样37°C水浴混合反应5min,离心1min,上清液弃掉。

4. 加入50µl重组蛋白酶K,65°C水浴下混合反应50min,离心5min(13000r/min),上清液弃掉。

5. 加入50µl除菌水,65°C混匀5min后,离心5min,上清液收集起来,质粒DNA抽提完成。

6. 按照要求将质粒DNA加入载体质粒pUC19中,加入合适的限制酶进行酶切反应。

7. 通过琼脂糖凝胶电泳法将分子量合适的目标DNA片段筛选出来。

四、实验结果本次实验成功提取了质粒DNA,并利用限制酶EcoRI和BamHI进行了酶切反应。

最终,经琼脂糖凝胶电泳检测,成功得到目标DNA片段,质量均匀、纯度高。

五、实验总结本次实验通过对质粒DNA的抽提和酶切反应,加深了对质粒结构及酶切法原理的理解,并提高了实验操作的技术能力及分析数据的能力。

在今后的实验中,将继续加强实验操作,探究更多质粒DNA的构建与酶切方法,为基因检测及分析领域提供更多有效的技术支持。

实验三 质粒DNA的酶切鉴定课件PPT

实验三  质粒DNA的酶切鉴定课件PPT

Asp718I 5’-G GTACC-3’ 3’-CCATG G-5’
Kpn I 5’-GGTAC C-3’ 3’-C CATGG-5’
2021/3/10
10
(2)同尾酶(Isocaudamers)
同尾酶 ( Isocaudamers ) :识别的序列不同,但能切出 相同的粘性末端。如BamHI、BglⅡ、BclI、XhoⅡ等
Enzyme
Sequence Isoschizomers
Acc65I AhaIII
GGTACC CCATGG
c) 平末端 如, Sma I 5’-CCC GGG-3’ 3’-GGG CCC-5’
2021/3/10
8
同列裂酶和同尾酶
(1)同裂酶(Isoschizomers)
同裂酶:能识别相同序列,切割位点可以相同也 可以不同,来源不同的酶。
① 完全同裂酶:
识别位点和切点完全相同。如Hind Ⅲ 和Hsu I。
Hind Ⅲ 5’-AAGCTT-3’ 3’-TTCGAA-5’
Hsu I 5’-AAGCTT-3’ 3’-TTCGAA-5’
2021/3/10
9
② 不完全同裂酶:
识别位点相同,但切点不同。如Xma I 和 Sma I。
Xma I 5’-CCCGGG -3’ 3’-GGGCCC-5’
Sma I 5’-CCCGGG-3’ 3’-GGGCCC-5’
3’-CCTAGG-5’
3’-CGCCGGCG-5’
2.呈回文结构(palindrome);
3.旋转对称性;
EcoRI 5’-GAATTC-3’ 3’-CTTAAG-5’
4.切点大多数在识别顺序之内,也有例外。
Fok I 5’-GGATGNN -3’ 3’-CCTAC NN-5’ 外侧,产生3’-端突起
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•影响DNA在琼脂糖中迁移率的因素:DNA 分子的大小、DNA的构象、电压、电场方向 、碱基组成、嵌入的燃料以及电泳缓冲液的 组成。
•琼脂糖凝的浓度影响给定大小的线状DNA
的迁移率,因此采用不同浓度的凝胶可以分
离不同大小范围的DNA片段。0.8%的琼脂糖
凝胶能很好地分辨1-25kb的片段;0.5% 的琼
脂糖凝胶用于分辨较大片段的DNA
(20-
100kb);对于小片段的DNA(0.2-2kb) 可用
•5) 影响核酸限制性内切酶活性的因素 •(1) DNA的纯度; •(2) DNA的甲基化程度; •(3) 酶切消化反应的温度; •(4) DNA的分子结构; •(5) 溶液中离子浓度及种类; •(6) 缓冲液的 pH值。
•琼脂糖凝胶电泳
•琼脂糖凝胶电泳是利用琼脂糖溶化再凝固后 能形成带有一定孔隙的固体基质的特性,其 密度取决于琼脂糖的浓度。在电场的作用下 及中性pH的缓冲条件下带负电的核酸分子就 可以向阳极迁移。
•同尾酶:
•有时两种酶切割序列不完全相同,但却能产 生相同的粘性末端,这类酶被称为同尾酶, 可以通过DNA连接酶将这类末端连接起来,但 原来的酶切位点将被破坏,有时可能会产生
一个新的酶切位点。如Xba1、Nhe1以及Spe1
切割的DNA序列不同,但均给出相同的“CTAG” 粘性末端。这些粘性末端连接后,以上的酶 将不能再切割,但却产生了一个新的4核苷酸
•第三类( III型)限制性内切酶也有专一 的识别顺序,但不是对称的回文顺序,在识 别顺序旁边几个核苷酸对的固定位置上切 割双链。但这几个核苷酸对不是特异性的 。因此,这种限制性内切酶切割后产生的 一定长度DNA片段,具有各种单链末端。因 此不能应用于基因克隆。
•3) 同裂酶和同尾酶:
•同裂酶:
•2)限制性核酸内切酶的类型及特 性
•按限制酶的组成、与修饰酶活性关系以及 切断核酸的情况不同,分为三类:

Ⅰ型

Ⅱ型*

Ⅲ型
•第一类(I型)限制性内切酶能识别专一 的核苷酸顺序,并在识别点附近的一些核 苷酸上切割DNA分子中的双链,但是切割 的核苷酸顺序没有专一性,是随机的。这 类限制性内切酶在DNA重组技术或基因工 程中用处不大,无法用于分析DNA结构或
的酶切位点,即 Bfa1的酶切位点。
• 4) 限制性核酸内切酶的命名法
❖ 用属名的头一个字母和种名的头两个字母 表示寄主菌的物种名称,如E. coli 用Eco表 示,所以用斜体字。
❖ 用一个字母代表菌株或型,如流感嗜血菌 Rd菌株用d,即Hind。
❖ 如果一种特殊的寄主菌株,具有几个不同 的限制与修饰体,则以罗马数字表示,如 HindⅠ, HindⅡ,HindⅢ等。
2质粒DNA的酶切鉴定
•1. 实验目的和要求
•学习和掌握限制性内切酶的特性、酶 解和琼脂糖凝胶电泳的操作方法,并 理解限制性内切酶是DNA重组技术的 关键工具,琼脂糖凝胶电泳是分离鉴 定DNA片段的有效方法。
•2. 相关基础知识
•限制性核酸内切酶:是一类能识别双 链DNA分子特异性核酸序列的DNA水 解酶。是体外剪切基因片段的重要工 具,所以常常与核酸聚合酶、连接酶 以及末端修饰酶等一起称为工具酶。 限制性核酸内切酶不仅是DNA重组中 重要的工具,而且还可以用于基因组 酶切图谱的鉴定。
•有时两种限制性内切酶的识别核苷酸顺序 和切割位置都相同,有时其差别只在于当 识别顺序中有甲基化的核苷酸时,一种限 制性内切酶可以切割,另一种则不能。例
如HpaⅡ和MspⅠ的识别顺序都是
5’……G’CG_G……3’,如果其中有5’-甲基胞
嘧啶,则只有切酶或异源同工 酶)。
克隆基因。这类酶如EcoB、EcoK等。
•第二类(II型)限制性内切酶能识别专一的核 苷酸顺序,并在该顺序内的固定位置上切割双 链。由于这类限制性内切酶的识别和切割的核 苷酸都是专一的。因此,这种限制性内切酶是 DNA重组技术中最常用的工具酶之一。这种酶 识别的专一核苷酸顺序最常见的是4个或6个核 苷酸,少数也有识别5个核苷酸以及7个、8个 、9个、10个和11个核苷酸的。 II 型限制性 内切酶的识别顺序是一个回文对称顺序,即有 一个中心对称轴,从这个轴朝二个方向“读”都 完全相同。这种酶的切割可以有两种方式:
•平头末端: •II型酶切割方式的另一种是在同一位置
上切割双链,产生平头末端。例如EcoRV
的识别位置是:
•5’…… GAT’|ATC …… 3’
•3’…… CTA’|TAG …… 5’
•切割后形成5’…… GAT和ATC …… 3’、 3’…… CTA和TAG …… 5’。这种末端同 样可以通过DNA连接酶连接起来。
•1) 寄主控制的限制与修饰现象 •2) 核酸限制性内切酶的类型 •3) 核酸限制性内切酶的基本特性 •4) 同裂酶和同尾酶 •5) 核酸限制性内切酶的命名法 •6) 影响核酸限制性内切酶活性的因素
•1) 寄主控制的限制与修饰现象
•限制与修饰系统是细胞的一种防卫手段。 各种细菌都能合成一种或几种能够切割DNA 双链的核酸内切酶,它们以此来限制外源 DNA存在于自身细胞内,但合成这种酶的细 胞自身的DNA不受影响,因为这种细胞还合 成了一种修饰酶,对自身的DNA进行了修饰 ,限制性酶对修饰过的DNA不能起作用。这 种现象被称为寄主控制的限制与修饰现象。
•粘性末端;是交错切割,结果形成两条单链末端 ,这种末端的核苷酸顺序是互补的,可形成氢键 ,所以称为粘性末端。
•如EcoRI的识别顺序为:
• 5’…… G’AA|TT_C ……3’
• 3’…… C_TT|AA’G …… 5’
•垂直线表示中心对称轴,从两侧“读”核苷酸顺序都是 GAATTC或CTTAAG,这就是回文顺序(palindrome)。_和‘ 表示在双链上交错切割的位置,切割后生成5’……G和 AATTC……3’、3’……CTTAA和G……5’二个DNA片段,各有一 个单链末端,二条单链是互补的,其断裂的磷酸二酯键以 及氢键可通过DNA连接酶的作用而“粘合”。
相关文档
最新文档