电动执行器有五种类型
分享电动执行器概述!

分享电动执行器概述!01电动执行器的概述电动执行器和气动执行器一样,是控制系统中的一个重要部分。
它接收来自控制器的4一20mA或0一10mA直流电流信号,并将其转换成相应的角位移或直行程位移,去操纵阀门、挡板等控制机构,以实现自动控制。
电动执行器有直行程、角行程和多转式等类型。
角行程电动执行机构以电动机为动力元件,将输入的直流电流信号转换为相应的角位移(0度一90度),这种执行机构适用于操纵蝶阀、挡板之类的旋转式控制阀。
直行程执行机构接收输入的直流电流信号后使电动机转动,然后经减速器减速并转换为直线位移输出,去操纵单座、双座、三通等各种控制阀和其它直线式控制机构。
多转式电动执行机构主要用来开启和关闭闸阀、截止阀等多转式阀门,由于它的电机功率比较大,最大的有几十千瓦,一般多用于就地操纵和遥控。
这三种类型的执行机构都是以两相交流电动机为动力的位置伺服机构,三者电气原理完全相同,只是减速器不一样。
角行程电动执行机构主要性能指标:三端隔离输入通道,输入信号4一20mA(DC),输入电阻250欧姆;输出力矩:40、100、250、600、1000N·m;基本误差和变差小于±1.5%;灵敏度240μA。
电动执行器主要由伺服放大器和执行机构组成,中间可以串联操作器,伺服放大器接收控制器发来的控制信号,将其同电动执行机构输出位移的反馈信号进行比较,若存在偏差,则差值经过功率放大后,驱动两相伺服电动机转动。
再经减速器减速,带动输出轴改变转角。
若差值为正,则伺服电动机正转,输出轴转角增大;若差值为负,则伺服电动机反转,输出轴转角减小。
当差值为零时,伺服放大器输出接点信号让电动机停转,此时输出轴就稳定在与该输入信号相对应的转角位置上。
这种位置式反馈结构可使输入电流与输出位移的线性关系较好。
电动执行机构不仅可以与控制器配合实现自动控制,还可通过操作器实现控制系统的自动控制和手动控制的相互切换。
当操作器的切换开关置于手动操作位置时,由正反操作按钮直接控制电动机的电源,以实现执行机构输出轴的正转或反转,进行遥控手动操作。
电动执行器工作原理

电动执行器工作原理电动执行器有五种类型:直行程电动执行器、角行程电动执行器、电动调节阀、PID电动调节执行器和电磁阀。
前四种属于DDZ型。
下面简要介绍一下直行程电动执行器(DKJ)和角行程电动执行器(DKZ)。
直行程与角行程电动执行器的作用是接收调节器或其它仪表送来的0~10,4~20毫安或1~5伏电压的标准值流电信号,经执行器后变成位移推力或转角力矩,以操作开关、阀门等,完成自动调节的任务。
这两种执行器以前都是由伺服放大器与执行机构两大部分组成的。
现在有机电一体智能化的结构,它们的结构、工作原理和使用方法都是相似的,区别仅在于,一个输出位移(推力),一个输出转角(力矩)。
电动执行器选型考虑要点一、根据阀门类型选择电动执行器阀门的种类相当多,工作原理也不太一样,一般以转动阀板角度、升降阀板等方式来实现启闭控制,当与电动执行器配套时首先应根据阀门的类型选择电动执行器。
1.角行程电动执行器(转角<360度)电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。
此类电动执行器根据安装接口方式的不同又分为直连式、底座曲柄式两种。
a)直连式:是指电动执行器输出轴与阀杆直连安装的形式。
b)底座曲柄式:是指输出轴通过曲柄与阀杆连接的形式。
此类电动执行器适用于蝶阀、球阀、旋塞阀等。
2.多回转电动执行器(转角>360度)电动执行器输出轴的转动大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。
此类电动执行器适用于闸阀、截止阀等。
3.直行程(直线运动)电动执行器输出轴的运动为直线运动式,不是转动形式。
此类电动执行器适用于单座调节阀、双座调节阀等。
二、根据生产工艺控制要求确定电动执行器的控制模式电动执行器的控制模式一般分为开关型(开环控制)和调节型(闭环控制)两大类。
1.开关型(开环控制)开关型电动执行器一般实现对阀门的开或关控制,阀门要么处于全开位置,要么处于全关位置,此类阀门不需对介质流量进行精确控制。
IK25电动执行器说明书

IK25电动执行器说明书一、根据阀门类型选择电动执行器阀门的种类相当多,工作原理也不太一样,一般以转动阀板角度、升降阀板等方式来实现启闭控制,当与电动执行器配套时首先应根据阀门的类型选择电动执行器。
1.角行程电动执行器(转角<360度)电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。
此类电动执行器根据安装接口方式的不同又分为直连式、底座曲柄式两种。
a)直连式:是指电动执行器输出轴与阀杆直连安装的形式。
b)底座曲柄式:是指输出轴通过曲柄与阀杆连接的形式。
此类电动执行器适用于蝶阀、球阀、旋塞阀等。
2.多回转电动执行器(转角>360度)电动执行器输出轴的转动大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。
此类电动执行器适用于闸阀、截止阀等。
3.直行程(直线运动)电动执行器输出轴的运动为直线运动式,不是转动形式。
此类电动执行器适用于单座调节阀、双座调节阀等。
二、根据生产工艺控制要求确定电动执行器的控制模式电动执行器的控制模式一般分为开关型(开环控制)和调节型(闭环控制)两大类。
1.开关型(开环控制)开关型电动执行器一般实现对阀门的开或关控制,阀门要么处于全开位置,要么处于全关位置,此类阀门不需对介质流量进行精确控制。
特别值得一提的是开关型电动执行器因结构形式的不同还可分为分体结构和一体化结构。
选型时必需对此做出说明,不然经常会发生在现场安装时与控制系统冲突等不匹配现像。
a)分体结构(通常称为普通型):控制单元与电动执行器分离,电动执行器不能单独实现对阀门的控制,必需外加控制单元才能实现控制,一般外部采用控制器或控制柜形式进行配套。
此结构的缺点是不便于系统整体安装,增加接线及安装费用,且容易出现故障,当故障发生时不便于诊断和维修,性价比不理想。
b)一体化结构(通常称为整体型):控制单元与电动执行器封装成一体,无需外配控制单元即可现实就地操作,远程只需输出相关控制信息就可对其进行操作。
多种多样的执行器

多种多样的执行器1. 电动执行器:这种执行器通过电力来执行运动或操作,通常用于自动门、窗户、阀门和其他类似的设备中。
电动执行器能够快速、准确地执行任务,提高工作效率。
2. 液压执行器:液压执行器利用液体压力来实现动作,通常用于重型机械和设备中,如挖掘机、汽车升降系统等。
液压执行器具有较大的承载能力和稳定性,适用于需要大力量的应用。
3. 气动执行器:气动执行器利用气体压力来实现动作,常见于空气压缩系统、气动工具和气动机械中。
气动执行器具有简单、可靠、高效的特点,适用于需要频繁起动和停止的场合。
4. 手动执行器:手动执行器需要人工操作来执行动作,常见的包括手摇阀、手柄、手动泵等。
手动执行器通常用于需要精准控制或特殊操作的场合。
5. 电磁执行器:电磁执行器利用电磁力来实现动作,常见于电磁阀、电磁锁等应用中。
电磁执行器具有快速响应、高度控制性和可靠性等特点,适用于需要快速开关和控制的场合。
总的来说,不同类型的执行器在各自的领域和应用中都发挥着重要的作用,它们通过不同的工作原理和特点来满足各种不同的工作需求,提高工作效率,降低成本,增加安全性。
执行器是一种关键的机械装置,用于完成各种任务和操作。
它们被广泛应用于工业、商业、农业、医疗和家庭等各个领域,为实现自动化、精确控制和安全操作提供了重要支持。
不同类型的执行器在不同领域和应用中发挥着独特的作用,下面将继续介绍一些特定领域中常见的执行器。
在制造业中,电动执行器是其中一个最为常见的类型。
它们在自动化生产线上扮演着重要的角色,用于实现机械臂、输送带、装配线等设备的自动操作。
在这些应用中,电动执行器通常需要快速响应、高精度和可靠性,以确保高效的生产过程。
另外,对于一些需要承载巨大力量的应用,如重型机械的操作,液压执行器则发挥着重要作用。
这些执行器通过利用液体压力来实现高扭矩、高负载的操作,为制造业提供了高效、稳定的动力支持。
在建筑和工程领域,执行器也发挥着重要作用。
电动执行器工作原理

电动执行器工作原理电动执行器是一种常见的自动控制设备,广泛应用于工业生产、建造、能源等领域。
它通过电动机驱动,将电能转换为机械能,实现对执行器的控制和运动。
本文将详细介绍电动执行器的工作原理,包括结构组成、工作方式和控制方法等。
一、结构组成电动执行器主要由电动机、减速器、传动装置、执行机构和控制系统等组成。
1. 电动机:电动执行器通常采用交流电动机或者直流电动机作为驱动力源。
电动机通过电能输入,产生旋转力矩,驱动减速器工作。
2. 减速器:减速器用于减小电动机的转速,并增加输出的扭矩。
它通常采用齿轮传动、蜗轮传动或者行星齿轮传动等结构,能够将高速低扭矩的电动机转换为低速高扭矩的输出。
3. 传动装置:传动装置将减速器的输出转动力矩传递给执行机构,常见的传动装置包括螺杆传动、齿轮传动和链条传动等。
4. 执行机构:执行机构是电动执行器的核心部件,根据不同的应用需求,可以采用螺杆杆塞式、齿轮齿条式、活塞式等不同的结构形式。
执行机构负责将电能转换为机械能,实现对执行器的运动。
5. 控制系统:控制系统用于控制电动执行器的运动和住手。
它通常由传感器、控制器和执行机构组成。
传感器用于感知环境参数和执行器状态,控制器根据传感器的反馈信号进行计算和判断,并控制执行机构的运动。
二、工作方式电动执行器的工作方式主要分为开关式和调节式两种。
1. 开关式:开关式电动执行器惟独两种状态,即开启和关闭。
它通常用于需要简单的二进制控制的场合,如阀门的全开和全闭。
2. 调节式:调节式电动执行器可以根据控制信号的大小,实现连续的运动调节。
它可以根据控制系统的要求,精确地调节执行机构的位置、速度和力矩等参数。
三、控制方法电动执行器的控制方法多种多样,常见的控制方法包括手动控制、自动控制和远程控制等。
1. 手动控制:手动控制是最简单直接的控制方式,通过手动操作开关或者旋钮等控制元件,实现对电动执行器的控制。
2. 自动控制:自动控制是通过控制系统实现对电动执行器的自动化控制。
工业控制电动执行器机构分类详细知识

电动执行器选型通常应考虑电动执行器类型、驱动方式、连接形式、结构特点、密封面材料、阀体材料和公称压力等要素。
电动执行器标准化对工业控制设计、选用、销售提供了方便。
当今电动执行器的类型越来越多,型号也愈来愈复杂。
首先要根据阀门类型选择电动执行器阀门的种类相当多,工作原理也不太一样,一般以转动阀板角度、升降阀板等方式来实现启闭控制,当与电动执行器配套时首先应根据阀门的类型选择电动执行器。
1.角行程电动执行器(转角<360度)电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。
此类电动执行器根据安装接口方式的不同又分为直连式、底座曲柄式两种。
a)直连式:是指电动执行器输出轴与阀杆直连安装的形式。
b)底座曲柄式:是指输出轴通过曲柄与阀杆连接的形式。
此类电动执行器适用于蝶阀、球阀、旋塞阀等。
2.多回转电动执行器(转角>360度)电动执行器输出轴的转动大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。
此类电动执行器适用于闸阀、截止阀等。
3.直行程(直线运动)电动执行器输出轴的运动为直线运动式,不是转动形式。
此类电动执行器适用于单座调节阀、双座调节阀等。
电动执行器适用于工业管道用闸阀、节流阀、球阀、蝶阀、隔膜阀、柱塞阀、旋塞阀、止回阀、安全阀、减压阀、疏水阀。
电动执行器的用途广泛,种类繁多,分类方法也比较多。
总的可分两大类:第一类自动电动执行器:依靠介质(液体、气体)本身的能力而自行动作的电动执行器。
如止回阀、安全阀、调节阀、疏水阀、减压阀等。
第二类驱动电动执行器:借助手动、电动、液动、气动来操纵动作的电动执行器。
如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。
自动阀是指不需要外力驱动,而是依靠介质自身的能量来使电动执行器动作的电动执行器。
如安全阀、减压阀、疏水阀、止回阀、自动调节阀等。
动力驱动阀可以利用各种动力源进行驱动。
电动阀:借助电力驱动的电动执行器。
执行器的分类

电动执行器的分类电动执行器的类型繁多,它是在不同行业领域的称谓,在工业管道阀门行业称之为阀门电动装置,在仪表行业称之为电动执行器,但现在业内已没有很明确的区分。
角行程、直行程和多转式执行器是指按照运动方式分类。
它是一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作,不管哪种分类都有其自身的特性。
角行程、直行程和多转式角行程角行程和直行程执行器大部分是在多转式的基础之上改造而来的:以多转式为基础,配以蜗轮蜗杆二级减速箱组成0~90°角行程电动执行机构;配以丝杆部件组成直行程电动执行机构。
角行程:0~90°角行程,用于控制球阀、旋塞阀、蝶阀和百叶阀之类的角行程阀门;多回转电动执行器多转式:需要运行超过360°才能实现阀门的启闭,主要用于截止阀、管夹阀和隔膜阀;直行程:输出的是力,产生的是位移,主要用于闸阀和滑板阀。
常用于配套各种阀门构成电动阀门或者电动调节阀(例如:闸阀、调节阀、单座阀等直线运动的阀门) 以AC交流电或DC直流电为驱动能源;根据动作方式分为两大类(电动开关型和电动调节型)优点是能源取用方便,信号传输速度快,传输距离远,便于集中控制,灵敏度和精度较高,与电动调节仪表配合方便,安装接线简单。
缺点是结构复杂,平均故障率高于气动执行机构,适用于防爆要求不高,气源缺乏的场所。
永嘉县神舟电力设备有限公司已有11年专业制造阀门电动执行器的历史。
公司生产的DZW系列多回转阀门电动执行器、DQW系列QB系列部分转阀门电动执行器、GT系列部分回转角为90°阀门气动装置,采用先进的超大规模的数字集成芯片,专业的数字力矩传感器和数字位移传感器、全中文菜单操作和显示、机电一体化的结构设计,造就了其完美的功能、优异的性能、轻巧美观、调试简单、操作方便。
可与多种阀门相配套,实现现场操作,也可实现电动、气动的远方控制,集中控制和自动控制。
广泛应用于电站、石油、钢铁、化工、输油管道、污水处理等自动控制系统中,既能满足频繁调节控制,又能满足断续控制的要求。
电动执行器分类详细解析

电动执行器是一类以电能作为能源的执行器。
按结构可分为电动控制阀、电磁阀、电动调速泵和电动功率调整器及附件等。
①电动执行机构电动执行机构是采用电动机和减速装置来控制阀门的执行机构。
通常,电动执行机构的输人信号是标准电流或电压信号,其输出信号是电动机的正、反转或停止的三位式开关信号。
电动执行机构按位移分为直行程、角行程和多转式三类;按输入信号与输出信号的关系分为比例式、积分式两类。
②电动调速泵电动调速泵指用交流调速技术对交流电动机进行调速,实现流量控制的电动执行器。
交流电动机调速方法有调频调速、调极对数调速和调转差率调速三种,同步交流电动机因不受转差率影响,只有调频调速、调极对数调速两种调速方法。
变频调速是改变电源频率/i来改变电动机的同步转速。
异步电动机采用变频器调速时,为防止电动机磁饱和,要控制电动机的磁通,抑制启动电流。
因此,需根据电动机特性对供电电压、电流、频率进行合适控制,使电动机获得所需转矩。
a.电压/频率控制。
电压/频率控制是改变频率的同时控制变频器输出电压,使电动机磁通保持不变,在调速范围较广时,使电动机功率和效率不下降,即控制电压与频率之比。
常用下列控制方式。
•线性V/F控制。
变频器输出电压与频率的关系为线性,用于恒定转矩负载。
•带磁通电流控制(FCC)的线性V/F控制。
根据电动机特性实时计算所需输出电压,用于保持电动机磁通在最佳状态,该方式可提高电动机效率和改善电动机动态响应特性。
•平方V/F控制。
变频器输出电压的平方与频率成正比,用于变转矩负载,例如风机、泵等设备的控制。
•特性曲线可编程V/F控制。
变频器输出电压与频率之间用分段线性关系描述,用于特定频率下为电动机提供特定转矩。
•带能量优化控制(ECO)的线性V/F控制。
变频器自动增减电动机电压,使电动机在损耗最小的工作点运行。
b.矢量控制。
矢量控制是将供给异步电动机定子电流从理论上分为两部分,即产生磁场的电流分量(磁场电流)和与磁场相垂直的,用于产生转矩的电流分量(转矩电流)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动执行器有五种类型:直行程电动执行器、角行程电动执行器、电动调节阀、PID电动调节执行器和电磁阀。
前四种属于DDZ型。
下面简要介绍一下直行程电动执行器(DKJ)和角行程电动执行器(DKZ)。
直行程与角行程电动执行器的作用是接收调节器或其它仪表送来的0~10,4~20毫安或1~5伏电压的标准值流电信号,经执行器后变成位移推力或转角力矩,以操作开关、阀门等,完成自动调节的任务。
这两种执行器以前都是由伺服放大器与执行机构两大部分组成的。
现在有机电一体智能化的结构,它们的结构、工作原理和使用方法都是相似的,区别仅在于,一个输出位移(推力),一个输出转角(力矩)。
电动执行器选型考虑要点一、根据阀门类型选择电动执行器阀门的种类相当多,工作原理也不太一样,一般以转动阀板角度、升降阀板等方式来实现启闭控制,当与电动执行器配套时首先应根据阀门的类型选择电动执行器。
1.角行程电动执行器(转角<360度)电动执行器输出轴的转动小于一周,即小于360度,通常为90度就实现阀门的启闭过程控制。
此类电动执行器根据安装接口方式的不同又分为直连式、底座曲柄式两种。
a)直连式:是指电动执行器输出轴与阀杆直连安装的形式。
b)底座曲柄式:是指输出轴通过曲柄与阀杆连接的形式。
此类电动执行器适用于蝶阀、球阀、旋塞阀等。
2.多回转电动执行器(转角>360度)电动执行器输出轴的转动大于一周,即大于360度,一般需多圈才能实现阀门的启闭过程控制。
此类电动执行器适用于闸阀、截止阀等。
3.直行程(直线运动)电动执行器输出轴的运动为直线运动式,不是转动形式。
此类电动执行器适用于单座调节阀、双座调节阀等。
二、根据生产工艺控制要求确定电动执行器的控制模式电动执行器的控制模式一般分为开关型(开环控制)和调节型(闭环控制)两大类。
1.开关型(开环控制)开关型电动执行器一般实现对阀门的开或关控制,阀门要么处于全开位置,要么处于全关位置,此类阀门不需对介质流量进行精确控制。
特别值得一提的是开关型电动执行器因结构形式的不同还可分为分体结构和一体化结构。
选型时必需对此做出说明,不然经常会发生在现场安装时与控制系统冲突等不匹配现像。
a)分体结构(通常称为普通型):控制单元与电动执行器分离,电动执行器不能单独实现对阀门的控制,必需外加控制单元才能实现控制,一般外部采用控制器或控制柜形式进行配套。
此结构的缺点是不便于系统整体安装,增加接线及安装费用,且容易出现故障,当故障发生时不便于诊断和维修,性价比不理想。
b)一体化结构(通常称为整体型):控制单元与电动执行器封装成一体,无需外配控制单元即可现实就地操作,远程只需输出相关控制信息就可对其进行操作。
此结构的优点是方便系统整体安装,减少接线及安装费用,容易诊断并排除故障。
但传统的一体化结构产品也有很多不完善的地方,所以产生了智能电动执行器,关于智能电动执行器后面将再做说明。
2.调节型(闭环控制)调节型电动执行器不仅具有开关型一体化结构的功能,它还能对阀门进行精确控制,从而精确调节介质流量。
因篇幅有限其工作原理在此不作详细说明。
下面就调节型电动执行器选型时需注明的参数做简要说明。
a)控制信号类型(电流、电压)调节型电动执行器控制信号一般有电流信号(4~20mA、0~10mA)或电压信号(0~5V、1~5V),选型时需明确其控制信号类型及参数。
b)工作形式(电开型、电关型)调节型电动执行器工作方式一般为电开型(以4~20mA的控制为例,电开型是指4mA信号对应的是阀关,20mA对应的是阀开),另一种为电关型(以4-20mA的控制为例,电开型是指4mA信号对应的是阀开,20mA对应的是阀关)。
一般情况下选型需明确工作形式,很多产品在出厂后并不能进行修改,奥美阀控生产的智能型电动执行器可以通过现场设定随时修改。
c)失信号保护失信号保护是指因线路等故障造成控制信号丢失时,电动执行器将控制阀门启闭到设定的保护值,常见的保护值为全开、全关、保持原位三种情况,且出厂后不易修改。
奥美阀控生产的智能电动执行器可以通过现场设定进行灵活修改,并可设定任意位置(0~100%)为保护值。
三、根据阀门所需的扭力确定电动执行器的输出扭力阀门启闭所需的扭力决定着电动执行器选择多大的输出扭力,一般由使用者提出或阀门厂家自行选配,做为执行器厂家只对执行器的输出扭力负责,阀门正常启闭所需的扭力由阀门口径大小、工作压力等因素决定,但因阀门厂家加工精度、装配工艺有所区别,所以不同厂家生产的同规格阀门所需扭力也有所区别,即使是同个阀门厂家生产的同规格阀门扭力也有所差别,当选型时执行器的扭力选择太小就会造成无法正常启闭阀门,因此电动执行器必需选择一个合理的扭力范围。
四、根据所选电动执行器确定电气参数因不同执行器厂家的电气参数有所差别,所以设计选型时一般都需确定其电气参数,主要有电机功率、额定电流、二次控制回路电压等压力差压变送器的应用及选型(1)1.概述在诸类仪表中,变送器的应用最为广泛、普遍,变送器大体分为压力变送器和差压变送器。
变送器常用来测量压力、差压、真空、液位、流量和密度等。
变送器有两线制和四线制之分,两线制变送器尤多;有智能和非智能之分,智能变送器渐多;有气动和电动之分,电动变送器居多;另外,按应用场合有本安型(本质安全型)和隔爆型之分;按应用工况,变送器的主要种类如下:低(微)压/低(微)差压变送器;中压/中差压变送器;高压/高差压变送器;绝压/真空/负压差压变送器;高温/压力、差压变送器;耐腐蚀/压力、差压变送器;易结晶/压力、差压变送器。
变送器的选型通常根据安装条件、环境条件、仪表性能、经济性和使用介质等方面考虑。
实际应用中分为直接测量和间接测量两种;其用途有过程测量、过程控制和装置连锁等。
常见的变送器有普通压力变送器、差压变送器、单发兰变送器、双发兰变送器、插入式发兰变送器等。
2.压力/差压变送器介绍压力变送器和差压变送器单从名称上讲测量的是压力和差压(两个压力的差),但它们可以间接测量的量却很多。
如压力变送器,除可以测量压力外,还可以测量设备内的液位。
在常压容器内测量液位时,需要一台压力变送器即可。
当测量受压容器的液位时,可考虑用两台压力/差压变送器,即测量下限一台,测量上限一台,它们的输出信号进行减法运算,即可测出液位,这时一般选用差压变送器。
在容器内液位与压力值不变的情况下它还可以用来测量介质的密度。
压力变送器的测量范围可以做的很宽,从绝压0开始可以到一百多兆帕(一般情况)。
差压变送器除了测量两个被测量压力的差压值外,它还可以配合各种节流元件来测量介质流体的流量,可以直接测量受压容器的液位和常压容器的液位以及压力和负压。
2.1 制作从压力/差压变送器制作的结构上来分有普通型和隔离型。
普通型压力/差压变送器的测量膜盒为一个,它直接感受被测介质的压力或差压;隔离型的测量膜盒接受到的是一种稳定液(一般为硅油)的压力,而这种稳定液是被密封在两个膜片中间,直接接受被测压力的膜片为外膜片,原普通型膜盒的膜片为内膜片,当外膜片上接受压力信号时通过硅油的传递原封不动的将外膜片的压力传递到了普通膜盒上,从而可以测出外膜片所感受到的压力。
隔离型压力/差压变送器主要是针对特殊的被测量介质设计和使用的,如果被测介质离开设备后会产生结晶,而使用普通型压力/差压变送器需要取出介质,会将导压管膜盒室堵塞使其不能正常工作,所以必须选用隔离型。
隔离型变送器通常作成发兰式安装,即在被测设备上开口使变送器安装后它的感应膜片是设备壁的一部分,这样它不会取出被测介质,一般也不会造成结晶和堵塞。
当被测介质需求结晶温度较高时,可选用将膜片凸出的结构,这样可将传感膜片插入到设备内部,从而感应到的介质温度不会降低,这样测量是有保障的,即选用插入式发兰变送器。
隔离型变送器有远传型和一体型之分。
远传型即外膜盒与测量膜盒之间用加强毛细管连接,一般毛细管为3~5米,这样外膜盒装在设备上,内膜盒及变送器可以安装在便于维护的安装支架上;另一种形式是外膜盒与变送器做成一体直接由发兰安装在设备上。
对于隔离型压力变送器它还可以作成螺纹连接型,即外膜盒或外弹性元件可在安装螺纹的前面,只要在被测设备上焊接上内螺纹凸台,便可将变送器直接拧到设备上,安装非常方便。
隔离型压力/差压变送器的制作复杂,材质要求也较高,所以它的价格通常是普通型的3~4倍。
2.2 选型原则在压力/差压变送器的选用上主要依据:以被测介质的性质指标为准,以节约资金、便于安装和维护为参考。
如果被测介质为高黏度、易结晶、强腐蚀的,必须选用隔离型变送器。
在选型时要考虑被测流体介质对膜盒金属的腐蚀,一定要选好膜盒材质,否则使用后很短时间就会将外膜片腐蚀坏,发兰也会被腐蚀坏造成设备或人身事故,所以膜盒材质的选择非常关键。
变送器的膜盒材质有普通不锈钢、304不锈钢、316/316L不锈钢、钽材质等。
在选型时要考虑到被测介质的温度,如果温度高,达到200℃~400℃,要选用高温型,否则硅油会产生汽化膨胀,使测量不准确。
在选型时要考虑设备的工作压力等级,变送器的压力等级必须与应用场合相符合。
从经济角度上讲,外膜盒及插入部分材质比较重要,要选合适,但连接发兰可以降低材质要求,如选用碳钢、镀铬等,这样会节约很多资金。
隔离型压力变送器最好选用螺纹连接形式,这样既节约资金,安装也方便。
对于普通型压力和差压变送器选型,也要考虑到被测介质的腐蚀性问题,但使用的介质温度可以不予考虑,因为普通型是引压到表内,长期工作时温度是常温,但普通型使用的维护量要比隔离型大。
首先是保温问题,气温零下时导压管会结冰,变送器无法工作甚至损坏,这就要增加伴热和保温箱等装置。
从经济角度上来讲,选用变送器时,只要不是易结晶介质都可以采用普通型变送器,而且对于低压易结晶介质也可以加吹扫介质来间接测量(只要工艺允许用吹扫液或气),应用普通型变送器就是要求维护人员多进行定时检查,包括各种导压管是否泄漏、吹扫介质是否正常、保温是否良好等,只要维护好,大量使用普通型变送器一次性投资会节约很多。
维护时要注意硬件维护和软维护相结合。
从选用变送器测量范围上来说,一般变送器都具有一定的量程可调范围,最好将使用的量程范围设定在它量程的1/4~3/4段,这样精度会有所保证,对于微差压变送器来说更是重要。
实践中有些应用场合(液位测量)需要对变送器的测量范围迁移,根据现场安装位置计算出测量范围和迁移量进行迁移,迁移有正迁移和负迁移之分。
目前,智能变送器已相当普及,它的特点是精度高、可调范围大,而且调整非常方便、稳定性好,选型时应多考虑。
按照设计规范,在工程设计选型中,究竟采用气动变送器还是电动变送器,因其各有特长,应该根据装置的具体条件进行综合考虑和分析。