归纳平面体的投影.ppt

合集下载

机械制图(第二版)课件第3章 基本形体的投影规律

机械制图(第二版)课件第3章  基本形体的投影规律

第3章 基本形体的投影规律
3.1.2 棱锥 棱锥是由几个三角形的侧棱面和一个多边形的底面围成
的。各侧棱面为共顶点的三角形。 图3-2所示为一正三棱锥,底面为等边三角形,三个侧
面为全等的等腰三角形。底面放置成水平位置,并使棱锥左 右对称(后棱面垂直于W面)。
第3章 基本形体的投影规律
1.投影分析和画法 因为底面ABC为水平面,所以其水平投影abc反映实形, 正面投影和侧面投影均积聚为水平线段。棱面SAB和SBC为 一般位置平面,三面投影均为缩小的类似三角形。因该两棱 面左、右对称,故侧面投影重合。棱面SAC为侧垂面,所以 侧面投影sa(c′)积聚为斜线段,水平投影和侧面投影为缩小 的类似三角形,如图3-2(b)所示。 作图时,先画出各投影的对称线,然后画底面的水平投 影和另两面投影,再画顶点的各面投影并连接各点即可。
第3章 基本形体的投影规律
3.2.2 圆锥 圆锥是由圆锥面和底圆平面围成的。 图3-5为轴线处于铅垂线位置时的圆锥直观图及投影图。
第3章 基本形体的投影规律
图3-5 圆锥的投影
第3章 基本形体的投影规律
1.投影分析和画法 圆锥的底圆平面为水平面,其水平投影为圆,且反映实 形;其正面投影和侧面投影均积聚为直线段,长度等于底圆 的直径。 圆锥面的三个投影均无积聚性。圆锥面的水平投影为圆, 且与底圆平面的水平投影重合,整个圆锥面的水平投影都可 见;圆锥面的正面投影应画出该圆锥面正视转向轮廓线的正 面投影。圆锥面上最左、最右两条素线SA、SB是正视时可 见(前半个圆锥面)与不可见(后半个圆锥面)的分界线,是正 视转向轮廓线。其正面投影s′a′、s′b′必须画出;其水平投影 与圆的水平中心线重合,省略不画;其侧面投影s″a″、s″b″ 与圆锥轴线的侧面投影重合,也省略不画。

土木工程制图平面立体的投影及线面投影分析精品PPT课件

土木工程制图平面立体的投影及线面投影分析精品PPT课件
1. 投影面平行线 侧平线
(1)水平投影∥OYH ;(2)正面投影∥OZ;(3)侧面投影反映线 段实长和对H、V的倾角。
第3章 平面立体的投影及线面投影分析
16
§3.2 立体上直线的投影分析
投影面平行线的投影特性归纳为: 平行于哪个投影面的直线,在它所平行的那个投影面上的 投影反映线段的实长和对另两投影面的倾角,另外的两投影则 平行于相应的投影轴。
不可能三投影都出现平行。
第3章 平面立体的投影及线面投影分析
35
§3.2 立体上直线的投影分析
四、两直线间的相对几何关系
3. 交错 交错直线同面投影的交点,是二交错直线上一对重影点的投影。
第3章 平面立体的投影及线面投影分析
36
§3.2 立体上直线的投影分析
四、两直线间的相对几何关系
3. 交错 交错直线同面投影的交点,是二交错直线上一对重影点的投影。 重影点投影的可见性由它们与投影面的距离判定。
来 无意,也不可能设计出来能为大家“统一”使用的电子讲稿。
由 于各校的专业实际、学时、学生水平、教学条件以及教师的教 学风格的不同,必然对演示文稿会有不同的要求,期望有不同 的风格。本套演示文稿仅仅是提供一种借鉴,做了一些基本的 准备,使用者在使用前一定要根据自己的实际情况对其做个性 化处理:删除本页的声明,调整内容结构,改进编排顺序,简 化、削减文稿中的文字份量,加强图形、图片、视频、动画的 表现效果,充实你的精彩表演方法,把它改造成符合你自己需 要的、能更好展示教学水平的、表演技艺出众的实用化作品, 以提高课堂教学效果。第祝3你章 圆平面满立成体功的投!影及线面投影分析
单击开始自动演播 的辅助投影面V1
ab∥cd , a'b'∥c'd' , a"b"∥c"d"

第四章立体的投影

第四章立体的投影
③判别可见性。
❖ ㈡两平面立体的表面交线
相交形体的表面交线称为相贯线。
两平面立体相贯线的特征:一般情况为空间折线,特殊情况为平面折线,每 段折线是两立体棱面的交线,每个折点是一立体棱线与另一立体的贯穿点。 立体的相贯形式有两种:
一是全贯,即一个立体完全穿过另一个立体,相贯线有两组; 二是互贯,两个立体各有一部分参与相贯,相贯线为一组。 求两平面体相贯线的方法:有两种 (1)交点法——先作出各个平面体的有关棱线与另一立体的交点,再将所有交 点顺次连成折线,即组成相贯线。连点的规则是:只有当两个交点对每个立体 来说,都位于同一个棱面上时才能相连,否则不能相连。 (2)交线法——直接作出两平面立体上两个相应棱面的交线,然后组成相贯线。
(3)投影分析
(二)棱锥体 (1)形体特征: 底面是多边形,棱 线交于一点,侧棱面均为三角形。 (2)安放位置: 底面△ABC平行于H面。 (3)投影分析
【例4-1】 作四棱台的正投影图 解:(1)分析
1)四棱台的上、下底面都与H面平行, 前、后两棱面为侧垂面,左、右两棱面 为正 垂面。 2)上、下两底面与H面平行,其水平投 影反映实形;其正面、侧面投影积聚为 直线。 3)前、后两棱面与W面垂直,其侧面投影积聚为直线;与H、V面倾斜,投 影为缩小的类似形。 4)左、右两个面与V面垂直,其正面投影积聚为直线;与H、W面倾斜,投 影为缩小的类似形。 5)四根斜棱线都是一般位置直线,其投影都不反映实长。
3)连点。 4)判断可见性。
❖ 三、同坡屋面交线的画法
单坡屋面 坡屋面 双坡屋面
四坡屋面 同坡屋面:既屋檐高度相等、各屋面与水平面倾角相等的屋面。 同坡屋面交线的画法,其实 质是求两平面交线的问题。
同坡屋面上各种交线的名称

平面体的投影(知识点7)课件

平面体的投影(知识点7)课件
投影分析五棱锥的投影知识点知识点77知识点知识点772棱锥投影图的画法知识点知识点77例2已知mn和h求mnh三点未知二个投影方法2取线定点法侧面上的点方法1直接法棱线上的点知识点知识点77方法3辅助平面法侧面上的点2
平面体的投影(知识点7)
空间物体可以看作是由一些简单的几何体 所组成。而这些简单的几何体又是由一些表面 围成。根据这些表面的性质,几何体可分为平 面体和曲面体(回转体)两类。
b

B
12
小结:
平面体的投影(知识点7)
1.三视图投影规律:长对正、高平齐、宽相等。
2.平面体投影图绘制: 仔细分析围成立体各平面的性质, 充分利用前面讲过的直线和平面的投影规律。
3.平面体表面取点: 方法1:直接法(棱线上的点) 方法2:取线定点法(棱面上的点) 方法3:辅助平面法(棱面上的点)
W下
高平齐, 宽相等。
(2) 位置关系:
俯视图—前后、左右
主视图—上下、左右
左视图—上下、前后 宽相等



5
平面体的投影(知识点7)
四、棱柱的投影
1、投影分析
e d’a’c’’b

DC
d”(c”) e”(b”)
B
a”
EA
c
d
b
e
a

6
平面体的投影(知识点7)
2、棱柱投影图的画法
e d’a’c’ b d”(c”e)”(b”a)”
平面体的投影(知识点7)
二、三视图的形成与投影规律
Z
V W
X Y

3
展开图
V
平面体的投影(知识点7)
Z W
X H
O

机械制图(第四版)第2章 点、直线、平面的投影PPT课件

机械制图(第四版)第2章 点、直线、平面的投影PPT课件

主视图、俯视图——长对正。
主视图、左视图——高平齐。
俯视图、左视图——宽相等。
上述关系统称为“三等关系”。 不论是整体还是局部,物体的
三视图都应符合三等关系,
图2-13 三视图度量的对应关系
在三等关系中,应注意理解俯视图和左视图“宽相等”的对应关系。
资讯
4. 视图间的方位对应关系 物体有上、下、前、后、左、右六个方位。 主视图反映了物体的上、下和左、右方位, 俯视图反映了左、右和前、后方位, 左视图则反映了上、下和前、后方位。
图2-14 补画左视图
图2-15 立体的空间形状与投影分析
(b) 三视图
图2-12 展开后的三投影面及物体的三视图
资讯
3.视图间的度量对应关系 根据三视图的形成可以分析出: 主视图反映物体长方向(OX)和高方向(OZ)的尺寸。 俯视图反映物体长方向(OX)和宽方向(OY)的尺寸。 左视图反映物体高方向(OZ)和宽方向(OY)的尺寸。
视图之间的度量关系为:
图2-9 三投影面体系
资讯
2.三视图的形成
如图2-10所示,将物体放在三投影面体系中用正投影方法将其向 各投影面投射,即可得到物体的三面视图。
画图时,需将相互垂直的三个投影面展平在同一平面上,规定:V 面保持不动,将H面绕OX轴向下旋转90°,W面绕OZ轴向后旋转 90°,如图2-11所示。
图2-10 三视图的形成
资讯
1. 三投影面体系
⑵ 三个投影轴
投影面之间的交线称为投影轴。
X投影轴:V与H面的交线,物体X轴方向的尺寸称为物体的长方向。 Y投影轴: H与W面的交线, 物体Y轴方向的尺寸称为物体的宽方向。 Z投影轴: V 与W面的交线,物体Z轴方向的尺寸称为物体的高方向。

高校高等职业教育《建筑工程制图与识图》教学课件 第3章 基本体的投影

高校高等职业教育《建筑工程制图与识图》教学课件 第3章 基本体的投影

§3.3
3.3.1平面体的截交线
截割体的投影
由于平面体是由平面围成,所以平面体的截交线是封闭的平面折线, 即平面多边形。
求平面立体截交线的步骤:
(1)分析 截交线形状及投影形状; (2)求点 利用截平面的积聚性求棱线与截平面的交点; (3)连线 按一定顺序并根据可见性连线。
§3.3 截割体的投影
圆锥与各种平面立体的相贯线; ➢ 用辅助平面法可求: 圆球与各种平面立体的相贯线。
圆环与各种平面立体的相贯线。
§3.4 相贯体的投影
[例题15] 已知圆柱体与四棱柱相贯的俯视图,补全V、W面投影。
易多线 1’
2’
解题步骤:
1’’(2’’)
3’(5’)
4’(6’)
5’’(6’’)
3’’(4’’)
二、圆锥
投影分析和画法 圆锥的底圆平面为水平面,其
水平投影为圆,且反映实形; 正面投影和侧面投影均积聚为
直线段,长度等于底圆的直径。
投影特点: 一个视图为圆,另两个为三角形。
§3.2
二、圆锥
圆锥表面上取点:
回转体的投影
素线法取点
§3.2
二、圆锥
圆锥表面上取点:
回转体的投影
纬圆法取点
四、圆环
圆环的三视图:
回转体的投影
§3.2
四、圆环
圆环表面取点:
已知圆环面上的 点A、B 的一个 投影,求它们的 另一个投影
回转体的投影
§3.2
四、圆环
回转体的投影
圆环表面取曲线:
已知圆环面上的 曲线AD 水平投 影,求正面投影
§3.1 基本体的投影
[例题3] 补全属于基本回转体表面的点和线段的三面投影。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)根据截平面位置与曲面立体表面的性质、判别 截交线的形状和性质。
(2)求出截交线上的特殊点。 (3)根据需要求出若干个一般点。 (4)光滑且顺次地连接各点,作出截交线,并且判别 可见性。 (5)最后,补全可见与不可见部分的轮廓线或转向轮 廓素线,并擦除被切割掉的轮廓线或转向轮廓素线。
特殊点:是指绘制曲线时有影响的各种点。 极限位置点 曲线的最高、最低、最前、最后、最左和最右点。 转向轮廓点 曲线上处于曲面投影转向轮廓线上的点,它们是区
.精品课件.
33
例6 求截切圆柱的水平投影和侧面投影。
解题步骤
1 分析 截交线的水平投影 为圆的一部分,侧面投影 为矩形;
2 求出截交线上的特殊点Ⅰ 、Ⅱ、Ⅲ、Ⅳ;
3顺次地连接各点,作出截 交线并判别可见性;
4 整理轮廓线。

Ⅳ Ⅰ

.精品课件.
34
例7 求截切圆柱截交线的投影。
1'
4'
5'
3' 2'
6.2.1 平面与平面立体相交 6.2.2 平面与曲面立体相交
.精品课件.
22
截交线的概念
截交线
截平面
平面与立体相交在立体表面产生交线称为截交线,该平 面称为截平面。截交线是截平面和立体表面的共有线,截交 线上的点是截平面与立体表面上的共有点,它既在截平面上 又在立体表面上。由于任何立体都有一定的空间范围,所以 截交线一定是封闭的线条,通常是一条平面曲线或者是由曲 线和直线组成的平面图形或多边形。
3 1
b
a c
b(c)
a
br s3
c
1
2
a
.精品课件.
11
6.1.3 曲面立体
圆柱
圆锥
圆球
表面由曲面或曲面和平面构成的立体称为曲面立 体,常见的曲面立体有圆柱、圆锥、圆球和圆环等。
曲面可看作由一条母线按一定的规律运动所形成, 运动的线称为母线,而曲面上任一位置的母线称为素 线。母线绕轴线旋转,则形成回转面。
第6章 立体的投影及表面交线
6.1 基本体的投影 6.2 平面与立体相交 6.3 立体与立体相交
.精品课件.
1
6.1 基本体的投影
6.1.1 三面投影与三视图 6.1.2 平面立体 6.1.3 曲面立体
按照一定规则形成的简单立体称为基本体,基 本体分为平面立体和曲面立体两类。
.精品课件.
2
6.1.1 三面投影与三视图
b" ;
3 顺次地连接各点, 作出截交线,并且判 别可见性;
4 整理轮廓线。
y
a1
4
s
y
2
.精品课件.
26
b
例3 求立体截切后的投影
6
(5)4
1
2 (3)
35
1
6
24
6
5
4
3 1 2 Ⅵ
Ⅴ Ⅳ

ⅠⅡ
.精品课件.
27
6.2.2 平面与曲面立体相交
曲面立体截交线通常是封闭的平面曲线,或是由曲线和直 线所围成的平面图形或多边形。
.精品课件.
28
1. 平面与圆柱相交
截平面平行于轴线, 交线为平行于轴线的 两条平行直线
截平面垂直于轴线, 交线为 圆
.精品课件.
截平面倾斜于轴线, 交线为 椭圆
29
平面与圆柱的截交线
两条平行直线 垂直于轴线的圆
椭圆
.精品课件.
30
例4 求斜切圆柱的截交线
1' 5‘6'
1" 6"
3‘(4‘)
4"
主视图 Z 左视图
O
X 俯视图
YW
.精品课件.
YH
3
三视图的位置关系和投影规律



右高








右宽

主、俯视图 长对正
主、左视图 高平齐
俯、左视图.精品课件宽. 相等
4
6.1.2 平面立体
棱柱
棱锥
表面均为平面构成的立体称为平面立体,平面 立体上相邻两表面的交线称为棱线。常见的平面立 体有棱柱、棱锥和棱台等。
分曲线可见与不可见部分的分界点。 特征点 曲线本身具有特征的点,如椭圆长短轴上四个端点。 结合点 截交线由几部分不同线段组成时结合处的点。
.精品课件.
32
例5 求切口圆柱的水平投影和侧面投影。
解题步骤 1 分析 截交线的水平投影为椭 圆,侧面投影为圆; 2 求出截交线上的特殊点Ⅰ、 Ⅳ、 Ⅴ、 Ⅷ; 3 求出若干个一般点Ⅱ、Ⅲ、 Ⅵ、Ⅶ; 4 光滑且顺次地连接各点,作 出截交线,并且判别可见性; 5 整理轮廓线。
.精品课件.
12
1. 圆 柱
圆柱由圆柱面、顶面、底面所围成。圆柱面可看作直线 绕与它相平行的轴线旋转而成。
.精品课件.
13
(1) 圆柱的投影
.精品课件.
14
(2) 圆柱表面上取点
c”
( d’ )
()
.精品课件.
(D)
C AB
15
2. 圆 锥
圆锥由圆锥面、底面所围成。圆锥面可看作直线绕与它相 交的轴线旋转而成。
7'8'
2'
4
8" 2"
8
6
2
1
解题步骤
1 分析 截交线的水平投影为椭 圆,侧面投影为圆;
5"
2 求出截交线上的特殊点Ⅰ、 Ⅱ、Ⅲ、 Ⅳ ;
3 求出若干个一般点Ⅴ、Ⅵ、 Ⅶ、Ⅷ;
3" 4 光滑且顺次地连接各点,作
出截交线,并且判别可见性;
5 整理轮廓线。
7"






7
5
3
.精品课件.


31
作图步骤:
3 2
1
3 2
1
a’
b’
c’ a(c) y
b
a
c
1 s3
2
y
Ⅲ Ⅱ

A
b
B
.精品课件.
25
例2 求带切口三棱锥的投影
s'
s"
4'
1' a'
4"
2' 3'
b'c' c"
c 3
3" y
1" 2" a" y
解题步骤
1 分析 截交线的正 面投影已知,水平投 影和侧面投影未知;
2 求出截交线上的折 点Ⅰ、Ⅱ、 Ⅲ、 Ⅳ
4" 1" 5" 3"
.精品课件.
23
6.2.1 平面与平面立体相交
由于平面立体是由平面围成的,截交线是封闭的平面多边形, 多边形的边是截平面与平面立体表面的交线。求截交线的问题 可以简化为求平面与平面的交线问题,进而简化为求直线与平 面交点的问题。
.精品课件.
24
例1 三棱锥被一正垂面所截切,求截交线的投影。
s’
s
.精品课件.
5
1. 棱 柱
.精品课件.
6
(1) 棱柱的投影
.精品课件.
7
(2) 棱柱表面上取点
a
(a)
(b)
b
b
a
.精品课件.
8
2. 棱 锥
.精品课件.
9
(1) 棱锥的投影
s
s
b’
a’
c’
a”
b
b”(c”) c
B s
a
.精品课件.
S
C A
10
(2) 棱锥表面上取点源自ss2 r 1 (3)
2
.精品课件.
16
(1) 圆锥的投影
.精品课件.
17
(2) 圆锥表面上取点
辅助素线法 辅助纬圆法
.精品课件.
18
3. 圆 球
球是由球面围成的。球面可看作圆绕其直径为轴线旋 转而成。
.精品课件.
19
(1) 圆球的投影
.精品课件.
20
(2) 圆球表面上取点
.精品课件.
21
6.2 平面与立体相交
相关文档
最新文档