地球上两点的经纬度计算他们距离的公式
怎么用经纬度计算两地之间的距离
怎么用经纬度计算两地之间的距离?1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
2、分为3步计算:第1步分别将两点经纬度转换为三维直角坐标:假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:x=R×cosα×cosβy=R×cosα×sinβz=R×sinαR为地球半径,约等于6400km;α为纬度,北纬取+,南纬取-;β为经度,东经取+,西经取-。
第2步根据直角坐标求两点间的直线距离(即弦长):如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5上式为三维勾股定理,L为直线距离。
第3步根据弦长求两点间的距离(即弧长):由平面几何知识可知弧长与弦长的关系为:S=R×π×2[arc sin(0.5L/R)]/180上式中角的单位为度,1度=π/180弧度,S为弧长。
3、1度的实际长度是111公里。
但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。
4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。
地理经纬度计算公式
地理经纬度计算公式地理经纬度计算公式经度和纬度的表示方式经度和纬度是用来表示地球上某一点的坐标信息。
经度表示东西方向的距离,范围为-180°到180°,西经为负数,东经为正数;纬度表示南北方向的距离,范围为-90°到90°,赤道为0°,北纬为正数,南纬为负数。
球面距离计算公式Haversine公式Haversine公式是用来计算球面上两点之间的最短距离(弧长)的公式。
公式如下:a = sin²(Δlat/2) + cos(lat1) * cos(lat2) * sin²(Δlon/2)c = 2 * atan2(√a, √(1-a))d = R * c其中: - lat1和lon1为第一个点的纬度和经度; - lat2和lon2为第二个点的纬度和经度; - Δlat = lat2 - lat1; - Δlon = lon2 - lon1; - R为地球的半径(一般取平均半径约为6371km);- d为球面上两点之间的距离。
举例说明假设有两个城市A和B,其经纬度分别为A(° N, ° E)和B(° N, ° E),我们来计算一下这两个城市之间的球面距离。
插入代码块:import mathdef calculate_distance(lat1, lon1, lat2, lon2):R = 6371 # 地球半径,单位为kmlat1_rad = (lat1)lon1_rad = (lon1)lat2_rad = (lat2)lon2_rad = (lon2)delta_lat = lat2_rad - lat1_raddelta_lon = lon2_rad - lon1_rada = (delta_lat/2)**2 + (lat1_rad) * (lat2_rad) * (de lta_lon/2)**2c = 2 * ((a), (1-a))distance = R * creturn distance# 计算A和B两个城市之间的距离distance_AB = calculate_distance(, , , )print("城市A和城市B之间的距离为:{:.2f} km".format(dista nce_AB))运行结果:城市A和城市B之间的距离为: km所以,城市A和城市B之间的球面距离约为 km。
怎么用经纬度计算两地之间的距离
怎么用经纬度计算两地之间的距离?1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
2、分为3步计算:第1步分别将两点经纬度转换为三维直角坐标:假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:x=R×cosα×cosβy=R×cosα×sinβz=R×sinαR为地球半径,约等于6400km;α为纬度,北纬取+,南纬取-;β为经度,东经取+,西经取-。
第2步根据直角坐标求两点间的直线距离(即弦长):如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5上式为三维勾股定理,L为直线距离。
第3步根据弦长求两点间的距离(即弧长):由平面几何知识可知弧长与弦长的关系为:S=R×π×2[arc sin(0.5L/R)]/180上式中角的单位为度,1度=π/180弧度,S为弧长。
3、1度的实际长度是111公里。
但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。
4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。
根据两点经纬度计算距离
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
两个经纬度之间的距离计算公式excel
两个经纬度之间的距离计算公式excel计算两个经纬度之间的距离可以使用"球面余弦定理"。
在Excel 中,可以使用以下公式计算两点之间的距离:Copy code=ACOS(COS(lat1)*COS(long1)*COS(lat2)*COS(long2) + COS(lat1)*SIN(long1)*COS(lat2)*SIN(long2) + SIN(lat1)*SIN(lat2)) * R其中:lat1, long1 是第一个点的纬度和经度(以弧度为单位)lat2, long2 是第二个点的纬度和经度(以弧度为单位)R 是地球半径首先,我们需要把经纬度转换为弧度。
在Excel 中可以使用"RADIANS" 函数进行转换。
例如,将纬度转换为弧度的公式为:Copy code=RADIANS(lat1)经度同理。
然后在用上面给出的公式计算即可。
示例:假设第一个点纬度为A1,经度为B1;第二个点纬度为A2,经度为B2;地球半径为C1那么第一个点纬度转换为弧度的公式为=RADIANS(A1),经度同理。
最后使用公式=ACOS(COS(RADIANS(A1))*COS(RADIANS(B1))*COS(RADIANS(A2))*COS(RADIANS(B2)) + COS(RADIANS(A1))*SIN(RADIANS(B1))*COS(RADIANS(A2))*SIN(RADIANS(B2)) + SIN(RADIANS(A1))*SIN(RADIANS(A2))) * C1 即可计算出两个点之间的距离。
请注意,这个公式的结果是以千米为单位的距离。
如果需要米为单位的距离,可以将地球半径设置为6371即可。
请注意,由于经纬度是按照地球球面来计算的,所以这个公式只能用于近似计算地球上两点之间的距离,如果需要精确计算,可能需要使用其他方法。
地球上两点的经纬度计算他们距离的公式
地球上两点的经纬度计算他们距离的公式一、球面余弦定理球面余弦定理是一种常用的计算地球上两点距离的公式。
它基于球面三角形的余弦定理,公式如下:d = R * arccos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
二、哈弗斯因子公式哈弗斯因子公式也是一种常用的计算地球上两点距离的公式。
它基于海伦公式,公式如下:d = 2 * R * arcsin(√(sin((lat2 - lat1) / 2)² + cos(lat1) * cos(lat2) * sin((lon2 - lon1) / 2)²))其中,d表示两点之间的距离,R表示地球的半径,而lat1、lat2、lon1和lon2分别表示两点的纬度和经度。
在计算中,经纬度应以弧度为单位。
如果给定的经纬度是度数,可以先将其转化为弧度再代入公式中计算。
可以看到,球面余弦公式和哈弗斯因子公式在计算方式上有一些差异。
球面余弦公式更容易计算,因为它不需要计算所有角度的正弦函数值,只需要计算两个角度的正弦函数值并进行一些乘法和加法运算。
相比之下,哈弗斯因子公式需要计算所有角度的正弦函数值,计算量稍大一些。
无论是使用球面余弦公式还是哈弗斯因子公式,都需要注意地球的半径值。
地球的半径并不是一个精确的常数,因为地球的形状是复杂的。
在实际计算中,可以根据所需要的精度选择合适的地球半径值,一般情况下选择平均半径值进行计算即可。
除了上述公式之外,还可以使用其他更复杂的公式来计算地球上两点的距离。
例如,Vincenty公式和Haversine公式等都是比较常用的计算地球上两点距离的公式。
地球两点间距离计算公式
地球两点间距离计算公式
摘要:
1.地球是一个近似的椭球体
2.地球表面到地球中心的距离
3.两点间距离的计算公式
正文:
地球是一个近似的椭球体,而非一个完美的球体。
因此,在计算地球上两点之间的距离时,需要考虑到这个形状。
地球的形状是由其自转造成的离心力所导致的,使得地球的赤道部分略微膨胀,而两极部分略微收缩。
地球表面到地球中心的距离,也就是地球的半径,大约为6371 公里。
这是一个平均值,因为地球并不是完美的球体,所以不同地方的半径会有微小的差异。
在地球表面上,两点间的距离可以通过一个简单的公式进行计算。
该公式是:d = 2 * R * arccos((r1 * r2 + d1 * d2) / (2 * r1 * r2)),其中d 是两点间的距离,R 是地球半径,r1 和r2 是两点在地球表面上的纬度,d1 和d2 是两点在地球表面上的经度。
这个公式基于球面三角学,利用了球面上两点之间的弧长等于它们在赤道上的投影长度乘以地球半径的比值。
因此,这个公式只适用于地球表面的经纬度坐标系。
例如,如果我们想要计算纽约(西经74 度,北纬40 度)和北京(东经116 度,北纬39 度)之间的距离,我们可以使用上述公式,其中R = 6371 公里,r1 = r2 = 40 度,d1 = 74 度,d2 = 116 度。
将这些值代入公式,我
们可以得到两点之间的距离。
多个地点间的距离计算公式
多个地点间的距离计算公式在现代社会,人们经常需要计算不同地点之间的距离,比如出行规划、物流配送等。
而地点之间的距离计算公式就成为了一个重要的工具。
本文将介绍一些常用的地点间距离计算公式,并对它们进行简要的分析和比较。
1. 直线距离计算公式。
直线距离是最简单的距离计算方式,它是通过两个地点的经纬度坐标来计算的。
假设地点A的经纬度坐标为(A1, A2),地点B的经纬度坐标为(B1, B2),则地点A和地点B之间的直线距离可以通过以下公式计算:d = R arccos(sin(A1)sin(B1) + cos(A1)cos(B1)cos(A2-B2))。
其中,R为地球半径,一般取平均值6371km。
这个公式的优点是简单易用,缺点是没有考虑地球表面的曲率和地形的影响,只适用于较短距离的计算。
2. 大圆航线距离计算公式。
大圆航线距离是指两地之间在地球表面上的最短距离,也是飞行航线的最佳路径。
它的计算公式如下:d = R arccos(sin(A1)sin(B1) + cos(A1)cos(B1)cos(A2-B2))。
这个公式与直线距离的公式是相同的,但它更适用于长距离的计算,因为它考虑了地球表面的曲率。
在航空航线规划和航海导航中广泛使用。
3. 曼哈顿距离计算公式。
曼哈顿距离是指两点在标准坐标系上的距离,即沿着坐标轴的距离之和。
对于二维坐标系来说,两点(x1, y1)和(x2, y2)之间的曼哈顿距离可以通过以下公式计算:d = |x1 x2| + |y1 y2|。
这个公式的优点是简单直观,适用于城市道路网格等直线交错的环境,缺点是没有考虑地球曲面的影响。
4. Haversine距离计算公式。
Haversine距离是一种用于计算两点间球面距离的方法,它考虑了地球的曲率和地球半径的变化。
对于地球上两点之间的距离,Haversine距离的计算公式如下:a = sin²((Δφ)/2) + cos(φ1) cos(φ2) sin²((Δλ)/2)。
地球上两点距离公式
地球上两点距离公式
嘿,朋友们!今天咱就来聊聊地球上两点距离公式。
这公式啊,就像是一把神奇的钥匙,能帮我们解开地球这个大球体上两点之间距离的秘密呢!
常见的公式就是根据经纬度来计算的呀。
比如说,有两个地方,一个在北京,经纬度是(东经 116 度,北纬 40 度),另一个在上海,经纬度是(东经 121 度,北纬 31 度)。
通过这个公式,我们就能算出它们之间大概有多远啦。
这多有意思啊,就好像我们有了一双能穿透地球的眼睛,可以看到两点之间的“距离之路”呢!难道这还不够神奇吗?就好比你想知道从你家到好朋友家在地球上“画”出的这条线有多长,这个公式就能告诉你答案哟!哈哈,明白了吧!
所以啊,大家可别小看这个小小的公式,它用处可大着呢!就像是一把开启地球奥秘之门的钥匙,让我们能更深入地了解我们生活的这个星球呀!。
经度纬度两点距离测距
经度纬度两点距离测距经度纬度是地理坐标系统中用来表示地球上任意一点位置的坐标系统。
在经度纬度坐标系下,每个点的坐标由经度和纬度组成,经度表示东西方向的位置,范围为-180°至180°,向东为正,向西为负;纬度表示南北方向的位置,范围为-90°至90°,向北为正,向南为负。
测量经度纬度两点之间的距离是地理学和测绘学中的重要问题,解决这个问题有多种方法和公式。
以下将介绍几种常用的测量经度纬度两点之间距离的方法。
球面距离公式:球面上两点之间的距离非直线距离,而是曲线距离,根据球的曲率而定。
其中最常用的公式是Haversine公式,其计算两点之间的大圆距离(弧长)。
Haversine公式如下:d = 2r * arcsin(sqrt(sin²((lat2-lat1)/2) + cos(lat1) *cos(lat2) * sin²((lon2-lon1)/2)))其中,d是两点之间的距离,r是地球半径,lat1和lon1表示第一个点的纬度和经度,lat2和lon2表示第二个点的纬度和经度。
笛卡尔坐标转换:由于地球的形状是近似于一个椭球的,使用球面距离公式并不是非常精确。
为了精确求解经度纬度两点之间的距离,可以将经度纬度转换为笛卡尔坐标系,然后计算两个笛卡尔坐标点之间的直线距离。
转换方法如下:x = r * cos(lat) * cos(lon)y = r * cos(lat) * sin(lon)z = r * sin(lat)其中,r是地球半径,lat和lon分别是经度和纬度,x、y、z分别是转换后的笛卡尔坐标。
Vincenty公式:Vincenty公式是一种比Haversine公式更为精确的测距方法,它是根据椭球体的参数来计算两点之间的距离。
该公式考虑了椭球体的扁率,通过迭代方法逼近最优解。
Vincenty公式如下:a=r1b=r2f=(a-b)/aL = lon2 - lon1U1 = arctan((1 - f) * tan(lat1))U2 = arctan((1 - f) * tan(lat2))L0=Llambda = LiterLimit = 100while (abs(lambda - L0) > 10-12 and iterLimit > 0):sinU1 = sin(U1)cosU1 = cos(U1)sinU2 = sin(U2)cosU2 = sin(U2)sinLambda = sin(lambda)cosLambda = cos(lambda)sigma = atan2(sqrt((cosU2 * sinLambda) ** 2 + (cosU1 * sinU2 - sinU1 * cosU2 * cosLambda) ** 2),sinU1 * sinU2 + cosU1 * cosU2 * cosLambda)alpha = asin(cosU1 * cosU2 * sinLambda / sin(sigma))cos2SigmaM = cos(sigma) - 2 * sinU1 * sinU2 / cos(alpha) ** 2C = f / 16 * cos(alpha) ** 2 * (4 + f * (4 - 3 * cos(alpha) ** 2))L0 = lambdalambda = L + (1 - C) * f * sin(alpha) *(sigma + C * sin(sigma) *(cos(2 * sigmaM) + C * cos(sigma) *(-1 + 2 * cos(2 * sigmaM) ** 2))Usec = cos(alpha) ** 2 * (a ** 2 - b ** 2) / (b ** 2)B = Usec / 1024 * (256 + Usec * (-128 + Usec * (74 - 47 * Usec)))deltaSigma = B * sin(sigma) * (cos(2 * sigmaM) + B / 4 *(cos(sigma) *(-1 + 2 * cos(2 * sigmaM) ** 2) - B / 6 *cos(2 * sigmaM) * (-3 + 4 * sin(sigma) ** 2) *(-3 + 4 * cos(2 * sigmaM) ** 2)))s = b * A * (sigma - deltaSigma)上述公式都是基于地球是一个近似椭球体的假设,实际地球的形状是地球椭球体和大地水平面所确定的椭球体。
经纬度坐标算距离公式
经纬度坐标算距离公式引言在地理信息系统(GIS)和地理定位领域中,经纬度坐标是一种常用的表示位置信息的方式。
经度表示地球上一个点相对于本初子午线的东西向位置,而纬度表示地球上一个点相对于赤道的南北位置。
对于给定的两个经纬度坐标,我们经常需要计算它们之间的距离,以便准确地估计两个点之间的实际物理距离。
本文将介绍经纬度坐标算距离的常用公式以及其应用。
球面上两点距离地球不是一个完美的球体,但在一些场景下,可以将地球近似看作一个球面。
在球面上,我们可以使用球面距离公式来计算两个点之间的直线距离。
给定两个点A和B的经纬度坐标,我们可以使用以下公式来计算它们之间的球面距离:distance = R * arccos(sin(latA)*sin(latB) + cos(latA)*cos(latB)*cos (lonB-lonA))其中,R代表地球的平均半径,latA和latB分别代表A和B的纬度,lonA和lonB分别代表A和B的经度。
这是一个简化的公式,假设地球是一个完全的球体。
实际应用中,为了更准确地计算距离,可以采用更复杂的椭球面模型。
应用举例现在我们假设有两个城市A和B,它们的经纬度坐标分别为A(纬度: 39.92, 经度: 116.46)和B(纬度: 31.23, 经度: 121.47)。
我们可以使用上述球面距离公式来计算它们之间的距离。
首先,我们需要将角度转换为弧度,因为三角函数的输入是弧度。
然后,我们带入公式计算距离:import mathlatA =39.92lonA =116.46latB =31.23lonB =121.47# 将角度转换为弧度latA_rad = math.radians(latA)lonA_rad = math.radians(lonA)latB_rad = math.radians(latB)lonB_rad = math.radians(lonB)R =6371# 地球的平均半径,单位为千米# 计算球面距离distance = R * math.acos(math.sin(latA_rad)*math.sin(latB_rad) + math.c os(latA_rad)*math.cos(latB_rad)*math.cos(lonB_rad-lonA_rad))在这个例子中,我们假设地球的平均半径为6371千米。
两点经纬度计算距离
根据两点经纬度计算距离这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈就叫作“赤道”。
在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段,叫做纬线。
我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。
北极就是北纬90度,南极就是南纬90度。
纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬,两极和高纬度地区无夏,中纬度地区四季分明。
其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这些圆圈的线段,就叫经线。
公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。
在它东面的为东经,共180度;在它西面的为西经,共180度。
因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。
各国公定180度经线为“国际日期变更线”。
为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时略有偏离。
每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。
利用经纬线,我们就可以确定地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。
例如问北京的经纬度是多少?我们很容易从地图上查出来是东经116度24分,北纬39度54分。
在大海中航行的船只,只要把所在地的经度测出来,就可以确定船在海洋中的位置和前进方向。
纬度共有90度。
赤道为0度,向两极排列,圈子越小,度数越大。
横线是纬度,竖线是经度。
当然可以计算,四元二次方程。
经度和纬度都是一种角度。
经度是个两面角,是两个经线平面的夹角。
因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。
地球上两点间距离的计算公式
地球上两点间距离的计算公式最常用的计算公式是根据球面三角形理论,即将地球看作一个球形,而不是一个平面。
这可以用来计算两个地理位置之间的直线距离、驾驶距离或航线距离等。
其中,最经典的公式是哈维尔斯因公式(Haversine formula)。
该公式基于球面三角学,使用了地球半径和两点间的经纬度差异,计算出两点之间的球面距离。
该公式适用于较小的距离,误差通常在0.5%以内。
该公式的计算过程如下:1.首先,将两个地点的经纬度转换为弧度。
地球上的经度范围从-180度到180度,纬度范围从-90度到90度。
转换为弧度的公式是:经度(弧度)=经度(度数)*π/180,纬度(弧度)=纬度(度数)*π/180。
2.使用三角函数计算两点之间的差异,即:Δλ=λ2-λ1和Δφ=φ2-φ1,其中λ表示经度,φ表示纬度。
3. 使用球面三角学计算。
球面三角学是一种关于球体上的三角形的几何学方法。
根据球面的半径r,可以计算出一个球面上的球面角(haversine值)h,公式为:h = sin^2(Δφ/2) + cos(φ1) *cos(φ2) * sin^2(Δλ/2)。
4. 计算球面距离。
球面距离d可以通过以下公式计算:d = 2 * r * arcsin(sqrt(h)),其中r是地球的平均半径。
需要注意的是,这些公式计算的是两点之间的球面距离,而不是实际的行驶距离。
实际的行驶距离可能受到多种因素的影响,如地形、交通状况等。
另一个常用的计算公式是Vincenty公式,它是基于椭球体几何学的精确计算公式。
Vincenty公式考虑了地球的离心率,因此更加精确。
然而,由于其计算复杂度较高,一般不适用于实时计算,而主要用于精确测量和研究。
综上所述,地球上两点间距离的计算公式主要有哈维尔斯因公式和Vincenty公式。
哈维尔斯因公式适用于较小的距离,计算简单且误差较小;而Vincenty公式更为精确,适用于测量和研究工作。
根据实际需求,可以选择合适的公式来计算两点间的距离。
地球两点间距离计算公式
地球两点间距离计算公式
地球两点间距离计算公式是椭球体上两点之间的大圆弧长度。
这个公式主要用于计算地球上任意两点之间的直线距离。
在地理学和导航系统中,这个公式被广泛应用。
公式的推导基于地球模型为一个近似的椭球体。
最常用的地球模型是WGS84(World Geodetic System 1984),它将地球呈现为一个扁球体,有两个主要的轴半径,赤道半径(6378.137千米)和极半径(6356.752千米)。
使用这个公式计算两点间的距离需要知道两个点的经度和纬度。
下面是计算两点间距离的公式:
d = acos(sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(lon2 - lon1)) * R
其中,
- d为两点间的距离(单位为千米)。
- lat1和lat2是两个点的纬度(以弧度表示)。
- lon1和lon2是两个点的经度(以弧度表示)。
- R是地球的平均半径(约为6371千米)。
这个公式是基于球面三角学中的余弦定理推导出来的。
首先,将两个点的经纬度转换为弧度,然后使用余弦定理计算大圆弧长度。
需要注意的是,这个公式是基于地球模型为椭球体的近似解。
在实际应用中,还可能考虑更复杂的地球模型和修正因素,以提高计算的准确性。
总而言之,地球两点间距离计算公式是基于地球模型为椭球体的近似解,通过使用经纬度和余弦定理来计算两个点之间的直线距离。
这个公式是地理学和导航系统中常用的工具,用于计算任意两点间的距离。
地球上两点的经纬度计算他们距离的公式
假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,北纬为正,南纬为负,则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny)B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb)于是,AB对于球心所张的角的余弦大小为cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny因此AB两点的球面距离为R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]}注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。
2.所谓的“东经为正,西经为负,北纬为正,南纬为负”是为了计算的方便。
比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°)3.AB对球心所张角的球法实际上是求<OA>和<OB>两向量的夹角K。
用公式<OA>*<OB>=|OA|*|OB|*cosK可以得到其中地球平均半径为6371.004 km假设地球是个标准的球体:半径可以查出来,假设是R:如图:要算出A到B的球面距离,先要求出A跟B的夹角,即角AOB,求角AOB可以先求AOB的最大边AB的长度。
在根据余弦定律可以求夹角。
AB在三角形AQB中,AQ的长度可以根据AB的纬度之差计算。
BQ在三角形BPQ中,BP和PQ可求,角BPQ可以根据两者的经度求出,这样BQ的长度也可以求出来,所以AB的长度是可以求出来的。
因为三角形ABQ是直角三角形,已经得到两个边知道了角AOB后,AB的弧长是可以求的。
这样推出其公式就不难了关于用经纬度计算距离:地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:40075.04km/360°=111.31955km111.31955km/60=1.8553258km=1855.3m而每一分又有60秒,每一秒就代表1855.3m/60=30.92m任意两点距离计算公式为d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
经纬度两点距离计算
地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。
如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。
如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。
设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。
那么根据三角推导,可以得到计算两点距离的如下公式:C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) +cos(MLatA)*cos(MLatB)Distance = R*Arccos(C)*Pi/180这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米=0.621371192mile如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是:C = sin(LatA)*sin(LatB) +cos(LatA)*cos(LatB)*cos(MLonA-MLonB)Distance = R*Arccos(C)*Pi/180以上通过简单的三角变换就可以推出。
如果三角函数的输入和输出都采用弧度值,那么公式还可以写作:C = sin(LatA*Pi/180)*sin(LatB*Pi/180) +cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180) Distance = R*Arccos(C)*Pi/180也就是:C = sin(LatA/57.2958)*sin(LatB/57.2958) +cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.295 8)Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer =0.621371192*6371.004*Arccos(C) mile =3958.758349716768*Arccos(C) mile。
根据两点经纬度计算距离
根据两点经纬度计算距离根据两点的经纬度计算距离是一个常见且有广泛应用的问题。
这个问题具有一定的复杂性,因为地球是一个球体而不是平面。
在解决这个问题时,我们需要考虑到地球的曲率以及经纬度的度量单位。
有多种方法可以计算两点间的距离,下面将介绍两种常用的方法:大圆距离和Haversine公式。
1.大圆距离:大圆距离是指从一个点到另一个点沿着地球表面的最短距离。
当我们考虑地球为球体时,这是一种较为准确的近似方法。
首先,将经纬度转换为弧度。
经度的范围是-180到180度,纬度的范围是-90到90度。
将角度转换为弧度的公式为:弧度=角度*π/180然后,可以使用以下公式计算大圆距离:a = sin²(Δφ/2) + cos φ1 * cos φ2 * sin²(Δλ/2)c = 2 * atan2(√a, √(1−a))d=R*c其中,Δφ是纬度的差异,Δλ是经度的差异。
φ1和φ2是两个点的纬度,R是地球的半径(通常为6371千米)。
2. Haversine公式:Haversine公式是一种计算球面上两点间距离的方法,它使用了一个中间的函数haversine。
这种方法也是一种精确的方法。
Haversine公式的计算步骤如下:首先,将经纬度转换为弧度。
然后,可以使用以下公式计算距离:a = sin²(Δφ/2) + cos φ1 * cos φ2 * sin²(Δλ/2)c = 2 * atan2(√a, √(1−a))d=R*c其中,Δφ是纬度的差异,Δλ是经度的差异。
φ1和φ2是两个点的纬度,R是地球的半径(通常为6371千米)。
这些公式可以使用各种编程语言计算,下面以Python代码为例:```import mathdef distance(lat1, lon1, lat2, lon2):R=6371#地球半径,单位为千米#将经纬度转换为弧度lat1 = math.radians(lat1)lon1 = math.radians(lon1)lat2 = math.radians(lat2)lon2 = math.radians(lon2)#计算差异delta_lat = lat2 - lat1delta_lon = lon2 - lon1# 应用大圆距离或Haversine公式计算a = math.sin(delta_lat/2) ** 2 + math.cos(lat1) *math.cos(lat2) * math.sin(delta_lon/2) ** 2c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))distance = R * creturn distance```这段代码定义了一个名为distance的函数,接受四个参数:两个点的纬度和经度。
测绘简单计算公式
测绘简单计算公式测绘是地理信息科学的一个重要分支,它通过测量、记录和分析地球表面的各种现象和特征,为地图制图和空间数据分析提供支持。
在测绘过程中,需要进行各种计算,以确定地球表面上各种地理要素的位置、形状、大小和相互关系。
本文将介绍一些测绘中常用的简单计算公式,帮助读者更好地理解测绘工作中的数学原理和方法。
1. 距离计算。
在测绘中,常常需要计算两点之间的直线距离。
这可以通过两点的经纬度坐标来实现。
假设两点的经纬度分别为(lat1, lon1)和(lat2, lon2),则这两点之间的直线距离可以通过以下公式计算:distance = R arccos(sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(lon1 lon2))。
其中,R为地球半径,一般取平均值6371km。
这个公式基于球面三角学的原理,可以精确地计算两点之间的直线距离。
2. 面积计算。
测绘中常常需要计算地物的面积,比如土地利用类型的面积、湖泊的水域面积等。
面积计算的方法有很多种,其中最常用的是多边形面积计算公式。
假设一个多边形有n个顶点,其顶点坐标依次为(x1, y1)、(x2, y2)、……、(xn, yn),则该多边形的面积可以通过以下公式计算:area = 0.5 (x1y2 + x2y3 + … + xn-1yn + xny1 x2y1 x3y2 … xnyn-1)。
这个公式基于向量叉乘的原理,可以精确地计算多边形的面积。
3. 方位角计算。
在测绘中,方位角是指某一点相对于另一点的方向,通常用正北方向为基准,顺时针计算。
假设两点的经纬度分别为(lat1, lon1)和(lat2, lon2),则点1指向点2的方位角可以通过以下公式计算:azimuth = arctan2(sin(lon2 lon1) cos(lat2), cos(lat1) sin(lat2) sin(lat1) cos(lat2)cos(lon2 lon1))。
经纬度长度的计算公式
经纬度长度的计算公式
地球是一个球体,经纬度用于表示地球上的位置。
经度指从地球中心到地球表面上某点之间的角度,单位为度;纬度是指该点与地球赤道面之间的角度,也是以度为单位。
由于地球是一个球体,我们需要用一些数学公式来计算经纬度长度。
经度长度的计算公式:
假设地球的半径为R,经度线的长度为L,经度线围成的圆的周长为C,经度线之间的距离为d,则有以下公式:
L = C * cos(latitude)
C = 2πR * cos(latitude)
d = L * 360 / (2πR)
其中,latitude为该经度线所在纬度的绝对值。
纬度长度的计算公式:
假设地球的半径为R,纬度线的长度为L,纬度线围成的圆的周长为C,纬度线之间的距离为d,则有以下公式:
L = C / 360 * cos(latitude) * 2πR
C = 2πR * sin(latitude)
d = L * 360 / (2πR * cos(latitude))
其中,latitude为该纬度线所在纬度的绝对值。
总结:
通过以上公式,我们可以计算出地球上任意两个点之间的距离,这对于航海、导航、地图制作等领域都具有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,北纬为正,南纬为负,
则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny)
B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb)
于是,AB对于球心所张的角的余弦大小为
cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny
因此AB两点的球面距离为
R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]}
注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。
2.所谓的“东经为正,西经为负,北纬为正,南纬为负”是为了计算的方便。
比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°)
3.AB对球心所张角的球法实际上是求<OA>和<OB>两向量的夹角K。
用公式<OA>*<OB>=|OA|*|OB|*cosK
可以得到
其中地球平均半径为6371.004 km
假设地球是个标准的球体:半径可以查出来,假设是R:
如图:
要算出A到B的球面距离,先要求出A跟B的夹角,即角AOB,
求角AOB可以先求AOB的最大边AB的长度。
在根据余弦定律可以求夹角。
AB在三角形AQB中,AQ的长度可以根据AB的纬度之差计算。
BQ在三角形BPQ中,BP和PQ可求,角BPQ可以根据两者的经度求出,这样BQ的长度也可以求出来,
所以AB的长度是可以求出来的。
因为三角形ABQ是直角三角形,已经得到两个边
知道了角AOB后,AB的弧长是可以求的。
这样推出其公式就不难了
关于用经纬度计算距离:
地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下:
40075.04km/360°=111.31955km
111.31955km/60=1.8553258km=1855.3m
而每一分又有60秒,每一秒就代表1855.3m/60=30.92m
任意两点距离计算公式为
d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]}
其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。
至于比例尺计算就不废话了
//这是主函数
double CChartCtrl::CalcltDstns(float fStarPtx, float fStarPty, float fEndPt x, float fEndPty)
{
//已知起始点坐标(fStartPtx, fStartPty)及到达点坐标(fEndPtx,fEndPty)
//计算航程dbDstns.
//起始点,到达点坐标:经纬度
//航程:海里(1852米)
//Created by zhl
//2002.7.3
//precision:0.0001 海里
//check param
double dbDir=CalcltDirct(fStarPtx,fStarPty,fEndPtx,fEndPty);
double delta_fy=fEndPtx-fStarPtx;
double delta_lnmg=fEndPty-fStarPty;
int mk=(int)fEndPtx*(int)fStarPtx;
double fy_m,dbDstns;//
if(mk>=0)
{//不跨赤道航行
fy_m=(fStarPtx+fEndPtx)/2;
}else
{//跨赤道航行
fy_m=fabs(fStarPtx)>fabs(fEndPtx)?fStarPtx/2:fEndPtx/2;
}
double delta_l=(1852.2-9.3*cos(fy_m*M_PI/180+fy_m*M_PI/180))
*delta_fy*60/1852;
if((dbDir>80&&dbDir<100)||(dbDir>260&&dbDir<280))
{//东西向
dbDstns=1.00181*delta_lnmg*60*cos(fy_m*M_PI/180)*
sqrt(1-e2*sin(fy_m*M_PI/180)*sin(fy_m*M_PI/180))/
sin(dbDir*M_PI/180);
}else
{//南北向
dbDstns=delta_l/cos(dbDir*M_PI/180);
}
return dbDstns;
}
//这是计算两点间航向的函数
double CChartCtrl::CalcltDirct(float fStarPtx, float fStarPty, float fEndPtx,
float fEndPty)
{
//已知起始点坐标(fStartPtx, fStartPty)及到达点坐标(fEndPtx,fEndPty)
//计算航向fDirect.
//起始点,到达点坐标:经纬度
//航向:角度
//Created by zhl
//2002.7.2
//check param
CString strErr;
strErr.LoadString(IDS_CHK_15002);
if(fStarPtx>90.0f||fStarPtx<-90.0f||fStarPty>180.0f
||fStarPty<-180.0f||fEndPtx>90.0f||fEndPtx<-90.0f
||fEndPty>180.0f||fEndPty<-180.0f)
{
AfxMessageBox(strErr);
return -1;
}
double delta_fy=fEndPtx-fStarPtx;
double delta_lnmg=fEndPty-fStarPty;
//经度差应小于180度
if(delta_lnmg < -180.0)
delta_lnmg += 360.0;
if(delta_lnmg > 180.0)
delta_lnmg -= 360.0;
//delta_lnmg > 0.0 从西---> 东delta_lnmg < 0.0 从东---> 西
BOOL bGoEast=FALSE,bGoNorth=FALSE;
if(delta_lnmg >= 0.0)
bGoEast=TRUE;
else
bGoEast=FALSE;
//delta_fy > 0.0 从南---> 北delta_fy < 0.0 从北---> 南
if(delta_fy>=0.0)
bGoNorth=TRUE;
else
bGoNorth=FALSE;
if(delta_fy==0)
{
if(delta_lnmg==0)return 0;
return bGoEast?90:270;
}
double d1=7915.7045*(e/2*log10((1-e*sin(fStarPtx*M_PI/180)) /(1+e*sin(fStarPtx*M_PI/180)))
+log10(tan((45+fStarPtx/2)*M_PI/180.0)));//纬度渐长率
double d2=7915.7045*(e/2*log10((1-e*sin(fEndPtx*M_PI/180))/ (1+e*sin(fEndPtx*M_PI/180)))
+log10(tan((45+fEndPtx/2)*M_PI/180.0)));//纬度渐长率
double delta_d=d2-d1;////纬度渐长率差(分)
double dbDir=atan(delta_lnmg*60/delta_d)*180/M_PI;
if(!bGoEast&&bGoNorth)dbDir=360+dbDir;
if(!bGoEast&&!bGoNorth)dbDir=180+dbDir;
if(bGoEast&&!bGoNorth)dbDir=180+dbDir;
return dbDir;
}
M_PI就是pi的值。