高中数学_函数的最大(小)值与导数教学设计学情分析教材分析课后反思

合集下载

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案一、教学目标1. 让学生理解函数的最大值和最小值的概念,并掌握求解函数最大值和最小值的方法。

2. 让学生掌握导数的定义和性质,并能运用导数求解函数的极值。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 求解函数最大值和最小值的方法。

3. 导数的定义和性质。

4. 运用导数求解函数的极值。

5. 实际问题中的应用。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数的定义和性质,运用导数求解函数的极值。

2. 教学难点:导数的运算规则,运用导数求解复杂函数的最大值和最小值。

四、教学方法1. 采用讲解、演示、练习、讨论相结合的教学方法。

2. 使用多媒体课件辅助教学,提高学生的学习兴趣。

3. 引导学生通过合作、探究、实践等方式,提高解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引入函数的最大值和最小值的概念。

2. 讲解:讲解求解函数最大值和最小值的方法,并举例演示。

3. 练习:让学生独立完成练习题,巩固所学知识。

4. 讲解:讲解导数的定义和性质,并举例演示。

5. 练习:让学生独立完成练习题,巩固所学知识。

6. 讲解:讲解如何运用导数求解函数的极值,并举例演示。

7. 练习:让学生独立完成练习题,巩固所学知识。

8. 讨论:分组讨论实际问题,运用所学知识解决问题。

9. 总结:对本节课的内容进行总结,回答学生提出的问题。

10. 作业:布置作业,巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习题:评估学生在练习题中的表现,检验学生对知识的掌握程度。

3. 实际问题解决:评估学生在讨论实际问题时的表现,检验学生运用知识解决问题的能力。

4. 作业:评估学生的作业完成情况,检验学生对知识的掌握程度。

七、教学资源1. 教材:《数学分析》2. 多媒体课件3. 练习题4. 实际问题案例八、教学进度安排1. 第一课时:介绍函数的最大值和最小值的概念,讲解求解方法。

高中选修2《函数的最大小值与导数》教案设计

高中选修2《函数的最大小值与导数》教案设计

课题:函数的最大(小)值与导数---导数在研究函数中的应用教材:普通高中课程标准实验教科书人教版A版选修2-2 一.【教学目标】1.知识目标(1)理解函数的最值与极值的区别和联系。

(2)掌握用导数法求函数的最大值与最小值的方法和步骤。

2.能力目标(1)通过在教师引导下学生自主探索新知的过程,培养学生观察、分析、归纳的自学能力,为学生学习的可持续发展打下基础。

(2)培养学生的数学语言表达和数学符号表示能力。

3.情感和价值目标(1)让学生感受数学问题探索的乐趣和成功的喜悦,激发学生学习数学的兴趣和信心。

(2)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

二.【教学重点、难点】1.教学重点:利用导数求函数的最大值和最小值。

2.教学难点:函数的最大值、最小值与函数的极大值和极小值的区别和联系。

三.【教学方法与手段】1. 教学方法:启发探究式教学法2. 教学手段:多媒体、实物投影 四.【教学过程】 【复习引入】复习:函数极大值、极小值是怎样定义的?函数最大值、最小值又是怎样定义的?【设计意图】通过复习前面所学的极值的概念,也通过展现学生作业中出现的书写形式:把极大值)(x f 写成max )(x f ,从而回顾函数最值的概念。

为后面探索最值与极值的关系作了铺垫。

【探究新知】观察图中定义在闭区间[]b a ,上的函数)(x f 的图象。

图中哪些是极大值,哪些是极小值 你能找出所给函数的最大值和最小值吗? 答:2()f x 是极大值,)(1x f 与3()f x 是极小值。

)(b f 是最大值,3()f x 是最小值观察所给的4个图像,探究:函数的最值与极值有什么关系?【设计意图】让学生观察所给出的函数图像,讨论函数最值与极值的联系与区别,同时让学生发表各自的见解。

在学生讨论的过程中可以作适当的提示。

比如:1)闭区间[]b a,上的函数)(xf的最值一定存在吗?个数是多少?那极值?2)函数最值可以在哪里取得?函数极值可以在哪里取得?3)函数的极值与最值之间有没有必然的联系?小结1:函数的最值与极值之间的联系与区别:(1)整体与局部的关系函数的最值是一个整体性概念,是比较整个定义域内的所有函数值得出,具有绝对性;函数的极值是一个局部性概念,是比较极值点左右的函数值得出的,具有相对性。

【课后反思】函数的最大(小)值与导数_数学_高中_张海青_3706120053

【课后反思】函数的最大(小)值与导数_数学_高中_张海青_3706120053

课后反思导数部分的内容在高中数学教学中占据着举足轻重的地位,这从对导数时常作为压轴题进行考察就可见一斑。

而在压轴题中时常都是以探究式的出题方式要求学生在摸索中找到解题的方法,这既要求学生对相关知识点有较为熟练的基本解题能力,还需要有较为扎实的探究问题的技能。

这就要求在本阶段的教学绝对不能依靠以教师为主体的精英化教育时代留下的经验,用绝对量的题目和不断加大的题目难度进行教学,并要求学生如法炮制的在解题过程中应用。

本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开。

以“探究-讨论-教师适时引导”为主线,注重知识方法的生成过程,层层递进。

学生通过探究,获得对导数与单调性,极值,端点值关系上的感性认识。

在探究的基础上,通过互相交流、启发、补充、争论,使学生对导数在最值的应用从感性的认识上升到理性认识,获得一定水平层次的科学概念。

增加了学生主动参与的机会,增强了参与意识,使学生成为教学的主体。

1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念。

2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握。

对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性。

我既注意到学生“现在发展区”的水平,特别注重对图形的直观认识,,数形结合突破学生的认知难点,揭示导数在最值应用上的本质特征,又注重让学生尝试“最近发展区“水平的知识和方法,挖掘最值与极值,端点值得内在联系,符合新课程教学的理念,在传授知识的同时,发展学生的能力,培养学生的优秀的学习品质。

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案【教学目标】1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件;2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法.【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念:极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点.2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时:(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值. 二、新知探究:1.函数的最大值和最小值 观察右图中一个定义在闭区间[]b a ,上的函数)(x f 的图象,你能找出它的极大值点,极小值点吗?图中极大值点是:g e c 、、, 极小值点是:f d b 、、.函数)(x f 在[]b a ,上的最大值是)(a f ,最小值是)(d f .一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值.如函数xx f 1)(=在),0(+∞内连续,但没有最大值与最小值; ⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个.⒉利用导数求函数的最值步骤:由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.三、讲解范例:例1、求函数1212)(3+-=x x x f 在[0, 3]上的最大值,最小值.变式练习:求函数263)(23-+-=x x x x f 在区间[-1,1]上的最值. (最大值:2,最小值:-12)例2、已知函数a x x x x f +++-=93)(23;(1)求f(x)的单调递减区间;(答案:),3(),1,(+∞--∞)(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.(答案:-7)四、课堂小结 :⑴函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;⑵函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件;⑶闭区间[]b a ,上的连续函数一定有最值;开区间),(b a 内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值.的变化情况如下:、上变化时,在当舍或得由解:)()(]3,0[)(220)()2)(2(3123)(''2'x f x f x x x x f x x x x f -===+-=-=12)(04-)(2有最大值时,当,有最小值时,所以,当x f x x f x ==五、当堂检测:1.下列说法正确的是( )A .函数的极大值就是函数的最大值B .函数的极小值就是函数的最小值C .函数的最值一定是极值D .在闭区间上的连续函数一定存在最值 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) ( ) A .等于0B .大于0C .小于0D .以上都有可能3.函数y =234213141x x x ++,在[-1,1]上的最小值为( )A .0B .-2C .-1D .12134.设y =|x |3,那么y 在区间[-3,-1]上的最小值是( ) A .27B .-3C .-1D .15.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >0,则( ) A .a =2,b =29B .a =2,b =3C .a =3,b =2D .a =-2,b =-3答案:1.D 2.A 3.A 4.D 5.B 六、课后作业:习题1.3A 组第6题。

高中数学_函数的最值和导数教学设计学情分析教材分析课后反思

高中数学_函数的最值和导数教学设计学情分析教材分析课后反思

教学设计【课本教材内容分析】本节教材知识间的前后联系,以及在课堂教学中的地位与作用:导数是一个特殊函数,它的引出和定义始终贯穿着函数思想。

导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。

因此函数问题涉及高中数学比较多的知识点和数学思想方法。

导数作为研究函数的一种重要工具,在学习时应引起我们教师和学生的充分重视。

本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦.【课堂教学三维目标】1.知识和技能目标(1).使学生理解函数的最大值和最小值的概念,并且能理解函数最值与极值的区别和联系(2)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标(1)通过函数图象的直观,让学生发现函数极值与最值的关系,(2) 在学习过程中,观察、归纳、表述、交流、合作,最终形成认识.(3) 培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题.3.情感态度和价值观目标(1) 渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。

(2) 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神.【教学重点、难点和关键点】1.教学重点:会求闭区间上的连续函数的最大值和最小值.2.教学难点:发现闭区间上的连续函数f (x)的最值只可能存在于极值点处或区间端点处;即理解函数的最大值、最小值与函数的极大值和极小值的区别与联系.3.教学关键点本节课突破难点的关键是:通过合作探究的方式,让学生在运动变化的过程中通过观察、比较,发现结论.【教学过程】二、合作学习,探索新知如何求出函数在[a,b]上的最值?观察下列图形,找出函数的最值并总结规律归纳:求f(x)在闭区间[a,b]上的最值的步骤:求连续函数的极值比较极值点与端点值的大小,最大的是最大值,最小的是最小值函数的极值与最值的联系和区别:从定义上看:极值是局部性质,最值是整体性质从个数上看:极值可以有多个,最值最多只有一个.通过对已有相关知识的回顾和深入分析,自然地提出问题:闭区间上的连续函数最大值和最小值在何处取得?如何能求得最大值和最小值?以问题制造悬念,引领着学生来到新知识的生成场景中,为新知的发现奠定基础后,提出教学目标,让学生带着问题走进课堂,既明确了学习目的,又激发起学生的求知热情.为让学生更好地进行发现,教学中通过改变区间位置,引导学生观察同一函数在不同区间内图象上最大值最小值取得的位置,形成感性认识,进而上升到理性的高度.学生在合作交流的探究氛围中思考、质疑、倾听、表三、指导应用,鼓励创新函数最值求法能力提升总结归纳:(一)知识:(二)方法:例1的教学可让学生讨论交流思考,得出结论。

函数最大(小)值与导数教案

函数最大(小)值与导数教案

函数最大(小)值与导数教案一、教学目标1. 让学生理解函数的极值概念,掌握函数的极大值和极小值的求法。

2. 引导学生理解导数与函数单调性的关系,能够运用导数判断函数的单调性。

3. 培养学生运用导数解决实际问题的能力,提高学生的数学应用意识。

二、教学内容1. 函数的极值概念2. 函数的极大值和极小值的求法3. 导数与函数单调性的关系4. 运用导数解决实际问题三、教学重点与难点1. 教学重点:函数的极值概念,函数的极大值和极小值的求法,导数与函数单调性的关系。

2. 教学难点:运用导数解决实际问题。

四、教学方法与手段1. 教学方法:采用讲解、演示、练习、讨论相结合的方法。

2. 教学手段:利用多媒体课件辅助教学,结合板书进行讲解。

五、教学安排1课时教案一、导入新课通过复习导数的基本概念,引导学生回顾导数的计算公式,为新课的学习做好铺垫。

二、讲解函数的极值概念1. 定义:如果函数在某一区间内的任意一点的导数都小于(或大于)0,在这个区间内函数是单调递减(或单调递增)的。

2. 极值:在函数的单调区间内,如果函数在某一点取得局部最大值或最小值,这一点称为函数的极大值点或极小值点。

三、讲解函数的极大值和极小值的求法1. 求极值的方法:求出函数的导数,令导数为0,解方程得到可能的极值点。

2. 判断极值点的性质:根据导数的符号变化来判断极值点的性质。

如果导数从正变负,函数在这一点取得极大值;如果导数从负变正,函数在这一点取得极小值。

四、讲解导数与函数单调性的关系1. 单调性判断:如果函数的导数大于0,函数是单调递增的;如果函数的导数小于0,函数是单调递减的。

2. 单调区间:函数的单调递增区间为导数大于0的区间,单调递减区间为导数小于0的区间。

五、运用导数解决实际问题1. 问题提出:如何求解函数在实际问题中的最大值和最小值?2. 方法指导:建立函数模型,求出函数的导数,分析导数的符号变化,找出函数的极值点,根据实际意义选取合适的极值点作为最大值或最小值。

高中数学-函数的最大(小)值与导数-教学反思

高中数学-函数的最大(小)值与导数-教学反思

函数的最大(小)值与导数教学反思对于这次公开课,我充分考虑学生的基础,对复习的内容,课题的引入,例题与练习,我都作了认真的选择。

在课堂上力争作到以学生为主体,教师为主导的授课模式,学生的课堂反应及掌握情况都达到了预期效果。

当然,这次公开课也存在许多不足,在听取了孟老师、苏老师和其他几位老师的点评后,收获很多:
1、引入课题时图象缺少端点大小的变化
2、例2用时过少,没有给学生充足的思考与整理时间;
3、求最值时,对x代导函数还是原函数强调不到位;
4、在例题或练习讲解完后应给学生消化知识和整理答案的时间;
5、在课后练习的设置上可适当增加含参和指数、对数题目,以提升学生解题能力
在以后的教学中,我要多汲取老教师的教学经验,多听课,多向其他老师学习。

在平时上课时也要多请有经验的老教师多听自己的课,更好的改正自己上课中出现的不足,使自己的教育教学水平更上一个台阶。

高中数学_函数的最大(小)值教学设计学情分析教材分析课后反思

高中数学_函数的最大(小)值教学设计学情分析教材分析课后反思

3.2.1 单调性与最大(小)值第2课时函数的最大(小)值(一)教学目标1.理解函数的最大值和最小值的概念及其几何意义;2.能借助函数的图象和单调性,求一些简单函数的最值;3.通过本节课的学习,使学生体会数形结合思想、分类讨论思想在求解最值中的作用,提高学生逻辑推理、数学运算的能力。

(二)教学重点与难点重点:会求函数的最值。

难点:掌握求函数最值的方法。

(三)过程与方法合作讨论式教学法。

通过师生合作、讨论,在示例分析、探究的过程中,获得最值的概念。

从而掌握应用单调性求函数最值这一基本方法。

(四)核心素养借助函数最值的求法,培养直观想象、数学运算及逻辑推理等素养。

(五)教学过程变式:求函数()22+2f x x x =-在区间[],1t t +上的最小值()g t 。

问题(2)()22+2f x x x =-在[]0,3上既有最低点又有最高点,所以最小值为1,最大值为5。

变式解:二次函数的对称轴为1x =解。

变式:学生先独立思考,然后进行小组交流讨论,找出代表展示讨论结果,最后教师总结。

通过思考、讨论和展示,不仅培养了学生自主学习能力,也激发例2已知函数y=21x-(x∈[2,6]),求函数的最大值和最小值.当1t t+<,即0t<时,函数图象如图①所示,函数()f x在区间[],1t t+上单调递减,所以最小值为()211f t t+=+;当11t t≤≤+,即01t≤≤时,函数图象如图②所示,最小值为()11f=;当1t>时,函数图象如图③所示,函数()f x在区间[],1t t+上单调递增,所以最小值为()222f t t t=-+。

综上可得,()221,0,1,01,22, 1.t tg t tt t t⎧+<⎪=≤≤⎨⎪-+>⎩例2分析:由函数21yx=-([]2,6x∈)的分母变大,整体变小,函数21yx=-在区间[]2,6上递减. 所以,函数21yx=-在区间[]2,6的两个端点上分别取得最大值和最小值。

高中数学_函数的最大(小)值与导数教学设计学情分析教材分析课后反思

高中数学_函数的最大(小)值与导数教学设计学情分析教材分析课后反思

函数的最大(小)值与导数(教案)【教学目标】1.会求连续函数在闭区间上的最值;2.渗透转化与化归、分类讨论的数学思想;3.培养学生善于观察、勇于探索的习惯和严谨的科学态度,及合作探究、主动参与的精神.【教学重点】利用导数求连续函数的最值.【教学难点】含参函数最值的求解.【教学过程】教学内容师生活动设计意图温故知新温故知新一般地,求函数()y f x=的极值的步骤是:(1)________________________________;(2)_________________________________;(3)_________________________________.生:回答问题.师:课件展示.课前完成,回顾旧知,为求连续函数在闭区间上的最值作铺垫.32()32f x x x=-+1.求函数的极值.32()32f x x x=-+2.画出函数的图象.几何画板演示引例函数图象如图(1)是可导函数)(x f y =在闭区间[]b a ,上的图象.函数)(x f y =的极小值是___________,极大值是__________ 函数)(x f y =在[]b a ,上的最大值是_________,最小值是_________.图(2)呢? 思考: ⑴函数)(x f y =闭区间[]b a ,上一定存在最值吗?⑵连续函数)(x f y =闭区间[]b a ,上一定存在最值吗?开区间(a,b )呢?⑶连续函数)(x f y =闭区间[]b a ,上的最值可能在哪取得?(4)函数()y f x =在开区间(,)a b 有唯一的极大(小)值,那么它一定是最大(小)值吗?如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定有最大值和最小值,只要把函数y =f (x )的________连同_________进行比较,就可以求出函数的最大值与最小值.师:引导学生观察图象,提出问题.生:回答问题师:展示课件,引导学生寻找规律小组讨论,合作分享 通过观察与比较发现规律.x 3x 2x 1baxOy学有余力求函数()axxaxxf+⎪⎭⎫⎝⎛+-=232131,()Ra∈在[]2,1上的最小值.生:课下合作探究完成供学有余力的学生合作探究.知能提升1.函数()5123223+--=xxxxf在[]3,1上的最大值与最小值分别是()A. -8,-15B. -4,-15C. -4,-8D. -8,52.函数()xxxf ln212-=的最小值是()A. 0B. 1C.21 D.不存在3.函数()axxxf+-=2323在[]1,1-上的最大值是2,则)(xf在[]1,1-上的最小值是______.4. 不等式02ln22<-+-axx恒成立,则实数a的取值范围是__________.5.已知函数()xaxxf ln-=,当1>x时()0≥xf恒成立,求a的取值范围.6.若f(x)=ax3-6ax2+b,x∈[-1,2]的最大值为3,最小值是-29,求a、b的值.生:课下独立完成加深知识的巩固与落实.(1)知识与技能:学生已掌握了利用导数求函数的单调性和极值,初步认识到导数在函数中的应用。

《函数的最大(小)值与导数》参考教案

《函数的最大(小)值与导数》参考教案

一、教学目标1. 让学生理解函数的最大值和最小值的概念,掌握函数的最大值和最小值的求解方法。

2. 让学生掌握导数的定义,了解导数在研究函数单调性、极值等方面的应用。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容1. 函数的最大值和最小值的概念。

2. 利用导数求函数的最大值和最小值。

3. 函数的单调性及其与导数的关系。

4. 函数的极值及其与导数的关系。

5. 实际问题中的最大值和最小值问题。

三、教学重点与难点1. 教学重点:函数的最大值和最小值的求解方法,导数在研究函数单调性、极值等方面的应用。

2. 教学难点:利用导数求函数的最大值和最小值的具体步骤,理解导数与函数单调性、极值之间的关系。

四、教学方法与手段1. 采用讲解、例题、练习、讨论相结合的教学方法。

2. 使用多媒体课件,直观展示函数图像,帮助学生理解函数的最大值、最小值和导数之间的关系。

五、教学过程1. 引入:通过生活中的实例,如购物、optimization problems等,引导学生思考函数的最大值和最小值问题。

2. 讲解:讲解函数的最大值和最小值的概念,介绍利用导数求函数最大值和最小值的方法。

3. 例题:挑选典型例题,引导学生运用导数求解函数的最大值和最小值。

4. 练习:学生自主练习,巩固求解函数最大值和最小值的方法。

5. 讨论:分组讨论,分享解题心得,互相学习。

6. 总结:对本节课的内容进行总结,强调导数在研究函数单调性、极值等方面的重要性。

7. 作业:布置相关作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂练习:监测学生在课堂上的学习效果,通过练习题目的完成情况了解学生对函数最大值和最小值概念以及导数应用的掌握程度。

2. 课后作业:评估学生对课堂所学知识的吸收情况,作业应包括不同难度的题目,以检测学生的理解力和应用能力。

3. 小组讨论:观察学生在小组讨论中的参与程度和合作能力,以及他们能否运用所学知识解决实际问题。

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。

2. 让学生掌握求函数最大值和最小值的方法。

3. 培养学生解决实际问题的能力。

二、教学内容:1. 函数的最大值和最小值的定义。

2. 求函数最大值和最小值的方法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。

2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。

四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。

2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。

3. 开展小组讨论,培养学生合作解决问题的能力。

五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。

2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。

3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。

4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。

5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。

6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。

7. 课后作业:布置相关练习题,巩固所学知识。

课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。

在讲解方法时,结合示例进行演示,有助于学生掌握。

在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。

但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。

六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。

2. 评估学生在实际问题中运用最大值和最小值方法的能力。

3. 根据学生的表现,调整教学策略,以提高教学质量。

七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。

高中数学_函数单调性及最大(小)值2教学设计学情分析教材分析课后反思

高中数学_函数单调性及最大(小)值2教学设计学情分析教材分析课后反思

教学设计:教学目标:(1)巩固利用定义证明函数在给定区间的单调性;(2)能说出函数最大值、最小值的定义及几何意义;(3)会利用函数的单调性求函数的最大、小值;教学重难点:利用函数单调性求函数的最大、小值.教学方法:教师启发讲授,学生探究学习.教学过程:一、课始检测(复习回顾,引入新课)【设计意图】承前启后函数图像单调性图像单调性一次函数)0(≠+=kbkxy>k单增区间:0<k单减区间:反比例函数)0(≠=kxky>k单减区间:0<k单增区间:二次函数)0(2≠++=acbxaxy>a单增区间:单减区间:<a单增区间:单减区间:2、用定义证明函数12)(-=xxf在区间[]6,2上是减函数.二、新知探究:(观察总结,形成概念)(一)观察图象,直观感知问题1:观察函数[]6,2,12)(∈-=xxxf图像,说出它的最大值是多少?问题2:问题3:问题4:怎样定义函数)(x f 最大值的含义?【设计意图】让学生由特殊到一般,从具体到抽象归纳出函数最大值的定义.(二)、小组合作,归纳定义:最大值的含义:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)______________________________________________;(2)______________________________________________.那么,我们称M 是函数)(x f y =的最大值.函数最大值的几何意义:_____________________________.(三)仿照函数最大值的定义,给出函数最小值的定义.【设计意图】让学生体会利用类比的思想去解决有关问题.最小值的含义:一般地,设函数)(x f y =的定义域为I ,如果存在实数N 满足:(1)_____________________________________________;(2)_____________________________________________.那么,我们称N 是函数)(x f y =的最小值.函数最小值的几何意义:_____________________________.试一试:如图是函数)(x f y =,[]7,4-∈x 的图像,指出它的最大值,最小值.[]的关系?与,对于任意2)(6,2)1(x f x ∈的最大值呢?就是函数能说那么能不使得如果存在实数对于一般的函数)(,)(,),()2(x f M M x f M x f ≤三、展示点拨(巩固知识,形成能力)例1、已知函数[])6,2(12)(∈-=x x x f ,求函数的最大值和最小值. 活动:先思考或讨论,再到黑板上书写.当学生没有解题思路时,才提示:图象最高点的纵坐标就是函数的最大值,图象最低点的纵坐标就是函数的最小值.根据函数的图象观察其单调性,再利用函数单调性的定义证明,最后利用函数的单调性求得最大值和最小值.利用变换法画出函数y =2x -1的图象,只取在区间上的部分.观察可得函数的图象是上升的.解:设2≤x 1<x 2≤6,则有f (x 1)-f (x 2)=2x 1-1-2x 2-1=2[(x 2-1)-(x 1-1)](x 1-1)(x 2-1)=2(x 2-x 1)(x 1-1)(x 2-1). ∵2≤x 1<x 2≤6,∴x 2-x 1>0,(x 1-1)(x 2-1)>0.∴f (x 1)>f (x 2),即函数y =2x -1在区间上是减函数. ∴当x =2时,函数y =2x -1在区间上取得最大值f (2)=2; 当x =6时,函数y =2x -1在区间上取得最小值f (6)=25.例2 “菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h m 与时间t s 之间的关系为h (t )=-4.9t 2+14.7t +18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1 m)活动:可以指定一位学生到黑板上书写,教师在下面巡视,并及时帮助做错的学生改错.并对学生的板书及时评价.将实际问题最终转化为求函数的最值,画出函数的图象,利用函数的图象求出最大值.“烟花冲出后什么时候是它爆裂的最佳时刻”就是当t 取什么值时函数h (t )=-4.9t 2+14.7t +18取得最大值;“这时距地面的高度是多少(精确到1 m)”就是函数h (t )=-4.9t 2+14.7t +18的最大值;转化为求函数h (t )=-4.9t 2+14.7t +18的最大值及此时自变量t 的值.解:作出函数h (t )=-4.9t 2+14.7t +18的图象,如图7所示,图7 显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.由二次函数的知识,对于函数h (t )=-4.9t 2+14.7t +18,我们有:当t =-14.72×(-4.9)=1.5时,函数有最大值h =4×(-4.9)×18-14.724×(-4.9)≈29. 即烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约是29 m. 点评:本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力.解应用题的步骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.四、达标测试:1、函数23)(-=x x f 在区间[]3,1上的最大值为______,最小值为______.2、已知函数[])4,2(2)(2∈-=x x x x f ,求函数)(x f 的最大值和最小值.变式:(1)若[]1,0x呢?∈x呢?(2)若[]3,0∈五、课堂小结本节课学习了:(1)函数的最值;(2)求函数最值的方法:①图象法,②单调法,(3)求函数最值时,要注意函数的定义域.作业:探究函数2x=axf在区间[]3,1上的最大、小值.x(2+2)-学情分析:本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,主要学习用符号语言刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,学生对函数已经有了一个初步的了解,同时,由于上一节已经学习函数单调性的定义,学生能初步理解用数学语言抽象概括函数概念的必要性和表达方式,为函数最值概念的形成提供极大帮助.因此本节课通过函数的图象,学生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让学生有一个从具体到抽象、特殊到一般的认识过程,本节课通过设计问题串,逐步让学生用数学语言描述函数最值的概念,并利用对概念的辨析深入了解最值的内涵.效果分析:通过递进的设计,学生在掌握了函数的单调性的定义以及能用函数单调性定义证明函数的单调性的知识和能力之后,进一步了解、认知函数的最大值、最小值的定义,进而解决有关函数的最大值最小值问题,思路方法比较清晰条理,通过自主学习,小组交流,教师引导等不同的方式,不同层次的学生都能掌握相应的方法,提升自身能力,效果良好。

高中数学_函数的极值与导数教学设计学情分析教材分析课后反思

高中数学_函数的极值与导数教学设计学情分析教材分析课后反思

函数极值与导数的教学设计一、教材分析1、教材的地位和作用本节是整个中学数学对函数研究的进一步深化。

在此之前学生已经掌握了导数的基本概念,初步具备了运用导数研究函数的能力,这为《函数的最值与导数》奠定了坚实的基础,具有承上启下的作用。

本节课用导数的方法来研究函数的性质,是对函数研究的深化与提升。

同时本节教材是贯彻实施素质教育,充分体现新课标精神,培养学生探究能力很好的教学载体,有利于培养学生用观察、比较、分析、归纳等方法解决一些实际问题。

2.教学目标:(1) 知识与能力:①掌握函数极值的定义,了解可导函数极值点的必要条件和充分条件;②掌握利用导数求不超过三次多项式函数极值的一般方法;③通过对比原函数的增减和导函数的正负,利用函数的图像,给函数的极值以直观的验证。

(2)过程与方法:培养学生观察,分析,探究,归纳得出数学概念和规律的学习能力。

(3)情感态度与价值观:培养学生层层深入、一丝不苟研究事物的科学精神;体会数学中的局部与整体的辨证关系.3.教学重、难点本着新课程标准的教学理念和考试大纲的要求,针对教学内容的特点,我确立了如下的教学重点、难点:教学重点:掌握求可导函数的极值的一般方法.教学难点:1、 0x 为函数极值点与)(0x f =0的逻辑关系2、将知识和方法内化为技能。

二、学情分析学生已经初步学习了运用导数去研究函数,但还不够深入,因此在学习上还有一定困难。

本节课能进一步提高学生运用导数研究函数的能力,让学生体会导数的工具作用。

三、教法、学法分析(一)教法分析根据本节课的特点,为了提高教学效率,让学生在轻松的环境下获得直观的感受,使数学的课堂富有趣味性,采用师生互动探究式教学,遵循“教师为主导、学生为主体”的原则,结合高中学生的求知心理和已有的认知水平开展教学。

由于学生对极限和导数的知识学习还十分的有限(大学里还将继续学习),因此教学中更重视的是从感性认识到理性认识的探索过程,而略轻严格的理论证明,教师的主导作用和学生的主体作用都必须得到充分发挥.利用多媒体辅助教学.电脑演示动画图形,直观形象,便于学生观察.幻灯片打出重要结论,清楚明了,节约时间,提高课堂效率.(二)学法分析1. 采用体验学习及问题探究的学习方式,通过学生亲历教师预设的各种问题情境,引导学生开展创造性的学习活动,不但使学生主动掌握知识,而且要培养的独立探究能力和态度。

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值(教案与课后反思

函数的最大值和最小值教学内容:本节课主要讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值。

教学目标:1. 理解函数的最大值和最小值的概念。

2. 学会使用图像法求解函数的最大值和最小值。

3. 学会使用导数法求解函数的最大值和最小值。

教学准备:1. 教学课件。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入函数的最大值和最小值的概念。

2. 举例说明函数的最大值和最小值的意义。

二、函数的最大值和最小值的概念(10分钟)1. 讲解函数的最大值和最小值的定义。

2. 给出函数的最大值和最小值的判定条件。

三、图像法求解函数的最大值和最小值(10分钟)1. 讲解图像法求解函数的最大值和最小值的方法。

2. 举例说明图像法求解函数的最大值和最小值的步骤。

四、导数法求解函数的最大值和最小值(10分钟)1. 讲解导数法求解函数的最大值和最小值的方法。

2. 举例说明导数法求解函数的最大值和最小值的步骤。

五、练习题讲解(10分钟)1. 讲解练习题的解题思路。

2. 逐个解答学生提出的疑问。

教学反思:本节课通过讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值,使学生掌握了这一重要知识点。

在教学过程中,采用图像法和导数法两种方法进行讲解,使得学生能够更好地理解和运用。

通过练习题的讲解,巩固了学生所学的知识,并解答了学生提出的疑问。

总体来说,本节课的教学效果较好,学生对函数的最大值和最小值的概念和求解方法有了较为深入的理解。

但在教学过程中,仍需注意引导学生主动思考和探索,提高学生的学习兴趣和参与度。

六、案例分析:实际问题中的最大值和最小值(10分钟)1. 引入实际问题,如成本最小化、收益最大化等。

2. 展示如何将实际问题转化为函数的最大值和最小值问题。

3. 引导学生运用所学的图像法和导数法解决实际问题。

七、练习与讨论:小组合作求解复杂函数的最大值和最小值(15分钟)1. 分配练习题,要求学生以小组合作的形式进行求解。

高中数学_【课堂实录】函数的单调性与最大(小)值第2课时教学设计学情分析教材分析课后反思

高中数学_【课堂实录】函数的单调性与最大(小)值第2课时教学设计学情分析教材分析课后反思

函数的最大(小)值教学设计【课标解读】1.知识目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.2.能力目标:理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质.培养学生自主学习的能力,以及勇于探索、严谨求学的科学态度。

3.情感目标:利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性.【教材分析】《函数的最值》是高中数学必修一第一章第三节的内容。

在此之前,学生已学习了利用定义证明函数的单调性,这为过渡到本节的学习起着铺垫作用。

本节内容是高中数学中相当重要的一个基础知识点,是求函数值域,解决恒成立问题的基础。

重点是利用函数单调性求函数最值,以及与二次函数有关的最值的求解及应用。

难点是有关求最值时的分类讨论问题。

【学情分析】在教学过程中,教师创设情景,揭示课题,质疑答辩,排难解惑,通过教师的启发点拨,学生的不断探索,逐步解决求函数的最值问题。

整个教学过程使学生主动参与、积极思考、探索尝试;让学生体验到了学习数学的乐趣,培养学生自主学习的能力以及严谨的科学态度,养成勇于探索、乐于实践的学风。

【教学目标】知识与技能:1.通过生活中的例子帮助学生理解函数最值的定义及其几何意义。

2.学会应用函数的单调性求解函数的最值或值域。

过程与方法:1.通过本节课的教学,渗透数形结合、分类讨论的数学思想,对学生进行辩证唯物主义的教育。

2.通过探究与活动,培养学生合作探究、自主学习的能力。

情感与态度:1.通过本节课的教学,使学生能结合函数的单调性求函数的最值。

2.通过生活实例感受函数单调性对函数最值的影响,培养学生的识图能力和分类讨论的能力,养成科学严谨的求学态度,使之成为一种习惯。

【教学过程】(一)问题情境.1.引入: 喷泉喷出的抛物线型水柱到达“最高点”后便下落,经历了先“增”后“减”的过程,从中我们发现单调性与函数的最值之间似乎有着某种“联系”,让我们来研究——函数的最大值与最小值。

高中数学_函数的最值和导数教学设计学情分析教材分析课后反思

高中数学_函数的最值和导数教学设计学情分析教材分析课后反思

教课方案【课本教材内容剖析】本节教材知识间的前后联系,以及在讲堂教课中的地位与作用:导数是一个特别函数,它的引出和定义一直贯衣着函数思想。

导数已经由前几年不过在解决问题中的协助地位上涨为剖析和解决问题时的不行缺乏的工具。

所以函数问题波及高中数学比许多的知识点和数学思想方法。

导数作为研究函数的一种重要工具,在学习时应惹起我们教师和学生的充分重视。

本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值以后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,能够解决科技、经济、社会中的一些怎样使成本最低、产量最高、效益最大等实质问题.本节教材还有一个重要的教育功能,那就是培育学生的研究精神,体验自主学习的成功欢乐.【讲堂教课三维目标】1.知识和技术目标( 1).使学生理解函数的最大值和最小值的看法,并且能理解函数最值与极值的差别和联系( 2)掌握用导数法求上述函数的最大值与最小值的方法和步骤.2.过程和方法目标( 1)经过函数图象的直观,让学生发现函数极值与最值的关系,(2)在学习过程中,察看、概括、表述、沟通、合作,最后形成认识.(3)培育学生的数学能力,能够自己发现问题,剖析问题并最后解决问题.3.感情态度和价值观目标(1)浸透数形联合的思想,领会导数在求函数最值中的优胜性,优化学生的思想质量。

(2)提高学生的数学能力,培育学生的创新精神、实践能力和理性精神.【教课要点、难点和要点点】1.教课要点:会求闭区间上的连续函数的最大值和最小值.2.教课难点:发现闭区间上的连续函数 f (x)的最值只可能存在于极值点处或区间端点处;即理解函数的最大值、最小值与函数的极大值和极小值的差别与联系.3.教课要点点本节课打破难点的要点是:经过合作研究的方式,让学生在运动变化的过程中经过察看、比较,发现结论.【教课过程】一本知识复习回首:1、极大值、极小值的看法:、节知课的 2.求函数极值的步骤:识教复学3.函数最值定义回首复惯用导数求极值的思,习大回致按照创:回设顾旧情知创境设,情铺境,垫铺垫导导入入——合作学习有,探索新知有——指导应用,鼓励创新yo复习回首,导入新课( 1)函数的极值定义yx0x ox0x设函数 f(x)在点x0邻近有定义,假如对x0 邻近的全部点,都,则 x0 叫做函数的f(x0)是函数f(x)的一个极大值;设函数 f(x)在点x0邻近有定义,假如对x0 邻近的全部点,都,则 x0 叫做函数的f(x0)是函数f(x)的一个极小值;( 2)函数极值的步骤(3) 函数最值的定义函数最值研究路和方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数最大(小)值与导数教学设计
课后反思
充分备课。

最好是提前备好一个章的课,充分利用备课组的集体智慧优势,使自己对整个章节的知识点和教学进度有一个较完整的安排。

在备这节课之前,我先看教师用书,确定本课的教学重点、教学难点、教学环节。

然后,再去找相关的资料,仔细看《优秀教案》《教学设计》上的成功案例,想他为什么这样设计?好在什么地方?哪个环节可以为我所用。

最后,抛开所有的现成教案,打开书,自己开始备课。

因为,有了前面的准备工作,所以备起课了非常容易。

导入要有新意。

若导入能引起学生的兴趣,使他们想走进来,激发他们的好奇心或者共鸣感,我认为这节课成功了一半。

导入有新意,可给学生留下悬念,可给他们留下思考的空间,激发他们往下追寻的热情,又可以把学生熟悉的东西和教学内容联系起来,让他们有似曾相识之感或大有同感。

重视课堂练习。

无论上课时间多紧,进度需要多快,都要安排出时间让学生在课堂上有练习新知识的机会。

同时在教学过程中要随时调整和补充教学手段和教学内容,以适应在教学过程中出现的问题。

在今后的教学过程中,我会坚持养成课后反思的良好习惯,从而提高自己的教学水平。

课标分析
知识与能力目标:了解函数在某点取得极值,会利用导数求函数的极大值和极小值.以及闭区间上函数的最大(小)值.,培养学生数形结合、化归的数学思想和运用基础理论研究解决具体问题的能力。


感目标:经历和体验数学活动的过程以及数学在现实生活中的作用,激发学生学习数学知识的积极性,树立学好数学的信心。

过程目标:通过课堂学习活动培养学生相互间的合作交流,且在相互交流的过程中养成学生表述、抽象、总结的思维习惯,进而获得成功的体验。

教学重难点
重点:会求闭区间上连续函数可导的函数的最值.
难点:本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.所以这节课的难点是理解确定函数最值的方法
教材分析
函数的最大(小)值与导数是《高中数学》选修2-2的内容,本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,它是在学生已经会求可导函数的极值之后进行学习的,要求学生掌握最值存在性条件:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,并且会求某些函数的最值,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义.函数的最值问题与导数,不等式、方程、参数范围的探求及解析几何等知识综合在一起往往能
编拟综合性较强的新型题目,可以综合考查学生应用函数知识分析解决问题的能力,从而成为高考的高档解答题,是近年来高考的热点之一
学情分析
导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。

新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。

众所周知,函数又是中学数学研究导数的一个重要载体,因此函数问题涉及高中数学比较多的知识点和数学思想方法。

本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.为下一节“生活中的优化问题”的教学打下坚实的基础。

这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值.
1、(2012·高考重庆卷)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值
2、已知函数f(x)=x(ln x+m),g(x)=a
3
x3+x.
(1)当m=-2时,求f(x)的单调区间;
(2)若m=3
2
时,不等式g(x)≥f(x)恒成立,求实数a的取值范围.
效果分析
本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.
1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.
2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能力性.3.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.4.关于教学法,为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中.。

相关文档
最新文档