数学分支
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分支介绍——常微分方程
微分方程的概念
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。
常微分方程的内容
如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。
一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。通解构成一个函数族。
如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。
常微分方程的特点
常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。
求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。
后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。
一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。
大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。
现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。
数学分支介绍——概率论
概率论
概率论是一门研究随机现象规律的数学分支。其起源於十七世纪中叶,当时在误差、人口统计、人寿保险等范筹中,需要整理和研究大量的随机数据资料,这就孕育出一种专门研究大量随机现象的规律性的数学,但当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。数学家费马向一法国数学家帕斯卡提
出下列的问题:「现有两个赌徒相约赌若干局,谁先赢s局就算赢了,当赌徒A 赢a局﹝a < s﹞,而赌徒B赢b局﹝b < s﹞时,赌博中止,那赌本应怎样分才合理呢?」於是他们从不同的理由出发,在1654年7月29日给出了正确的解法,而在三年後,即1657年,荷兰的另一数学家惠根斯﹝1629-1695﹞亦用自己的方法解决了这一问题,更写成了《论赌博中的计算》一书,这就是概率论最早的论着,他们三人提出的解法中,都首先涉及了数学期望﹝mathematical expectation﹞这一概念,并由此奠定了古典概率论的基础。
使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各?伯努利
﹝1654-1705﹞。他的主要贡献是建立了概率论中的第一个极限定理,我们称为「伯努利大数定理」,即「在多次重复试验中,频率有越趋稳定的趋势」。这一定理更在他死後,即1713年,发表在他的遗着《猜度术》中。
到了1730年,法国数学家棣莫弗出版其着作《分析杂论》,当中包含了着名的「棣莫弗─拉普拉斯定理」。这就是概率论中第二个基本极限定理的原始初形。而接着拉普拉斯在1812年出版的《概率的分析理论》中,首先明确地对概率作了古典的定义。另外,他又和数个数学家建立了关於「正态分布」及「最小二乘法」的理论。另一在概率论发展史上的代表人物是法国的泊松。他推广了伯努利形式下的大数定律,研究得出了一种新的分布,就是泊松分布。概率论继他们之後,其中心研究课题则集中在推广和改进伯努利大数定律及中心极限定理。
概率论发展到1901年,中心极限定理终於被严格的证明了,及後数学家正利用这一定理第一次科学地解释了为什麽实际中遇到的许多随机变量近似服从以正
态分布。到了20世纪的30年代,人们开始研究随机过程,而着名的马尔可夫过程的理论在1931年才被奠定其地位。而苏联数学家柯尔莫哥洛夫在概率论发展史上亦作出了重大贡献,到了近代,出现了理论概率及应用概率的分支,及将概率论应用到不同范筹,从而开展了不同学科。因此,现代概率论已经成为一个非常庞大的数学分支。