典型环节伯德图(精选)
典型环节伯德图ppt课件
当有n个积分环节串联时,即: 其对数幅频特性为: 相频特性是一条与ω无关, 值为-n×900 且与ω轴平行 的直线。两个积分环节串联 的Bode图如图5-13所示。
是一条斜率为-n×20dB/dec, 且在ω=1(弧度/秒)处过零 分贝线(ω轴)的直线。
图5-13 两个积分环节串联的Bode图
7
2
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
3
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
六二阶微分环节
二阶微分环节的频率特性是: 其对数幅频特性是:
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
19
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
当 时, ,它是阻尼比 ξ的函数;当ξ=1时为-6(dB); 当ξ=0.5时为0(dB); 当ξ=0.25时为+6(dB);误差曲线如图5-18所示。
图5-17 振荡环节渐进线对数幅频特性
图5-18 振荡环节对数幅频特性误差修正曲线 15
由图知,振荡环节的误差可正可负,它们是阻尼比 ξ的函数,且以 的转折频率为对称,距离转折频率 愈远误差愈小。通常大于(或小于)十倍转折频率时, 误差可忽略不计。经过修正后的对数幅频特性曲线如图 5-19所示。
控制工程-典型环节的对数坐标图(Bode图)
(
j
)
arctan
1
2T T 2
2
南华大学
第四章 系统的频率响应分析
特点:
转折频率:
TT
=1,T
=1
T
=
n
。
低频段T<<1,→ 0dB线;
高频段T>>1,→-40dB/dec 线。
L() 20 0 -20 -40 () 0
-90
-180
-40dB/dec
T
T
100 ω(rad/s)
南华大学
典型环节的对数坐标图
(1) 比例环节
对数幅频特性为:
G( j) K
L() 20lg G( j) 20lg K
L(ω)为常数是平行于横轴的一条直线。
对数相频特性为(ω)=0 ,与横轴重合。
L(ω )
20lgK
0 ω
(ω)
0 ω
第四章 系统的频率响应分析
南华大学
第四章 系统的频率响应分析
(3) 积分环节
对数幅频特性:
G( j ) 1 j
dB 20lg G( j)
40
L( ) 20 lg G( j ) 20 lg 1 20 lg 20
-20dB/dec
对数相频特性:
0.1 1 10
( ) 90
180 G
南华大学
(2) 惯性环节
对数幅频特性为:
G( j) 1 jT 1
L( ) 20lg G( j ) 20lg
1
20lg 1 T 2 2
1 T 2 2
对数相频特性: ( ) G( j ) arctan T
《典型环节伯德图》课件
稳定性分析
稳定性定义:系统 在受到扰动后能够 恢复到其原始状态 的能力
稳定性分类:稳定、 不稳定、临界稳定
稳定性分析方法: 伯德图分析、奈奎 斯特图分析、根轨 迹分析等
伯德图分析:通过绘制 伯德图,观察系统在不 同频率下的增益和相位 变化,判断系统的稳定 性。
动态性能分析
伯德图:描述系统动态性能的图形工具 频率响应:系统对不同频率信号的响应 相位裕度:系统稳定性的指标 增益裕度:系统放大能力的指标 动态性能分析方法:如根轨迹法、频率响应法等
MATLAB还提供了丰富的函数库,可以方便地进行各种数学计算和仿真。
Simulink软件介绍
软件名称: Simulink
开发商: MathWorks
公司
软件功能:用 于建模、仿真 和分析动态系
统
应用领域:广 泛应用于控制 工程、信号处 理、通信等领
域
软件特点:图 形化界面,易 于操作,支持 多种编程语言
软件版本:最 新版本为 Simulink 2022a
其他绘制软件介绍
AutoCAD:一款专业的CAD软件,可以绘制 各种类型的伯德图
SolidWorks:一款三维设计软件,可以绘制 伯德图
Inventor:一款三维设计软件,可以绘制伯 德图
SketchUp:一款三维设计软件,可以绘制伯 德图
Blender:一款三维设计软件,可以绘制伯德 图
幅频特性的分析
幅频特性的定义:描述信号在频率域上的分布特性 幅频特性的表示方法:通常采用伯德图或奈奎斯特图 幅频特性的应用:用于分析信号的频率响应、滤波器设计等 幅频特性的测量方法:通过频谱分析仪或示波器等仪器进行测量
相频特性的分析
相频特性的定义:描述信号频率与相位之间的关系 相频特性的表示方法:通常用相频特性曲线表示 相频特性的应用:在信号处理、通信等领域有广泛应用 相频特性的测量方法:通过实验或仿真进行测量
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys 是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
考研复习题典型环节伯德图
相频特性是:
二阶微分环节与振荡节 的Bode图关于ω轴对称 ,如图5-21。渐近线的 转折频率为,相角变化 范围是00至+1800。 二阶微分环节的Bode图
七不稳定环节
不稳定环节的频率特性是:
其对数幅频特性和相频特性分别为:
不稳定惯性环节的Bode图
二积分环节
积分环节的频率特性是: 其幅频特性为: 对数幅频特性是:
设
,则有: (5-68)
可见,其对数幅频特性是一条 在ω=1(弧度/秒)处穿过零分贝 线(ω轴),且以每增加十倍频率 降低20分贝的速度(-20dB/dec) 变化的直线。 积分环节的相频特性是:
(5-69)
是一条与ω无关,值为-900 且平行于ω轴的直线。积分环 节的对数幅频特性和相频特性 如图5-12所示。
振荡环节的相频特性是:
除上面三种特殊情况外,振荡环节相频特性还是 阻尼比ξ的函数,随阻尼比ξ变化,相频特性在转折 频率 附近的变化速率也发生变化,阻尼比ξ越小, 变化速率越大,反之愈小。但这种变化不影响整个相 频特性的大致形状。不同阻尼比ξ的相频特性如图520 所示。
振荡环节对数相频特性图
六二阶微分环节
一放大环节(比例环节)
放大环节的频率特性为:
其幅频特性是:
对数幅频特性为:
放大环节的对数幅频特性如图5-11所示,它是一条与角 频率ω无关且平行于横轴的直线,其纵坐标为20lgK。 当有n个放大环节串联时,即:
(5-62)
幅值的总分贝数为:
(5-63)
放大环节的相频特性是:
(5-64)
如图5-11所示,它是一条与角频率ω无 关且与ω轴重合的直线。
典型环节的伯特图极坐标图共56页
典型环节的伯特图极坐标图
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
尼奎斯特图 伯德图
1.比例环节比例环节的传递函数为G(s)=K所以比例环节的频率特性为G(j ω)=K 十j0=0j Ke其幅相频率特性曲线如图5-2所示。
其中幅值M(ω) =K 。
相位移φ(ω)=00。
并且都与ω无关,它表示输出为输入的K 倍,且相位相同。
图5—2 比例环节幅相频率特性曲线2.积分环节积分环节的传递函数为G(s)=s1所以积分环节的频率特性为21101)(πωωωωjejj j G -=-==其幅相频率特性曲线如图5—3所示,它是整个负虚轴,且当ω→∞时,趋向原点0,显然积分环节是一个相位滞后环节[因为φ(ω)=-900],每当信号通过一个积分环节,相位将滞后900。
图5—3 积分环节幅相频率特性曲线3.微分环节微分环节的传递函数为G(s)=s所以微分环节的频率特性为20)(πωωωωjej j j G =+==其幅相频率特性曲线如图5—4所示。
是整个正虚轴,恰好与积分环节的特性相反。
其幅值变化与ω成正比:M(ω)=ω,当ω=0时, M(ω)也为零,当ω→∞时,M(ω)也→∞。
微分环节是一个相位超前环节[φ(ω)=+900]。
系统中每增加一个微分环节将使相位超前900。
图5-4 微分环节幅相频率特性曲线4.一阶惯性环节一阶惯性环节的传递函数为11)(+=Ts s G所以一阶惯性环节的频率特性为222211111)(ωωωωωT T jT jT j G +-+=+=幅频特性和相频特性为ωωφωωT tg T M 122)(11)(--=+=由式(5—16)直接可得实频特性和虚频特性为22221)(11)(ωωωωωT T I T R +-=+=并满足下面的圆的方程22221)(21)(⎪⎭⎫ ⎝⎛=+⎥⎦⎤⎢⎣⎡-ωωI R 圆心为⎪⎭⎫⎝⎛0,21,半径为21。
当ω从0→∞时,M(ω)从l →0;φ(ω)从00→-900,因此,一阶惯性环节的频率特性位于直角坐标图的第四象限,且为一半圆,如图5—5所示。
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys 是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
3第三节典型环节的频率特性new(bode)(精)
K 10
1
10 100
K 1
2 K L( ) 20 log A( ) 20 log 20 log K 20 log , 当K 1时, 1, L( ) 0;
10,L( ) 20
可见斜率为-20dB/dec
( )
当时间常数T 变化时,对数幅频特性和对数相频特性的形状 都不变,仅仅是根据转折频率1/T 的大小整条曲线向左或向 右平移即可。而当增益改变时,相频特性不变,幅频特性上 下平移。
Friday, September 21, 2018 7
振荡环节的频率特性
K Kn 2 ⒋ 振荡环节的频率特性: G( s) 2 2 T s 2Ts 1 s 2 n s n 2
第三节 典型环节的频率特性 之一 波德图
Friday, September 21, 2018
1
比例环节的bode图
二、典型环节的波德图
G( j ) K ⒈ 比例环节: G(s) K , ( K 0), ( ) 0 A( ) K ;相频特性: 幅频特性:
L( ) / dB
L( ),dB 渐近线,dB 误差,dB
0 -1 -2 -3 -4 September 21, Friday, 1 20181
10T 5T 1 2T 1 T 2 T 5 T 10 T
-0.2 0.04 0 0 -0.2 0.04
-1 0 -1
-3 -7 -14.2 -20.04 0 -6 -14 -0.2 -20 -0.04
Friday, September 21, 2018
积分环节的Bode图
K ⒉ 积分环节的频率特性:G ( s ) s K K K j e 2 频率特性: G( j ) j K K A( ) ( ) tg 1 ( 0)
如何绘制伯德图
低频高频渐近线的交点为:20log K 20log K 20logT ,得:
T 1,o
1 T
,称为转折频率或交换频率。
T可uesd以ay,用Mar这ch 3两1, 2段020渐近线近似的表示惯性环节的对数幅频特性。 4
惯性环节的Bode图
10 渐近线
0
-10
20dB / Dec
-20
0°
-45°
T T T 20T 10T 5T
112 2T T T
5 10 20 TTT
一阶微分环节的波德图
惯性环节的波德图
Tuesday, March 31, 2020
17
二阶微分环节的频率特性
③ 二阶微分环节: G(s) T 2s2 2Ts 1
幅频和相频特性为:
A()
(1
T
2
2
)2
(2T
)2,
(
)
tg 1
第三节 典型环节的频率特性 之一 波德图
Tuesday, March 31, 2020
1
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
频率特性分别为:
G( j) j G( j) 1 jT G( j) 1 T 2 2 j2T
Tuesday, March 31, 2020
14
纯微分环节的波德图
① 纯微分: A( )
L( )(dB)
20
L( ) 20 log A( ) 20 log
典型环节的Bode图
控制系统的开环频率特性目的:掌握开环Bode图的绘制根据Bode图确定最小相位系统的传递函数重点:开环Bode图的绘制、根据Bode图确定最小相位系统的传递函数1 开环伯德图手工作图的一般步骤:1)将开环传递函数表示为时间常数表达形式,计算各个典型环节的交接频率2)求20lgK的值,并明确积分环节的个数ν3)通过(1,20lgK)绘制斜率为-20vdB/dec低频段4)随着频率增加,每遇到一个典型环节的交接频率,就改变一次斜率最小相位系统定义:递函数的零点、极点全部位于S 左半平面,同时又无纯滞后环节的系统称为最小相位系统。
否则就是非最小相位系统。
对数幅频特性与相频特性之间存在确定的对应关系。
对于一个最小相位系统,我们若知道了其幅频特性,它的相频特性也就唯一地确定了。
也就是说:只要知道其幅频特性,就能写出此最小相位系统所对应的传递函数,而无需再画出相频特性。
非最小相位系统高频时相角迟后大,起动性能差,响应缓慢。
对响应要求快的系统,不宜采用非最小相位元件。
Tf函数用来建立实部或复数传递函数模型或将状态方程、或零级增益模型转化成传递函数形式。
sys = tf(num,den)命令可以建立一个传递函数,其中分子和分母分别为num和den。
输出sys 是储存传递函数数据的传递函数目标。
单输入单输出情况下,num和den是s的递减幂级数构成的实数或复数行向量。
这两个向量并不要求维数相同。
如h = tf([1 0],1)就明确定义了纯导数形式h(s)=s。
若要构建多输入多输出传递函数,要分别定义每一个单输入单输出系统的端口的分子与分母。
2 典型环节的伯德图绘制曲线在MA TLAB中实现,利用下述的程序段:num=[b2 b1 b0];den=[1 a2 a1 a0];H=tf(num,den);bode(H)margin(H)hold on2.1 比例环节传递函数:()G s K=频率特性:()G j Kω=对数幅频特性:()20lgL j Kω=对数相频特性:()0ϕω=程序段:num=[0 10]; den=[0 1]; H=tf(num,den);bode(H)margin(H) holdon结论:放大环节的对数幅频特性是一条幅值为20lgK分贝,且平行于横轴的直线,相频特性是一条和横轴重合的直线。
典型环节传递函数及伯德图.共30页文档
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联