运筹学 第三章

合集下载

运筹学PPT——第三章

运筹学PPT——第三章

第三章整数规划Integer Programming§1问题的提出[eg.1]用集装箱托运货物问:甲乙货物托运多少箱,使总利润最大?货物m3/箱百斤/箱百元/箱甲5220乙4510限制2413分析:设x1为甲货物托运箱数,x2为乙货物托运箱数。

则max z= 20x1+10x25x1+4x2≤242x1+5x2≤13x 1,x2≥0x 1,x2取整数图解法:x 1x 24321012 4.8①2.6②(4,1)∴x 1*= 4 x 2*= 1 z I *= 90一般,整数规划的最优解不会优于相应线性规划的最优解。

对于max 问题,z I * ≤z l *对于min 问题,z I *≥ z l *数学模型:取整数j j nj iijij nj jj x nj x m i b xa x c z ,,10,,1max 11 =≥=≤=∑∑==§2 分枝定界法用单纯形法,去掉整数约束IP LP xl*判别是否整数解x I *= xl*Yes去掉非整数域No多个LP……§3 0-1规划(xi= 0或1的规划)[eg.2]选择投资场所A i 投资Bi元,总投资≤B,收益Ci元.问:如何选择Ai ,使收益最大?A6A7A4A5A3A2A1最多选2个最少选1个最少选1个分析:引入xi= 1 A i选中0 Ai落选max z= C1x1+C2x2+… +C7x7x 1+x2+x3≤2x 4+x5≥1x 6+x7≥1B 1x1+B2x2+… +B7x7≤Bx i = 0或1南区西区东区[eg.3]求解如下0-1规划max z= 3x1-2x2+5x3x1+2x2-x3≤2 ①x 1+4x2+x3≤4 ②x 1+x2≤3 ③4x2+x3≤6 ④x 1,x2,x3= 0或1解:(1)观察一个可行解x1= 1 x2= x3= 0此时,z= 3(2)增加一个过滤条件3x1-2x2+5x3≥3 *(3)列表计算x x x *可行?z0015√51003110√3123①②③④0000×-1115010-2×01131×110180211√81101×111626×∴ 最优解:x 1*= 1 x 2*= 0 x 3*= 1 此时,z *= 8第四章。

运筹学第三章习题答案详细

运筹学第三章习题答案详细

运筹学第三章习题答案详细运筹学是一门研究如何有效地做出决策的学科,它运用数学和逻辑的方法来解决实际问题。

在运筹学的学习中,习题是非常重要的一部分,通过解答习题可以加深对知识的理解和应用。

本文将详细解答运筹学第三章的习题,帮助读者更好地掌握该章节的内容。

第一题是关于线性规划的基本概念和性质的。

线性规划是运筹学中的重要分支,它的目标是在一组约束条件下,找到使目标函数最大或最小的变量值。

这个问题可以用一个线性规划模型来描述,其中包括决策变量、目标函数和约束条件。

在解答这个问题时,我们需要先确定决策变量、目标函数和约束条件,然后使用线性规划的方法求解最优解。

具体的计算过程可以通过线性规划的算法来完成。

第二题是关于线性规划的图解法的。

线性规划的图解法是一种直观的解法,它通过绘制变量的可行域和目标函数的等高线图来求解最优解。

在解答这个问题时,我们需要先将约束条件转化为直线或者曲线的形式,然后绘制出这些直线或曲线,并确定它们的交点。

最后,我们需要在可行域内找到使目标函数取得最大或最小值的点,这个点就是线性规划的最优解。

第三题是关于整数规划的应用的。

整数规划是线性规划的一种特殊形式,它要求决策变量取整数值。

在解答这个问题时,我们需要先确定整数规划的模型,包括决策变量、目标函数和约束条件。

然后,我们可以使用整数规划的算法来求解最优解。

在实际应用中,整数规划可以用来解决很多实际问题,比如生产计划、运输调度等。

第四题是关于线性规划的灵敏度分析的。

灵敏度分析是线性规划中的一种重要技术,它用来分析目标函数系数、约束条件右端常数和决策变量上下界的变化对最优解的影响。

在解答这个问题时,我们需要计算目标函数系数、约束条件右端常数和决策变量上下界的变化对最优解的影响程度,并进行相应的调整。

通过灵敏度分析,我们可以了解到线性规划模型对参数变化的敏感性,从而做出更加准确的决策。

第五题是关于线性规划的对偶问题的。

线性规划的对偶问题是线性规划的一个重要概念,它可以用来求解原始问题的最优解。

运筹学(第四版):第3章 运输问题

运筹学(第四版):第3章 运输问题

x11 x12 x1n x21 x22 x2n xm1 xm2 xmn
u1 1 1 1
u2
um
1
1
1
1
1
1
m行
v1 1
1
1
v2 1
vn
1
1
1
1
1
n行
5
第1节 运输问题的数学模型
该系数矩阵中对应于变量xij的系数向量Pij,其分量中除第i个和 第m+j个为1以外,其余的都为零。即
21
2.2 最优解的判别
判别的方法是计算空格(非基变量)的检验数cij−CBB-1Pij, i,j∈N。因运输问题的目标函数是要求实现最小化,故当 所有的cij−CBB-1Pij≥0时,为最优解。下面介绍两种求空格 检验数的方法。 1.闭回路法; 2.位势法
22
2.2 最优解的判别
1.闭回路法
2.1 确定初始基可行解
第二步:从行或列差额中选出最大者,选择它所在行或列 中的最小元素。在表3-10中B2列是最大差额所在列。B2列 中最小元素为4,可确定A3的产品先供应B2的需要。得表311
销 地 B1 B2 B3 B4 产
加工厂

A1
7
A2
4
A3
6
9
销量 3 6 5 6
18
2.1 确定初始基可行解
销 地 B1 B2 B3 B4 产
加工厂

A1
A2
3
43 7
1
4
A3
6
39
销量
36 56
12
2.1 确定初始基可行解
用最小元素法给出的初始解是运输问题的基可行解,其理由为: (1) 用最小元素法给出的初始解,是从单位运价表中逐次地

运筹学-3运输问题

运筹学-3运输问题
产销平衡问题 产销不平衡问题
产大于销 销大于供
当产销平衡时,其模型如下:
当产大于销时,其模型是:
mn
min Z
cij xij
i1 j1
xij ai xij bj
xij
0
( ai bj)
当销大于产时,其模型是:
min Z
cij xij
xij ai xij bj
可行解的方法
Review
二、表上作业法的步骤
Step1.找出初始基本可行解(在m*n产销平衡 表上寻找初始调运方案,一般m+n-1个数字 格),用最小元素法、西北角法、伏格尔法;
Step2.求出各非基变量的检验数,判别是否达 到最优解。如果是停止计算,否则转入下一步, 用闭回路或位势法计算;
Step3.改进当前的基本可行解(确定换入、 换出变量),用闭合回路法调整; Step4.重复2. 3,直到找到最优解为止。
(3)运输问题的解
定义1. 闭回路
x x x x x x 闭回路是能折成 i1 j1, i1 j2 , i2 j2 , i2 j3 ,..., isjs , isj1
形式的变量组集合。其中 i1 , i2 , …, is 互不相同,j1 , j2 , …, js 互不相 同。每个变量称为闭回路的顶点,连接闭回路相邻两顶点的直线段叫做闭
统计学院
运筹学-第三章 运输问题
张红历
本章内容
1.运输问题及其数学模型 2.表上作业法 3.运输问题的进一步讨论
4.应用问题举例
第一节 运输问题及其数学模型
一、运输问题的提出
例:某运输问题的资料如下:
单位 销地 运价
产地
A1 A2 A3
销量

运筹学第三章 运输问题

运筹学第三章 运输问题

销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 3
3 1
4
4
2
A3
销量 2
4 7
1 3
4
4 6
3
7 5
3
5
6
8
4 3 13
σ11=-3, σ12=-2,σ23=-4, σ31=-1,σ33=1, σ34=-1
销地 产地 A1
A2
B1
B2
B3
B4
产量
6
5 0
3 4
4
4
2
A3
销量 2
4 7
4
4 6
3
4 3
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x11检验数为 6-4+8-6+4-4=4
销地 产地 A1
A2
B1
B2
B3
B4
产量
6 4 2 4
5
3
4
3
4 7
1
5
4 6
A3 销量 2
7
0
4
6
3
5
3
4
8
3 13
x12检验数为 5-4+8-6=3
销地 产地 A1
A2
B1
B2
B3
B4
产量
2、位势法 当运输问题变量的格数较多时,用闭 回路法计算检验数比较麻烦,而位势法比 较简便。 对于运输问题 minf=CX AX=b X≥0 设B为其一个可行基,则xij的检验数为 σ ij=CBB-1Pij-Cij

运筹学 第3章运输问题

运筹学 第3章运输问题

检 验 数 表
最 优 方 案 判 别 准 则
B1 3 A1 A2 7 A3 vj
B2 11
B3 3 2
B4 10 8
ui
1
1Байду номын сангаас
2
9
0
1
4 10
-1
5
-1 -5
10
2 9
12
3 10
24=-1<0,当前方案 不是最优方案。
26
2.3
闭回路调整法改进方案
min ij 0 pq
xpq 为换入变量
min
z cij xij
i 1 j 1
s.t.
n xij ai 1 jm xij b j i 1 xij 0
i 1,, m j 1,, n
4
运输问题的约束方程组系数矩阵及特征
x11 x12 .... x1n 1 1.......1 A 1 1 1 x21 x22 .... x2 n ...... xm1 xm 2 .... xmn 1 1.......1 ......... 1 1.......1 1 1 1 .......... 1 1 1
10
1. 最小元素法 (思想:就近供应) 不 能 同 时 划 去 行 和 列
销 产 A1 1 A2 A3 销量 3 9 B1 3 B2 11 B3 3 B4
表3-4
产量 10 7 8 5
4
2
3
3
7 4
1
10
6
6 5
3
6
保证填 4 有运量 的格子 9 为m+n1
该方案总运费: Z=4×3+3×10+3×1+1×2+6×4+3×5=86

运筹学第三章课件

运筹学第三章课件

B3
3 2 10 3
B4
10 8 5
日产量
罚金成本
A1 A2 A3
销量 罚金成本
7 4 9-6
0 1 1
0 1 2

6 5
5 1
6 -3 3

1.5 表上作业法
③重复步骤②,直至求得求得初始调运方案。与最小元素法相同,最后表中 应有m+n-1个数字格。对应初始基本可行解的m+n-1个基变量。
x13 =5,x14 =2,x 21 =3,x 24 =1,x 32 =6,x 34 = 3
······
0
i=m j=1 j=2
0 1 0
······
······ 0 ···· ···· ·· 0 ······ 0 0 1 ······
0 1 0
······
······ 1 ···· ···· · 0 ······ 0 0 1
0 ······ 0 ···· ···· ·· 1 ······ 0 ······
日产量(吨)
A1 A2 A3
日销量(吨)
7 4 9
问该公司应如何确定调运方案,在满足各销地需求量的前提下可 使得总运费最小?
1.5 表上作业法
最小元素法确定初始基本可行解的步骤:
① 从全部单位运价中找出最低单位运价(若有两个以上最低单位运 价,则可在其中任选其一)。然后比较最低运价所对应的加工厂的日 产量和销地的日销量,并且确定第一笔供销关系。
1.5 运输问题
运输问题(Transportation Problem): 一类特殊的线性规划问题:它们的约束方程组的系数矩阵 具有特殊的结构,利用这一特点,可能找到比单纯形法更 简便的算法。
运输问题及其数学模型 表上作业法 产销不平衡的运输问题

运筹学——第3章_线性规划问题的计算机求解

运筹学——第3章_线性规划问题的计算机求解

变量 下限 当前值 上限
x1
0
50
100
x2
50
100 无上限
从上面可知目标函数中X1的系数的上限为100,故C1
允许增加量为: 上限-现在值=100-50=50;
而X2的下限为50,故C2的允许减少量为: 现在值-下限=100-50=50。
定义Ci 的允许增加(减少)百分比为:Ci 的增加量 (减少量)除以Ci 的允许增加量(允许减少量)的值。
在上题中C1 的允许增加百分比与C2 的允许减 少百分比之和为92%不超过100%,所以当每件产 品Ⅰ利润从50元增加到74元,每件产品Ⅱ利润从 100元减少到78元时,此线性规划最优解仍然为Ⅰ 产品生产50件, Ⅱ产品生产250件(即x1= 50, x2=250),此时有最大利润为:
74× 50+78× 250=3700+19500=23200(元)。
为50元,即增加了一个台时数就可使总利润增加50元;
原料A还有50千克没有使用,原料A的对偶价格当然为零,
即增加1千克A原料不会使总利润有所增加;原料B全部使
用完,原料B的对偶价格为50元,即增加一千克原料B就
可使总利润增加50元。
在目标函数系数范围一栏中,所谓的当前值是指在目标函数 中决策变量的当前系数值。如x1的系数值为50,x2的系数值为100。 所谓的上限与下限值是指目标函数的决策变量的系数(其它决策 变量的系数固定在当前值)在此范围内变化时,其线性规划的最 优解不变。例如当c1= 80时,因为0≤80≤100,在x1的系数变化范 围内,所以其最优解不变(此时要固定c2=100),也即当x1=50, x2=250时,有最大利润。当然由于产品Ⅰ的单位利润由50变为80 了,其最大利润也增加了(最优值变了),

运筹学03-单纯形法

运筹学03-单纯形法

C
m n
m个!n。n! m!
定义 在线性规划问题的一个基本可行解中,如果
所有的基变量都取正值,则称它为非退化解,如
果所有的基本可行解都是非退化解。称该问题为
非退化的线性规划问题;若基本可行解中,有基 变量为零,则称为退化解,该问题称为退化的线 性规划问题。
21
解的集合: 解空间


可 行 解
可本 行可 解行
16
解:① 令X3 =X4 - X5 ② 加松弛变量X6 ③加剩余变量X7 ④ 令Z'= -Z
Max Z'= X1 -2X2 +3X4 -3X5 X1 +X2 +X4 -X5 +X6=7
s.t X1 -X2 +X4 -X5 -X7 =2
X1 , X2 , X4 , … , X7 0
17
3.2 线性规划问题的解
5
向量形式
Max Z CX
s.t
n
Pj x j
b
C c1
c2
cn
j1
X 0
价值向量
x1
X
x2
xn
决策向量
a1 j
Pj
a2 j
anj
列向量
b1
b
b2
bm
右端向量
6
(4) 一般型向标准型的转化
对于各种非标准形式的线性规划问题,我们总可 以通过以下变换,将其转化为标准形式: 目标函数
x1
,
x2 ,
x3 ,
x4
0
(2) 求基本解
由上式得
A
3 6
5 2
1 0
10 b 1254

运筹学 第三章 运输问题

运筹学 第三章  运输问题
• 设xij表示产地 i 运往销地 j 的物资量, cij表示对应的单位运费, 则我们有运输问题的数学模型如下:
mn
Min Z = cij xij i1 j1 m xij =ai (i=1, ..., m)产量约束 i 1 n xij =bj(j=1, ..., n)销量约束 j1
xij ≥ 0(i=1, ..., m;j=1, ..., n)
15
2. 伏格尔法(Vogel)
例5
销地 产地
A1
B1 3

B2
B3
11
3

B4
ai
10 7 0 0 0 0
1
A2

9
2③ 8 4 1 1 1 1
A3
7
4

10

5 9 12 - -
bj
3
6
5
6 20
2513
2 - 13
2 - 12
2-1-
Z=2×3 +1×1+6×4+5×3+3×8+3×5=85 16
0
2.决策变量xij的系数列向量为:
1
i位 置
aij
1
m
j位 置
3. 线性无关的行数为m+n-1.
0
5
四、闭回路
1. 概念
例3
销地 产地
A1
A2
A3 bj
B1
B2
B3
B4
ai
3
11 ④
3 ③
10 7
1 ③
9
2

84
7
4

10 ③
59
3
6
5
6 20
1) 数字格 2) 空格

运筹学第三章课后习题答案

运筹学第三章课后习题答案

量 1 2 34
4 51 34
6 8 302

A2 A3 销量
31
2
25
30 8 1 1 5

3
7 15
1 4 224 ⑥
6
5
6
3
列12 罚22 数3
vj 4
111 11 11 1

①⑦

2020/1/1
9
从上表计算知:x12=5,x13=3,x21=3,x23=2,x24=3, x33=1。总费用=5×1+3×4+3×1+2×5+3×0+ 1×5=35,在上述三种计算方法中,这种方法计算所需 运输费用是最省的。但还不知是否最优。现用闭回路法 检验如下: 闭回路法检验如下:
2020/1/1
10
第一个闭回路σ11,走4→1→5→4线路
产地 销地
A1
B1
B2
B3
45 13 4
B4
6
A2 3 1
22 5 3 0
A3 销量
3
71 5
1
6
5
6
3
产量
8 8 4
σ11=4-1+5-4=4
2020/1/1
11
第二闭回路σ14,走6→0→5→4线路
产地 销地
A1
B1
B2
B3
45 13 4
2020/1/1
17
①最小元素法求解:
销地 B1
B2
产地
A1
13
7
A2
22
4
A3
4
33
销量
3
3
B3
B4 B5 产量
6 3 28 2
1 4 30

《运筹学》第三章 运输问题

《运筹学》第三章 运输问题

二、表上作业法
计算步骤:
(1) 找出初始调运方案。即在(m×n)产销平衡表 上给出m+n-1个数字格。(最小元素法、西北角法 或伏格尔法) 确定m+n-1个基变量 (2) 求检验数。(闭回路法或位势法) 判别是 否达到最优解。如已是最优解,则停止计算,否 则转到下一步。 空格 (3)对方案进行改善,找出新的调运方案。 (表上闭回路法调整) (4) 重复(2)、(3),直到求得最优调运方案。
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4
3
6 6
1
3 5 6
9
B1 A1 A2 A3 销量 3 1
B2 2
B3 4
B4 3
产量 7 4 9
3
6 6
1
-1
3
5
6
B1 A1 A2 A3 销量 3 1 3
B2 2 1 6 6
B3 4 1
B4 3 -1 3
产量 7 4 9
(ui+vj)
- B2 9 8 4 B3 3 2 -2 B4 10 9 5
A3 -3
σij
B1 = A1 A2 A3 1 0 10 B2 2 1 0 B3 B4 0 0 0 -1 12 0
表中还有负数,说明 还未得到最优解,应 继续调整。 用位势法与用闭回路法 算出的检验数? 相同
3、解的改进
——闭合回路调整法(原理同单纯形法一样) 上例: min( σ ij 0 ) pq
m
n
系数列向量的结构: A ij ( 0, 0, 0 ,, 0, 0 ) 1, 0 1,
第 i个
第 ( m j )个

运筹学第三章 运输问题

运筹学第三章 运输问题
则称该运输问题为产销平衡问题;否则,称 产销不平衡。首先讨论产销平衡问题。
8
1.运输问题模型及有关概念
表4-3 运输问题数据表
销地
产地
A1 A2

Am
销量
B1 B2 … Bn
c11
c12 … c1n
c21
c22 … c2n
┇ ┇ ┇┇
cm1
cm2 … cmn
b1
b2 … bn
产量
a1 a2

am
设 xij 为从产地 Ai 运往销地 Bj 的运
式(4-8)中的变量称为这个闭回路的顶点。
22
1.运输问题模型及有关概念
例如,x13, x16, x36, x34, x24, x23 ; x23, x53, x55, x45, x41, x21 ; x11, x14, x34, x31等都是闭回路。
若把闭回路的各变量格看作节点, 在表中可以画出如下形式的闭回路:
得到下列运输量表:
4
1.运输问题模型及有关概念
Min Z s.t.
= 6x11+4x12+6x13+6x21+5x22+5x23 x11+ x12 + x13 = 200
x21 + x22+ x23 = 300
x11 + x21 = 150
x12 + x22 = 150
x13 + x23 = 200
2.每列只有两个 1,其余为 0,分别 表示只有一个产地和一个销地被使用。
7
1.运输问题模型及有关概念
一般运输问题的线性规划模型及求解思路
一般运输问题的提法:
假设 A1, A2,…,Am 表示某物资的m个 产地;B1,B2,…,Bn 表示某物资的n个销地; ai表示产地 Ai 的产量;bj 表示销地 Bj 的 销量;cij 表示把物资从产地 Ai 运往销地 Bj 的单位运价(表4-3)。如果 a1 + a2 + … + am = b1 + b2 + … + bn

运筹学(第三章)课件

运筹学(第三章)课件

i =1
例1:
某市有三个造纸厂A1,A2和A3,其纸的产量分别为 8,5和9个单位。由各造纸厂到各用户的单位运价 如表所示,请确定总运费最少的调运方案。
销地 产地 A1
A2
A3 销量
B1 3 11 6
4
B2 12 2 7
3
B3 3 5 1
5
B4
产量
4 8
9 5
5 9
6
运筹学(第三章)
销地 产地 A1
A2
A3 销量
B1 4
8
2
8
8
B2
12
8
10
6
5
14
B3
4
3
4
11
8
12
B4
产量
11
16 ②
9
10 ④
6
14
22 ⑥
14
48




8×4+8×12 +6×10+4×3+8×11+14×6= 372(元)
运筹学(第三章)
最小元素法——每次找最小元素
销地 产地 A1
A2
A3 销量
B1 4
2
8
8
8
B2 12
价为 cij (i = 1,2,..., m; n = 1,2,..., n) ,又假设产销是平衡的,即:
m
n
ai = b j ,问应如何安排运输可使总运费最小?
i =1
j =1
运筹学(第三章)
二、运输问题的数学模型
假定 xij 表示由 Ai 到 B j 的运输量,则平衡条件下的运输问题可写出
用表上作业法求解运输问题

《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案

《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案

《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。

答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。

答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。

答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。

()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。

()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。

答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。

工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题1.对偶问题和对偶变量的经济意义是什么?2.简述对偶单纯形法的计算步骤。

它与单纯形法的异同之处是什么?3.什么是资源的影子价格?它和相应的市场价格之间有什么区别?4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系?5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么?7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+kn σ(标准形为求最小值),其经济意义是什么?8.将i j ji bc a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确1.任何线性规划问题都存在且有唯一的对偶问题。

2.对偶问题的对偶问题一定是原问题。

3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。

4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。

5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。

7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。

8.对于i j ji bc a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。

9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。

10.应用对偶单纯形法计算时,若单纯形表中某一基变量0<i x ,且i x 所在行的 所有元素都大于或等于零,则其对偶问题具有无界解。

运筹学 第三章 运输问题

运筹学  第三章  运输问题
判别的方法是计算空格(非基变量)的检 验数,若所有的检验数都大于等于0,为最优 解。
1)闭环回路法: 在给出的初始调运方案表上,从每一空格 出发找一条闭环回路,它是以某空格为起点 ,用水平或垂直线向前划,每碰到一数字格 转90°后(回路的转角点必须是一个基变量 ) ,继续前进,直到回到起始空格为止。 从每一空格出发一定存在且只有唯一的闭 环回路。 从空格开始加减闭环各个顶点的运输单价 ,可得每个空格对应的检验数。
《运筹学》
第三章 运输问题
Slide 16
销地
B1
产地
A1
A2
3
A3
销量 3
B2 B3
4 1 6
65
B4 产量
37
4
39
6
销地
产地
B1 B2 B3 B4
A1
3 11 3 10
A2
19 2 8
A3
7 4 10 5
空格 (11) (12) (22) (24) (31) (33)
闭环回路 (11)-(21)-(23)-(13)-(11) (12)-(32)-(34)-(14)-(12) (22)-(32)-(34)-(14)-(13) -(23)-(22) (24)-(14)-(13)-(23)-(24) (31)-(34)-(14)-(13)-(23) -(21)-(31) (33)-(34)-(14)-(13)-(33)
基变量:
X13 U1+V3=C13=3
X14 U1+V4=C14=10
X21 U2+V1=C21=1
1
3 10 U1=0
2
U2=-1
X23 U2+V3=C23=2
4

《运筹学》第三章运输问题

《运筹学》第三章运输问题

Vogel近似法
考虑运输成本差异, 进行逼近最优解。
运输问题的扩展和变体
1
生产产能约束
考虑生产能力限制,同时优化货物的运输方案。
2
供需不平衡
存在供需不平衡时如何有效分配货物,避免浪费和延误。
3
多目标运输问题
同时考虑多个目标,如最小化成本和最大化利润。
运输问题的应用实例和案例分析
物流领域的应用
通过运输问题的优化,提升物流效率,降低成本。
运输问题的基本模型
运输方案的表示
常用的表示方法包括运输矩阵和网络图。
目标函数和约束条件
目标函数通常是最小化运输成本,约束条件包 括供需平衡和容量限制。
运输问题的解决方法
最小成本法
逐步分配货物,直至 达到最小总成本。
北北角法
按照最小单位运输成 本进行分配,直至l's Approximation Method)法为基础, 逐步分配货物。
《运筹学》第三章运输问 题
运输问题是运筹学中重要的问题之一,涉及到各种场景下的货物运输优化。 本章将介绍运输问题的定义、基本模型、解决方法,以及其在物流和生产调 度中的应用实例。
运输问题的概念和应用领域
• 运输问题是一种优化问题,旨在找到使运输成本最小的货物运输方案。 • 运输问题广泛应用于物流管理、供应链优化以及交通规划等领域。
生产调度中的应用
合理安排生产计划,提高生产线的利用率。
总结和展望
运输问题是优化领域的重要研究方向,未来随着物流技术的发展将有更多的应用场景和解决方法出现。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
st.

运用
8
8
现有一批每根长度为L的圆钢,需要截取n种不同长度的零件毛坯,长度为a 的毛坯需要
有m (1,2,….n)段。为了方便,每根圆钢只截取一种长度的毛坯。应当怎样截取,才能使动用的圆钢数目最少?
设使用 根L米长的圆钢来截取 米长的毛坯(1,2,……n)。
设s 为每根L米长的圆钢用来截取 米长毛坯时可以得到的最多段数。
max z=7x +9 x
st.
最优解z=55, x =4, x =3;
用割平面法求解下列整数规划问题
max z=4x +5 x
st.
最优解z=13, x =2, x =1;
用割平面法求解下列整数规划问题
max z=4x +6 x +2 x
st.
最优解z=26, x =2, x =1,x =6;
用割平面法求解下列整数规划问题
设在A 处建住宅x 幢(j=1,2…..n)。
数学模型为
11180302
某公司今后三年内有五项工程可以考虑投资

求最优解和投资的最大收益
最优解X=(1,1,1,0,1),Z=110万元。
用分枝定界法求解下列整数规划问题
max z=3x +2 x
st.
最优解z=14, x =4, x =1;
用分枝定界法求解下列整数规划问题
-1/2
1
0
1/2
5/2
z
x1
x2
x3
x4
RHS
z
1
0
0
3/35
1/5
89/5
x1
0
1
0
1/35
-3/5
13/5
x2
0
0
1
1/70
1/5
19/5
线性规划的最优解为x1=13/5,x2=19/5,max z=89/5。
对于x2=19/5,
b2=19/5,I2=3,F2=4/5
y23=1/70,I23=0,F23=1/70;y24=1/5,I24=0,F24=1/5
数学模型为
某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用最小。若10个井位的代号要满足以下限制条件:
(1)或选择s 和s ,或选择钻探s ;
(2)选择了s 或s 就不能选择s ,或反过来也一样;
(3)在s ,s ,s ,s 中最多只能选择两个;试建立这个问题的数学模型。
min z=
对微积分,运筹学,数据结构,管理统计,计算机模拟,计算机程序,预测7门课程分别编号为1,2,3,4,5,6,7.
设x =
由此可写出模型为
min z=x +x +…+x
st.
红星塑料厂生产6种规格的塑料容器,每种容器的容量(cm ),需求量及可变费用(元/件)如表所示.
容器代号
1
2
3
4
5
6
容量(cm )
z
1
0
0
-2/5
-9/5
44/5
x1
0
1
0
-2/5
1/5
4/5
x2
0
0
1
1/5
-3/5
8/5
选择一个非整数的基变量,例如x2=8/5,构造约束条件(3.4),其中
b2=8/5=1+3/5,I2=1,F2=3/5
y23=1/5=0+1/5,I23=0,F23=1/5
y24=-3/5=-1+2/5,I24=-1,F24=2/5
-2/5
1
-3/5
用对偶单纯形法,x5离基,x3进基
已获得整数的最优解。
z
x1
x2
x3
x4
x5
RHS
z
1
0
0
0
-1
-2
10
x1
0
1
0
0
1
-2
2
x2
0
0
1
0
-1
1
1
x3
0
0
0
1
2
-5
3
用割平面法解下列整数规划:
最优解和最优值如下:
用割平面法解下列整数规划:
最优解和最优值如下:
用割平面法解下列整数规划:
附加的约束条件 为
3/5-(1/3x3+2/5x4)≤0
即1/5x3+2/5x4≥3/5
将这个约束加到线性规划的最优单纯形表中,并增加一个松弛变量x5,得到
z
x1
x2
x3
x4
x5
RHS
z
1
0
0
-2/5
-9/5
0
44/5
x1
0
1
0
-2/5
1/5
0
4/5
x2
0
0
1
1/5
-3/5
0
8/5
x5
0
0
0
[-1/5]
max z=8x +2 x -4 x -7 x -5x
st.
最优解x = x =1, x =x = x =0, z=4
已知下列五名运动员各种姿势的游泳成绩(各为50m)如表所示,试问如何从中选拔一个参加200m混合泳的接力队,使预期比赛成绩为最好.
单位:s
游泳姿势





仰泳
37.7
32.9
33.8
设该厂生产衬衣x 件,短袖衫x 件,休闲服x 件
设x 为在第j设备上加工的产品数(j=1,…,4);
y =
由此可写出模型为
max z=120x -(2 000y +60x )+80x -(1500 y +40 x )+150x -(1000 y +80 x )
st.
某大学运筹学专业硕士研究生要求课程计划中必须选修两门数学类,两门运筹学类和两门计算机类课程,课程中有些只归属某一类,如微积分归属数学类,计算机程序归属计算机类;但有些课程是跨类的,如运筹学可归为运筹学类和数学类,数据结构归属计算机类和数学类,管理统计归属数学和运筹学类,计算机模拟归属计算机类和运筹学类,预测归属运筹学类和数学类,凡归属两类的课程学后可认为两类中各学了一门课.此外,有些课程要求先学习先修课,如学计算机模拟或数据结构必须先修计算机程序,学管理统计必须先修微积分,学预测必须先修管理统计.问一个硕士研究生最少应学几门及哪几门,才能满足上述要求.
设y =
由此可写出模型为
min z=1200 +5x +8x +10x +12 x +16 x +18x
st.
要在长度为L的一根圆钢上截取不同长度的零件毛坯,毛坯长度分别有n种,分别为
a (j=1,2,…..,n) 。每种毛坯应当各截取多少根,才能使圆钢残料最少?如果求毛坯的总根数最多,应当怎样截取毛坯?
1500
2500
4000
6000
9000
12000
需求量
500
550
700
900
400
300
可变费用(元/件)
5
8
10
12
16
18
每种容器分别用不同专用设备生产,其固定费用均为1200元.当某容器数量上不能满足需要时,可用容量大的代替.问在满足需求的情况下,如何组织生产,使总的费用为最小.
设x 为j种容器生产的数量
(业务,业务员,费用)
业务
业务员
1
2
3
4
1
1100
800
1000
700
2
600
500
300
800
3
400
800
1000
900
4
1100
1000
500
700
应当分派业务员1去处理业务4,业务员2去处理业务2,业务员3去处理业务1,业务员4去处理业务3
0
1/14
0
1
17
x1
0
1
0
3/35
0
-3
5
x2
0
0
1
0
0
1
3
x4
0
0
0
1/14
1
-5
4
得到整数解:x1=5,x2=3,x3=0,x4=4,x5=0,max z=17。
用割平面法解下列整数规划:
最优解和最优值如下:
用割平面法求解以下整数规划
先求相应的线性规划问题,得到最优单纯形表
z
x1
x2
x3
x4
RHS
st.
运筹学中著名的旅行商贩(货郎担)问题可以叙述如下:某旅行商贩从某一城市出发,到其他n个城市去推销商品,规定每个城市均须到达而且只能到达一次,然后回到原出发城市。已知城市i和城市j之间的距离为d ,问该商贩应选择一条什么样的路线顺序旅行,使总的旅程为最短。试建立这个问题的数学模型。
设x =
由此可写出整数规划模型为
专业代码
11
专业名称
信息管理与信息系统
课程代码
18
课程名称
运筹学
试题类型代码
08
试题类型名称
计算题
出题人
管理员
出题
日期
2005-11-4
知识点
代码
题干
答案
评分标准
难度系数
认知分类
建议分数
建议时间
11180301
某科学实验卫星拟从下列仪器装置中选若干件装上。有关数据资料见表。
相关文档
最新文档