数控车床编程如何确定切削用量与进给量
浅谈数控车床削切用量的教学方法
表 1硬质 合金 车刀粗车外圆及端面的进给量 娄 l d 空 【 床作为 自 b 化b 口 】 : 机床, 蓄 日 日 益广泛, 琉 0 造彳 亍 业有了突飞猛进的发展。数控加工具有三高的特点 , 即高效、 高速和高精 度。 而这些特 点与切削用量的 圆左 用有着紧密的联系。 所以切削用量的 选择, 是进行数控程序编制前的— 藩 涉 骤, 需要同学f 『 人 真对待。 碳 素 结构钢 、合金 1 6 X 2 5 2 0 0 3 ~0 . 4 ~ 一 这—课题一直是数控 结构钢 及耐热钢 4 0 0 . 4 ~0 . 0 . 3 - - - - 0 — 工艺老师的难题。在 控加工工艺学》 中, 有—节专门讲解数控车床切削 5 4 用量的课程 , 在过去教学中, 我都是对同学们只介绍选用的原则, 让同学 6 0 0 . 5 ~0 . 0 . 4 ~0 . n 3 ~O . 5 7 6 们从原理和理论 匕 掌握I H , 廿课, 可是效果不太好, 有不少同学反映到实际 20× 3 0 20 0. 3~0. 一 一 编程时还是拿不准如何选择切削用量。 4 这学期 , 我对本节课进行了课程改革, 从三个方面来诠释此节课 , 第 2 5×2 5 4 0 0 . 4 ~0 0 3 " - - - 0 — 对切削用量三要素进行讲解, 第二 , 对切削用量的选用厉 狈0 进行分析, 5 4 第三 , 举例说明如何j 用数控车床外圆加工时的切削用量。 60 0. 5 ~ O. 0. 5 ~0 . n 4~ O . 6 7 7 1 切削用量三要素介绍 切削用量是反映数控机床加工时运动大小的参数。  ̄ ̄ z _ - 3 3 量 印, 切削 表 2 按 表 面 粗 糙 度 值选 择进 给 量 速度 V c , 进给量 f 称为切削用量三要素。 1 . 1 背吃刀量 a p 是指加工工件的已加工表面和待加工表面间的垂直 距离 , 数控车床车削外圆时是按半径方向计算。 l 2切削速度则是指数控刀具上主切削刃上的切削点相对于工件运 O >5 0 0 4 0 ~0 5 5 S 5 ~ 铬 0 6 5 ~0 7 0 动 的瞬时线 速度 。切 削速度 和主轴转 速之 间有转换 关系式 如下 : 碳 钢及 合金 5~1
数控车床工艺流程
数控车床编程加工工艺处理流程来源:数控产品网添加:2008-05-28 阅读:1265次[ 内容简介]编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。
1 确定工件的加工部位和具体内容确定被加工工件需在本机床上完成的工序内容及其与前后工序的联系。
工件在本工序加工之前的情况。
例如铸件、锻件或棒料、形状、尺寸、加工余量等。
前道工序已加工部位的形状、尺寸或本工序需要前道工序加工出的基准面、基准孔等。
本工序要加工的部位和具体内容。
为了便于编制工艺及程序,应绘制出本工序加工前毛坯图及本工序加工图。
2 确定工件的装夹方式与设计夹具根据已确定的工件加工部位、定位基准和夹紧要求,选用或设计夹具。
数控车床多采用三爪自定心卡盘夹持工件;轴类工件还可采用尾座顶尖支持工件。
由于数控车床主轴转速极高,为便于工件夹紧,多采用液压高速动力卡盘,因它在生产厂已通过了严格的平衡,具有高转速(极限转速可达4000~6000r/min)、高夹紧力(最大推拉力为2000~8000N)、高精度、调爪方便、通孔、使用寿命长等优点。
还可使用软爪夹持工件,软爪弧面由操作者随机配制,可获得理想的夹持精度。
通过调整油缸压力,可改变卡盘夹紧力,以满足夹持各种薄壁和易变形工件的特殊需要。
为减少细长轴加工时受力变形,提高加工精度,以及在加工带孔轴类工件内孔时,可采用液压自动定心中心架,定心精度可达0.03mm。
3 确定加工方案确定加工方案的原则加工方案又称工艺方案,数控机床的加工方案包括制定工序、工步及走刀路线等内容。
在数控机床加工过程中,由于加工对象复杂多样,特别是轮廓曲线的形状及位置千变万化,加上材料不同、批量不同等多方面因素的影响,在对具体零件制定加工方案时,应该进行具体分析和区别对待,灵活处理。
只有这样,才能使所制定的加工方案合理,从而达到质量优、效率高和成本低的目的。
制定加工方案的一般原则为:先粗后精,先近后远,先内后外,程序段最少,走刀路线最短以及特殊情况特殊处理。
数控车床加工工艺编程-切削用量三要素
切削用量是表示主运动及进给运动大小的参数。
它包括:切削速度Vc (或主轴转速n)、 切削深度ap、进给量f 三要素。
1)切削深度是指工件上已加工表面和待加工 表面间的垂直距离。
在工艺系统刚性和机床功率允许的条件下, 尽可能选取较大的切削深度,以减少进给次 数。当工件的精度要求较高时,则应考虑留 有精加工余量,一般为0.1~0.5mm。 切削深度ap计算公式:ap= 式中: dw—待加工表面外圆直径,单位 mm dm—已加工表面外圆直径,单位mm.
2)切削速度是切削刃选定点相对于工件的主 运动的瞬时速度。
① 车削光轴切削的速度,由工件材料、直径、刀 具的材料及加工性质等因素所确定。 切削速度Vc计算公式: v = πdn / 1000
式中: d—工件或刀尖的回转直径,单位mm n—工件或刀具的转速,单位r/min
② 车削螺纹主轴转速n 切削螺纹时,车床的主轴转 速受加工工件的螺距(或导程)大小、驱动电动机升 降特性及螺纹插补运算速度等多种因素影响,因此对 于不同的数控系统,选择车削螺纹主轴转速n存在一 定的差异。 数控车床车螺纹时主轴转速计算公式:n≤–k 式中: p—工件螺纹的螺距或导程, 单位mm。 k—保险系数,一般为80。
• 3)进给速度
进给速度是指单位时间内,刀具沿进给方向移动的 距离,单位为mm/min,也可表示为主轴旋转一周时 刀具在进给方向上相对工件的位移量,单位为mm/r。
• 我们怎么来确定进给速度的原则呢?
• ①当工件的加工质量能得到保证时,为提高生产率 可选择较高的进给速度。
• ②切断、车削深孔或精车时,选择较低的进给速度。 • ③刀具空行程尽量选用高的进给速度。 • ④进给速度应与主轴转速和切削深度相适应。
数控机床加工的切削用量
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap 计算公式:a p =式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表2mw d d注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:n≤–k式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算V f = n f式中:n—车床主轴的转速,单位r/min。
数控车床编程-数控车床编程
2、常用的辅助功能
M00——程序停止
实际上是一个暂停指令。当执行有 M00指令的程序段后,主轴的转动、进 给、切削液都将停止。它与单程序段停 止相同,模态信息全部被保存,以便进 行某一手动操作,如换刀、测量工件的 尺寸等。重新启动机床后,继续执行后 面的程序。
M01——选择停止
与M00的功能基本相似,只有在按下“选 择停止”后,M01才有效,否则机床继续执行 后面的程序段;按“启动”键,继续执行后面 的程序。
2具备刀具半径补偿功能时的刀具半径补偿
①刀具半径补偿指令(G41、G42、G40)
刀具半径补偿
刀具半径补偿的建立与取消
▪刀具半径补偿可通过从键盘输入刀具参数, 并在程序中采用刀具半径补偿指令实现。
▪参数包括刀尖半径、车刀形状、刀尖圆弧 位置,这些都与工件的形状有关,必须将参 数输入刀据库 。
▪格式:
刀具起点
刀具终点
圆弧圆心
顺圆
刀具终点 圆弧圆心
刀具起点
逆圆
▪③当用半径指定圆心位置 时,由于在同一半径R的 情况下,从圆弧的起点到 终点有两个圆弧的可能性, 为区别二者,规定圆心角 α≤180时,用“+R”表示, 如图中的圆弧1;α>180 时,用“-R”表示,如图 中的圆弧2。
▪④用半径R指定圆心位置 时,不能描述整圆。
用途
外圆粗车循 环 端面粗车循 环
固定形状粗 车循环
精车循环
车削固定循环中地址码的定义
地址
含义
ns 循环程序段中第一个程序段的顺序号
nf 循环程序段中最后一个程序段的顺序号
Δi 粗车时,径向切除的余量(半径值)
Δk 粗车时,轴向切除的余量
Δu 径向(X轴方向)的精车余量(直径值)
数控车床编程如何确定切削用量与进给量
数控车床编程如何确定切削用量与进给量来源:数控机床网 作者:数控车床 栏目:行业动态 在编程时,编程人员必须确定每道工序的切削用量。
选择切削用量时,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。
影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。
上述诸因素中以切削速度、切削深度、切削进给率为主要因素。
切削速度快慢直接影响切削效率。
若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。
决定切削速度的因素很多,概括起来有:(1)刀具材料。
刀具材料不同,允许的最高切削速度也不同。
高速钢刀具耐高温切削速度不到50m/min,碳化物刀具耐高温切削速度可达100m/min以上,陶瓷刀具的耐高温切削速度可高达1000m/min。
(2)工件材料。
工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。
(3)刀具寿命。
刀具使用时间(寿命)要求长,则应采用较低的切削速度。
反之,可采用较高的切削速度。
(4)切削深度与进刀量。
切削深度与进刀量大,切削抗力也大,切削热会增加,故切削速度应降低。
(5)刀具的形状。
刀具的形状、角度的大小、刃口的锋利程度都会影响切削速度的选取。
(6)冷却液使用。
机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。
上述影响切削速度的诸因素中,刀具材质的影响最为主要。
切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。
这样可以减少走刀次数。
主轴转速要根据机床和刀具允许的切削速度来确定。
数控加工的切削用量
数控加工的切削用量2009-6-11 9:42:00 来源:作者:余英良,于辉阅读:1418次我要收藏1 切削用量选择1.1 数控加工花键轴的切削用量为了保证零件的加工精度,零件分为粗车加工和精车加工。
在粗、精车零件装夹方式与刀具选择的基础上,选定零件数控加工的切削参数如下:在数控精车车削加工中,零件轮廓轨迹的加工余量为0.8÷2=0.4 mm。
主轴转速、背吃刀量等的选择参见表1。
表1 数控加工花键轴工序卡及切削用量1.2 数控加工轴承座的切削用量为了保证零件的加工精度,零件分为粗车加工和精车加工。
在粗、精车零件装夹方式与刀具选择的基础上,选定零件数控加工的切削参数如下:在数控精车车削加工中,零件轮廓轨迹的加工余量为0.8÷2=0.4 mm。
主轴转速、背吃刀量等的选择参见表2。
表2 数控加工轴承座工序卡及切削用量2 相关内容概述金属切削加工的目的,就是用各种类型的金属切削刀具把J:件毛坯上的多余部分从毛坯上剥离开来,得到图样所要求的零件形状和尺寸。
图1 车削加工中切削用量nextpage 2.1 切削用量切削用量是指机床在切削加工时的状态参数。
切削用量包括切削速度、进给速度和背吃刀量。
参见图1。
2.1.1 切削速度切削刃上的切削点相对于工件运动的瞬时速度称为切削速度。
切削速度的单位为m/min。
切削速度与机床主轴转速之问进行转换的关系为:(1)2.1.2 进给速度是刀具在单位时间内沿进给方向上相对于工件的位移量,单位为mm/min。
2.1.3 背吃刀量己加工表面和待加工表面之问的垂直距离。
背吃刀量的计算公式为:(2)式(1)、式(2)中n为主轴(工件)转速,d为工件直径,dω、dm见图1。
在切削加工中,切削速度、进给速度和背吃刀量3个参数是相互关联的。
粗加工中,为提高效率,一般采用较大的背吃刀量。
此时切削速度和进给速度相对较小;在半精加工和精加工阶段,一般采用较大的切削速度、较小的进给量和背吃刀量,以获得较好的加工质量。
数控加工中切削用量的合理选择
数控加工中切削用量的合理选择【摘要】文章介绍了切削用量的三要素,并对数控机床加工时切削用量的合理选择进行了详细阐述,为数控机床编程与操作人员提供参考。
关键词】切削用量;加工质量;刀具耐用度;选择原则前言:数控加工中切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
切削用量是表示机床主运动和进给运动大小的重要参数。
切削用量的确定是数控加工工艺中的重要内容,切削用量的大小对加工效率、加工质量、刀具磨损和加工成本均有显著影响一、切削用量的选择原则数控加工中选择切削用量,就是在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。
(一)加工质量:加工质量分为加工精度和加工表面质量。
1•加工精度是指零件加工后实际几何参数(尺寸、形状和位置)与理想几何参数相符的程度。
符合程度愈高,加工精度愈高。
实际值与理想值之差称为加工误差,所谓保证加工精度,即指控制加工误差。
⑴尺寸精度:加工表面的实际尺寸与设计尺寸的尺寸误差不超过一定的尺寸公差范围。
在国标中尺寸公差分20级(IT01、ITO、IT1〜IT18 )。
尺寸精度的获得方法:①试切法:试切一一测量一一调整一一再试切。
用于单件小批生产。
②调整法:通过预调好的机床、夹具、刀具、工件,在加工中自行获得尺寸精度。
用于成批大量生产。
③尺寸刀具法:用一定形状和尺寸的刀具加工获得。
生产率高,但刀具制造复杂。
④自动控制法:用一定装置,边加工边自动测量控制加工。
切削测量补偿调整。
⑵几何形状精度:加工表面的实际几何要素对理想几何要素的变动量不超过一定公差范围。
在国标中形状公差有六项:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。
几何形状精度的获得方法:成形运动法①轨迹法:利用刀具与工件间的相对运动轨迹来获得形状。
数控机床加工的切削用量
数控机床加工的切削用量包括切削速度V c (或主轴转速n)、切削深度a p 和进给量f ,其选用原则与普通机床基本相似,合理选择切削用量的原则是:粗加工时,以提高劳动生产率为主,选用较大的切削量;半精加工和精加工时,选用较小的切削量,保证工件的加工质量。
1. 数控车床切削用量 1)切削深度a p在工艺系统刚性和机床功率允许的条件下,尽可能选取较大的切削深度,以减少进给次数。
当工件的精度要求较高时,则应考虑留有精加工余量,一般为0.1~0.5mm 。
切削深度ap计算公式:a p =式中: d w —待加工表面外圆直径,单位mm d m —已加工表面外圆直径,单位mm. 2)切削速度Vc① 车削光轴切削速度V c 光车切削速度由工件材料、刀具的材料及加工性质等因素所确定,表1为硬质合金外圆车刀切削速度参考表。
切削速度Vc 计算公式: Vc=式中: d —工件或刀尖的回转直径,单位mm n —工件或刀具的转速,单位r/min表1 硬质合金外圆车刀切削速度参考表2mw d d注:表中刀具材料切削钢及灰铸铁时耐用度约为60min。
②车削螺纹主轴转速n切削螺纹时,车床的主轴转速受加工工件的螺距(或导程)大小、驱动电动机升降特性及螺纹插补运算速度等多种因素影响,因此对于不同的数控系统,选择车削螺纹主轴转速n存在一定的差异。
下列为一般数控车床车螺纹时主轴转速计算公式:n≤–k式中:p—工件螺纹的螺距或导程,单位mm。
k—保险系数,一般为80。
3)进给速度进给速度是指单位时间内,刀具沿进给方向移动的距离,单位为mm/min,也可表示为主轴旋转一周刀具的进给量,单位为mm/r。
⑴确定进给速度的原则①当工件的加工质量能得到保证时,为提高生产率可选择较高的进给速度。
②切断、车削深孔或精车时,选择较低的进给速度。
③刀具空行程尽量选用高的进给速度。
④进给速度应与主轴转速和切削深度相适应。
⑵进给速度V f的计算 V f = n f式中:n—车床主轴的转速,单位r/min。
数控车床切削用量的选择
数控车床切削用量的选择数控车床切削量(AP、F、V)的选择是否合理,对于充分发挥机床的潜力和切削性能,实现高质量、高产量、低成本和安全运行具有紧要作用。
2.3.3介绍了切割剂量选择的一般原则。
这里重要讨论转向剂量选择的原则:对于毛坯模型,首先考虑的是选择尽可能大的背拔模量ap,其次是较大的进给量f,然后确定合适的切削速度V。
加添背切量ap可以削减切削次数,加添切削量进给f有利于断屑,因此依据上述原则选择粗车切削量有利于提高生产效率,削减刀具消耗,降低加工成本。
汽车精加工时,加工精度和表面粗糙度要求高,加工余量小且均匀。
因此,在选择精车切削量时,应要关注如何保证加工质量,并在此基础上尽可能提高生产率。
所以精车应选择小(但不能太小)的后退刀距ap和进给f,并选择切削性能高的刀具材料和合理的几何参数,以提高切削速度V。
一、确定退稿量。
数控数控车床设备在工艺系统刚度和机床功率允许的情况下,尽可能大的反向进给,削减进给次数。
假如零件精度较高,应考虑留出精车余量,留出的精车余量一般比一般车削要小,常取0.1~0.5㎜。
二、进给f(部分数控机床使用进给速度VF)进给量f的选择应与后切量和主轴转速相适应。
在保证工件加工质量的前提下,可选择更高的进给速度(2000mm/min以下)。
切削、车削深孔或精车时,应选择较低的进给速度。
可以在刀具空闲时设置可能的较高进给速度,尤其是在长距离回零时。
粗车一般取F=0.3~0.8mm/r,细车常取F=0.1~0.3mm/r,截断F=0.05~0.2mm/r。
三、确定数控车床主轴转速。
1)轻车在圆外时的主轴转速。
轻型车圆时,应依据加工零件的直径和零件、刀具材料和加工性能所允许的切削速度来确定主轴转速。
除计算和选表外,还可依据实际阅历确定切割速度。
需要注意的是,交流变频数控车床低速输出扭矩小,切削速度不能太低。
确定切削速度后,采纳公式n=1000vc/πd计算主轴转速N(r/min)。
各类数控刀具转速进给切削量吃刀量参数
各类数控刀具转速进给切削量吃刀量参数数控刀具在加工过程中,转速、进给、切削量以及吃刀量是非常重要的参数。
这些参数的选择直接影响到加工效率和加工质量。
以下是各类数控刀具转速、进给、切削量和吃刀量的相关参数介绍。
1.钻头的转速、进给和切削量:钻头是一种主要用于钻孔加工的刀具。
在使用钻头进行加工时,转速、进给和切削量是必不可缺的参数。
转速:钻头的转速直接影响到加工的效率和刀具的使用寿命。
转速一般根据材料的硬度和直径大小来选择。
对于较硬的材料和大直径的钻孔,需要选择较低的转速以提高刀具的寿命。
进给:进给是指钻头在加工过程中前进的速度。
进给过大会导致切屑过大,反之则会导致切屑过细。
进给的选择需要根据具体材料来确定。
切削量:切削量是指钻头在一次进刀中切削的材料的厚度。
切削量的选择需要根据材料的硬度、强度和钻头的直径来确定。
过大的切削量容易导致刀具断裂,过小的切削量则会降低加工效率。
吃刀量:吃刀量是指钻头在加工过程中的进给量。
合适的吃刀量可以提高切削效率,但过大的吃刀量容易导致刀具断裂。
吃刀量的选择需要根据具体材料和钻头的直径来确定。
2.铣刀的转速、进给和切削量:铣刀是一种主要用于铣削加工的刀具。
在使用铣刀进行加工时,转速、进给和切削量同样是非常重要的参数。
转速:铣刀的转速需要根据具体材料和刀具的类型来确定。
对于硬度较高的材料,需要选择较低的转速以减少刀具磨损和提高加工质量。
进给:铣刀的进给速度直接影响到加工效率。
进给过大会导致切削力过大,进而影响加工表面质量。
进给过小则会降低加工效率。
进给的选择需要根据具体材料和刀具的直径和齿数来确定。
切削量:铣刀的切削量是指在一次进刀中切削的材料的厚度。
切削量的选择需要根据材料的硬度、强度和铣刀的直径和齿数来确定。
合适的切削量可以提高加工效率,但过大的切削量会导致刀具过载。
吃刀量:吃刀量是指铣刀在进给过程中每次移动的距离。
合适的吃刀量可以提高加工效率,但过大的吃刀量会导致切削力过大,刀具容易损坏。
进给率数
切削用量的选择方法收藏此信息推荐给好友 2009-3-23 来源:机电商情网1.切削用量的选择原则数控编程时,编程人员必须确定每道工序的切削用量,包括主轴转速、背吃刀量、进给速度等,并以数控系统规定的格式输入到程序中。
切削用量对于不同的加工方法,需选用不同的切削用量。
合理的选择切削用量,对零件的表面质量、精度、加工效率影响很大。
这在实际中也很难掌握,要有丰富的实践经验才能够确定合适的切削用量。
在数控编程时只能凭借编程者的经验和刀具的切削用量推荐值初步确定,而最终的切削用量将根据零件数控程序的调试结果和实际加工情况来确定。
切削用量的选择原则是:粗加工时以提高生产率为主,同时兼顾经济性和加工成本的考虑;半精加工和精加工时,应同时兼顾切削效率和加工成本的前提下,保证零件的加工质量。
值得注意的是,切削用量(主轴转速、切削深度及进给量)是一个有机的整体,只有三者相互适应,达到最合理的匹配值,才能获得最佳的切削用量。
确定切削用量时应根据加工性质、加工要求,工件材料及刀具的尺寸和材料性能等方面的具体要求,通过查阅切削手册并结合经验加以确定,确定切削用量时除了遵循一般的原则和方法外,还应考虑以下因素的影响:(1)刀具差异的影响——不同的刀具厂家生产的刀具质量差异很大,所以切削用量需根据实际用刀具和现场经验加以修正。
(2)机床特性的影响——切削性能受数控机床的功率和机床的刚性限制,必须在机床说明书规定的范围内选择。
避免因机床功率不够发生闷车现象,或刚性不足产生大的机床振动现象,影响零件的加工质量、精度和表面粗糙度。
(3)数控机床生产率的影响——数控机床的工时费用较高,相对而言,刀具的损耗成本所占的比重较低,应尽量采用高的切削用量,通过适当降低刀具寿命来提高数控机床的生产率。
2.切削用量的选择方法(1)确定背吃刀量ap(mm)背吃刀量的大小主要依据机床、夹具、刀具和工件组成的工艺系统的刚度来决定,在系统刚度允许的情况下,为保证以最少的进给次数去除毛坯的加工余量,根据被加工零件的余量确定分层切削深度,选择较大的背吃刀量,以提高生产效率。
数控加工中切削用量的确定
数控加工中切削用量的确定曹永志1 (1. 廊坊技师学院, 河北廊坊065000 ; 2.嵩2杨北华航天工业学院, 河北廊坊065000)摘要: 数控加工在当今的冷加工中应用越来越多, 其切削用量与普通机床有很大不同。
本文对数控加工中切削用量的确定做了简要的分析, 提供了一些选取原则和方法, 并对应该注意的问题进行了分析, 以供数控操作人员参考。
关键词: 数控加工; 切削用量; 切削速度; 切削深度; 进给量中图分类号: TG506 文献标识码: A 文章编号: 1673 - 7938 (2008) 05 - 0031 - 03随着数控机床在生产实际中的广泛应用,操作者要在人机交互状态下即时选择刀具和确定切削用量,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,这样才能保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水帄。
1 数控加工特点与切削用量的确定与传统加工相比,数控加工的显著特点是:自动化程度高、加工质量稳定; 适合复杂型面零件的加工;高速化、高精度、高效率;工艺复杂、一机多用;柔性化高。
“工欲善其事,必先利其器”。
刀具的切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量, 因此,数控加工中切削用量确定至关重要。
编程人员必须掌握切削用量确定的基本原则,在编程时充分考虑数控加工的特点。
2 数控加工切削用量的确定切削用量是在机床调整前必须确定的重要参数,它对切削力、功率消耗、刀具磨损、刀具耐用度、加工精度和表面质量等均有明显的影响。
因此,合理选择切削用量对提高切削效率,保证加工质量和降低加工成本具有重要的作用。
所谓“合理的”切削用量是指充分利用刀具切削性能和机床动力性能(功率、扭矩) ,在保证质量的前提下,获得高的生产率和低的加工成本的切削用量。
要确定合理的切削用量,既要从理论上充分认识切削用量,又要将理论上得出的切削用量运用到实际中去,这样才能综合机床、刀具、加工材料确定最佳的切削用量。
切削用量的选择原则、方法
●螺纹加工程序段中指令的螺距值,相当于以进给量f(mm/r)表示的进给速度vf。如果将机床的主轴转速选择过高,其换算后的进给速度vf (mm/min)则必定大大超过正常值。
●刀具在其位移过程的始终,都将受到伺服驱动系统升降频率和数控装置插补运算速度的约束,由于升降频率特性满足不了加工需要等原因,则可能因主进给运动产生出的“超前”和“滞后”而导致部分螺牙的螺距不符合要求。
进给量(mm/r)
背吃刀量mm
硬质合金或涂层硬质合金
碳钢
220
0.2
3
260
0.l
0.4
低合金刚
1800.23来自2200.l0.4
高合金钢
120
0.2
3
160
0.l
0.4
铸铁
80
0.2
3
120
0.l
0.4
不锈钢
80
0.2
2
60
0.l
0.4
钛合金
40
0.2
1.5
150
0.l
0.4
灰铸铁
120
0.2
2
120
粗车时,应尽量保证较高的金属切除率和必要的刀具耐用度。
选择切削用量时应首先选取尽可能大的背吃刀量ap,其次根据机床动力和刚性的限制条件,选取尽可能大的进给量f,最后根据刀具耐用度要求,确定合适的切削速度vc。增大背吃刀量ap可使走刀次数减少,增大进给量f有利于断屑。
精车时,对加工精度和表面粗糙度要求较高,加工余量不大且较均匀。选择精车的切削用量时,应着重考虑如何保证加工质量,并在此基础土尽量提高生产率。因此,精车时应选用较小(但不能太小)的背吃刀量和进给量,并选用性能高的刀具材料和合理的几何参数,以尽可能提高切削速度。
数控车床切削用量的选择及其如何确定
数控车床切削用量的选择及其如何确定数控控车车床床切切削削用用量量的的选选择择及及其其如如何何确确定定数控车床切削用量的选择切削用量(ap、f、v)选择是否合理,对于能否充分发挥机床潜力与刀具切削性能,实现优质、高产、低成本和安全操作具有很重要的作用。
在中对于切削用量选择的总体原则进行了介绍,在这里主要针对车削用量的选择原则进行论述:粗车时,首先考虑选择一个尽可能大的背吃刀量ap,其次选择一个较大的进给量f,最后确定一个合适的切削速度v。
增大背吃刀量ap可使走刀次数减少,增大进给量f 有利于断屑,因此根据以上原则选择粗车切削用量对于提高生产效率,减少刀具消耗,降低加工成本是有利的。
精车时,加工精度和表面粗糙度要求较高,加工余量不大且较均匀,因此选择精车切削用量时,应着重考虑如何保证加工质量,并在此基础上尽量提高生产率。
因此精车时应选用较小(但不太小)的背吃刀量ap和进给量f,并选用切削性能高的刀具材料和合理的几何参数,以尽可能提高切削速度v。
1.背吃刀量ap的确定在工艺系统刚度和机床功率允许的情况下,尽可能选取较大的背吃刀量,以减少进给次数。
当零件精度要求较高时,则应考虑留出精车余量,其所留的精车余量一般比普通车削时所留余量小,常取~㎜。
2.进给量f(有些数控机床用进给速度Vf)进给量f的选取应该与背吃刀量和主轴转速相适应。
在保证工件加工质量的前提下,可以选择较高的进给速度(2000㎜/min以下)。
在切断、车削深孔或精车时,应选择较低的进给速度。
当刀具空行程特别是远距离“回零”时,可以设定尽量高的进给速度。
粗车时,一般取f=~㎜/r,精车时常取f=~㎜/r,切断时f=~㎜/r。
3.主轴转速的确定(1)光车外圆时主轴转速光车外圆时主轴转速应根据零件上被加工部位的直径,并按零件和刀具材料以及加工性质等条件所允许的切削速度来确定。
切削速度除了计算和查表选取外,还可以根据实践经验确定。
需要注意的是,交流变频调速的数控车床低速输出力矩小,因而切削速度不能太低。
如何确定切削速度,吃刀量,进给速度
如何确定切削速度,吃刀量,进给速度数控编程时,编程人员必须确定每道工序的切削用量,并以指令的形式写入程序中。
切削用量包括切削速度、背吃刀量及进给速度等。
对于不同的加工方法,需要选用不同的切削用量。
1、切削用量的选择原则粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
从刀具的耐用度出发,切削用量的选择顺序是:先确定背吃刀量,其次确定进给量,最后确定切削速度。
2、背吃刀量的确定背吃刀量由机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。
确定背吃刀量的原则:(1)在工件表面粗糙度值要求为Ra12.5μm~25μm时,如果数控加工的加工余量小于5mm~6mm,粗加工一次进给就可以达到要求。
但在余量较大,工艺系统刚性较差或机床动力不足时,可分多次进给完成。
(2)在工件表面粗糙度值要求为Ra3.2μm~12.5μm时,可分粗加工和半精加工两步进行。
粗加工时的背吃刀量选取同前。
粗加工后留0.5mm~1.0mm余量,在半精加工时切除。
(3)在工件表面粗糙度值要求为Ra0.8μm~3.2μm时,可分粗加工、半精加工、精加工三步进行。
半精加工时的背吃刀量取1.5mm~2mm。
精加工时背吃刀量取0.3mm~0.5mm。
3、进给量的确定进给量主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料选取。
最大进给速度受机床刚度和进给系统的性能限制。
确定进给速度的原则:1)当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。
一般在100~200m/min范围内选取。
2)在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20~50m/min 范围内选取。
3)当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20~50m/min范围内选取。
数控加工中刀具的选择与切削用量的确定
数控加工中刀具的选择与切削用量的确定作者:赵雪来源:《职业·中旬》2012年第02期摘要:刀具的选择和切削用量的确定是数控加工工艺中的重要内容,尤其是在借助CAM 软件进行数控编程时,刀具的选择和切削用量的选择尤为重要,它不仅对被加工零件的质量影响巨大,甚至可以决定机床功效的发挥和安全生产的顺利进行。
所以无论是手工编程或计算机辅助编程,在编制加工程序时,选择合理的刀具和切削用量,都是编制高质量加工程序的前提。
本文对数控编程中的刀具选择和切削用量确定两个问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。
关键词:数控加工刀具的选择切削用量一、常用刀具的种类及特点数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点。
数控加工用刀具分为常规刀具和模块化刀具两大类。
由于模块刀具的发展,数控刀具已逐渐形成标准化和系列化。
数控刀具根据刀具结构可分为:整体式和镶嵌式。
镶嵌式又可分为焊接或机夹式,机夹式又可分为不转位和可转位两种;还有减振式、内冷式和特殊形式(如复合刀具)。
根据制造刀具所用的材料可分为:优质碳素工具;合金工具钢;高速钢;硬质合金;其他材料刀具,如陶瓷、金刚石、立方氮化硼刀具等。
从切削工艺上可分为:车削刀具,分为外圆、内孔、螺纹、切割刀具等多种;钻削刀具,包括钻头、铰刀、丝锥等;镗削刀具;铣削刀具等。
为了适应数控机床对刀具耐用、稳定、易调、可换等要求,近几年机夹式可转位刀具得到了广泛应用,无论是在数量上还是金属切除量上都占据了较高的比例。
数控刀具与普通机床上用的刀具在使用上相比,有许多不同的要求。
主要有以下几个特点:第一,与普通机床上所用的刀具相比,数控加工刀具的刚性较好(尤其是粗加工刀具),精度高,耐磨性好。
第二,数控加工刀具互换性好,便于快速换刀或实现自动换刀。
第三,数控刀具的使用寿命及经济寿命指标较合理性。
第四,数控加工刀具刀片及刀柄切入的位置和方向有要求。
第五,数控加工刀具刀片或刀具材料及切削参数与被加工材料之间应相匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控车床编程如何确定切削用量与进给量
在编程时,编程人员必须确定每道工序的切削用量。
选择切削用量时,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。
影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。
上述诸因素中以切削速度、切削深度、切削进给率为主要因素。
切削速度快慢直接影响切削效率。
若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。
决定切削速度的因素很多,概括起来有:
(1)刀具材料。
刀具材料不同,允许的最高切削速度也不同。
高速钢刀具耐高温切削速度不到50m/min,碳化物刀具耐高温切削速度可达100m/min以上,陶瓷刀具的耐高温切削速度可高达1000m/min。
(2)工件材料。
工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。
(3)刀具寿命。
刀具使用时间(寿命)要求长,则应采用较低的切削速度。
反之,可采用较高的切削速度。
(4)切削深度与进刀量。
切削深度与进刀量大,切削抗力也大,切削热会增加,故切削速度应降低。
(5)刀具的形状。
刀具的形状、角度的大小、刃口的锋利程度都会影响切削速度的选取。
(6)冷却液使用。
机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。
上述影响切削速度的诸因素中,刀具材质的影响最为主要。
切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。
这样可以减少走刀次数。
主轴转速要根据机床和刀具允许的切削速度来确定。
可以用计算法或查表法来选取。
进给量f(mm/r)或进给速度F(mm/min)要根据零件的加工精度、表面粗糙度、刀具
和工件材料来选。
最大进给速度受机床刚度和进给驱动及数控系统的限制。
编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。
当然也可以凭经验,采用类比法去确定切削用量。
不管用什么方法选取切削用量,都要保证刀具的耐用度能完成一个零件的加工,或保证刀具耐用度不低于一个工作班次,最小也不能低于半个班次的时间。
浅谈模具浇注系统设计的几个原则
1、流程应尽量短在满足成型和排气要求的前提下系统长度应尽量短,各段应尽量平直,以使塑料熔体在模具中的流程尽量短而且不发生弯曲,从而可减小注射压力和熔体的热量损失,并缩短熔体充模时间。
2、防止型芯变形和嵌件位移设计浇注系统时,应尽量避免通过系统的塑料熔体正废料冲击模腔内尺寸较小的型芯或嵌件,以防止熔体的冲击力使型芯发生变形或使嵌件发生位移。
3、修整应尽量方便修整指制品成型后对其外观所做的各种修整工作,其中包括去除制品上的浇注系统凝料。
为了方便修整并无损制品外观和使用性能,浇注系统在模具中的位置和形状,尤其是浇口的位置和形状应尽量根据制品的形状和使用要求确定。
4、防止制品变形和翘曲设计浇注系统时,应考虑如何减轻浇口附近的残余应力集中现象,以防止因应力过大而导致制品发生变形和翘曲。
例如对于深度很浅的大平废料聚乙烯、聚丙烯制品若采用料流速度较大的直接浇口成型,由于注射压力直接作用在制品上加之这些塑料取向能力较强,所以成型后很容易在浇口附近残余较大的时效应力和取向应力,并导致制品发生翘曲变形,为此可改换多点浇口形式。
但是应当指出,采用多点浇口成型制品时,由于各浇口附近收缩与其它部位不等,也非常容易引起制品整体翘曲变形,尤其对于大型薄壁制品,使用多点浇口时特别要注意此问题、
5、应与塑料品种相适应不同的塑料具有不同的流动性,特别是对硬质聚氯乙稀、聚丙烯酸酯和聚甲醛等成型性差的塑料,其流道和浇口的选择是否合适,对于制品的性能、外观以及成型周期和生产成本都有很大影响。
另外,有些塑料还会因为浇口设计不当而导致浇口表壁与熔体之间产生较大摩擦,从而引起塑料褪色。
6、合理设计冷料穴冷料穴设计不当,容易使制品发生成型缺陷。
如果冷料穴失效,使前锋冷料进入模腔会导致制品产生冷疤或冷斑。
7、尽量减少塑料消耗设计浇注系统时,除注意满足上述设计原则外,还应使系统的长度和容积尽量小,这样做不仅可以避免系统凝料积压、延长成型周期等问题,而且还可以减少系统占用的塑料量,从而减小原材料消耗以及回收废料的工作量。
除了上述原则外,设计浇注系统时还应注意模腔的数量与废料置、制品的外观和性能、制品形状与尺寸等问题对系统的制约,以及注射机上模具固定板对侧浇口位置的要求(防止浇口与固定板偏心)
文章来源:Powermill视频教程/。