第一章20红外吸收光谱法PPT课件
合集下载
红外吸收光谱PPT课件
02
红外吸收光谱仪器
红外光谱仪的构造
01
02
03
04
光源
发射一定波长的红外光,常用 光源有碘、溴钨灯等。
单色器
将光源发出的红外光分成单色 光,常用单色器有棱镜和光栅
。
样品室
放置待测样品,样品可以是气 体、液体或固体。
检测器
检测透过样品的红外光,常用 检测器有热电偶、光电导和光
电二极管等。
红外光谱仪的工作原理
红外吸收光谱的应用
确定物质成分
结构分析
通过比较标准物质的红外吸收光谱,可以 确定未知物质的成分。
红外吸收光谱的峰位置和峰强度可以提供 物质分子的振动和转动信息,有助于分析 分子结构和化学键的类型。
定量分析
反应动力学研究
通过测量样品在不同波长下的透射率或反 射率,可以计算样品中目标成分的浓度。
红外吸收光谱可用于研究化学反应过程中 分子振动和转动能级的跃迁。
特点
具有高灵敏度、高分辨率和高选 择性,能够提供物质分子的振动 和转动信息,广泛应用于化学、 物理、环境和生物等领域。
红外吸收光谱的原理
原理
当红外光与物质分子相互作用时,分 子吸收特定波长的红外光,导致分子 振动和转动能级跃迁,产生红外吸收 光谱。
影响因素
分子结构和化学键的性质决定红外吸 收光谱的特征,不同物质具有独特的 红外吸收光谱。
敏度,适用于复杂样品分析。
微型化红外光谱仪
02
通过集成光学、微电子机械系统等技术,将红外光谱仪小型化,
方便携带和移动检测。
多光谱和超光谱红外光谱仪
03
结合多光谱技术和超光谱技术,可同时获取样品多个波段的红
外光谱信息,提高分析效率。
红外吸收光谱法课件
*
红外吸收光谱法
在倍频峰中,二倍频峰还比较强,三倍频峰以上。因跃迁的几率很小。一般都很弱,常常观测不到。 4000~400cm-1间主要测基频峰,既使有倍频峰也很弱。 还有 合频峰(v1+v2 , 2 v1 + v2 ….) 差频峰( v1 - v2 , 2v1 -v2 …….) 很弱,不易辨认。 倍频峰,合频峰,差频峰通称泛频峰,分 子振动并不是严格的简谐振动。
*
红外吸收光谱法
(2)倍频峰: 在红外吸收光谱上除基频峰外,还有振动能级由基态(υ =0),跃迁至第二振动激发态(υ=2),第三振动激发态( υ=3)…..等等,所产生的吸收峰。这些吸收峰称为倍频峰。 二倍频峰: υ0→2 νL=△u·v=(2-0) ·v =2 v 三倍频峰: υ0→3 νL =△ u·v =(3-0) ·v =3v
*
红外吸收光谱法
4.基频峰数目减少的原因 (1)△μ=0 (2)o=c=o (3)仪器分辨率低 对一些频率很近的吸收峰分不开,一些 弱峰仪器灵敏度低,未捡出。 (4)波长超过了仪器的可测范围。 如 CO2只有两个峰。
*
红外吸收光谱法
图6-6二氧化碳的红外光谱图
*
红外吸收光谱法
*
红外吸收光谱法
2. 产生红外吸收的第二个条件 分子在振动,转动过程中必须有偶极矩 的净变化。即偶极矩的变化△μ≠0
图6~2:偶极子在交变电场中的作用示意图
*
红外吸收光谱法
(1)红外活性 分子振动引起偶极矩的变化,从而产生红外吸收的性质,称为红外活性。其分子称为红外活性分子。相关的振动称为红外活性振动。如H2O ,HCl ,CO为红外活性分子。 (2)非红外活性 若△μ=0,分子振动和转动时,不引起偶极矩变化。不能吸收红外辐射。即为非红外活性。其分子称为红外非活性分子。如 H2 ,O2 ,N2 ,Cl2….相应的振动称为红外非活性振动。
红外吸收光谱法
在倍频峰中,二倍频峰还比较强,三倍频峰以上。因跃迁的几率很小。一般都很弱,常常观测不到。 4000~400cm-1间主要测基频峰,既使有倍频峰也很弱。 还有 合频峰(v1+v2 , 2 v1 + v2 ….) 差频峰( v1 - v2 , 2v1 -v2 …….) 很弱,不易辨认。 倍频峰,合频峰,差频峰通称泛频峰,分 子振动并不是严格的简谐振动。
*
红外吸收光谱法
(2)倍频峰: 在红外吸收光谱上除基频峰外,还有振动能级由基态(υ =0),跃迁至第二振动激发态(υ=2),第三振动激发态( υ=3)…..等等,所产生的吸收峰。这些吸收峰称为倍频峰。 二倍频峰: υ0→2 νL=△u·v=(2-0) ·v =2 v 三倍频峰: υ0→3 νL =△ u·v =(3-0) ·v =3v
*
红外吸收光谱法
4.基频峰数目减少的原因 (1)△μ=0 (2)o=c=o (3)仪器分辨率低 对一些频率很近的吸收峰分不开,一些 弱峰仪器灵敏度低,未捡出。 (4)波长超过了仪器的可测范围。 如 CO2只有两个峰。
*
红外吸收光谱法
图6-6二氧化碳的红外光谱图
*
红外吸收光谱法
*
红外吸收光谱法
2. 产生红外吸收的第二个条件 分子在振动,转动过程中必须有偶极矩 的净变化。即偶极矩的变化△μ≠0
图6~2:偶极子在交变电场中的作用示意图
*
红外吸收光谱法
(1)红外活性 分子振动引起偶极矩的变化,从而产生红外吸收的性质,称为红外活性。其分子称为红外活性分子。相关的振动称为红外活性振动。如H2O ,HCl ,CO为红外活性分子。 (2)非红外活性 若△μ=0,分子振动和转动时,不引起偶极矩变化。不能吸收红外辐射。即为非红外活性。其分子称为红外非活性分子。如 H2 ,O2 ,N2 ,Cl2….相应的振动称为红外非活性振动。
红外吸收光谱PPT课件
红外光谱主要由分子的振动能级跃迁产生 分子的振动能级差远大于转动能级差 分子发生振动能级跃迁必然同时伴随转动能级跃迁
2. 产生条件
物质吸收红外辐射应满足两个条件:
辐射光具有的能量与发生振动跃迁时所需的能 量相等;
• 当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和外界红外辐射的频率一致
分子振动 方程
m = m1 m2
m1 m2
c —光速 k —键力常数 u —折合质量
=
N1/ 2 A
k
2c M
M = M1 M2 M1 M2
影响基本振动频率的直接因素是相对原子质量 和化学键的力常数
C-C k 4~6 σ 1190
C=C 8~12 1683
C≡C 12~18 N/cm 2062 cm-1
辐射与物质之间有偶合作用。 实质是外界辐射迁移它的能量到分子中去
偶极矩的变化
偶极矩μ
HCl
d
H
Cl
+q
-q
H2O
H +q
-q O
d
H +q
m=qd
由于分子内原子处于在其平衡位置不断地振动的状态, 在振动过程中d 的瞬时值亦不断地发生变化,因此分 子的μ也发生相应的改变,分子也就具有确定的偶极 矩变化频率;
图 亚甲基的伸缩振动
弯曲振动(或变形振动):基团键角发生周期变化 而键长不变的振动称为变形振动,用符号δ表示。 弯曲振动又分为面内和面外弯曲振动。
亚甲基的弯曲振动
基本振动的理论数
基本振动的数目称为振动自由度,每个振动自由度相 应于红外光谱图上一个基频吸收峰。
每个原子在空间都有三个自由度,如果分子由n 个原 子组成,其运动自由度就有3n 个;
2. 产生条件
物质吸收红外辐射应满足两个条件:
辐射光具有的能量与发生振动跃迁时所需的能 量相等;
• 当一定频率的红外光照射分子时,如果分子中某 个基团的振动频率和外界红外辐射的频率一致
分子振动 方程
m = m1 m2
m1 m2
c —光速 k —键力常数 u —折合质量
=
N1/ 2 A
k
2c M
M = M1 M2 M1 M2
影响基本振动频率的直接因素是相对原子质量 和化学键的力常数
C-C k 4~6 σ 1190
C=C 8~12 1683
C≡C 12~18 N/cm 2062 cm-1
辐射与物质之间有偶合作用。 实质是外界辐射迁移它的能量到分子中去
偶极矩的变化
偶极矩μ
HCl
d
H
Cl
+q
-q
H2O
H +q
-q O
d
H +q
m=qd
由于分子内原子处于在其平衡位置不断地振动的状态, 在振动过程中d 的瞬时值亦不断地发生变化,因此分 子的μ也发生相应的改变,分子也就具有确定的偶极 矩变化频率;
图 亚甲基的伸缩振动
弯曲振动(或变形振动):基团键角发生周期变化 而键长不变的振动称为变形振动,用符号δ表示。 弯曲振动又分为面内和面外弯曲振动。
亚甲基的弯曲振动
基本振动的理论数
基本振动的数目称为振动自由度,每个振动自由度相 应于红外光谱图上一个基频吸收峰。
每个原子在空间都有三个自由度,如果分子由n 个原 子组成,其运动自由度就有3n 个;
红外吸收光谱法课件PPT
02 红外吸收光谱仪的组成与 操作
红外吸收光谱仪的组成
01
02
03
04
光源
发射特定波长的红外光,为样 品提供能量。
干涉仪
将红外光分成两束,分别经过 样品和参比,再合并形成干涉
。
检测器
检测干涉后的红外光,转换为 电信号。
数据处理系统
处理检测器输出的电信号,生 成红外吸收光谱。
红外吸收光谱仪的操作流程
多光谱融合
将红外光谱与其他光谱技 术进行融合,实现多维度、 多角度的物质成分和结构 分析。
云平台与大数据
利用云平台和大数据技术, 实现红外光谱数据的共享、 挖掘和分析,推动科研合 作与成果转化。
感谢您的观看
THANKS
检查部件
定期检查仪器各部件是否正常 工作,如光源、干涉仪、检测 器等。
定期校准
为保证测试结果的准确性,应 定期对仪器进行校准。
数据备份
对测试结果进行备份,以防数 据丢失。
03 红外吸收光谱法的实验技 术
样品的制备与处理
样品制备
将待测物质研磨成粉末,以便更 好地分散在测试介质中。
样品处理
根据实验需求,对样品进行纯化 、干燥等预处理,以消除干扰因 素。
用于检测大气和水体中 的污染物,如挥发性有 机化合物、重金属等。
用于研究生物大分子的 结构和功能,如蛋白质、
核酸等。
红外吸收光谱法的历史与发展
历史
红外吸收光谱法自19世纪中叶被发现以来,经历了多个发展阶段,不断完善和 改进。
发展
随着仪器的改进和计算机技术的发展,红外吸收光谱法的应用范围不断扩大, 分析精度和灵敏度也不断提高。未来,红外吸收光谱法将继续在各个领域发挥 重要作用。
《红外光谱》PPT课件
)
(cm-1) = 104 / λ (μ m)
纵坐标:吸光度(A)或透光率(T) 多以百分透光率T%来表示
*
T = I / I0 (遵守Lambert-Beer定律
)
A = lg (1 / T)
IR中,“谷”越深(T越小),吸光 度越大,吸收强度越强。
*
二、红外光谱基本原理
满足两个条件: (1)辐射能满足物质产生振动能级跃迁所需的能量; (2)伴随净的偶极矩的变化。
*
对称伸缩振动s 非对称伸缩振动as 剪式振动
面内摇摆
*
面外摇摆
扭曲振动
分子振动自由度
研究多原子分子时,常把复杂振动分解为许多简单的基本振动, 这些基本振动数目称为分子的振动自由度,简称分子自由度。
原子在三维空间的位置可用x,y,z表示,即3个自由度。
含N个原子的分子,分子自由度的总数为3N个。
分子总的自由度3N=平动自由度+转动自由度+振动自由度
非线性分子:3N-6 (平动3、转动3) 线性分子:3N-5 (平动3、转动2)
*
峰位、峰数与峰强
(1)峰位 化学键的力常数K越大,原子折合质量越小,键的
振动频率越大,吸收峰将出现在高波数区(短波长区);反之, 出现在低波数区(高波长区)。
(2)峰数 峰数与分子自由度有关。无瞬间偶极距变化时, 无红外吸收。
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越 大(极性越大),吸收峰越强。
(4)由基态跃迁到第一激发态,产生一个强吸收峰,基频峰。
(5)由基态跃迁到第二激发态或更高激发态,产生的弱的吸收 峰,倍频峰。
*
影响吸收谱带位置的主要因素(内部因素)
1. 诱导效应(I效应)
(cm-1) = 104 / λ (μ m)
纵坐标:吸光度(A)或透光率(T) 多以百分透光率T%来表示
*
T = I / I0 (遵守Lambert-Beer定律
)
A = lg (1 / T)
IR中,“谷”越深(T越小),吸光 度越大,吸收强度越强。
*
二、红外光谱基本原理
满足两个条件: (1)辐射能满足物质产生振动能级跃迁所需的能量; (2)伴随净的偶极矩的变化。
*
对称伸缩振动s 非对称伸缩振动as 剪式振动
面内摇摆
*
面外摇摆
扭曲振动
分子振动自由度
研究多原子分子时,常把复杂振动分解为许多简单的基本振动, 这些基本振动数目称为分子的振动自由度,简称分子自由度。
原子在三维空间的位置可用x,y,z表示,即3个自由度。
含N个原子的分子,分子自由度的总数为3N个。
分子总的自由度3N=平动自由度+转动自由度+振动自由度
非线性分子:3N-6 (平动3、转动3) 线性分子:3N-5 (平动3、转动2)
*
峰位、峰数与峰强
(1)峰位 化学键的力常数K越大,原子折合质量越小,键的
振动频率越大,吸收峰将出现在高波数区(短波长区);反之, 出现在低波数区(高波长区)。
(2)峰数 峰数与分子自由度有关。无瞬间偶极距变化时, 无红外吸收。
(3)瞬间偶基距变化大,吸收峰强;键两端原子电负性相差越 大(极性越大),吸收峰越强。
(4)由基态跃迁到第一激发态,产生一个强吸收峰,基频峰。
(5)由基态跃迁到第二激发态或更高激发态,产生的弱的吸收 峰,倍频峰。
*
影响吸收谱带位置的主要因素(内部因素)
1. 诱导效应(I效应)
红外吸收光谱分析(共27张PPT)
这里弹簧的k值就的原子不是静止不动的,原子在其平衡位置做相 对运动,从而产生振动!原子与原子之间的相对运动无非有 两种情况,即:键长发生变化(伸缩振动),键角发生变化 (弯曲振动)
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其
对于双原子分子:没有弯曲振动,只有一个伸缩振动
对于多原子分子来说,包括伸缩振动和弯曲振动。 伸缩振动有对称和不对称伸缩以亚甲基-CH2为例
苯,3N-6=30种,实际上苯的红外谱图上只有几个吸收峰! 说明:不单苯,许多化合物在红外谱图上的吸收峰数目要远 小于其振动自由度(理论计算值)。
原因:(1)相同频率的峰重叠(2)频率接近或峰弱,仪器检测
不出(3)有些吸收峰落在仪器的检测范围之外(4)并不是
(2)对于基频峰:偶极矩变化越大的振动,吸收峰越强
②液体试样:溶液法和液膜法。溶液法是将液体试样溶在适当的红 外溶剂中(CS2,CCl4,CHCl3等)然后注入固定池中进行测定。液 膜法是在可拆池两窗之间,滴入几滴试样使之形成一层薄的液膜。
③固体试样:压片法、糊状法和薄膜法。压片法通常按照固体样品和 KBr为1:100研磨,用高压机压成透明片后再进行测定。糊状法就是把 试样研细滴入几滴悬浮剂(石蜡油),继续研磨成糊状然后进行测定 。薄膜法主要用于高分子化合物的测定,通常将试样溶解在沸点低易 挥发的溶剂中,然后倒在玻璃板上,待溶剂挥发成膜后再用红外灯加 热干燥进一步除去残留的溶剂,制成的膜直接插入光路进行测定。
(3)组频峰:振动之间相互作用产生的吸收峰
(4)泛频峰:倍频峰+组频峰
(5)特征峰:可用于鉴别官能团存在的吸收峰。 (6)相关峰:由一个官能团引起的一组具有相互依存关系 的特征峰
红外光谱可分为基频区和指纹区两大区域
(1)基频区(4000~1350cm-1)又称为特征区或官能团区,其
红外吸收光谱分析-PPT
红外区光谱用波长和波数(wave number)来 表征 ;
波长多用μm做单位; 波数:以σ表示,定义为波长得倒数,单位cm-1,其
物理意义就是每厘米长光波中波得数目。 σ=1/λ(cm)=104/λ(μm)=υ/c 用波数表示频率得好处就是比用频率要方便,
且数值小。 一般用透光率-波数曲线或透光度-波长曲线来
第三章 红外吸收光谱分析
3、2 基本原理 3、2、2 双原子分子得振动
红外光谱就是由于分子振动能级得跃迁(同时伴有转动能级跃迁) 而产生,即分子中得原子以平衡位置为中心作周期性振动,其振幅非 常小。这种分子得振动通常想象为一根弹簧联接得两个小球体系, 称为谐振子模型。这就是最简单得双原子分子情况,如下图所示。
基频峰、倍频峰和泛频峰
分子吸收红外辐射后,由基态振动能级(V=0)跃迁至 第一振动激发态(V=1)时,所产生得吸收峰称为基频 峰。因为△V=1时, L= ,所以 基频峰得位置等于 分子得振动频率。
在红外吸收光谱上除基频峰外,还有振动能级由基态 ( V =0)跃迁至第二激发态( V =2)、第三激发态( V =3),所产生得吸收峰称为倍频峰。
在室温时,分子处于基态( V = 0): EV= 1/2h ,此时,伸缩振动得频率很小。
条件一:辐射光子得能量应与振动跃 迁所需能量相等
当有红外辐射照射到分子时,若红 外辐射得光子(L)所具有得能量(EL) 恰好等于分子振动能级得能量差 (△EV)时,则分子将吸收红外辐射而跃
迁至激发态,导致振幅增大。
多原子分子振动
多原子分子由于原子数目增多,组成分子得键 或基团和空间结构不同,其振动光谱比双原子 分子要复杂。但就是可以把她们得振动分解 成许多简单得基本振动,即简正振动。
简正振动:简正振动得振动状态就是分子质 心保持不变,整体不转动,每个原子都在其平 衡位置附近做简谐振动。
波长多用μm做单位; 波数:以σ表示,定义为波长得倒数,单位cm-1,其
物理意义就是每厘米长光波中波得数目。 σ=1/λ(cm)=104/λ(μm)=υ/c 用波数表示频率得好处就是比用频率要方便,
且数值小。 一般用透光率-波数曲线或透光度-波长曲线来
第三章 红外吸收光谱分析
3、2 基本原理 3、2、2 双原子分子得振动
红外光谱就是由于分子振动能级得跃迁(同时伴有转动能级跃迁) 而产生,即分子中得原子以平衡位置为中心作周期性振动,其振幅非 常小。这种分子得振动通常想象为一根弹簧联接得两个小球体系, 称为谐振子模型。这就是最简单得双原子分子情况,如下图所示。
基频峰、倍频峰和泛频峰
分子吸收红外辐射后,由基态振动能级(V=0)跃迁至 第一振动激发态(V=1)时,所产生得吸收峰称为基频 峰。因为△V=1时, L= ,所以 基频峰得位置等于 分子得振动频率。
在红外吸收光谱上除基频峰外,还有振动能级由基态 ( V =0)跃迁至第二激发态( V =2)、第三激发态( V =3),所产生得吸收峰称为倍频峰。
在室温时,分子处于基态( V = 0): EV= 1/2h ,此时,伸缩振动得频率很小。
条件一:辐射光子得能量应与振动跃 迁所需能量相等
当有红外辐射照射到分子时,若红 外辐射得光子(L)所具有得能量(EL) 恰好等于分子振动能级得能量差 (△EV)时,则分子将吸收红外辐射而跃
迁至激发态,导致振幅增大。
多原子分子振动
多原子分子由于原子数目增多,组成分子得键 或基团和空间结构不同,其振动光谱比双原子 分子要复杂。但就是可以把她们得振动分解 成许多简单得基本振动,即简正振动。
简正振动:简正振动得振动状态就是分子质 心保持不变,整体不转动,每个原子都在其平 衡位置附近做简谐振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/2
7
任意两个相邻的能级间的能量差为:
E h h k 2
1 1 k 1307 k
2c
K化学键的力常数,与键能和键长有关,
为双原子的折合质量 =m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
2020/8/2
问题:C=O 强;C=C 弱;为什么? 吸收峰强度跃迁几率偶极矩变化
吸收峰强度 偶极矩的平方
偶极矩变化——结构对称性; 对称性差偶极矩变化大吸收峰强度大 符号:s(强);m(中);w(弱) 红外吸收峰强度比紫外吸收峰小2~3个数量级;
2020/8/2
16
内容选择:
第一节 红外基本原理
basic principle of Infrared absorption spectroscopy
2020/8/2
14
C2H4O
1730cm-1 1165cm-1
H
O
C
CH
H 2720cm-1
H
(CH3)1460 cm-1,1375 cm-1。
(CH3)2930 cm-1,2850cm-1。
2020/8/2
15
四、红外吸收峰强度
intensity of Infrared absorption bend
有机化合物结构:可以用峰数,峰位,峰形,峰强来描述。
应用:有机化合物的结构解析; 定性:基团的特征吸收频率; 定量:特征峰的强度。
2020/8/2
5
二、红外吸收光谱产生的条件
condition of Infrared absorption spectroscopy
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
对称分子:没有偶极矩,辐 射不能引起共振,无红外活性。 如:N2、O2、Cl2 等。
非对称分子:有偶极矩,红 外活性。
偶极子在交变电场中的作用示意图
2020/8/2
6
分子振动方程式
双原子分子的简谐振动及其频率
化学键的振动类似于连接两个小球的弹簧
分子的振动能级(量子化):
E振=(V±1/2)h :化学键的 振动频率; V :振动量子数。(±1/2振动自旋量子数)
1.两类基本振动形式
伸缩振动 亚甲基:
(动画)
变形振动 亚甲基
2020/8/2
11
甲基的振动形式
伸缩振动(υ) 甲基:
对称 υs(CH3) 2870 ㎝-1
不对称 υas(CH3) 2960㎝-1
变形振动(δ)
(弯曲振动)
甲基: 对称δs(CH3)1380㎝-1
2020/8/2
不对称δas(CH3)1460㎝-1
第二节 红外光谱与分子结构
infrared spectroscopy and molecular structure
第三节 红外光谱仪器
infrared absorption spectrophotometer
第四节 红外谱图解析
analysis of Infrared spectrograph
第五节 激光几率和振动过程中偶极矩变 化的大小有关。(吸收峰强度∝偶极矩的平方 )
键两端原子电负性相差越大(极性越大),瞬间偶基距 变化大,吸收峰强。
例2:CO2分子 (有一种振动 无红外活性)
(4)由基态跃迁到第一激发态,产生一个强的吸收峰,基频 峰;(跃迁几率大)
(5)由基态直接跃迁到第二激发态,产生一个弱的吸收峰, 倍频峰; (跃迁几率小)
9
例题: 由表中查知C=C键的K=9.5 9.9 ,令其为 9.6, 计算波数值。
v 12 1c k13 k 0 7 131 0 9./6 2 2 716c5 m 10
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
2020/8/2
10
三、分子中基团的基本振动形式
basic vibration of the group in molecular
12
2.峰位、峰数与峰强
(1)峰位:化学键的力常数K越大,原子折合质量越小,键 的振动频率越大,吸收峰将出现在高波数区(短波长区); 反之,出现在低波数区(高波长区)。 例1 水分子 (非对称分子)
(2)峰数:峰数与分子自由度有关。
{ 振动自由度
非线性:3N-6个 线 性:3N-5个
2020/8/2
第一章 红外吸收光谱分
析法
一、概述
introduction 二、红外吸收光谱产生的
条件
infrared absorption spec-
condition of Infrared absorption spectroscopy
troscopy,IR
三、分子中基团的基本振
第一节 红外光谱分析基本原理
动形式 basic vibration of the group
laser Raman spectrometry
结束
2020/8/2
17
第一章 红外吸收光谱
分析法
infrared absorption spectroscopy,IR
第二节 红外光谱与分子结构 infrared spectroscopy and molecular structure
2
一、概述
introduction
分子中基团的振动和转动能级跃迁产生:振-转光谱 辐射→分子振动能级跃迁→红外光谱→官能团→分子结构 、定性、定量
近红外区 中红外区 远红外区
2020/8/2
3
2020/8/2
4
红外光谱与有机化合物结构
红外光谱图: 纵坐标用吸收强度[吸光度A或透光率T(%) =(T/T0)%]表示 横坐标用波长λ( m )或波数σ=1/λ (cm-1)表示
8
表: 某些键的伸缩力常数(毫达因/埃)
键类型 力常数 峰位
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
4.5 5.6
4.5m
6.0 m
7.0 m
化学键键强越强(即键的力常数K越大)原子折合质量越 小,化学键的振动频率越大,吸收峰将出现在高波数区。
2020/8/2
in molecular
principle of IR
四、红外吸收峰强度 intensity of infrared
absorption bend
2020/8/2
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容