作业1库仑定律和电场强度
电荷与电场库仑定律与电场强度
电荷与电场库仑定律与电场强度电荷与电场:库仑定律与电场强度电荷与电场是电学中重要的概念和理论基础。
库仑定律和电场强度则是描述电荷与电场之间相互作用的重要原理。
本文将详细介绍库仑定律和电场强度的定义、计算方法以及它们在实际应用中的意义。
一、库仑定律库仑定律是描述电荷间相互作用力的基本定律。
根据库仑定律,电荷间作用力的大小与它们之间的距离成反比,与它们的电量之积成正比。
具体地说,对于两个电荷q1和q2之间的相互作用力F,库仑定律可以表达为:F = k * |q1 * q2| / r^2其中,k是一个比例常数,通常被称为库仑常数,其值约为9×10^9 N·m^2/C^2。
r表示电荷间的距离。
库仑定律的重要性体现在它对静电力的描述和计算中的作用。
通过库仑定律,我们可以计算出电荷之间的相互作用力,从而理解电荷的吸引和排斥现象,解释电荷分布对物体产生的引力或斥力,以及研究导体和绝缘体的电荷分布等问题。
二、电场强度电场强度是描述电场中的力与电荷之间关系的物理量。
在某一点处,电场强度E可以定义为单位正电荷在该点处受到的力F与该单位正电荷的比值。
数学表达式为:E =F / q其中,F为作用在单位正电荷上的力,q为单位正电荷的电量。
电场强度的方向与作用力的方向相同,可以通过箭头表示。
电场强度具有矢量性质,它的大小和方向都决定了电场中电荷粒子受到的力大小和方向。
电场强度与库仑定律之间存在着密切的联系。
根据库仑定律,我们可以推导出电场强度的计算公式。
对于位于距离r处的点电荷q,其产生的电场强度E可以表示为:E = k * |q / r^2|在该点附近的测试电荷q0受到的电场力F和电场强度E之间满足关系:F = q0 * E三、库仑定律与电场强度的应用库仑定律和电场强度的应用非常广泛。
它们在静电学、电动力学、电磁感应等领域中都发挥着重要的作用。
在电动力学中,库仑定律和电场强度被用来描述电荷在电场中受到的力和加速度,从而求解粒子在电场中的运动情况。
电磁学练习题(库仑定律、电场强度 (1))
库仑定律、电场强度- 选择题如图,真空中,点电荷q 在场点P 处的电场强度可表示为2014r qE e r πε=,其中r 是q 与P 之间的距离,r e 是单位矢量。
r e 的方向是()A 总是由P 指向q ; ()B 总是由q 指向P ; ()C q 是正电荷时,由q 指向P ; ()D q 是负电荷时,由q 指向P 。
〔 〕 答案:()B根据场强定义式0q FE =,下列说法中正确的是:()A 电场中某点处的电场强度就是该处单位正电荷所受的力; ()B 从定义式中明显看出,场强反比于单位正电荷;()C 做定义式时0q 必须是正电荷;()D E 的方向可能与F的方向相反。
〔 〕答案:()A一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个带电量为σd S 的电荷元,在球面内各点产生的电场强度()A 处处为零 ()B 不一定都为零 ()C 处处不为零 ()D 无法判定 〔 〕 答案:()C空间某处附近的正电荷越多,那么有:()A 位于该处的点电荷所受的力越大;()B 该处的电场强度越大;()C 该处的电场强度不可能为零; ()D 以上说法都不正确; 〔 〕 答案:()D库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用;()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 〕 答案:()D在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E <,方向相同;()B A E 不可能等于B E ,但方向相同; ()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 〕 答案:()C电荷之比为1:3:5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径qPAC B E()BAC BE ()AAC B E()DAC B ()CE 大得多.若固定A 、C 不动,改变B 的位置使B 所受电场力为零时,AB 与BC 的比值为 ()A 5; ()B 15; ()C 5; ()D 1/ ( ) 答案:()D真空中两块互相平行的无限大均匀带电平面。
库仑定律和电场强度
2、推导过程
(1)、电荷元场强公式
dE
1
4π 0
dq r2
er
dqq
r
P
dE
(2)、积分后电荷元场强后可得
E
dE
1
4π 0
er r2
dq
电荷呈体分布 dq
dV '
E
V' 4
1
π 0
er
r2
dV
'
电荷呈面分布 dq
4π 0
Q r2
er
三、N个点电荷所产生的电场强度
1、公式:
q3
Eq
N i 1
E qiq
N i 1
qi eRi
4π 0 Ri2
q2
(Ri r ri )
q1
2、结论:适用叠加定理
q4
q q5
q7 q6
四、连续分布电荷所产生的电场强度
1、指导思想:微分点电荷公式积分
静电场概述
一、何谓静电场
由相对观察者静止且不随时间改变的电荷所形成的电场。
静态场
时变场
场量不随时间变化
场量随时间变化
二、本章重点
阐述静电荷与电场强度之间的关系,在已知电荷分布或
电位的情况下求解电场强度的各种计算方法。
三、本章难点
极化现象及镜像法。
§2.1 电场强度
§2.1.1 库仑定律
一、定律内容
q1
r12
q2
F21
F12
F12
1
4 0
q1q2 r122
e12
库仑定律与电场强度
➢ 本节的研究目的
从库仑定律出发引入静电场的基本场量 ——电场强度; 获得电场强度的数学表达式。
➢ 本节的研究内容
一、库仑定律 二、电场强度
三、不同分布电荷的电场强度
一、库仑定律(Coulomb's law)
1. 定律描述对象:两点电荷之间的静电作用力。
z xO
q1 R
r1
y r2
q2
2. 表达式:点电荷 q1对 q2 的作用力为:
F
1 4π0
q1q2 e R2 R
1 4π0
|
q1q2 r2 r1
|2
r2 |r2
r1 r1
|
一、库仑定律(Coulomb's law)
F
1 4π0
q1q2 R2
eR
1Hale Waihona Puke 4π0|q1q2 r2 r1 |2
r2 r1
|r2
r1
|
1 4π0
dq e R2 R
1 dS e
4π0 R2
R
面电荷的电场
E 1 4π0
S
e
R2
dR S
三、不同分布电荷的电场强度
4. 线电荷的电场 线电荷密度,单位C/m
(x, y, z) lim q dq
L0 L dL
1 dE
4π0
dq e R2 R
1 4π0
dL e
R2
R
线电荷的电场
E 1 4π0
电荷
二、电场强度 — 描述电场的基本物理量
电场的基本属性:对电荷有力的作用
E
lim F q q0 0 0
1 4π0
q R2
库仑定律与电场强度
F
k
Q1Q2 r2
场源电荷:产生电场 的电荷,又称场电荷
试探电荷(检验电荷):用来 检验电场的电荷,(要求电荷
量和尺寸充分小,对原来的电场
不产生明显的影响)
3. 电场强度
物理意义: 描述电场强弱
比值定义法
定义:放入电场中某点的试探电荷所受的电场力F 跟它的电荷量q的比值
定义式: E F
q
E与F成正比,与q成反比?
电荷间相互作用力叫做静电力或库仑力.
说明:
(1)适用范围: A.真空中; B.点电荷.
在空气中的结果与真空中相差很小, 因此在空气中也可使用真空中的公式
(2)点电荷
A.在研究带电体间的相互作用时,如果带电 体本身的线度远小于它们之间的距离.带电体本 身的大小,对所讨论的问题影响甚小,可把带电 体视为一几何点,并称它为点电荷。
4.2 库仑定律与电场强度
1.库仑定律 2.电场 3.电场强度 4.电场线
1. 库仑定律
真空中两个静止点电荷之间的相互作用力,与它 们的电荷量的乘积成正比,与它们的距离的二次方成 反比,作用力的方向在它们的连线上。
大小:
F
k
q1q2 r2
K为静电力常量:K=9.0×109N·m2/C2
方向: 在两点电荷的连线上, 同种电荷相斥,异种电荷相吸.
真空中的介电常数
F
q1q2
4 0r 2
(4)带电体的重力
一般带电体受到的重力通常都比较 大,所以在电场中重力不能被忽略。
而基本粒子像电子、质子、原子核 等,因为其本身质量非常小,基本粒子受 到重力往往也很小,所以在电场中基本 粒子的重力往往可忽略不计。
2. 电场
脚踢球,脚对球的力 直接作用在球上。
库仑定律及电场强度的计算方法
库仑定律及电场强度的计算方法库仑定律是描述电荷之间相互作用的重要定律,它揭示了电荷之间的力与它们之间距离的关系。
在电磁学中,库仑定律是一条基础定律,为进一步研究电场强度的计算提供了基础。
本文将就库仑定律及电场强度的计算方法进行探讨。
一、库仑定律的描述库仑定律是由法国物理学家库仑于18世纪提出的,它描述了两个点电荷之间相互作用力的大小与它们之间距离的平方成反比的关系。
根据库仑定律,两个点电荷之间的力的大小可以用以下公式表示:F = k * (|q1| * |q2|) / r^2其中,F表示力的大小,q1和q2分别代表两个电荷的大小,r代表两个电荷之间的距离,k是一个常数,表示电场的介质。
二、电场强度的概念电场是由电荷所产生的一种物理场,它对其他电荷施加力。
电场强度是描述电场的物理量,它表示单位正电荷在电场中所受到的力的大小。
电场强度可以通过以下公式计算:E =F / q0其中,E表示电场强度,F代表所受力的大小,q0是单位正电荷的电荷量。
三、电场强度的计算方法对于由一个点电荷所产生的电场,电场强度与点电荷的大小成正比,与距离的平方成反比。
因此,对于一个点电荷Q,在其周围某一点P处的电场强度可以用以下公式表示:E = k * (|Q|) / r^2其中,E表示点P处的电场强度,Q代表点电荷的大小,r表示点P与点电荷之间的距离,k为电场的介质。
当有多个点电荷同时存在时,它们所产生的电场强度可以通过叠加原理进行计算。
即将每个点电荷所产生的电场强度矢量相加,得到最终的电场强度矢量。
四、电场强度的方向电场强度是一个矢量量,它有大小和方向之分。
电场强度的方向指的是在该点电场中正电荷所受力的方向。
在计算电场强度的方向时,可以利用库仑定律进行推导。
根据库仑定律,电场强度的方向与点电荷间的连线方向相同。
五、总结库仑定律及电场强度的计算方法是电磁学中的重要内容。
库仑定律描述了电荷之间相互作用的规律,为电场强度的计算提供了基础。
静电场理解库仑定律与电场强度的关系
静电场理解库仑定律与电场强度的关系在电磁学中,静电场是指没有随时间变化的电场。
在静电场中,电荷会相互作用,并且这种相互作用是通过电场来传递的。
库仑定律是描述电荷之间相互作用力的重要定律,而电场强度则是描述电场的物理量。
本文将探讨库仑定律与电场强度之间的关系。
一、库仑定律的描述库仑定律是由法国物理学家库仑在18世纪末提出的,它描述了两个电荷之间的相互作用力与它们之间的距离的平方成正比,与它们的电荷量的乘积成正比。
数学表达式如下:$$F = \frac{{k |q_1 q_2|}}{{r^2}}$$其中,$F$表示电荷之间的相互作用力,$k$是库仑常数,$q_1$和$q_2$分别表示两个电荷的电荷量,$r$表示它们之间的距离。
根据库仑定律可以看出,电荷之间的相互作用力与它们的电荷量的乘积成正比,当电荷量增大时,相互作用力也会增大;相互作用力与它们之间的距离的平方成反比,当距离增大时,相互作用力会减小。
这说明电荷之间的相互作用力不仅与它们的电荷量有关,也与它们之间的距离有关。
二、电场强度的定义在静电场中,我们引入电场强度来描述电场的物理量。
电场强度表示单位正电荷所受到的力的大小,它的方向与力的方向相同。
数学上,电场强度的定义如下:$$E = \frac{F}{q}$$其中,$E$表示电场强度,$F$表示电荷所受的力,$q$表示单位正电荷的电荷量。
从定义可以看出,电场强度是描述单位正电荷所受力的大小,它的单位是牛顿/库仑。
电场强度的方向与受力的方向相同,因此可以用箭头表示。
三、库仑定律与电场强度的关系库仑定律描述了电荷之间的相互作用力,而电场强度则描述了单位正电荷所受力的大小。
它们之间存在一定的关系。
在一个单电荷的电场中,电场强度可以表示为:$$E = \frac{{k |q|}}{{r^2}}$$利用库仑定律的表达式$F = \frac{{k |q_1 q_2|}}{{r^2}}$,我们可以将电场强度表示为:$$E = \frac{F}{q} = \frac{{k |q_1 q_2|}}{{q r^2}} = \frac{{q_2}}{{r^2}}$$从上述公式可以看出,电场强度与电荷量、距离的平方成正比。
库仑定律 电场 电场强度
国防科大
二. 库仑定律( Coulomb Law)
1. 点电荷:又一个理想模型。
2. Coulomb 定律
1785年,库仑实验——电学进入科学行列。
等 效
r >> l
l
点电荷 —— 一种理想模型
.P
扭秤实验及其它实验
电力的平方反比律
.P
点电荷的实验基础: (1)质子的散射实验表明质子线度<10-15m; (2)电子对撞实验表明电子线度<10-18m Charles Augustin de Coulomb 1736-1806,French physicist
(1) 基本实验规律。适用条件:真空、静止、点电荷; 适用范围:宏观,微观。 (2) Coulomb作用力本质的两种不同解释,场作用的观点。 (3) 实验表明,严格遵从平方反比定律。若 1773,卡文迪许 1860, 麦克斯威 1971,威廉斯等 (4)与万有引力比较
● 电子与质子之间的万有引力为
● 所以库仑力与万有引力数值之比为 因此在考虑带电粒子间的相互作用力时, 可忽略万有引力。
| q n | | qe | | q p | 10 21 | qe | | qe |
Q
i
c
表明:电荷量子化已在相当高的精度下得到了检验。
高能物理中正负电荷对总是成对产生或消灭。 5. 电荷的本质:物质的一种属性;电荷不能脱离物质而 存在。作为物质属性的质量与电荷存在差别:相对论不 变性。
电荷周围存在电场,表现在 Q 周围引进另一点电荷q, q 会受到电力作用。q在不同点受到的电力不同,反映了不同 点电场不同。 电场强度: 描述场中各点电场强弱的物理量。 引进试验电荷q (q应足够小,以免它 的引入改变原来的场分布),利用q 在不同场点受力不同研究场的分布。
库仑定律与电场强度的计算
库仑定律与电场强度的计算库仑定律是电磁学中非常重要的定律之一,用于描述静电荷的相互作用。
它是由英国物理学家查尔斯·奥古斯丁·库仑在18世纪末提出的。
库仑定律通过计算两个电荷之间的作用力来研究电场的强度。
本文将详细介绍库仑定律以及电场强度的计算方法。
首先,我们来看一下库仑定律的表达式:$$F = k \frac{q_1 q_2}{r^2}$$其中,F代表两个电荷之间的作用力,q1和q2分别为两个电荷的大小,而r则代表两个电荷之间的距离。
k是一个比例常数,即库仑常数,其值为$$k = \frac{1}{4\pi\epsilon_0}$$其中,ε0为真空介质中的电常数,其值为$$\epsilon_0 = 8.85 \times 10^{-12} C^2/N \cdot m^2$$有了库仑定律的表达式,我们可以计算两个电荷之间的作用力,进而得到电场的强度。
电场强度E定义为单位正电荷所受到的力,因此可以通过库仑定律得到:$$E = \frac{F}{q}$$其中,E为电场强度,F为电荷所受到的力,q为电荷的大小。
在实际应用中,我们常常需要计算电场强度在不同位置的数值。
对于位于点电荷附近的某个位置P,电场强度E的计算可以通过库仑定律进行。
假设点电荷q位于原点O,位置P的坐标为(x, y, z),则点电荷对位置P产生的电场强度可以表示为:$$E = \frac{kq}{r^2}$$这里,r为点电荷和位置P之间的距离,可以通过欧几里得距离公式计算:$$r = \sqrt{x^2 + y^2 + z^2}$$在实际计算中,当有多个电荷同时存在时,需要将每个电荷对位置P产生的电场强度进行叠加,即$$E = \sum_{i} \frac{kq_i}{r_i^2}$$其中,i代表第i个电荷,qi为第i个电荷的大小,ri为第i个电荷和位置P之间的距离。
除了点电荷外,我们还可以通过库仑定律计算电场强度对于一些分布式电荷的情况。
电动力学中的库仑定律和电场强度
电动力学中的库仑定律和电场强度电动力学是物理学的一个分支,研究电荷与电荷之间相互作用的规律。
在电动力学中,库仑定律和电场强度是两个基础概念,它们对于理解电荷间相互作用及电场分布具有重要意义。
一、库仑定律库仑定律是描述电荷之间相互作用的规律。
它由物理学家库仑在18世纪末提出,并经过实验证实。
库仑定律的表达式如下:F = k * (|q1 * q2|) / r^2其中,F表示所受力的大小,k是一个常数,q1和q2分别表示两个电荷的大小,r是两个电荷之间的距离。
该定律说明了两个电荷间的相互作用力与两电荷之间的距离的平方成反比。
当两电荷之间的距离增加时,相互作用力减小;相反,当距离减小时,相互作用力增大。
库仑定律的实质是描述电荷之间的电场相互作用,与其说是一种力,不如说是一种作用力产生的电场的相互联系。
这种相互联系可以通过电场强度来进一步描述。
二、电场强度电场强度描述了电荷在空间中产生的电场的强弱。
电场是由电荷周围的空间中形成的,而电场强度则刻画了电场的强度大小和方向。
电场强度用E表示,其计算公式如下:E =F / q0其中,F表示电荷所受的力,q0表示单位正电荷,在国际单位制中,其数值为1.对于一个点电荷q在某一点的电场强度可以通过库仑定律求得。
电场强度的方向是从正电荷指向负电荷,或者说从高电势区指向低电势区。
电场强度越大表示在该点的电场力越强,电势变化越剧烈。
电场强度与电荷量的关系是正相关的,即电荷量增大,电场强度也增大。
三、库仑定律和电场强度的联系库仑定律和电场强度是紧密相关的,它们描述了电荷之间相互作用以及电场的性质。
库仑定律告诉我们两个电荷之间的相互作用力与距离的关系,而电场强度则告诉我们一个点处电场的强度和方向。
电场强度是建立在库仑定律的基础上的,通过库仑定律可以求得电荷对其他电荷所产生的作用力,然后再用作用力除以单位正电荷的电场强度,得到在该点处的电场强度。
库仑定律和电场强度的研究使我们能够理解电荷之间的相互作用以及电场的分布情况。
电磁学练习(库仑定律、电场强度 (1))
库仑定律、电场强度- 选择题如图,真空中,点电荷q 在场点P 处的电场强度可表示为2014r q E e r πε=vv ,其中r 是q 与P 之间的距离,r e v 是单位矢量。
r e v的方向是()A 总是由P 指向q ; ()B 总是由q 指向P ; ()C q 是正电荷时,由q 指向P ; ()D q 是负电荷时,由q 指向P 。
〔 〕 答案:()B根据场强定义式0q FE ϖϖ=,下列说法中正确的是:()A 电场中某点处的电场强度就是该处单位正电荷所受的力; ()B 从定义式中明显看出,场强反比于单位正电荷;()C 做定义式时0q 必须是正电荷;()D E ϖ的方向可能与F ϖ的方向相反。
〔 〕答案:()A一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个带电量为σd S 的电荷元,在球面内各点产生的电场强度()A 处处为零 ()B 不一定都为零 ()C 处处不为零 ()D 无法判定 〔 〕 答案:()C空间某处附近的正电荷越多,那么有:()A 位于该处的点电荷所受的力越大;()B 该处的电场强度越大;()C 该处的电场强度不可能为零; ()D 以上说法都不正确; 〔 〕 答案:()D库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用;()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 〕 答案:()D在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E <,方向相同;()B A E 不可能等于B E ,但方向相同; ()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 〕 答案:()C电荷之比为1:3:5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径qPAC B E v()BAC BE v()AAC B E v()DAC B ()CE v 大得多.若固定A 、C 不动,改变B 的位置使B 所受电场力为零时,AB 与BC 的比值为 ()A 5; ()B 15; ()C 5; ()D 1/5 ( ) 答案:()D真空中两块互相平行的无限大均匀带电平面。
大学物理习题集
说明:字母为黑体者表示矢量练习一 库仑定律 电场强度一.选择题1. 关于试验电荷以下说法正确的是:(A) 试验电荷是电量极小的正电荷; (B) 试验电荷是体积极小的正电荷; (C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2. 关于点电荷电场强度的计算公式E = q r / (4 π ε 0 r 3),以下说法正确的是(A) r →0时, E →∞;(B) r →0时,q 不能作为点电荷,公式不适用; (C) r →0时,q 仍是点电荷,但公式无意义;(D) r →0时,q 已成为球形电荷,应用球对称电荷分布来计算电场.3. 在点电荷激发的电场中,如以点电荷为中心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E 处处不等;(B) 球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场; (C) 球面上的电场强度矢量E 的方向一定指向球心;(D) 球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.4. 图1.1所示为一沿X 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和−λ ( x > 0),则XOY 坐标平面上(0, a )点处的场强为: 图1.1(A ) 0. (B)i a02πελ. (C)i a 04πελ. (D) )(40j i +aπελ.5. 在没有其它电荷存在的情况下,一个点电荷q 1受另一点电荷 q 2 的作用力为f 12 ,当放入第三个电荷Q 后,以下说法正确的是(A) f 12的大小和方向都不会改变, 但q 1受的总电场力发生了变化;(B) f 12的大小、方向均发生改变, q 1受的总电场力也发生了变化. (C) f 12的大小不变,但方向改变, q 1所受的总电场力不变; (D) f 12的大小改变了,但方向没变, q 1受的总电场力不变; 二.填空题11. 如图1.2所示,真空中一半径为R 的均匀带电球面,Q ( Q > 0). 今在球面上挖去一非常小的面积ΔS(连同电荷设不影响原来的电荷分布,则挖去ΔS E = , 其方向为 .2. 两个电量都是+q 的点电荷, 相距为2a , 连线中点为O . 线的中垂线上放另一点电荷-q 0, 距O 点为x 。
电荷的力量库仑定律与电场强度
电荷的力量库仑定律与电场强度电荷的力量:库仑定律与电场强度引言:电荷是物质基本属性之一,它的存在和相互作用在自然界中起着重要作用。
理解电荷之间的力量关系对于电学研究和应用具有重要意义。
本文将介绍库仑定律和电场强度这两个与电荷相关的概念,并详细讨论它们的定义、计算公式以及应用。
一、库仑定律:库仑定律是描述电荷之间相互作用的基本规律。
根据库仑定律,两个电荷之间的作用力与它们的电荷量有关,且随着它们之间的距离增大而减小。
库仑定律的数学表达式如下:F = k * (|q1 * q2|) / r²其中,F表示两个电荷之间的作用力,q1和q2分别表示两个电荷的电荷量,r表示它们之间的距离,k是一个常数,被称为库仑常数。
根据库仑定律的公式,当两个电荷的电荷量增大时,它们之间的作用力也增大。
而当它们之间的距离增大时,作用力则减小。
这个定律为我们理解电荷间力的大小和性质提供了基本依据。
二、电场强度:电场强度是描述某个点处电场的强弱程度的物理量。
在电场中,电荷对周围空间产生电场,电场强度描述了单位正电荷在电场中所受到的力的大小和方向。
电场强度可以通过以下公式计算:E =F / q其中,E表示电场强度,F表示电场中作用在电荷上的力,q表示电荷量。
电场强度具有方向性,它的方向与电场中力的方向相同。
当电场中只存在一个点电荷时,电场强度的方向就是由该点电荷指向测试点的方向。
电场强度的计算公式可以帮助我们判断在特定电场中,电荷在某一点受到的力的大小和方向。
这个概念对于理解电场现象和电荷运动具有重要意义。
三、库仑定律与电场强度的关系:库仑定律和电场强度密切相关,可以通过电场强度来计算电荷之间的作用力。
当考虑在某一点P处的电场强度与库仑定律时,可以使用以下公式计算电场强度:E =F / q = k * (|Q| / r²)其中,E表示点P处的电场强度,F表示点P处的电场中作用在单位正电荷上的力,Q表示电荷源的电荷量,r表示电荷源与点P之间的距离,k是库仑常数。
电磁学1库仑定律和电场强度
真空中的 介电常数
4o o 编8 辑.8 ppt 1 5 1 0C 22/N2m
注:
F
q1q2
4or 2
er
1°遵从牛顿第三定律 F 12F 21
2°库仑定律只适用两个静止点电荷 q1、q2 同号, 排斥力 q1、q2 异号, 吸引力
F12
r
F21
q1
F21
r
q2
F12
q2
q1
3°若q1、q2在介质中,介电常数 = ro;
2
R 6
Q
30R2
例6. 半径为 R 的均匀带电圆盘,面电荷密度为 ,
求:圆盘轴线上任一点 P 的场强。
解:圆盘可视为许多小圆环组成
取半径为 r 宽为dr 的圆环
d q 2πrdr
R or
dr
P Ex
以dq 代替右式中的q 得:
x dE
dE24πxo(r22πxrd2r)32
E4πo(rx2qx2)32
带电圆环在轴线上的电场强度:
dE4πo(ss2dqr2)32
x R时,s x R c o s,r R s in
xRcos2R 2sind
E040(x2R 22R xcos)32
Q
4 0
0
x
2
,
编辑ppt
, xR xR
作业 6-T1、T2、T3、T4
编辑ppt
空气中 : o
4°基本实验规律
在宏观,微观领域编辑都ppt 适用!
2. 电力叠加原理
实验证明:
多个点电荷存在时,任意一个点电荷受的
静电力等于其它各个点电荷单独存在时对它
的作用力的矢量和。
q2 q1
电磁学复习练习题作业(答案)
第一次作业(库仑定律和电场强度叠加原理)一 选择题[ C ]1下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E / 定出,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.[ C ]2 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为: (A)2012a Q . (B) 206a Q.(C)203a Q . (D)20a Q.[ B ]3图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a 02 . (C) i a 04 . (D) j i a04 . 【提示】根据)sin (sin 4120 a E x )cos (cos 4210aE y对+ 均匀带电直线2,021对— 均匀带电直线0,221在(0,a )点的场强是4个场强的矢量和[ A ]4电荷面密度分别为+ 和- 的两块“无限大”均匀带电的平行平板,如图放置,则其周围空间各点电场强度随位置坐标x 变化的关系曲线为:(设场强方向 向右为正、向左为负)O +- x y (0, a ) O x -a a y+ -O -a +a 0/x(A)EO E -a +a 02/ x (B)OE -a +a 02/ x(C)-02/OE -a +a2/ x(D)/ 02/【提示】依据02E 及场强叠加 二.填空题5. 电荷为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.4N / C 2分 向上 1分6. 电荷均为+q 的两个点电荷分别位于x 轴上的+a 和-a 位置,如图所示.则y 轴上各点电场强度的表示式为E=j y a qy2/322042 , (j为y 方向单位矢量) ,场强最大值的位置在y =2/a7.两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为 1和 2如图所示,则场强等于零的点与直线1的距离a 为d 211三计算题8.如图所示,一电荷面密度为 的“无限大”平面,在距离平面a 处的一点的场强大小的一半是由平面上的一个半径为R 的圆面积范围内的电荷所产生的.试求该圆半径的大小.解:电荷面密度为 的无限大均匀带电平面在任意点的场强大小为E = / (2 0) 2分以图中O 点为圆心,取半径为r →r +d r 的环形面积,其电量为d q = 2 r d r 2分它在距离平面为a 的一点处产生的场强+q +q -a+aO xy12a daR O E2/32202d ra ardrE2分则半径为R 的圆面积内的电荷在该点的场强为R r a r r a E 02/3220d 222012R a a 2分 由题意,令E = / (40),得到R =a 32分9.如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为 =q / L ,在x 处取一电荷元d q = d x = q d x / L ,它在P 点的场强: 204d d x d L q E204d x d L L xq 2分总场强为 Lx d L xL q E 020)(d 4- d L d q 043分 方向沿x 轴,即杆的延长线方向.10.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度. 解:把所有电荷都当作正电荷处理.在 处取微小电荷 d q = d l = 2Q d /它在O 处产生场强d 24d d 20220RQR q E2分按 角变化,将d E 分解成二个分量:d sin 2sin d d 202RQ E E xOd cos 2cos d d 202R Q E E y3分对各分量分别积分,积分时考虑到一半是负电荷2/2/0202d sin d sin 2R QE x =0 2分 2022/2/0202d cos d cos 2R QR Q E y2分 所以j RQ j E i E E y x2021分 第三次作业答案(高斯定理和电势2)1. 以下各种说法是否正确?(回答时需说明理由)(1)场强为零的地方,电势也一定为零。
库仑定律电场强度
库仑定律电场强度1.共点力的平衡条件:物体不受力或所受外力的合力为零.2.在某力作用下几个物体运动的加速度相同时,常用整体法求加速度,隔离法求相互作用力.3.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力的大小,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)公式:F=错误!,适用条件:①真空中;②点电荷.4.电场强度(1)定义式:E=错误!,适用于任何电场,是矢量,单位:N/C或V/m.(2)点电荷的场强:E=错误!,适用于计算真空中的点电荷产生的电场.(3)规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向.电场中某一点的电场强度E与试探电荷q无关,由场源电荷(原电场)和该点在电场中的位置决定.5.场强叠加原理和应用(1)当空间有几个点电荷同时存在时,它们的电场就互相叠加,形成合电场,这时某点的场强就是各个点电荷单独存在时在该点产生的场强的矢量和.(2)场强是矢量,遵守矢量合成的平行四边形定则.一、场强公式E=错误!与E=k错误!的比较电场强度是由电场本身决定的,E=错误!是利用比值定义的电场强度的定义式,q是试探电荷,E的大小与q无关.E=k错误!是点电荷电场强度的决定式,Q为场源电荷的电荷量,E的大小与Q有关.例1关于电场强度E,下列说法正确的是( )A.由E=错误!知,若q减半,则该处电场强度为原来的2倍B.由E=k错误!知,E与Q成正比,而与r2成反比C.由E=k错误!知,在以Q为球心,以r为半径的球面上,各处场强均相同D.电场中某点的场强方向就是该点正电荷受到的静电力的方向解析E=错误!为场强定义式,电场中某点的场强E只由电场本身决定,与试探电荷无关,A 错误;E=k错误!是点电荷Q产生的电场的场强决定式,故可见E与Q成正比,与r2成反比,B正确;因场强为矢量,E相同,意味着大小、方向都相同,而在以场源点电荷为球心的球面上各处E的方向不同,故C错误;电场中某点的场强方向与正电荷在该点所受静电力的方向相同,故D正确.答案BD二、两个等量点电荷周围的电场解决这类题目的关键是熟记等量异种点电荷、等量同种点电荷周围电场线的分布情况,依据电场线的分布分析电场强度的变化,再结合牛顿第二定律和运动学公式分析加速度和速度的变化.例2两个带等量正电荷的点电荷,O点为两电荷连线的中点,a点在连线的中垂线上,若在a点由静止释放一个电子,如图1所示,关于电子的运动,下列说法正确的是( )图1A.电子在从a向O运动的过程中,加速度越来越大,速度越来越大B.电子在从a向O运动的过程中,加速度越来越小,速度越来越大C.电子运动到O时,加速度为零,速度最大D.电子通过O后,速度越来越小,加速度越来越大,一直到速度为零解析带等量正电荷的两点电荷连线的中垂线上,中点O处的场强为零,向中垂线的两边先变大,达到一个最大值后,再逐渐减小到零.但a点与最大场强点的位置关系不能确定,当a 点在最大场强点的上方时,电子在从a点向O点运动的过程中,加速度先增大后减小;当a点在最大场强点的下方时,电子的加速度则一直减小,故A、B错误;但不论a点的位置如何,电子在向O点运动的过程中,都在做加速运动,所以电子的速度一直增加,当达到O点时,加速度为零,速度达到最大值,C正确;通过O点后,电子的运动方向与场强的方向相同,与所受电场力方向相反,故电子做减速运动,由能量守恒定律得,当电子运动到a点关于O点对称的b点时,电子的速度为零.同样因b点与最大场强的位置关系不能确定,故加速度大小的变化不能确定,D错误.答案 C三、电场线与带电粒子运动轨迹的综合分析解决这类题目的关键是根据带电粒子运动轨迹的弯曲情况,确定带电粒子的受力,由受力情况确定电场线的方向;根据电场线的疏密程度分析带电粒子的受力大小,由牛顿第二定律a=错误!确定加速度a的大小变化情况.例3如图2所示,直线是一簇未标明方向的由点电荷产生的电场线,曲线是某一带电粒子通过电场区域时的运动轨迹,a、b是轨迹上两点.若带电粒子运动中只受静电力作用,根据此图可以作出的判断是()图2A.带电粒子所带电荷的符号B.带电粒子在a、b两点的受力方向C.带电粒子在a、b两点的加速度何处大D.带电粒子在a、b两点的加速度方向解析根据合外力指向带电粒子运动轨迹的凹面,可以确定带电粒子受电场力的方向,B、D 可以;电场线越密集的地方电场强度越大,带电粒子受到的电场力越大,加速度越大,C可以;由于不知道电场线的方向,只知道带电粒子受力方向,没法确定带电粒子的电性,A不可以.答案BCD四、电场中的动力学问题电场中的动力学问题主要有两类:(1)三电荷系统的平衡问题.同一直线上的三个自由点电荷都处于平衡状态时,每个电荷受到的合力均为零,根据平衡方程可得,电荷间的关系为:“两同夹异”、“两大夹小"、“近小远大”.(2)带电粒子在电场中的加速和减速问题.与力学问题分析方法完全相同,带电体的受力仍然满足牛顿第二定律,在进行受力分析时不要漏掉电场力(静电力).例4如图3所示,带电荷量分别为+q和+4q的两点电荷A、B,相距L,问:图3(1)若A、B固定,在何处放置点电荷C,才能使C处于平衡状态?(2)在(1)中的情形下,C的电荷量和电性对C的平衡有影响吗?(3)若A、B不固定,在何处放一个什么性质的点电荷,才可以使三个点电荷都处于平衡状态? 解析(1)由平衡条件,对C进行受力分析,C应在AB的连线上且在A的右边,设与A相距r,则错误!=错误!解得:r=错误!(2)电荷量的大小和电性对平衡无影响,距离A为错误!处,A 、B 合场强为0。
静电场中的库仑定律和电场强度
静电场中的库仑定律和电场强度静电场是物理学中的一个重要概念,它描述了电荷在相互作用下产生的力和场的效应。
其中,库仑定律和电场强度是静电场中的两个基本概念。
本文将对静电场的这两个概念进行详细介绍。
一、库仑定律库仑定律是描述静电相互作用的定律,由18世纪的法国物理学家库仑提出。
它规定了两个电荷之间的相互作用力与它们之间的距离的平方成反比,与它们的电荷量的乘积成正比。
具体表达式如下:\[F = k \cdot \frac{{|q_1 \cdot q_2|}}{{r^2}}\]其中,\(F\) 表示电荷之间的相互作用力,\(q_1\) 和 \(q_2\) 分别表示两个电荷的电荷量,\(r\) 表示两个电荷之间的距离,\(k\) 表示一个比例常数,也称为库仑常数。
库仑定律表明,同种电荷之间的相互作用力是排斥力,异种电荷之间的相互作用力是吸引力。
而且,这个相互作用力不受介质的影响,只与电荷的大小和距离有关。
可以说,库仑定律是静电场理论的基础。
二、电场强度电场强度是电场的一种物理量,用于描述空间中各点的电场状态。
它表示单位正电荷在电场中所受到的力的大小。
电场强度的定义如下:\[E = \frac{F}{q}\]其中,\(E\) 表示电场强度,\(F\) 表示电荷所受的力,\(q\) 表示电荷的大小。
根据库仑定律的推导,可以得到电场强度的具体表达式:\[E = k \cdot \frac{{|Q|}}{{r^2}}\]其中,\(Q\) 表示电荷源的总电荷量。
电场强度是矢量量,它具有大小和方向。
在库仑定律中,电场强度的方向与电荷所受力的方向相同。
强度的大小与电荷源和距离的关系类似于库仑定律,成反比。
三、电场强度的性质1. 电场强度是连续变化的:在一个静电场中,电场强度不是像单个电荷附近那样有一个确定的数值,而是在空间中各点上均有定义。
电场强度的分布是连续变化的。
2. 电场强度与电荷的分布有关:电场强度的大小和方向与电荷源的分布有关。
电磁学练习题(库仑定律、电场强度 (1))
库仑定律、电场强度- 选择题如图,真空中,点电荷q 在场点P 处的电场强度可表示为2014r qE e r πε=,其中r 是q 与P 之间的距离,r e 是单位矢量。
r e 的方向是()A 总是由P 指向q ; ()B 总是由q 指向P ; ()C q 是正电荷时,由q 指向P ; ()D q 是负电荷时,由q 指向P 。
〔 〕 答案:()B根据场强定义式0q FE =,下列说法中正确的是:()A 电场中某点处的电场强度就是该处单位正电荷所受的力; ()B 从定义式中明显看出,场强反比于单位正电荷;()C 做定义式时0q 必须是正电荷;()D E 的方向可能与F的方向相反。
〔 〕答案:()A一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个带电量为σd S 的电荷元,在球面内各点产生的电场强度()A 处处为零 ()B 不一定都为零 ()C 处处不为零 ()D 无法判定 〔 〕 答案:()C空间某处附近的正电荷越多,那么有:()A 位于该处的点电荷所受的力越大;()B 该处的电场强度越大;()C 该处的电场强度不可能为零; ()D 以上说法都不正确; 〔 〕 答案:()D库仑定律的适用范围是()A 真空中两个带电球体间的相互作用; ()B 真空中任意带电体间的相互作用;()C 真空中两个正点电荷间的相互作用; ()D 真空中两个带电体的大小远小于它们之间的距离。
〔 〕 答案:()D在等量同种点电荷连线的中垂线上有A 、B 两点,如图所示,下列结论正确的是()A A B E E <,方向相同;()B A E 不可能等于B E ,但方向相同; ()C A E 和B E 大小可能相等,方向相同;()D A E 和B E 大小可能相等,方向不相同。
〔 〕 答案:()C电荷之比为1:3:5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径qPAC B E()BAC BE ()AAC B E()DAC B ()CE 大得多.若固定A 、C 不动,改变B 的位置使B 所受电场力为零时,AB 与BC 的比值为 ()A 5; ()B 15; ()C 5; ()D 1/ ( ) 答案:()D真空中两块互相平行的无限大均匀带电平面。
库仑定律和电场强度.
2、1、1 库仑定律和电场强度1、电荷守恒定律大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持不变。
我们熟知的摩擦起电就是电荷在不同物体间的转移,静电感应现象是电荷在同一物体上、不同部位间的转移。
此外,液体和气体的电离以及电中和等实验现象都遵循电荷守恒定律。
2、库仑定律真空中,两个静止的点电荷1q 和2q 之间的相互作用力的大小和两点电荷电量的乘积成正比,和它们之间距离r 的平方成正比;作用力的方向沿它们的连线,同号相斥,异号相吸221r q q kF =式中k 是比例常数,依赖于各量所用的单位,在国际单位制(SI )中的数值为:229/109C m N k ⋅⨯=(常将k 写成041πε=k 的形式,0ε是真空介电常数,22120/1085.8m N C ⋅⨯=-ε)库仑定律成立的条件,归纳起来有三条: (1)电荷是点电荷;(2)两点电荷是静止或相对静止的; (3)只适用真空。
3、电场强度电场强度是从力的角度描述电场的物理量,其定义式为q F E =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。
借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为2r Q k q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。
4、场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。
原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。
例题讲解1、两个完全相同的绝缘金属小球分别带有正、负电荷,固定在一定的距离上,若把它们接触后再放回原处,则它们间库仑力的大小与原来相比将( ) A.一定变小 B.一定变大C.一定不变D.以上情况均有可能2.如图所示,电量为Q 1、Q 2的两个正点电荷分别置于A 点和B 点,两点相距L .在以L 为直径的光滑绝缘的半圆环上,穿有负点电荷q (不计重力)且在P 点平衡,PA 与AB 夹角为α,则12/Q Q 应为( )A .αtanB .α2tan C .α3tan D .α4tan3、 如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为450,则此带电小球通过P 点时的动能为 ( )A. 20mvB. 20mv /2 C. 220mv D.520mv /24、水平地面上有一个倾角为θ的斜面,其表面绝缘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������0 ������
������������������������������������������������������������ = 0
������������ =
������������������ = − 4������ ������0
������������������������������������������������������������ = − 4������ ������0
������������������������
带电细圆环在圆心处产生的电场强度 x 分量为
������������ =
类似地,y 分量为
������������������ = −
������ ������ 2������ 2 0 0 ������
2������ 4������ ������ 0 ������2 0
解析:直接由
E=F/������0
5. 电荷均为+q的两个点电荷分别位于x轴上的+a和-a位置,如 图所示.则y轴上各点电场强度的表示式为 ������ = ������������������ 2������������0 ������ 2 + ������2
3 2
解析:易从点电荷的电场强度 公式和电场叠加原理得到,参 见书本p.102。注意电场强度是 矢量。
O +Q
(1,0) P
x
解析:可由库仑定律和电场强度叠加原理得到。
2、如图所示,在坐标(a,0)处放置一点电荷+q,在坐标(-a,0)处放置另一点电荷-q.P 点是 y 轴上的一点,坐标为(0,y).当 y>>a 时,该点场强的大小 为( C ) y (A)
q 4 0 y
2
.
(B)
q 2 0 y
2
.
P(0,y) -q -a O
+q +a x
qa (C) . 3 2 0 y
qa (D) . 3 4 0 y
解析:参考书本p.102
3、关于电场强度定义式 E F / q0 ,下列说法中哪个是正确的? ( B
(A) (B) (C) (D)
)
场强 E 的大小与试探电荷 q0 的大小成反比. 对场中某点,试探电荷受力 F 与 q0 的比值不因 q0 而变. 试探电荷受力 F 的方向就是场强 E 的方向. 若场中某点不放试探电荷 q0,则 F =0,从而 E =0
解析:电场强度与试探电荷无关。场中某点电场强度方向与正的试探电荷 受力方向同向,与负的试探电荷受力方向反向;所以不管试探电荷正负性, 该点的电场强度方向都一样,只由场源决定。
二.填空题 4. 电荷为-5×10-9 C的试验电荷放在电场中某点时,受到 20×10-9 N的向下 的力,则该点的电场强度大小为____4 N/C______,方向_____向上____.
������ =
������������ =
������ = 1.8 × 104 ������ ������/������
2、半径为 R 的带电细圆环,其电荷线密度为=0sin,式中0 为一常数,为半径 R 与 x 轴 所成的夹角,如图所示.试求环心 O 处的电场强度.
dEx
解:任取一电荷元,在圆心处产生电场强度分解为 x 方向,有
������������ = 4������ ������
������������
0 (15×10 −2 −������ ) 2
������
其中 dq=λdx,λ=1.5×10-8 C/(10×10-2m),
均匀带点细杆在 P 点产生的电场强度为
10×10−2 0 ������������������ 4������ ������ 0 (15×10−2 −������ ) 2
y R
O dE dEy x
������������������ = −������������������������������������ = −
������0 ������������������������������������������ 4������ ������ 0 ������2
������ ������
0 ������ 2
× ������
0
1
������
y
+q -a O
+q +a x
1、如图所示,一长为 10 cm 的均匀带正电细杆,其电荷为 1.5×10 8 C,试求在杆的延长线 上距杆的端点 5 cm 处的 P 点的电场强度.(
-
1 =9×109 N·m2/C2 ) 4 0
P 10 cm 5 cm
解:以杆的左端为坐标原点,沿杆向右为 x 轴正方向建立坐标系。杆上任取电荷元 dq,在 P 点产生的电场强度为
作业1 库仑定律和电场强度
一、 选择题 1、在坐标原点放一正电荷Q,它在P点(x=+1,y=0)产生的电场强度 为 .现在,另外有一个负电荷-2Q,试问应将它放在什么位置才能 使P点的电场强度等于零? ( C ) (A) x轴上x>1. (B) x轴上0<x<1. (C) x轴上x<0. (D) y轴上y>0. y (E) y轴上y<0.