(已压缩)【试卷】】2020-2021学年石室联中七上半期数学

合集下载

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案

成都石室联合中学人教版七年级数学上册期末试卷及答案一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.﹣3的相反数是( ) A .13-B .13C .3-D .34.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .325.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+6.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°7.如图,OA ⊥OC ,OB ⊥OD ,①∠AOB=∠COD ;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个( )A .1个B .2个C .3个D .4个 8.估算15在下列哪两个整数之间( ) A .1,2 B .2,3C .3,4D .4,59.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯C .70.1510⨯D .61.510⨯10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.如图,C ,D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于( )A .3 cmB .6 cmC .11 cmD .14 cm12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.19.若a a -=,则a 应满足的条件为______. 20.52.42°=_____°___′___″. 21.已知二元一次方程2x-3y=5的一组解为x ay b =⎧⎨=⎩,则2a-3b+3=______. 22.计算:3+2×(﹣4)=_____.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

2020-2021学年四川省成都市青羊区石室中学七年级(上)期末数学试卷

2020-2021学年四川省成都市青羊区石室中学七年级(上)期末数学试卷

2020-2021学年四川省成都市青羊区石室中学七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣8的相反数是()A.﹣8B.﹣C.D.82.将一个直角三角板绕直角边旋转一周,则旋转后所得几何体是()A.圆柱B.圆C.圆锥D.三角形3.地球的半径约为6400000米,用科学记数法表示为()A.6.4×105米B.640×104米C.6.4×106米D.64×105米4.下列式子,符合用字母表示数的书写格式的是()A.a÷3B.2x C.a×3D.5.如果单项式﹣x a+1y3与12y b x2是同类项,那么a,b的值分别为()A.a=2,b=3B.a=1,b=2C.a=2,b=2D.a=1,b=36.下列叙述,其中不正确的是()A.两点确定一条直线B.同角(或等角)的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短7.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()A.B.1C.D.28.如图,将长方形纸条的一部分ODCG沿OG折叠到OD1C1G,若∠D1OG=55°,则∠AOD1等于()A.50°B.55°C.60°D.70°9.按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3B.x=﹣4,y=﹣2C.x=2,y=4D.x=4,y=210.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°二、填空题(本大题共4个小题,每小题3分,共12分)11.﹣x3y的系数是,次数是.12.在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款300元,他计划今后每月存款20元,n月后存款总数是元(用含n的代数式表示).13.已知∠α=27°25',则∠α的补角为.14.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.三、解答题(本大题共7个题,共58分)15.计算下列各题:(1)13﹣(﹣)+7﹣|﹣|;(2)﹣14+9×(﹣)2+23.16.解下列方程:(1)解方程:2(x﹣2)=8﹣3(4x﹣1);(2)解方程:x﹣=2﹣.17.先化简,再求值:2(ab﹣3a2)+[5a2﹣(3ab﹣a2)],其中a=,b=1.18.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.19.为弘扬中华传统文化,某校组织八年级800名学生参加汉字听写大赛为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,得到如下所示的模数分布表:分数段50.5﹣60.560.5﹣70.570.5﹣80.580.5﹣90.590.5﹣100.5频数163050m24所占百分比8%15%25%40%n请根据尚未完成的表格,解答下列问题:(1)本次抽样调查的样本容量为,表中m=,n;(2)补全图中所示的频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?20.完成下面推理过程.在括号内的横线上填空或填上推理依据.如图,已知:AB∥EF,EP⊥EQ,∠EQC+∠APE=90°,求证:AB∥CD证明:∵AB∥EF∴∠APE=()∵EP⊥EQ∴∠PEQ=()即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∴EF∥()∴AB∥CD()21.某公司招聘外卖送餐员,送餐员的月工资由底薪1000元加上外卖送单补贴(送一次外卖称为一单)构成,外卖送单补贴的具体方案如下:外卖送单数量补贴(元/单)每月不超过500单6超过500单但不超过m单的部分(700≤m≤900)8超过m单的部分10(1)若某“外卖小哥”4月份送餐400单,则他这个月的工资总额为多少元?(2)设5月份某“外卖小哥”送餐x单(x>500),所得工资为y元,求y与x的函数关系式.(3)若某“外卖小哥”5月份送餐800单,所得工资为6500元,求m的值.四、填空题(22-26题,每题3分;27题4分,共19分)22.若(m+1)x|m|﹣3=0是关于x的一元一次方程,则方程的解为.23.若x、y为有理数,且(5﹣x)2+|y+5|=0,则()2021=.24.如图是一个正方体的展开图,A=x2,B=2x2+1,C=2x﹣2,D=2x+1,且相对两个面所表示的整式的和都相等,则E+F=.25.有理数a,b,c在数轴上的位置如图所示,化简|c﹣a|+|c﹣b|﹣|a+b|=.26.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B处.将木棒在数轴上水平移动,当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5,则木棒MN的长度为.27.我们可以用符号f(a)表示代数式,当a为正数时,我们规定:如果a为偶数,f(a)=0.5a,如果a 为奇数,f(a)=5a+1.例如f(20)=10,f(5)=26.设a1=6,a2=f(a1),a3=f(a2),…,依此规律进行下去,得到一列数a1、a2、a3、…、a n(n为正整数),则a2019=;计算2a1﹣a2+a3﹣a4+a5﹣a6+…+a2017﹣a2018+a2019﹣a2020=.五、解答题(共30分)28.(1)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,试求a2﹣2ab﹣b2的值.(2)已知关于x方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,试求(﹣2m)2021﹣(m﹣)2020的值.29.今有三位好伙伴,小学就读于同一个班级.初中的第一个寒假到了,某天就读于不同中学的他们聚在一起,谈起数学,都兴奋不已,彼此抛出了一个数学问题.甲的问题是:(+++…++)的值为多少?乙的问题是:如图1,将长方形纸片的一角折叠,使顶点A落在F处,折痕为BC,作∠FBD的角平分线BE,将∠FBD沿BF折叠使BE,BD均落在∠FBC的内部,且BE交CF于点M,BD交CF于N.若BN平分∠CBM,则∠ABC的度数为多少?丙的问题是:如图2,线段AB表示一根对折的绳子,点P在AB上且AP=PB.若在P处将绳子剪断,所得三段绳子的最大值为8cm,则整条绳子剪断前的长度为多少?如果用a表示甲的问题中的值;用b表示乙的问题中∠ABC的度数,用c表示丙的问题中绳子长度的厘米数.同学,你能超越他们,迅速算出a、b、c并将它们用“>”连接起来吗?(要写求解过程)30.如果两个角的差的绝对值等于60°,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0°小于180°的角),例如∠1=80°,∠2=20°,|∠1﹣∠2|=60°,则∠1和∠2互为“伙伴角”,即∠1是∠2的“伙伴角”,∠2也是∠1的“伙伴角”.(1)如图1,O为直线AB上一点,∠AOC=∠EOD=90°,∠AOE=60°,则∠AOE的“伙伴角”是;(2)如图2,O为直线AB上一点,∠AOC=30°,将∠BOC绕着点O以每秒1°的速度逆时针旋转得∠DOE,同时射线OP从射线OA的位置出发绕点O以每秒4°的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停止,若设旋转时间为t秒,求当t为何值时,∠POD与∠POE互为“伙伴角”;(3)如图3,∠AOB=160°,射线OI从OA的位置出发绕点O顺时针以每秒6°的速度旋转,旋转时间为t秒(0<t<),射线OM平分∠AOI,射线ON平分∠BOI,射线OP平分∠MON,问:是否存在t的值使得∠AOI与∠POI互为“伙伴角”?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.D;2.C;3.C;4.D;5.D;6.C;7.C;8.D;9.C;10.C;二、填空题(本大题共4个小题,每小题3分,共12分)11.﹣;4;12.(300+20n);13.152°35′;14.﹣10;三、解答题(本大题共7个题,共58分)15.;16.;17.;18.6;19.200;80;=12%;20.∠PEF;两直线平行,内错角相等;90°;垂直的定义;∠QEF;CD;内错角相等,两直线平行;平行公理;21.;四、填空题(22-26题,每题3分;27题4分,共19分)22.x=;23.﹣1;24.2x+3;25.;26.;27.16;17;五、解答题(共30分)28.;29.;30.;。

2020-2021学年成都市青羊区石室联中七年级上学期期末数学试卷(附答案解析)

2020-2021学年成都市青羊区石室联中七年级上学期期末数学试卷(附答案解析)

2020-2021学年成都市青羊区石室联中七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.有理数a在数轴上的位置如图所示,则关于a,−a,1的大小关系表示正确的是()A. a<1<−aB. a<−a<1C. 1<−a<aD. −a<a<12.如图是用八块相同的小正方形体搭建的几何体,它的左视图是()A.B.C.D.3.下列计算结果是m4的是()A. m⋅(−m)3B. −m3⋅m2C. m2+m2D. m6÷m24.2017年3月5日,李克强总理在十二届全国人大五次会议上作政府工作报告谈到,2016年我国国内生产总值达到74.4万亿元,增长6.7%,名列世界前茅.其中74.4万亿元用科学记数法表示为()A. 7.44×1013元B. 7.44×1012元C. 74.4×1012元D. 7.44×1014元5.2018年合肥市共有30293名考生参加中考,为了了解这30293名考生的数学成绩,从中抽取了1000名生的数学成绩进行统计分析,以下说法中,错误的是()A. 这种调查采用了抽样调查的方式B. 30293名考生是总体C. 从中抽取的1000名考生的数学成绩是总体的一个样本D. 样本容量是10006.时钟5点整时,时针和分针之间的夹角是()A. 210°B. 30°C. 150°D. 60°7.下列语句,叙述正确的是()A. A、B两点间的距离是指连接A、B两点的线段B. 点A到直线BC的距离是指点A到直线BC的垂线段C. 过线段AB上一点M只能作出1条直线和AB垂直D. 过线段AB外一点M可以作出n条直线和AB垂直8.次数是5的单项式是()A. x5+1B. 12x5 C. −3xy5 D. x2+y39.如图,两船只A、B分别在海岛O的北偏东30°和南偏东45°方向,则两船只A、B与海岛O形成的夹角∠AOB的度数为()A. 120°B. 90°C. 125°D. 105°10.一架飞机在A,B两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/小时.设A,B两城之间的距离为x,则可列出方程()A. x5.5−x6=24 B. x−245.5=x+246C. x6+24=x5.5−24 D. x+245.5=x−246二、填空题(本大题共10小题,共35.0分)11.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n个这样的三角形需要火柴棒______根.12.若∠β=50°30′,则∠β的余角等于______ °.13.已知:m+2n−2=0,则3m⋅9n的值为______.14.若|a−2|+(b+3)2=0,则(a+b)2017=______.15.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则|a+b|4m+2m2−3cd的值是______ .16.已知x、y都是钝角的度数,甲、乙、丙、丁四人计算16(x+y)的结果依次为50°、26°、72°、90°,你认为______ 结果是正确的.17.若多项式x2+2kxy−5y2−2x−6xy+4中不含xy项,则k=______ .18.计算a|a|+b|b|+c|c|+abc|abc|的值为______ 。

2020-2021四川省成都市石室中学七年级数学上期中试卷(含答案)

2020-2021四川省成都市石室中学七年级数学上期中试卷(含答案)
解决下列问题:
(1)如图1,已知 ,若 ,则 __________;
(2)如图2,已知 , ,若 ,则 __________.
(3)如图3,已知 的,点 在 轴上,且三角形 的面积为3,则 __________.
24.先化简,再求值:
,其中a=2 , b=-2
25.如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
解析:8
【解析】
【分析】
将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.
【详解】
∵x=3是方程ax﹣6=a+10的解,
∴x=3满足方程ax﹣6=a+10,
∴3a﹣6=a+10,
解得a=8.
故答案为8.
16.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时
2020-2021四川省成都市石室中学七年级数学上期中试卷(含答案)
一、选择题
1.下面四个代数式中,不能表示图中阴影部分面积的是()
A. B.
C. D.
2.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()
A.24里B.12里C.6里D.3里
3.用科学记数方法表示 ,得()
A. B. C. D.
4.解方程 ,去分母正确的是( )

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷(含解析)

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷(含解析)

2023-2024学年四川省成都市石室联合中学教育集团七年级(上)期末数学试卷一、选择题1.−2的相反数是( )A. 2B. −2C. 12D. −122.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A.B.C.D.3.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为( )A. 0.15×109千米B. 1.5×108千米C. 15×107千米D. 1.5×107千米4.下列各式中,不是同类项的是( )A. 2ab 2与−3b 2aB. 2πx 2与x 2C. −12m 2n 2与5n 2m 2D. −xy 2与6yz 25.下面计算正确的是( )A. a 3⋅a 3=2a 3B. 2a 2+a 2=3a 4C. a 9÷a 3=a 3D. (−3a 2)3=−27a 66.下列调查中,最适合采用抽样调查的是( )A. 对某地区现有的16名百岁以上老人睡眠时间的调查B. 对“神舟十一号”运载火箭发射前零部件质量情况的调查C. 对某校九年级三班学生视力情况的调查D. 对某市场上某一品牌电脑使用寿命的调查7.数轴上点A 与数轴上表示3的点相距4个单位,则点A 表示的数是( )A. −1或7B. −1C. 7D. 1或−78.某班组每天生产60个零件才能在规定时间内完成一批零件生产任务,实际该班组每天比计划多生产了4个零件,结果比规定的时间提前5天完成,若设该班组要完成的零件生产任务为x 个,则可列方程为( )A. x 60−x 60−4=5B. x 60−4−x 60=5C. x 60−x 60+4=5D. x 60+4−x 60=5二、非选择题9.单项式5xy 42的次数是______.10.已知x =5是方程3x +1=2−a 的解,则a 的值是______.11.如图,OA 是北偏东30°的一条射线,若∠AOB =90°,则OB 的方向角是______.12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1,2,3,−3,A ,B ,相对面上的两个数互为相反数,则A B = ______.13.如图,将长方形纸片ABCD 沿直线EN 、EM 进行折叠后(点E 在AB 边上),B′点刚好落在A′E 上,若折叠角∠AEN =30°15′,则另一个折叠角∠BEM =______.14.(1)计算:14−20+(−12)×13;(2)计算:−12020+|−6|−(π−3.14)0+(−13)−2;(3)解方程:3(x−2)+1=x−(2x−1);(4)解方程:x−3x +23=1−x−22.x2−3xy+2y2)+3(x215.先化简,再求值:已知(x−2)2+|y+1|=0,先化简,再求值:4xy−2(32−2xy).16.如图,已知点C为AB上一点,AC=15cm,CB=2AC,若D、E分别为AC、AB的中点,求DE的长.317.本学期,我校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______名;(2)扇形统计图中表示A级的扇形圆心角α的度数是______,并把条形统计图补充完整;(3)该校八年级共有学生1200名,如果全部参加这次测试,估计优秀的人数为多少?18.如图,在数轴上点A表示的数是−4,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,且到点B的距离是到点A距离的2倍.(1)点B表示的数是______;点C表示的数是______;(2)若点P从点A出发,沿数轴以每秒6个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒3个单位长度的速度向左匀速运动.设运动时间为t秒,在运动过程中,当t为何值时,点P与点Q之间的距离为9?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB,在运动过程中,是否存在某一时刻使得PC+QB=4?若存在,请求出此时点P表示的数;若不存在,请说明理由.19.已知9m=12,3n=6,求3m−2n的值为______.20.若a和b互为相反数,c和d互为倒数,|m|=2,那么代数式a+b2024−3cd+2m的值为______.21.有理数a,b,c在数轴上的位置如图所示,化简:2|b−a|−|c−b|+|a+b|=______.22.如图所示,将形状、大小完全相同的“⋅”和线段按照一定规律摆成下列图形,第1幅图形中“.”的个数为a1,第2幅图形中“⋅”的个数为a2,第3幅图形中“⋅”的个数为a3,以此类推,则a4的值为______;1a1+1a2+1a3+…+1a18的值为______.23.对任意一个三位数n,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数和与111的商记为F(n),例如:n=123,对调百位与十位上的数字得n1=213,对调百位与个位上的数字得n2=321,对调十位与个位上的数字得n3=132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.则F(512)的值为______;若s,t都是“相异数”,其中s=100x+32,t=270+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=F(s)F(t),当F(x)+F(t)=20时,则k的最大值为______.24.(1)若关于a,b的多项式3(a2−2ab+b2)−(2a2−mab+2b2)中不含有ab项,则m的值为______.(2)完全平方公式经过适当的变形,可以解决很多数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:∵a+b=3,ab=1,∴(a+b)2=9,2ab=2,∴a2+b2+2ab=9,∴a2+b2=7.根据上面的解题思路与方法解决下列问题:(i)如图,点C是线段AB上的一点,分别以AC,BC为边向直线AB两侧作正方形BCFG,正方形AEDC,设AB=8,两正方形的面积和为40,则△AFC的面积为______;(ii)若(9−x)(x−6)=2,求(9−x)2+(x−6)2的值.25.今年12月份,某商场用22500元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元.(1)求12月份两种取暖器各购进多少台?(2)由于今冬天气寒冷,取暖器市场供不应求,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利60%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价多少元?26.如图1,如图点O为线段MN上一点,一副直角三角板的直角顶点与点O重合,直角边DO,BO在线段MN 上,∠COD=∠AOB=90°.(1)将图1中的三角板COD绕点O沿顺时针方向旋转到如图2所示的位置,若∠AOC=35°,则∠BOD=______;猜想∠AOC与∠BOD的数量关系为______;(2)将图1中的三角板COD绕点O沿顺时针方向按每秒12°的速度旋转一周,三角板AOB不动,请问几秒后OD所在的直线平分∠AOB?(3)将图1中的三角板COD绕点O沿逆时针方向按每秒9°的速度旋转两周,同时三角板AOB绕点O沿逆时针方向按每秒3°的速度旋转(随三角板COD停止而停止),请直接写出几秒后OC所在的直线平分∠AON?答案和解析1.【答案】A【解析】解:−2的相反数是2,故选:A.根据相反数的定义进行判断即可.本题考查相反数,掌握相反数的定义是正确判断的前提.2.【答案】A【解析】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】B【解析】解:150000000=1.5×108.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.【答案】D【解析】【分析】本题考查同类项的定义,解题的关键是正确理解同类项的定义,本题属于基础题型.根据同类项的定义即可求出答案.【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义,A,B,C选项都满足所含的字母相同,并且相同字母的指数也分别相同,D选项所含字母不完全相同,不是同类项,故选:D.5.【答案】D【解析】解:因为a3⋅a3=a6≠2a3,故选项A计算不正确;2a2+a2=3a2≠3a4,故选项B计算不正确;a9÷a3=a6≠a3,故选项C计算不正确;(−3a2)3=−27a6,故选项D计算正确;故选:D.用同底数幂的乘法法则计算A,用合并同类项法则计算B,用同底数幂的除法法则计算C,用积和幂的乘方法则计算D.本题考查了同底数幂的乘除法、合并同类项及积和幂的乘方法则.题目难度较小,熟练掌握整式的运算法则是解决本题的关键.6.【答案】D【解析】【分析】本题考查全面调查与抽样调查,理解全面调查与抽样调查的意义是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、人数不多,容易调查,适合普查;B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C、班内的同学人数不多,很容易调查,因而采用普查合适;D、数量较大,适合抽样调查;故选:D.7.【答案】A【解析】解:当点A在表示3的点右边时,3+4=7;当点A在表示3的点左边时,3−4=−1;即点A表示的数是−1或7,故选:A.分当点A在表示3的点右边时;当点A在表示3的点左边时;分别计算即可求出点A表示的数.本题考查了数轴,熟知数轴上两点之间的距离公式是解题的关键.8.【答案】C【解析】解:由题意等:x60−x60+4=5,故选:C.根据实际该班组每天比计划多生产了4个零件,结果比规定的时间提前5天完成,列出一元一次方程即可.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】5【解析】解:单项式5xy42的次数是1+4=5.故答案为:5.根据单项式次数的定义解答即可.本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.10.【答案】−14【解析】解:把x=5代入方程3x+1=2−a得:2−a=15+1,2−a=16,a=−14,故答案为:−14.根据一元一次方程解的定义,把x=5代入方程3x+1=2−a得关于a的方程,解方程即可.本题主要考查了一元一次方程的解,解题关键是熟练掌握一元一次方程解的定义和解法.11.【答案】北偏西60°【解析】解:如图所示:因为OA是北偏东30°方向的一条射线,∠AOB=90°,所以∠1=90°−30°=60°,所以OB的方向角是北偏西60°.故答案为:北偏西60°.利用已知得出∠1的度数,进而得出OB的方向角.此题主要考查了方向角,正确利用互余的性质得出∠1的度数是解题关键.12.【答案】−12【解析】解:根据正方体表面展开图的“相间、Z端是对面”可知,“1”与“B”是相对的面,“3”与“−3”是相对的面,“2”与“A ”是相对的面,又因为相对面上的两个数互为相反数,所以A =−2,B =−1,所以A B =(−2)−1=1(−2)1=−12,故答案为:−12.根据正方体表面展开图的特征进判断相对的面,再根据相对面上的两个数互为相反数,求出A 、B 所表示的数,最后代入计算即可.本题考查正方体的展开与折叠,掌握正方体表面展开图的特征,正确判断正方体展开图中“相对的面”是正确解答的关键.13.【答案】59°45′【解析】【分析】本题主要考查了角的计算;熟练掌握折叠重合是解决问题的关键.由折叠重合可得∠AEN =∠A′EN ,∠BEM =∠B′EM ,即可得出结果.【解答】解:由折叠重合得:∠AEN =∠A′EN ,∠BEM =∠B′EM ,因为∠AEN =30°15′,所以∠A′EN =30°15′,所以∠BEM =12(180°−∠AEN−∠A′EN)=12(180°−30°15′−30°15′)=59°45′,故答案为:59°45′.14.【答案】解:(1)14−20+(−12)×13=14−20−4=−10;(2)−12020+|−6|−(π−3.14)0+(−13)−2=−1+6−1+9=13;(3)去括号,得3x−6+1=x−2x +1,移项,得3x−x +2x =1+6−1,合并同类项,得4x =6,化系数为1,得x=3;2(4)去分母,得6x−2(3x+2)=6−3(x−2),去括号,得6x−6x−4=6−3x+6,移项,得6x−6x+3x=6+6+4,合并同类项,得3x=16,.化系数为1,得x=163【解析】(1)先计算乘法,再计算加减;(2)先计算零次幂、负整数指数幂、绝对值和乘方,再计算加减;(3)通过去括号、移项、合并同类项和系数化为1等步骤进行求解;(4)通过去分母、去括号、移项、合并同类项和系数化为1等步骤进行求解.此题考查了实数的混合运算与一元一次方程的求解能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.15.【答案】解:∵(x−2)2+|y+1|=0,∴x=2,y=−1,原式=4xy−3x2+6xy−4y2+3x2−6xy=−4y2+4xy,当x=2,y=−1时,原式=−4×(−1)2+4×2×(−1)=−4−8=−12.【解析】先根据非负数的性质得出x、y的值,再去括号、合并同类项化简原式,继而将x、y的值代入计算可得.本题主要考查整式的加减−化简求值,解题的关键是掌握非负数的性质和去括号、合并同类项法则.16.【答案】解:因为AC=15cm,CB=2AC.3所以CB=10cm,AB=15+10=25(cm).又因为E是AB的中点,D是AC的中点.AB=12.5cm.所以AE=12AD=1AC=7.5cm2所以DE=AE−AD=12.5−7.5=5 (cm)【解析】根据条件可求出AB与CB的长度,利用中点的性质即可求出AE与AD的长度,从而可求出答案.本题考查两点间的距离,解题的关键是熟练运用线段之间的熟练关系,本题属于基础题型.17.【答案】4054°【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×6=54°,40C级的人数为:40×35%=14,补充完整的条形统计图如图所示:故答案为:54°;=180(人),(3)1200×640答:估计优秀的人数为180人.(1)根据B级的人数和所占的百分比,可以求得本次抽样测试的学生人数;(2)根据条形统计图中的数据,可以计算出扇形统计图中表示A级的扇形圆心角α的度数和C级的人数,即可将条形统计图补充完整;(3)用总人数乘以优秀的人数所占的百分比即可.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是理解两个统计图中数量关系,利用数形结合的思想解答.18.【答案】142【解析】解:(1)点B 表示的数是:−4+18=14;点C 表示的数是:−4+13×18=2,故答案为:14,2;(2)点P 表示的数为:−4+6t ,点Q 表示的数为:14−3t ,由题意得:|(−4+6t)−(14−3t)|=9,解得:t =1或t =3,答:当t 为1或3时,点P 与点Q 之间的距离为9;(3)存在,请求出此时点P 表示的数PC =|−4+6t−2=|6t−6|,QB =3t ,∵PC +QB =4,∴|6t−6|+3t =4,解得:t =23或t =109,∴−4+6t 的值为:0或83,所以存在,此时点P 表示的数为0或83.(1)根据数轴上点的移动规则求解;(2)根据“点P 与点Q 之间的距离为9”列方程求解;(3)根据“PC +QB =4”列方程求解.本题考查了一元一次方程的应用,找到相等关系是解题的关键.19.【答案】± 318【解析】解:∵9m =12,3n =6,∴(32)m =12,(3n )2=62,(3m )2=12,32n =36,∴3m =±2 3,当3m =2 3,32n =36时,3m−2n =3m ÷32n=2 336= 318,当3m =−2 3,32n =36时,3m−2n=3m÷32n=−23 36=−318,∴3m−2n=±318,故答案为:±318.先根据已知条件,利用幂的乘方法则,求出3m和32n的值,再利用同底数幂相除法则进行计算即可.本题主要考查了同底数幂的除法、幂的乘方和积的乘方,解题关键是熟练掌握同底数幂的除法、幂的乘方和积的乘方法则.20.【答案】1或−7【解析】解:∵a和b互为相反数,c和d互为倒数,|m|=2,∴a+b=0,cd=1,m=±2,当m=2时,a+b2024−3cd+2m=02024−3×1+2×2=0−3+4=1;当m=−2时,a+b2024−3cd+2m=02024−3×1+2×(−2)=0−3+(−4)=−7;∴a+b2024−3cd+2m的值为1或−7,故答案为:1或−7.根据相反数,倒数,绝对值的意义可得a+b=0,cd=1,m=±2,然后分两种情况进行计算即可解答.本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.21.【答案】3a−2b+c【解析】解:由数轴得,c<b<0<a,|a|>|b|,∴b−a<0,c−b<0,a+b>0,∴2|b−a|−|c−b|+|a+b|=2(a−b)−(b−c)+(a+b)=2a−2b−b+c+a+b=3a−2b+c,故答案为:3a−2b+c.观察数轴得到c<b<0<a,|a|>|b|,进一步得出b−a<0,c−b<0,a+b>0,再根据绝对值的性质化简即可.本题考查了数轴,绝对值,熟练掌握数轴的性质和绝对值的性质是解题的关键.22.【答案】241910【解析】解:由图知a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,∴a n=n(n+2),1 a1+1a2+1a3+…+1a18=11×3+12×4+13×5+⋅⋅⋅+118×20=2(1−13+12−14+13−15+14−16+⋅⋅⋅+118−120)=2×(1−1 20)=1910.故答案为:24,1910.由点的分布情况得出a n=n(n+2),据此求解可得.本题主要考查图形的变化类,解题的关键是得出a n=n(n+2).23.【答案】81【解析】解:由题意可得,F(512)=215+521+152111=8;由题意可得,k=F(s)F(t)且F(x)+F(t)=20,∵F(s)=x+5,F(t)=9+y,∴x+y=20−14=6,又∵s和t是相异数,∴x=5,y=1或y=5,x=1,若k的值最大,则F(s)最大,F(t)最小,即x最大,y最小,当x=5,y=1,则k=1010=1,故答案为:8;1.根据题目中得定义即可求得答案.本题考查了整式的知识点,解题的关键在于对题目中的新定义进行掌握并应用.24.【答案】66【解析】解:(1)3(a2−2ab+b2)−(2a2−mab+2b2)=3a2−6ab+3b2−2a2+mab−2b2=a2+(m−6)ab+b2,∵不含有ab项,∴m−6=0,∴m=6,故答案为:6.ab.(2)(i)设正方形BCFG和AEDC的边长分别为a和b,则△AFC的面积为12根据题意,得a+b=8,a2+b2=40,∵(a+b)2=a2+2ab+b2=64,∴ab=12,∴S△AFC=1×12=6,2故答案为:6.(ii)令(9−x)=m,(x−6)=n,则(9−x)2+(x−6)2=m2+n2,∴m+n=3,mn=2,∴(m+n)2=m2+2mn+n2=9,∴m2+n2=5,∴(9−x)2+(x−6)2=5.(1)将原多项式去括号、合并同类项,令ab项的系数为0,求出m的值即可;(2)(i)分别设正方形BCFG和AEDC的边长分别为未知数,得到二者之和、二者平方之和,从而得到二者之积,进而可求得△AFC的面积;(ii)分别用字母表示(9−x)和(x−6),从而得到二者之和、二者之积,计算二者平方之和即可.本题考查完全平方公式的几何背景,熟练掌握完全平方公式是解题的关键.25.【答案】解:(1)12月份购进长虹取暖器x台,则购进格力取暖器(400−x)台.依题意得:50x+60(400−x)=22500.解得x=150.则400−x=250.答:12月份购进长虹取暖器150台,则购进格力取暖器250台.(2)设长虹取暖器调整后的每台售价为y元.格力取暖器调整后的售价为90×(1+5%)=94.5(元).依题意得:(150y+250×94.5)−22500=60%.22500解得y=82.5.答:长虹取暖器调整后的每台售价为82.5元.【解析】(1)等量关系:购进长虹取暖器得成本与购进格力取暖器得成本之和是22500元,列出方程即可解答.(2)等量关系:利润除以成本等于利润率,列出方程即可解答.本题考查了一元一次方程的应用,解题的关键是理解题意,找出题中存在的等量关系.26.【答案】145°∠AOC+∠BOD=180°【解析】解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠COD−∠AOC=55°,∵∠AOB=90°,∴∠BOD=∠AOB+∠AOD=145°,∵∠BOD=∠AOD+∠AOC+∠BOC,∴∠AOC+∠BOD=∠AOC+∠AOD+∠AOC+∠BOC=∠COD+90°=180°,∴∠AOC+∠BOD=180°,故答案为:145°;∠AOC+∠BOD=180°;(2)根据题意可得,当旋转135°或315°时,OD所在的直线平分∠AOB,所以旋转时间为135°÷12°=11.25(秒),315°÷12°=26.25(秒),则11.25秒或26.25秒后OD所在的直线平分∠AOB;(3)由三角板COD绕点O沿逆时针方向按每秒9°的速度旋转两周,得△COD的旋转时间为720°÷9°=80秒,由三角板AOB绕点O沿逆时针方向按每秒3°的速度旋转,得△AOB旋转的角度为3°×80=240°,设旋转的时间为t秒,①当△AOB绕着点O逆时针方向旋转0°到90°,OC平分∠AON时,(90°+3°⋅t)+9°⋅t=180°,依题意得12;解得t=907②当△AOB绕着点O逆时针方向旋转90°到180°,OC平分∠AON时,(270°−3°⋅t)=360°+90°−9°t,依题意得12解得t=42;③当△AOB绕着点O逆时针方向旋转180°到240°,OC平分∠AON时,(270°−3°⋅t)=360°+270°−9°⋅t,依题意得12解得t=66;秒或42秒或66秒后,OC所在直线平分∠AON.综上所述,907(1)根据互余关系先求出∠AOD,再由角的和差求出结果;(2)当沿逆时针方向旋转135°或315°时,OD所在的直线平分∠AOB,由此便可求得结果;(3)设旋转的时间为t秒,分①当△AOB绕着点O逆时针方向旋转0°到90°,OC平分∠AON时;②当△AOB 绕着点O逆时针方向旋转90°到180°,OC平分∠AON时;③当△AOB绕着点O逆时针方向旋转180°到240°,OC平分∠AON时,三种情况,分别列出方程求解即可.本题考查了一元一次方程的应用,角的动态定义,本题的关键是用含t的式子表示角度,并结合分类讨论的思想解题.。

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷

四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷一、单选题1.在一条东西方向的跑道上,小亮先向西走了20米,记作“20-米”,接着又向东走了8米,此时小亮的位置可记作()A .12+米B .12-米C . 8+米D .28-米2.老师在黑板上用粉笔写字,可用下面()的数学知识点来解释.A .点动成线B .线动成面C .面动成体D .线线相交3.“世界陶瓷看中国,中国陶瓷看佛山”,中国陶瓷官方协会的官方数据,仅佛山产区的瓷砖2018年就高达1090000000平方米,将1090000000平方米用科学记数法表示应为()A .100.10910⨯平方米B .91.0910⨯平方米C .810.910⨯平方米D .710910⨯平方米4.下列计算正确的是()A .2222m n mn mn -=-B .22523y y -=C .277a a a +=D .325ab ab ab+=5.下列说法中正确的是()A .单项式2x 的系数是2B .21xy x +-是三次二项式C .23π2x y -的系数是12-D .322xy 的次数是66.如图,数轴上点P ,Q ,M ,N 表示的数绝对值最小的是()A .点PB .点QC .点MD .点N7.某几何体从三个不同方向看到的形状图如图所示,则该几何体的体积是()A .2πB .3πC .6πD .12π8.按照如图所示的操作步骤,若输入的值为4,则输出的值为()A .30B .20-C .90D .28二、填空题9.比较大小:34-45-,415⎛⎫-- ⎪⎝⎭1.86--(填“<”,“>”或“=”).10.十棱柱有条棱,有个面.11.如果单项式167m x y -与335n x y +-是同类项,那mn =.12.若()2530m n -++=,则m n +=.13.在数轴上与表示数7的点距离3个单位长度的点表示的数是.三、解答题14.把下列各数的对应序号填在相应的横线上:①3.14,②10%,③219-,④0,⑤0.27,⑥()2--,⑦3π,⑧ 3.5--正分数集合:_________________;负有理数集合:_________________;自然数集合:_________________;非负数集合:___________________.15.计算(1)()()17278242-++-+;(2)()()()5.57.1 4.57---+--;(3)()215126326⎛⎫⎛⎫-⨯+-÷ ⎪ ⎪⎝⎭⎝⎭;(4)()()202414326-+⨯-÷-.16.先化简,再求值:2x 2+(x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =12-.17.在平整的地面上,有一个由7个完全相同的小立方块搭成的几何体,每个小正方体的棱长均为10cm ,如图所示.(1)请画出这个几何体的主视图和左视图;(2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从正面看和从上面看到的形状图不变,最多添加_______小正方体;(3)将原几何体露出的表面部分(不含底面)涂成红色,那么红色部分的面积为多少?18.“日啖荔枝三百颗,不辞长作岭南人”.每年六月正是荔枝集中上市的时间,下表是六月某周内水果批发市场每天的荔枝批发价格与前一天价格相比的涨跌情况.(前一个周日的批发价是6元/kg )星期一二三四五六日与前一天价格相比的涨跌情况/元0.2+0.15-0.25+0.1+0.3-0.2+0.1-注:正号表示价格比前一天上升,负号表示价格比前一天下降.(1)本周内荔枝的批发价格最高是__________元/kg .批发价格最低是__________元/kg .(2)对比前一个周日,本周日的荔枝批发价格是上升了还是下降了?上升或下降了多少元?(3)某水果商店周一从批发市场购进荔枝100kg ,以8元/kg 的售价销售,很快脱销,于是周三再次从批发市场购进荔枝100kg ,按原售价销售了40kg 后,剩下的按七折出售,全部售完,问水果商店销售这200kg 荔枝共盈利了多少元?四、填空题19.若23x y -=,则代数式249x y --的值等于.20.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是.21.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是立方厘米.(结果保留π)22.已知有理数a ,b ,c 的位置如图所示,化简式子:b c b a c a ++--+=.23.规定:符号[x ]叫做取整符号,它表示不超过x 的最大整数.例如:[]55=,[]2.62=,[]0.20=.现在有一列非负数123,,,a a a ⋯,已知110a =,当2n ≥时,1121555n n n n a a -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则2024a 的值为.五、解答题24.我们在分析解决某些数学问题时经常要比较两个数或整式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形、并利用差的符号来确定它们的大小,即要比较代数式a 、b 的大小,只要求出它们的差a b -,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.请你用“作差法”解决以下问题:(1)制作某产品有两种用料方案:方案一:用3块A 型钢板,用7块B 型钢板;方案二:用2块A 型钢板,用8块B 型钢板;A 型钢板的面积比B 型钢板的面积大,设每块A 型钢板的面积为x ,每块B 型钢板的面积为y ,从省料角度考虑,应选哪种方案?(2)试比较图1和图2中两个矩形周长的大小.25.定义:已知M ,N 为关于x 的多项式,若M N k -=,其中k 为大于0的常数,则称M 是N 的“友好式”,k 叫做M 关于N 的“友好值”.例如:223M x x =++,222N x x =+-,22(23)(22)5M N x x x x -=++-+-=,则称M 是N 的“友好式”,M 关于N 的“友好值”为5.又如,233M x x =++,223N x x =++,()()223323M N x x x x x -=++-++=,x 不是大于0的常数,则称M 不是N 的“友好式”.(1)已知223M x x =+-,221N x x =++,则M 是N 的“友好式”吗?若是,请证明并求出M 关于N 的“友好值”;若不是,请说明理由;(2)已知2244M x m xm =+-,246N x x n =-+,若M 是N 的“友好式”,且“友好值”为14,求m ,n 的值.26.如图,将等边ABC V 放在数轴上,点B 与数轴上表示6-的点重合,点C 与数轴上表示2的点重合,将数轴上表示2以后的正半轴沿C A B →→进行折叠.经过折叠后,(1)点A 、点B 分别与正半轴上表示哪个数的点重合?(2)若点D 为AC 的中点,点E 表示5-.折叠数轴上,记___EA 为数轴拉直后点E 到点A 的距离,即___A EA EC C =+,其中,EC CA 代表线段长度.若动点P 从点D 出发,沿D CB →→方向运动,动点Q 从点E 出发,沿EC →方向运动,当动点Q 运动到点C 时,P 、Q 同时停止运动.已知动点P 在DC 上运动速度为1单位秒,在CB 上运动速度为2单位/秒;动点Q的运动速度为1单位/秒,设运动时间为t(秒).①当t为何值时,动点P、Q表示同一个数.②当t为何值时,______1 PQ QC-=.。

成都石室外语学校数学七年级上册期中试卷

成都石室外语学校数学七年级上册期中试卷

成都石室外语学校数学七年级上册期中试卷一、选择题1.4-的相反数是( ) A .4-B .14-C .14D .42.陕西省位于中国中部黄河中游地区,南部北跨长江支流汉江流城和嘉陵江上游的秦巴山地区,总面积约20.6万平方千米,其中“20.6万”用科学记数法表示为( ) A .420.610⨯ B .42.0610⨯ C .52.0610⨯ D .40.20610⨯ 3.下列运算中正确的是( )A .a 5+a 5=a 10B .a 7÷a =a 6C .a 3•a 2=a 6D .(﹣a 3)2=﹣a 64.若多项式()523mx m x ---是一个二次三项式,则m 的值为( ). A .2±B .2C .2-D .无法确定5.按下面的程序计算,若输入的数为6,则输出的数为( )A .24B .25C .26D .276.若关于x 、y 的多项式2226431x ax y ax x +-+--中没有二次项,则a =( ) A .3B .2C .12-D .3-7.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .ba>08.对于有理数x ,我们规定[]x 表示不大于x 的最大整数,例如[][]1.21,33,==[]2.53,-=-若2106,x +⎡⎤⎢⎥=⎣⎦则x 的取值可以是( ) A .52 B .62 C .56 D .689.观察图中每一个正方形各顶点所标数字的规律,2021应标在( )A .第505个正方形右下角顶点处B .第504个正方形右上角顶点处C .第506个正方形右下角顶点处D .第506个正方形左上角顶点处10.已知整数1a ,2a ,3a ,4a ,…,满足下列条件:10a =,211a a =-+,322a a =-+,433a a =-+,…,以此类推,则2019a 的值为( )A .-1007B .-1008C .-1009D .-2018二、填空题11.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章中,在世界数学史上首次正式引入负数.如果收入100元记作100+元,那么支出80元可表示为____.12.下列说法:①23xy -的系数是2-;②232mn 的次数是3次;③23341xy x y -+是七次三项式;④6x y+是多项式.其中说法正确的是______(写出所有正确结论的序号). 13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.如图,长方形ABCD 被分成六个小的正方,已知中间一个小正方形的边长为1,其它正方形的边长分别为a 、b 、c 、d .观察图形并探索:(1)b =_____,d =_____;(用含a 的代数式表示)(2)长方形ABCD 的面积为_____.15.已知a 2=(-4)2,|b|=2,当ab ﹥0时,a-b=______.16.有理数a 、b 在数轴上分别对应的点为M 、N ,则下列式子结果为正数的是_____ ①a+b ;②a ﹣b ;③﹣a+b ;④﹣a ﹣b ;⑤ab ;⑥ab;⑦a 3b 3.17.《庄子天下篇》中“一尺之棰,日取其半,万世不竭”的意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图,由图易得: 233111112222++=-,那么231111 (2222)n ++++=________.18.将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,…,依次类推,第一个2021出现在第______行. 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 5 6 7 8 9 10 11 12 13 ……三、解答题19.(1)在数轴上把下列各数表示出来:2-,1.5,()4--,5--,1001-.(2)将上列各数用“<”连接起来:______. 20.计算 (1)2(8)+- (2)(32)(27)--- (3)418516⎛⎫⨯-⨯ ⎪⎝⎭(4)3116(2)(4)8÷--⨯-21.先化简,再求值:()()()()224x y x y x y y ⎡⎤---+÷-⎣⎦,其中1x =,4y =-. 22.计算:(1)()()2x y 33x 2y 6x +--+; (2)()()214a 2a 8b a 2b 4-+----. 23.小明同学一周计划每天看《朝花夕拾》10页,实际每天阅读量与计划阅读量相比情况如下表(以计划量为标准,超出的页数记为正数,不足记为负数) 星期 一二三四 五 六 日超出或不足(页)2+ 5-4-10+ 12+ 3-多看了几页?(2)求这一周小明共看的页数.(3)下表是小明第二周的阅读情况星期一二三四五超出或不足(页)a 12b3-12a b若该书共144页,小明第二周用了5天就读完了剩下的部分,则a b+的值为______.24.如图,四边形ABCD和ECGF都是正方形,边长分别为a和6.(1)写出表示阴影部分面积的代数式;(结果要求化简)(2)当a=3.5时,求阴影部分的面积.25.如图,在边长都为a的正方形内分别排列着一些大小相等的圆.(1)根据图中的规律,第4个正方形内圆的个数是_________,第n个正方形内圆的个数是_________(用含n的代数式表示,结果需化简);(2)如果把正方形内除去圆的部分都涂上阴影.①用含a的代数式分别表示第1个正方形中和第3个正方形中阴影部分的面积(结果保留π);②若10a=,请直接写出第2019个正方形中阴影部分的面积_________(结果保留π).二26.如图,点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB a b请你利用数轴回答下列问题:(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和2-的两点之间的距离为________.(2)数轴上表示x和1两点之间的距离为_______,数轴上表示x和3-两点之间的距离为(3)若x 表示一个实数,且53x -<<,化简35x x -++=________. (4)12345x x x x x -+-+-+-+-的最小值为________. (5)13x x +--的最大值为________.【参考答案】一、选择题 1.D 解析:D 【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可. 【详解】解:根据概念,-4的相反数是4. 故选:D . 【点睛】本题考查了相反数的性质,解题的关键是掌握相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0.2.C 【分析】根据科学记数法的定义即可得. 【详解】科学记数法:将一个数表示成的形式,其中,n 为整数,这种记数的方法叫做科学记数法, 则万, 故选:C . 【点睛】本题考查了科学记数法的定义,熟记解析:C 【分析】根据科学记数法的定义即可得. 【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则20.6万452.061010 2.0610=⨯⨯=⨯, 故选:C . 【点睛】本题考查了科学记数法的定义,熟记定义是解题关键. 3.B根据合并同类项、同底数幂除法、同底数幂乘法、幂的乘方,分别进行判断,即可得到答案. 【详解】解:a 5+a 5=2a 5,故A 错误; a 7÷a =a 6,故B 正确; a 3•a 2=a 5,故C 错误; (﹣a 3)2=a 6,故D 错误; 故选:B. 【点睛】本题考查了合并同类项、同底数幂除法、同底数幂乘法、幂的乘方的运算法则,解题的关键是掌握运算法则进行解题. 4.C 【分析】由多项式定义|m|=2,再根据多项式为三项式确定m 的值. 【详解】解:由已知220m m ⎧=⎨-≠⎩,则可知m=2-故应选C 【点睛】本题考查了多项式的项和次数,解答关键是按照定义求出相关字母的数值. 5.D 【分析】按照数值转换机,运用有理数的计算法则进行计算即可得出答案. 【详解】若输入的数为6,232631520x --=-⨯-=-< 输入-15,232(15)32720x --=-⨯--=> 所以输出27 故选D 【点睛】本题主要考查有理数的运算,掌握有理数的运算法则是解题的关键.6.C 【分析】先进行合并,再根据没有二次项分析可知二次项的系数为0,据此可解. 【详解】 解:∵=,而关于、的多项式中没有二次项, ∴2+4a=0,解得:a=. 故选:C . 【点睛】 此题主要解析:C 【分析】先进行合并,再根据没有二次项分析可知二次项的系数为0,据此可解. 【详解】解:∵2226431x ax y ax x +-+--=2(24)(3)61a x a x y ++---, 而关于x 、y 的多项式2226431x ax y ax x +-+--中没有二次项, ∴2+4a=0, 解得:a=12-.故选:C . 【点睛】此题主要考查了多项式,正确把握多项式次数与系数确定方法是解题关键.7.D 【分析】根据数轴上a 、b 的位置结合有理数的运算法则即可判断. 【详解】解:由数轴可知:b <0<a ,|b|>|a|, ∴﹣b >a ,∴a+b <0,a ﹣b >0,<0,b <﹣a <0<a <﹣b .解析:D 【分析】根据数轴上a 、b 的位置结合有理数的运算法则即可判断. 【详解】解:由数轴可知:b <0<a ,|b |>|a |, ∴﹣b >a ,∴a +b <0,a ﹣b >0,ba<0,b <﹣a <0<a <﹣b .故选:D . 【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.8.B 【分析】根据题意可得,再对各项进行判断即可. 【详解】 ∵ ∴ 解得则的取值可以是62 故答案为:B . 【点睛】本题考查了解不等式的问题,掌握解不等式的方法是解题的关键.解析:B 【分析】根据题意可得5868x ≤<,再对各项进行判断即可. 【详解】 ∵2106,x +⎡⎤⎢⎥=⎣⎦∴26710x +≤< 解得5868x ≤< 则x 的取值可以是62 故答案为:B . 【点睛】本题考查了解不等式的问题,掌握解不等式的方法是解题的关键.9.C 【分析】观察可知,每个正方形标四个数字,从右上角的顶点开始,按照逆时针方向每四个正方形为一组依次循环,用2021除以4确定出所在的正方形的序号为506,再用506除以4确定出循环组的第几个正方解析:C 【分析】观察可知,每个正方形标四个数字,从右上角的顶点开始,按照逆时针方向每四个正方形为一组依次循环,用2021除以4确定出所在的正方形的序号为506,再用506除以4确定出循环组的第几个正方形,然后确定出在正方形的位置,即可得解. 【详解】解:观察可知,第1个正方形的第一个数字标在正方形的右上角, 第2个正方形的第一个数字标在正方形的左上角, 第3个正方形的第一个数字标在正方形的左下角, 第4个正方形的第一个数字标在正方形的右下角, 第5个正方形的第一个数字标在正方形的右上角,…,依此类推,每四个正方形为一组依次循环, 2021÷4=505…1, 506÷4=126…2,所以,2021应标在第506个正方形的第二个顶点,是第127个循环组的第1个正方形,在正方形的右下角,即2021应标在第506个正方形右下角顶点处. 故选:C . 【点睛】本题是对数字变化规律的考查,观察出数字的排列特点然后准确确定出2021所在的正方形以及所在循环组的序号是解题的关键.10.C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于,n 是偶数时,结果等于,然后把n 的值代入进行计算即可得解. 【详解】 解:a1=0,a2=−|a1+1|=−|0+1|=−1, a3解析:C 【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --,n 是偶数时,结果等于2n-,然后把n 的值代入进行计算即可得解. 【详解】 解:a 1=0,a 2=−|a 1+1|=−|0+1|=−1, a 3=−|a 2+2|=−|−1+2|=−1, a 4=−|a 3+3|=−|−1+3|=−2, a 5=−|a 4+4|=−|−2+4|=−2, …所以,n 是奇数时,a n =12n --,n 是偶数时,a n =2n-, ∴20192019110092a -=-=-, 故选:C . 【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.二、填空题 11.元 【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可. 【详解】解:如果收入100元记作+100元,那么支出80元记作-80元, 故答案为:-80元. 【点睛】本题考查了正数和负解析:80-元 【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可. 【详解】解:如果收入100元记作+100元,那么支出80元记作-80元, 故答案为:-80元. 【点睛】本题考查了正数和负数,能用正数和负数表示题目中的数是解此题的关键.12.②④ 【解析】 【详解】试题解析:①-的系数是-,故原说法错误;. ②的次数是3次,说法正确;.③3xy2-4x3y+1是四次三项式,故原说法错误;. ④是多项式,说法正确;. 故答案为②④.解析:②④ 【解析】 【详解】 试题解析:①-23xy 的系数是-23,故原说法错误;. ②232mn 的次数是3次,说法正确;.③3xy 2-4x 3y+1是四次三项式,故原说法错误;. ④6x y+是多项式,说法正确;. 故答案为②④.点睛:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中次数最高的项的次数叫做多项式的次数;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数.13.131或26或5或.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.a+1 2a﹣1 143【分析】(1)利用中间一个小正方形的边长为1,得出b,d与a的关系;(2)利用c=b+1,b=a+1,得出c=a+2,再利用c=d﹣1,d=2a﹣1解析:a+1 2a﹣1 143【分析】(1)利用中间一个小正方形的边长为1,得出b,d与a的关系;(2)利用c=b+1,b=a+1,得出c=a+2,再利用c=d﹣1,d=2a﹣1,得出c=2a﹣2,那么2a﹣2=a+2,解方程求出a的值,然后分别计算出长方形ABCD的长与宽,进而求出面积.【详解】(1)∵中间一个小正方形的边长为1,∴b=a+1,d=2a﹣1;故答案为:a+1,2a﹣1;(2)∵c=b+1,b=a+1,∴c=a+2,又∵c=d﹣1,d=2a﹣1,∴c=2a﹣2,∴2a﹣2=a+2,解得a=4.则长方形ABCD的长为c+d=a+2+2a﹣1=3a+1=13,宽为a+d=a+2a﹣1=3a﹣1=11,所以长方形ABCD的面积为:11×13=143.故答案为:143.【点睛】此题主要考查列代数式,解题的关键是根据图形找到等量关系进行求解.15.2或-2.【分析】先根据乘方的意义和绝对值的意义求出a,b,再根据ab﹥0得到a、b同号,进而求出a、b的值,即可求出a-b的值.【详解】解:因为a 2=(-4)2,|b|=2,所以a=±解析:2或-2.【分析】先根据乘方的意义和绝对值的意义求出a,b,再根据ab﹥0得到a、b同号,进而求出a、b的值,即可求出a-b的值.【详解】解:因为a 2=(-4)2,|b|=2,所以a=±4, b=±2,因为ab﹥0,所以a,b同号,当a=4,b=2时,a-b=2,当a=-4,b=-2时,a-b=-2.所以a-b=2或-2.故答案为:2或-2.【点睛】本题考查了乘方的意义、绝对值的意义,有理数运算等知识,根据乘方的意义、绝对值的意义和有理数乘法法则求出a ,b ,并分类讨论是解题关键.16.③④【解析】试题解析:观察数轴,可知:∴①;②;③ ④ ⑤ ⑥;⑦故答案为:③④.解析:③④【解析】 试题解析:观察数轴,可知:00a b a b >,,, 0a b b a ,∴<-<<<- ∴①0a b +<;②0a b -<;③0a b ;-+> ④0a b ;--> ⑤0ab <; ⑥0a b<;⑦()3330a b ab =<.故答案为:③④. 17.【分析】结合题意,通过找出数据的规律,经计算即可得到答案.【详解】设S=+++···+ ∴2S=1+++···+∴2S-S=1∴S=1故答案为:.【点睛】本题考查了图形和数字规 解析:112n - 【分析】结合题意,通过找出数据的规律,经计算即可得到答案.【详解】设S =12+212+312+ (12)∴2S =1+12+212+···+112n -∴2S-S=1-1 2n∴S=1-12n故答案为:112n-.【点睛】本题考查了图形和数字规律的知识;解题的关键是熟练掌握数字规律的性质,从而完成求解.18.675【分析】由题意易得第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=解析:675【分析】由题意易得第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=13……;依此规律可得第n行最后一个数是(3n-2),然后问题可求解.【详解】解:由题意得:第一行最后一个数是3×1-2=1,第二行最后一个数是3×2-2=4,第三行最后一个数是3×3-2=7,第四行最后一个数是3×4-2=10,第五行最后一个数字是3×5-2=13……;∴该列数的规律为:第n行最后一个数是(3n-2),∴322021n-=,解得:16743n=,∴第674行最后一个数字是674×3-2=2020,∴第一个2021出现在第675行;故答案为675.【点睛】本题主要考查数字规律,关键是根据题中所给数字中得到一般规律,然后进行求解即可.三、解答题19.(1)见详解;(2)【分析】首先在数轴上确定各点位置,然后再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“”号连接即可.【详解】解:(1)∵,,∴画图如下:(2)将各数用“”解析:(1)见详解;(2)()100521 1.54--<-<-<<--【分析】首先在数轴上确定各点位置,然后再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”号连接即可.【详解】解:(1)∵()44--=,55--=-,10011-=-∴画图如下:(2)将各数用“<”连接起来:()100521 1.54--<-<-<<--.故答案是:()100521 1.54--<-<-<<--.【点睛】本题主要考查了有理数的大小比较,关键是正确在数轴上确定各点位置.20.(1);(2);(3);(4)【分析】(1)根据有理数的加法运算法则进行求解;(2)根据有理数的减法运算法则进行求解;(3)根据有理数的乘法运算法则进行求解;(4)根据有理数的混合运算法则解析:(1)6-;(2) 5-;(3)25-;(4)32- 【分析】(1)根据有理数的加法运算法则进行求解;(2)根据有理数的减法运算法则进行求解;(3)根据有理数的乘法运算法则进行求解; (4)根据有理数的混合运算法则进行求解.【详解】解:(1)原式(82)6=--=-;(2)原式(32)275=-+=-;(3)原式41285165=-⨯⨯=-; (4)原式11316(8)(4)2822=÷--⨯-=-+=-. 【点睛】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.21.,6【分析】首先将括号里面进行运算,进而利用整式混合运算法则化简,再把已知数代入求出答案.【详解】解:原式,当,时,原式【点睛】此题主要考查了整式的化简求值,正确化简整式是解题关键. 解析:54-x y ,6 【分析】首先将括号里面进行运算,进而利用整式混合运算法则化简,再把已知数代入求出答案.【详解】解:原式()()2222444x xy y x y y =-+-+÷-()()254544xy y y x y =-+÷-=-, 当1x =,4y =-时,原式()51464=-⨯-= 【点睛】此题主要考查了整式的化简求值,正确化简整式是解题关键.22.(1);(2)【分析】直接去括号进而合并同类项得出答案;直接去括号进而合并同类项得出答案.【详解】解:原式原式.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.解析:(1)8x y -+;(2)232a a -+【分析】 ()1直接去括号进而合并同类项得出答案;()2直接去括号进而合并同类项得出答案.【详解】解:()1原式229668x y x y x x y =+-++=-+()2原式22132222a ab a b a a =-+-++=-+. 【点睛】 此题主要考查了整式的加减,正确合并同类项是解题关键.23.(1)周六阅读量最多,22页,17页;(2)82页;(3)10【分析】(1)根据表格中数据,找出绝对值最大(小)的即为日阅读量最多(少)的是哪天,从而计算;(2)将表格中的数据相加,再加上每天解析:(1)周六阅读量最多,22页,17页;(2)82页;(3)10【分析】(1)根据表格中数据,找出绝对值最大(小)的即为日阅读量最多(少)的是哪天,从而计算;(2)将表格中的数据相加,再加上每天的计划量;(3)根据第一周所看页数,得到第二周的页数,依照(2)中方法列出关于a 和b 的等式,化简得到a +b 的值.【详解】解:(1)由表格知,阅读量周六超出12页,阅读量最多,所以周六看了:10+12=22(页),日阅读量最少的是周二,比预计少5页,∴周六比周二多看了12-(-5)=17页;(2)这一周小明共看了:()10725401012382⨯+--+++-=页;(3)该书共144页,第一周共看了82页,剩下144-82=62页,用了5天读完剩下的62页, ∴1131056222a b a b ⎛⎫+-+++⨯= ⎪⎝⎭, ∴()3152a b +=, ∴10a b +=.【点睛】本题考查了正、负数的应用,有理数的混合运算的实际应用,代数式求值,解题的关键是理解题意,列出相应算式.24.(1)-3a +18 ;(2)【分析】(1)阴影部分面积可视为大小正方形减去空白部分(即△ABD 和△BFG ),把对应的三角形面积代入即可得S=-3a+18;(2)直接把a=3.5代入(1)中可求解析:(1)22a -3a +18 ;(2)1098 【分析】(1)阴影部分面积可视为大小正方形减去空白部分(即△ABD 和△BFG ),把对应的三角形面积代入即可得S=22a -3a+18; (2)直接把a=3.5代入(1)中可求出阴影部分的面积.【详解】(1)S=a 2+62-22a -12(a+6)×6 =a 2+62-12a 2-12a×6-12×62 =12a 2-3a+18. (2)当a=3.5时,S=12×3.52-3×3.5+18=1098. 【点睛】本题考查列代数式.要求对图形间的关系准确把握,找到阴影部分的面积是哪些规则图形的面积差是解题的关键.在考查代数式的同时也考查了学生的读图能力,培养了思维的缜密性和数形结合能力.25.(1)16,n2;(2)①第一个正方形:;第三个正方形:;②100-25π【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④解析:(1)16,n 2;(2)①第一个正方形:244a π-;第三个正方形:244a π-;②100-25π【分析】(1)观察上图可知第①个图形圆的个数是12=1,第②个图形圆的个数是22=4,第③个图形圆的个数是32=9,第④个图形圆的个数是42=16,…;可知第n 个正方形中圆的个数为n 2个;(2)①阴影部分的面积等于正方形的面积减去圆的面积,由此列式后即可得到答案; ②根据①中结论,将a=10代入计算得到结果.【详解】解:(1)图形①圆的个数是1,图形②圆的个数是4,图形③圆的个数是9,图形④圆的个数是16,…第n 个正方形中圆的个数为n 2个,故答案为:16,n 2;(2)①第一个S 阴影=a 2-π•(2a )2=244a π-;第二个S 阴影=a 2-4•π•(4a )2=244a π-; 第三个S 阴影=a 2-9•π•(6a )2=244a π-; ②从以上计算看出三个图形中阴影部分的面积均相等,与圆的个数无关.则第n 图形中阴影部分的面积是S 阴影=a 2-n 2•π•(2a n )2=244a π-, 当a=10,第2019个阴影部分的面积为24104π-⨯=100-25π. 故答案为:100-25π.【点睛】此题考查了规律型:图形的变化,认真观察图形,发现图形的变化规律,得出第n 个正方形中圆的个数为n 2个和圆面积的变化是解决此题的关键. 二26.(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4【分析】(1)(2)直接代入公式即可;(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(4)解析:(1)4,3;(2)|x-1|,|x+3|;(3)8;(4)6;(5)4【分析】(1)(2)直接代入公式即可;(3)实质是在点表示3和-5的点之间取一点,计算该点到点3和-5的距离和; (4)可知x 对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(5)分当-1<x <3时,当x≤-1时,当x≥3时,三种情况分别化简,从而求出最大值.【详解】解:(1)|6-2|=4,|-2-1|=3,答案为:4,3;(2)根据两点间距离公式可知:数轴上表示x 和1两点之间的距离为|x-1|,数轴上表示x 和-3两点之间的距离为|x+3|,故答案为:|x-1|,|x+3|;(3)x 对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8,故答案为:8;(4)|x-1|+|x-2|+|x-3|+|x-4|+|x-5|表示数x 到1,2,3,4,5的距离之和,可知:当x 对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6,故答案为:6;(5)当-1<x <3时,|x+1|-|x-3|=x+1+x-3=2x-2,-4<2x-2<4,当x≤-1时,|x+1|-|x-3|=-x-1+x-3=-4,当x≥3时,|x+1|-|x-3|=x+1-x+3=4, 综上:13x x +--的最大值为4.【点睛】此题主要考查了绝对值、数轴等知识,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.。

2020-2021成都石室双楠实验学校七年级数学上期中试题(带答案)

2020-2021成都石室双楠实验学校七年级数学上期中试题(带答案)

2020-2021成都石室双楠实验学校七年级数学上期中试题(带答案)一、选择题1.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 32.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为()A.58°B.59°C.60°D.61°3.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x24.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=52b B.a=3b C.a=72b D.a=4b5.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.2846.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108C.6.66×108D.6.66×1077.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384000km用科学记数法可以表示为()A.38.4 ×10 4 km B.3.84×10 5 km C.0.384× 10 6 km D.3.84 ×10 6 km 8.有理数a、b在数轴上对应的位置如图所示:则下列关系成立的是()A.a-b>0B.a+b>0C.a-b=0D.a+b<09.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9 B.10 C.11 D.1210.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27B.51C.69D.7211.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4012.下列等式变形错误的是( )A.若x=y,则x-5=y-5B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y二、填空题1323______.14.一个圆柱的底面半径为R cm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm.则R=________.15.已知x=3是方程ax﹣6=a+10的解,则a= .16.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.17.实数a,b在数轴上的位置如图所示,则化简代数式|a+b|﹣2a=_____.18.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.19.下列哪个图形是正方体的展开图()A.B.C.D.20.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_____km.三、解答题21.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.22.请仔细阅读下列材料:计算:(-130)÷(23-110+16-25).解:先求原式的倒数,即(23-110+16-25)÷(-130)=(23-110+16-25)×(-30)=-20+3-5+12=-10,所以原式=-1 10.请根据以上材料计算:(-142)÷(16-314+23-27).23.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?24.疫情期间,为了能够及时收治患者,武汉市政府决定建设“火神山”医院甲,乙两个工程队共同承担1000m的排污管道建设任务,已知甲工程队每天可以完成100m,乙工程队每天可以完成80m,开始工作后,甲先工作一天,乙才开始工作,求乙加入后,还需几天才能完成这项工程?25.某鱼池捕鱼8袋,以每袋25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3, 2,-0.5, 1,-2,-2,-2.5.这8袋鱼一共多少千克?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题解析:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.2.C解析:C【解析】【分析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°,故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键.3.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.4.B解析:B【解析】【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】如图,设左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为CG=a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差()()2S AE AF PC CG PC4b a3b PC a3b a PC12b3ab=⋅-⋅=+-⋅+⋅=-+-.∵S始终保持不变,∴3b﹣a=0,即a=3b.故选B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.C解析:C【解析】【分析】观察图形可知AD=BC,也就是5个小长方形的宽与2个小长方形有长相等.设小长方形的宽为x,则其长为34﹣6x,根据AB=CD列方程即可求解即可.【详解】设小长方形的宽为x,则其长为682-6x=34-6x,所以AD=5x,CD=2(34-6x)=68-12x,则有5x=68-12x,解得:x=4,则大长方形的面积为7×4×(34-6×4)=280,故选C.6.C解析:C【解析】665 575 306≈6.66×108.故选C.7.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.D解析:D【解析】【分析】先根据数轴判断出a和b的取值范围,再逐一进行判断即可得出答案.【详解】由数轴可知:a<-1,0<b<1则a-b<0,故A错误;a+b<0,故B错误,D正确;a-b≠0,故C错误;故答案选择D.【点睛】本题考查的是有理数的加法、减法,根据数轴判断出a、b的取值范围是解决本题的关键. 9.B解析:B【解析】【分析】观察得出第n个数为(-2)n,根据最后三个数的和为768,列出方程,求解即可.【详解】由题意,得第n个数为(-2)n,那么(-2)n-2+(-2)n-1+(-2)n=768,当n为偶数:整理得出:3×2n-2=768,解得:n=10;当n为奇数:整理得出:-3×2n-2=768,则求不出整数.故选B.10.D解析:D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.11.B解析:B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.12.D解析:D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.二、填空题13.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.14.5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积据此列出方程并解答详解:依题意得:8π(R+2)2-8πR2=192π解得R=5故R的值为5cm点睛:本题考查了一元解析:5cm【解析】【分析】分析:表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.详解:依题意得:8π(R+2)2-8πR2=192π,解得R=5.故R的值为5cm.点睛:本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.【详解】请在此输入详解!15.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【详解】∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为8.16.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 17.2a+b 【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案【详解】由数轴可得:a+b >0a <0则原式=a+b-(-a )=2a+b 故答案是:2a+b 【点睛】考查了二次根式的性质与化简正解析:2a+b【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案.【详解】由数轴可得:a+b >0,a <0,则原式=a+b-(-a )=2a+b .故答案是:2a+b .【点睛】考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.18.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=解析:0【解析】【分析】由70=1,71=7,72=49,73=343,74=2401,75=16807,…,得出规律个位数4个数一循环,由1+7+9+3=20,(2019+1)÷4=505,即可得出结果.【详解】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,4个数一循环的个位数的和:1+7+9+3=20,∵(2019+1)÷4=505,∴70+71+72+…+72019的结果的个位数字是0,故答案为:0【点睛】本题考查了尾数特征,仔细观察数据的个位数字,得到每4个个位数字为一个循环组依次循环是解题的关键.19.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.20.【解析】【分析】根据逆流速度=静水速度-水流速度顺流速度=静水速度+水流速度表示出逆流速度与顺流速度根据题意列出方程求出方程的解问题可解【详解】解:设A港与B港相距xkm根据题意得:解得:x=504解析:【解析】【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.【详解】解:设A港与B港相距xkm,根据题意得:3262262x x +=+- , 解得:x=504,则A 港与B 港相距504km .故答案为:504.【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.三、解答题21.(1)m=-5 (2)37【解析】(1)依题意有|m+4|=1,解之得m=-3(舍去),m=-5,故m=-5,(2)()()232341m m +--= 6m+4-12m+3=-6m+7当m=-5时,原式= 37.22.-114【解析】【分析】 根据题目提供的方法计算即可.【详解】∵(16-314+23-27)÷(-142) =(16-314+23-27)×(-42) =16×(-42)-314×(-42)+23×(-42)-27×(-42) =-7+9-28+12=-7-28+9+12=-35+21=-14,∴(-142)÷(16-314+23-27)=-114. 【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则并读懂题目所提供的的运算方法是解答本题的关键.23.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则+=-x x7799x=解得8x+=⨯+=7778763答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.24.5天【解析】【分析】设还需x天才能完成这项工程,甲工程队完成100(x+1)m,乙工程队完成80xm,根据总任务1000m列方程求解即可.【详解】解:设还需x天才能完成这项工程,则根据题意,得x x++=,100(1)801000x=.解这个方程,得5答:乙加入后,还需5天才能完成这项工程.【点睛】此题考查一元一次方程的实际应用,正确理解题意列出方程解决问题是解题的关键.25.5【解析】【分析】用25乘以8的积,加上称后记录的八个数的和即可求得.【详解】25×8+(1.5−3+2−0.5+1−2−2−2.5)=200+4.5−10=194.5(千克).答:这8袋鱼一共194.5千克.【点睛】此题考查正数和负数,解题关键在于掌握运算法则.。

2020-2021成都石室联合中学七年级数学上期末一模试卷附答案

2020-2021成都石室联合中学七年级数学上期末一模试卷附答案

2020-2021成都石室联合中学七年级数学上期末一模试卷附答案一、选择题1.下列四个角中,最有可能与70°角互补的角是( ) A .B .C .D .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 3.如图,∠AOC 和∠BOD 都是直角,如果∠DOC =28°,那么∠AOB 的度数是( )A .118°B .152°C .28°D .62°4.下列说法错误的是( ) A .2-的相反数是2 B .3的倒数是13C .()()352---=D .11-,0,4这三个数中最小的数是05.在数﹣(﹣3),0,(﹣3)2,|﹣9|,﹣14中,正数的有( )个.A .2B .3C .4D .56.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )7.整式23x x -的值是4,则2398x x -+的值是( ) A .20B .4C .16D .-48.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +19.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+10.观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,…. 按照上述规律,第2015个单项式是( ) A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 201511.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°12.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A .63B .70C .96D .105二、填空题13.如果方程2x +a =x ﹣1的解是﹣4,那么a 的值为_____. 14.若25113m n a b -+与-3ab 3-n 的和为单项式,则m+n=_________. 15.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.16.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.17.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁. 18.若代数式213k--的值是1,则k= _________.19.﹣225ab是_____次单项式,系数是_____.20.已知关于x的一元一次方程1999(x+1)﹣3=2(x+1)+b的解为x=9,那么关于y的一元一次方程1999y﹣3=2y+b的解y=_____.三、解答题21.先化简,再求值:5(3a2b﹣ab2﹣1)﹣(ab2+3a2b﹣5),其中a=﹣12,b=13.22.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:购物总金额(原价)折扣不超过5000元的部分九折超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?23.如图,A,B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.(1)请写出A B中点M所对应的数;(2)现有一只电子蚂蚊P从B点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数.(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.24.如图所示,已知∠BAC=∠EAD=90o.(1)判断∠BAE与∠CAD的大小关系,并说明理由.(2)当∠EAC=60o时,求∠BAD的大小.(3)探究∠EAC与∠BAD的数量关系,请直接写出结果,不要求说明理由.25.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据互补的性质,与70°角互补的角等于180°-70°=110°,是个钝角;看下4个答案,哪个符合即可.【详解】解:根据互补的性质得,70°角的补角为:180°-70°=110°,是个钝角;∵答案A、B、C都是锐角,答案D是钝角;∴答案D正确.故选D.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.【详解】∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC=90°+90°﹣28°=152°.故选:B.【点睛】此题主要考查学生对角的计算的理解和掌握,此题的解法不唯一,只要合理即可.4.D解析:D【解析】试题分析:﹣2的相反数是2,A正确;3的倒数是13,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.5.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.6.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.7.A解析:A【解析】【分析】分析所给多项式与所求多项式二次项、一次项系数的关系即可得出答案.【详解】解:因为x 2-3x =4, 所以3x 2-9x =12, 所以3x 2-9x +8=12+8=20. 故选A . 【点睛】本题考查了代数式的求值,分析发现所求多项式与已知多项式之间的关系是解决此题的关键.8.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负, ∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.9.C解析:C 【解析】 【分析】根据a ,b 在数轴的位置,即可得出a ,b 的符号,进而得出选项中的符号. 【详解】根据数轴可知-1<a <0,1<b <2,∴A .+a b >0,故此选项是正数,不符合要求,故此选项错误; B .ab ->0,故此选项是正数,不符合要求,故此选项错误; C .-a b <0,故此选项不是正数,符合要求,故此选项正确; D .a b -+>0,故此选项是正数,不符合要求,故此选项错误. 故选:C . 【点睛】此题考查有理数的大小比较以及数轴性质,根据已知得出a ,b 取值范围是解题关键.10.C解析:C【解析】试题分析:根据这组数的系数可知它们都是连续奇数,即系数为(2n-1),而后面因式x 的指数是连续自然数,因此关于x 的单项式是2n 1n x -(),所以第2015个单项式的系数为2×2015-1=4029,因此这个单项式为20154029x . 故选C 考点:探索规律11.B解析:B 【解析】 【分析】本题考查了角度的计算问题,因为本题中∠AOC 始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 【详解】解:设∠AOD=x ,∠AOC=90︒+x ,∠BOD=90︒-x , 所以∠AOC+∠BOD=90︒+x+90︒-x=180︒. 故选B. 【点睛】在本题中要注意∠AOC 始终在变化,因此可以采用“设而不求”的解题技巧进行求解.12.C解析:C 【解析】 【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可. 【详解】解:设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x . 由题意得A 、7x=63,解得:x=9,能求得这7个数;B 、7x=70,解得:x=10,能求得这7个数;C 、7x=96,解得:x=967,不能求得这7个数; D 、7x=105,解得:x=15,能求得这7个数. 故选:C . 【点睛】此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.二、填空题13.【解析】【分析】把x =﹣4代入方程得到一个关于a 的一次方程即可求解【详解】把x =﹣4代入方程得:﹣8+a =﹣4﹣1解得:a =3故答案是:3【点睛】本题考查了一元一次方程方程的求解掌握一元一次方程的解解析:【解析】 【分析】把x =﹣4,代入方程得到一个关于a 的一次方程,即可求解. 【详解】把x =﹣4代入方程得:﹣8+a =﹣4﹣1, 解得:a =3. 故答案是:3. 【点睛】本题考查了一元一次方程方程的求解,掌握一元一次方程的解法是解题的关键.14.4【解析】【分析】若与-3ab3-n 的和为单项式a2m-5bn+1与ab3-n 是同类项根据同类项的定义列出方程求出nm 的值再代入代数式计算【详解】∵与-3ab3-n 的和为单项式∴a2m -5bn+1与解析:4 【解析】 【分析】 若25113m n a b -+与-3ab 3-n 的和为单项式,a 2m-5 b n+1 与ab 3-n 是同类项,根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算. 【详解】∵25113m n a b -+与-3ab 3-n 的和为单项式, ∴a 2m-5 b n+1 与ab 3-n 是同类项, ∴2m-5=1,n+1=3-n , ∴m=3,n=1.∴m+n=4. 故答案为4. 【点睛】本题考查的知识点是同类项的定义,解题关键是熟记同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同.15.40°【解析】解:由角的和差得:∠AOC=∠AOD-∠COD=140°-90°=50°由余角的性质得:∠COB=90°-∠AOC=90°-50°=40°故答案为:40°解析:40° 【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.16.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案【详解】解:如图所示:x的值为2故答案为:2【点睛】此题主要考查了有理数的加法正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.17.12【解析】【分析】设乙现在的年龄是x岁则甲的现在的年龄是:2x岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x岁依题意得:2x-6=3(x-6)解解析:12【解析】【分析】设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.【详解】解:设乙现在的年龄是x岁,则甲的现在的年龄是:2x岁,依题意得:2x-6=3(x-6)解得:x=12∴2x=24故:甲现在24岁,乙现在12岁.故答案为:24,12【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.18.-4【解析】【分析】【详解】由=1解得解析:-4【解析】 【分析】 【详解】 由213k--=1,解得4k =-. 19.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数由此可得答案【详解】是三次单项式系数是故答案为:三【点睛】本题考查了单项式的知识掌握单项式系数及次解析:三 ﹣25π 【解析】 【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案. 【详解】225ab π-是三次单项式,系数是25π- . 故答案为:三,25π- . 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键.20.【解析】【分析】令x =y ﹣1后代入(x+1)﹣3=2(x+1)+b 可得:y ﹣3=2y+b 由题意可知y ﹣1=9【详解】解:令x =y ﹣1后代入(x+1)﹣3=2(x+1)+b 可得:y ﹣3=2y+b 该方程解析:【解析】 【分析】 令x =y ﹣1后代入1999(x +1)﹣3=2(x +1)+b 可得:1999y ﹣3=2y +b ,由题意可知y ﹣1=9. 【详解】解:令x =y ﹣1后代入1999(x +1)﹣3=2(x +1)+b , 可得:1999y ﹣3=2y +b , 该方程的解为x =9, ∴y ﹣1=9, ∴y =10, 故答案是:10. 【点睛】此题考查一元一次方程的解.解题的关键是理解一元一次方程的解的定义,注意此题涉及换元法,整体的思想.三、解答题21.原式=12a 2b ﹣6ab 2=43. 【解析】试题分析:去括号,合并同类项,把字母的值代入运算即可.试题解析:原式2222155535,a b ab ab a b =----+ 22126.a b ab =- 当1123a b =-=,时,原式1111141261.432933⎛⎫=⨯⨯-⨯-⨯=+= ⎪⎝⎭ 22.(1)张老师实际付款6900元.(2)①该品牌电脑的原价是6500元/台.②这种品牌电脑的进价为5000元/台.【解析】【分析】(1)用不超过5000元的乘以九折加上超过5000元不到10000元的部分乘以八折,计算即可;(2)①设该品牌电脑的原价为x 元/台,由实际付费可知,商品的原价应在5000元-10000元之间,根据题意列出方程解答即可;②设该电器的进价为m 元/台,根据“进价⨯(1+利润率)=售价”列出方程,求解即可.【详解】(1)5000×910+(8000﹣5000)×810=6900(元) 答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x 元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x <10000 依题意有:5000×910+(x ﹣5000)×810=5700 4500+0.8x ﹣4000=5700 23.(1)40;(2)28;(3)-260.【解析】【分析】(1)直接根据中点坐标公式求出M 点对应的数;(2)①先求出AB 的长,再设t 秒后P 、Q 相遇即可得出关于t 的一元一次方程, 求出t 的值即可; ②由①中t 的值可求出P 、Q 相遇时点P 移动的距离,进而可得出C 点对应的数;(3)此题是追及问题,可先求出P 追上Q 所需的时间, 然后可求出Q 所走的路程,根据左减右加的原则,可求出点D 所对应的数.【详解】法一:(1)()10020120AB =--=,点M 表示的数为:()12022040÷+-=,(2)它们的相遇时间是()1206412÷+=(秒),即相遇时Q 点运动的路程为:12448⨯=,因此点C 表示的数为:204828-+=.(3)两只蚂蚁相遇时的运动时间为:()1206460÷-=(秒),即相遇时Q 点运动的路程为:460240⨯=,因此点D 表示的数为:20240260--=-,方法二:(1)()201004022A B M -++===, (2)动点:1006P t -,:204Q t -+, 相遇,则P Q =,1006204t t -=-+,12t =,:10061228C -⨯=,(3)动点:1006P t '-;:204Q t '--,相遇,则P Q =,1006204t t ''-=--,60t '=,:100660260D -⨯=-.【点睛】本题主要考查的是数轴上点的运动,还有相遇问题与追及问题,解决本题的关键是要熟练掌握行程问题的等量关系.24.(1)∠BAE=∠CAD ,理由见解析;(2)120︒;(3)∠EAC+∠BAD=180︒.【解析】【分析】(1)由同角的余角相等可得;(2)当∠EAC=60o 时,可求得∠BAE=30o ,从而得出∠BAD 的度数.(3)根据第(2)得出的∠BAD 的度数,可得出二者的数量关系.【详解】(1)解:∠BAE 与∠CAD 的大小关系是:∠BAE=∠CAD理由是:∠BAE+∠EAC=∠EAC+∠CAD=90o所以, 由同角的余角相等可得,∠BAE=∠CAD .(2)解:当∠EAC=60o 时,已知∠BAC=∠EAD=90o .所以,∠BAE=∠BAC-∠EAC=90o-60o=30o.因此,∠BAD=∠BAE+∠EAD=30o+90o=120o.(3)解:∠EAC与∠BAD的数量关系是:∠EAC+∠BAD=180o.【点睛】本题考查的知识点是角的计算,根据已知条件判断两角的大小并探究两角之间的数量关系,考验了学生探究归纳的能力.25.(1)该中学库存桌椅960套;(2)选择甲、乙合作修理【解析】解:(1)设该中学库存x套桌凳,则甲修完需要天,乙修完需要天,由题意得:,解方程得:.答:该中学库存960套桌凳.(2)设①②③三种修理方案的费用分别为、、元,则(元),(元),(元),综上可知,选择方案③更省时省钱.。

2020-2021学年四川省成都市青羊区石室联中七年级(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年四川省成都市青羊区石室联中七年级(上)月考数学试卷(10月份)(附答案详解)

2020-2021学年四川省成都市青羊区石室联中七年级(上)月考数学试卷(10月份)1.下列各对数中互为相反数的是()A. +(−2)和−2B. −(+2)和−2C. −(−2)和+(−2)D. −|+2|和−|−2|2.下列说法正确的是()A. 13πx2的次数为3 B. 12xy2的次数是3C. 25x−by3的次数是5 D. 2ab+6的次数是63.已知a2+5a=1,则代数式3a2+15a−1的值为()A. 1B. 2C. 3D. 44.下列说法正确的是()A. 所有的有理数都能用数轴上的点表示B. 符号不同的两个数互为相反数C. 有理数分为正数和负数D. 两数相加,和一定大于任何一个数5.已知−2m6n与5m2y n x是同类项,则()A. x=2,y=1B. x=1,y=3C. x=32,y=6 D. x=3,y=16.用一个平面去截正方体,截面的形状不可能是()A. 四边形B. 五边形C. 六边形D. 七边形7.据报道,2019年10月7日,成都市文化广电旅游局公布的数据显示,十一黄金周期间(10月1日−7日),成都市共接待游客2017.13万人次,同比增长32.7%,实现旅游收入288亿元,同比增长25.2%.288亿元用科学记数法表示正确的是()A. 288×108元B. 2.88×1010元C. 2.88×109元D. 2.88×108元8.若m、n满足|m+3|+(n+2)2=0,则mn的值为()A. −1B. 1C. 6D. −69.代数式a2−5b2用语言叙述正确的是()A. a与5b的平方差B. a的平方减5乘以b的平方C. a的平方与b的平方的5倍的差D. a与5b的差的平方10.观察一列数:−1,3,−5,7,−9,11,−13,……按照这列数的排列规律,你认为第n个数应该是()A. 2n−1B. (−1)n+1(2n−1)C. (−1)n−1(2n−1)D. (−1)n(2n−1)11.一次考试中,老师采取一种记分制:得130分记为+30分,得50分记为−50分.那么106分应记为______ ,李明的成绩记为−12分,那么他的实际得分为______ .12.比较大小:(1)−π______ −3.14;(2)−78______ −89.13.在代数式3xy2,m,6a2−a+3,12,4x2yz−15xy2,23ab中,单项式有______ 个,多项式有______ 个.14.如图所示,要使图中平面展开图折叠成正方体后,相对面上两个数之和为8,则x−y+z=______.15.计算与化简.(1)+4.7+(−4)−2.7−(−3.5).(2)11+(−22)−3×(−11).(3)16÷(−2)3+|−7|+(−18)×(−4).(4)0.25×(−2)2−[−4÷(−23)2+1]+(−1)2020.(5)5x4+3x2y−10−3x2y+x4−1.(6)(7y−3z)−2(8y−5z).(7)2(2a2+9b)+3(−5a2−6b).(8)−8m2−[4m−2m2−(3m−2m2−7)].16.如图的几何体由若干个棱长为1的正方体堆放而成,请用直尺画出这个几何体的三视图.17.化简并求下列代数式的值:3(a2b+ab2)−2(a2b−1)−2ab2−2,其中a=−2,b=3.18.多项式(a−2)m2+(2b+1)mn−m+n−7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.19.解答下列各题.(1)已知a、b互为倒数,c、d互为相反数,|x|=|−2|,求2x2−(ab−3c−3d)+|ab+3|的值.(2)已知当x=−3时,代数式ax3+bx+1的值为8,求当x=3时,代数式ax3+bx+1的值.20.2016年第三次G20财长和央行行长会议在成都举行,订制某品牌茶叶作为纪念品,该品牌茶叶加工厂接到一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,−2,−4,+1,−1,+6,−5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实行每日计件工资制,按计划每生产1kg茶叶50元,若超产,则超产的每千克奖20元;若每天少生产1kg,则扣除10元,那么该厂工人这一周的工资总额是多少?21.若|x|=5,|y|=3,且|x−y|=−x+y,则x−y=______.22.已知a、b、c在数轴上的位置如图所示,化简:|2a|−|a+c|−|b−1|+|−a−b|=______.x|m|−(m−3)x+6是关于x的三次三项式,则m的值是____。

成都石室联合中学人教版七年级数学上册 压轴题 期末复习试卷及答案

成都石室联合中学人教版七年级数学上册 压轴题 期末复习试卷及答案

成都石室联合中学人教版七年级数学上册 压轴题 期末复习试卷及答案一、压轴题1.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?2.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 3.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.4.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律. 探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? 如图①,连接边长为2的正三角形三条边的中点,从上往下看: 边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个? (仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.5.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.6.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.7.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)8.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.9.在数轴上,图中点A 表示-36,点B 表示44,动点P 、Q 分别从A 、B 两点同时出发,相向而行,动点P 、Q 的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.10.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.11.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.12.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.13.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.14.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少? 15.已知:如图,点A 、B 分别是∠MON 的边OM 、ON 上两点,OC 平分∠MON ,在∠CON 的内部取一点P (点A 、P 、B 三点不在同一直线上),连接PA 、PB . (1)探索∠APB 与∠MON 、∠PAO 、∠PBO 之间的数量关系,并证明你的结论; (2)设∠OAP=x°,∠OBP=y°,若∠APB 的平分线PQ 交OC 于点Q ,求∠OQP 的度数(用含有x 、y 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm. 【解析】 【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置; (2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案. 【详解】解:(1)如图所示:.(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +; ∴线段PQ 的长为:53(2)47x x x +---=+; (3)根据题意可知, 当PQ=2cm 时可分为两种情况: ①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm. 【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.2.(1)107秒或10秒;(2)1413或11413. 【解析】 【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可. 【详解】(1)∵|a -20|+|c +10|=0, ∴a -20=0,c +10=0, ∴a =20,c =﹣10. 设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ). 解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t . ∵Q 到B 的距离与P 到B 的距离相等, ∴|﹣10+5t ﹣10|=|20+2t ﹣10|, 即5t ﹣20=10+2t 或20﹣5t =10+2t , 解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|. ∵点M 为线段PR 的中点,点N 为线段RQ 的中点, ∴点M 对应的数为224202x x ++-=442x+,点N 对应的数为2052x x-+=2x +10, ∴MN =|442x+﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25. 分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=.综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键. 3.(1)40º;(2)84º;(3)7.5或15或45 【解析】 【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可. 【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD 又∵∠AOD+∠BOC=160°且∠AOB=120° ∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒ 40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠7120()(44120)2x y x y ∴-+=+-36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI ,∴3t=3(30-3t )或3t=3(3t-30), 解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.4.探究三:16,6;结论:n²,;应用:625,300.【解析】【分析】探究三:模仿探究一、二即可解决问题;结论:由探究一、二、三可得:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,边长为1的正三角形共有个;边长为2的正三角形共有个;应用:根据结论即可解决问题.【详解】解:探究三:如图3,连接边长为4的正三角形三条边的对应四等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,共有个;边长为2的正三角形有个.结论:连接边长为的正三角形三条边的对应等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,第四层有7个,……,第层有个,共有个;边长为2的正三角形,共有个.应用:边长为1的正三角形有=625(个),边长为2的正三角形有(个).故答案为探究三:16,6;结论:n², ;应用:625,300.【点睛】本题考查规律型问题,解题的关键是理解题意,学会模仿例题解决问题.5.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.6.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.7.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.8.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.9.(1)20;(2)t=15s或17s (3)4 3 s.【解析】【分析】(1)设P、Q速度分别为3m、2m,根据12秒后,动点P到达原点O列方程,求出P、Q的速度,由此即可得到结论. (2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论. 【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20. (2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.10.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =.(3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.11.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127;当48t<≤时,由题可知QM=2PM=BP,故点Q位于点B右侧,则PB=2QB,则可得,()()123422.512t t--=-,整理得8t=48,解得6t=.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.12.(1) 2x=-和4x= ;(2)35(4)11(43)35(3)x xx xx x--<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x+2=0和x-4=0,求出x的值即可得出|x+2|和|x-4|的零点值,(2)零点值x=3和x=-4可将全体实数分成不重复且不遗漏的如下3种情况:x<-4、-4≤x<3和x≥3.分该三种情况找出324x x-++的值即可.【详解】解:(1)2x=-和4x=,(2)由30x-=得3,x=由40x+=得4x=-,①当4x<-时,原式()()32435x x x=---+=--,②当4-≤3x<时,原式()()32411x x x=--++=+,③当x≥3时,原式()()32435x x x=-++=+,综上所述:原式()35(4)11(43)353x xx xx x⎧--<-⎪=+-≤<⎨⎪+≥⎩,【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法. 13.(1)2AC cm=,4DM cm=;(2)6AC MD cm+=;(3)4AM=;(4)13MNAB=或1.【解析】【详解】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.14.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.15.(1)见解析;(2)∠OQP=180°+12x°﹣12y°或∠OQP=12x°﹣12y°.【解析】【试题分析】(1)分下面两种情况进行说明;①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,(2)分两种情况讨论,如图3和图4.【试题解析】(1)分两种情况:①如图1,点P在直线AB的右侧,∠APB+∠MON+∠PAO+∠PBO=360°,证明:∵四边形AOBP的内角和为(4﹣2)×180°=360°,∴∠APB=360°﹣∠MON﹣∠PAO﹣∠PBO;②如图2,点P在直线AB的左侧,∠APB=∠MON+∠PAO+∠PBO,证明:延长AP交ON于点D,∵∠ADB是△AOD的外角,∴∠ADB=∠PAO+∠AOD,∵∠AP B是△PDB的外角,∴∠APB=∠PDB+∠PBO,∴∠APB=∠MON+∠PAO+∠PBO;(2)设∠MON=2m°,∠APB=2n°,∵OC平分∠MON,∴∠AOC=∠MON=m°,∵PQ平分∠APB,∴∠APQ=∠APB=n°,分两种情况:第一种情况:如图3,∵∠OQP=∠MOC+∠PAO+∠APQ,即∠OQP=m°+x°+n°①∵∠OQP+∠CON+∠OBP+∠BPQ=360°,∴∠OQP=360°﹣∠CON﹣∠OBP﹣∠BPQ,即∠OQP=360°﹣m°﹣y°﹣n°②,①+②得2∠OQP=360°+x°﹣y°,∴∠OQP=180°+x°﹣y°;第二种情况:如图4,∵∠OQP+∠APQ=∠MOC+∠PAO,即∠OQP+n°=m°+x°,∴2∠OQP+2n°=2m°+2x°①,∵∠APB=∠MON+∠PAO+∠PBO,∴2n°=2m°+x°+y°②,①﹣②得2∠OQP=x°﹣y°,∴∠OQP=x°﹣y°,综上所述,∠OQP=180°+x°﹣y°或∠OQP=x°﹣y°.。

四川成都石室联合中学初一上学期期末数学试卷及解析

四川成都石室联合中学初一上学期期末数学试卷及解析

1 2答案解析考点A. B. C. D.B由图可知,主视图为答案.投影与视图视图简单组合体的三视图答案解析考点A.B.C.D.年月的某一天,参观天安门广场的人数达到,用科学记数法表示这个数为( ).3D.数有理数科学记数法:表示较大的数A. B. C. D.有理数,在数轴上的位置如图所示,下列各式正确的是( ).4答案解析考点D,∴.数有理数数轴答案解析考点A.和B.和C.和D.和下列各组中的两项不是同类项的是( ).5B底数不同,不属于同类项.式整式同类项同类项的基本概念答案解析A.是一次单项式B.单项式的系数是,次数是C.单项式的次数是,系数是D.单项式的系数是,次数是下列说法正确的是( ).6B是常数项,的次数为,系数为,单项式系数为,次数为.考点式整式单项式答案解析考点A. B. C. D.将一张长方形纸片按如图所示的方式折叠,,为折痕,则的度数为( ).7C由折叠的性质知.几何变换图形的对称翻折变换(折叠问题)答案A.B.C.D.以下问题,不适合普查的是( ).了解一批灯泡的使用寿命学校招聘教师,对应聘人员的面试了解全班学生每周体育锻炼时间上飞机前对旅客的安检8A解析考点普查即全面调查,了解灯泡的使用寿命应该采取抽样调查的方式.统计与概率数据收集与处理全面调查与抽样调查抽样调查全面调查答案解析考点A.∵,∴B.∵,∴C.∵,∴D.∵,∴如图所示,下列推理正确的是( )9C平行线的判定方法.几何初步相交线与平行线平行线的判定甲班有人,乙班有人,要使甲班人数是乙班的倍,设从乙班调往甲班人,可列方程().10答案解析考点A. B.C.D.A根据条件可知现在甲班人数人,乙班人数,∴.方程与不等式一元一次方程一元一次方程的应用答案解析考点.11负数的绝对值等于它的相反数.数有理数绝对值求一个数的绝对值答案把化成度的形式,则 .12二、填空题(本大题共6个小题,每小题3分,共18分)解析考点.几何初步角度分秒的换算答案解析考点如图是的中点,是的中点,,则= .13∵,,∴.函数二次函数二次函数与线段和差最值问题某住宅小区十月份日至日每天用水量变化情况如图所示,那么这天中用水量最多的一天比最少的一天多 吨.14答案解析考点最多为吨,最少为吨.统计与概率数据分析极差答案解析考点如果是方程的解,那么= .15∵,∴,∴.方程与不等式一元一次方程含字母参数的一元一次方程含参一元一次方程求参数答案解析考点一个自然数的立方,可以分裂成若干个连续奇数的和,例如:和分别可以如图所示的方式“分裂”成个,个和个连续奇数,若也按照此规律进行“分裂”,则分裂出的最大的那个奇数是 .16;;;.式探究规律数字的变化类数字找规律答案解析考点计算:.17..数有理数有理数的混合运算三、解答题(本大题共7个小题,共52分)答案解析考点计算:.18..数有理数有理数的混合运算答案解析考点化简:.19..式整式整式混合运算的化简求值先化简再求值答案解方程:.20.解析考点,,.方程与不等式一元一次方程解一元一次方程常规方法解一元一次方程答案解析考点先化简,再求值:,其中.21.原式,当时,原式=.式整式整式混合运算的化简求值某中学组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量(小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按,,,分为四个等级,并分别用、、、表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:22答案解析本次随机抽取的学生人数为__________人;(1)求出值,并将不完整的条形统计图补充完整(2)若该校共有学生人,试估计每周课外阅读量满足的人数.(3)(1)(2)(3)抽查的学生总数人(1)∵,∴;等级的人数人,等级的人数人,(2)人,(3)考点所以估计每周课外阅读时间量满足的人数为人.故答案为.统计与概率数据收集与处理总体、个体、样本、样本容量用样本估计总体条形统计图答案如图,已知,,试说明:.证明:( ),( ),(已知),( ),( ),( ).23∵(已知),∴(两直线平行,同位角相等),∵(已知),∴(等量代换),∴(同位角相等,两直线平行),解析考点∴(两直线平行,内错角相等).根据平行线的性质和判定方法证明,∵(已知),∴(两直线平行,同位角相等),∵(已知),∴(等量代换),∴(同位角相等,两直线平行),∴(两直线平行,内错角相等).几何初步相交线与平行线平行线的判定平行线的性质答案解析考点甲、乙两矿原计划共产煤万吨,由于引进新技术,使得采矿效率明显提高,甲矿实际产煤比原计划增加了,乙矿产煤比原计划增加了,结果两矿实际产煤万吨,求甲、乙两矿实际产煤各为多少万吨?24甲吨;乙吨.设原计划甲生产吨,乙生产吨,列方程组如下:,;解得:,;∴,.方程与不等式一元一次方程一元一次方程的应用答案解析考点如图,已知内作两条射线和,使,平分,平分.25当时,①求的度数;②求的大小.(1)设,试直接用含的式子表示的大小.(2),.(1).(2);∵,,∴.(1),,.(2)几何初步角角的计算与证明有图形的角的计算B 卷(50分)答案解析考点已知,则.26原式.式整式整式加减的化简求值整体思想求值答案解析考点如图,是一个正方形纸盒的展开图,折成正方体后,相对面上的两个数互为相反数,则.27∵,,,∴.几何初步几何图形正方体相对两个面上的文字四、填空题(本大题共6个小题,每小题3分,共18分)答案解析考点已知有理数表示在数轴上的位置如图,化简 .28∵;∴原式.数有理数绝对值化简结合数轴化简绝对值答案解析考点如图所示,是直线上一点,是一条射线,平分,在内,,,则的大小是 度.29设,∴,,∴,∴.几何初步角角平分线的定义答案解析考点对于两个不相等的有理数,我们规定符号表示,中的较大值,如,按照这个规定可得:;方程的解为 .301:2:当时,有,,舍去;当时,有,,.式探究规律定义新运算答案解析考点设一列数中任意三个相邻数之和都是,已知,,,那么.31∵,∴,,;所以是每三个一轮,∴,,,.式探究规律数字的变化类数字找规律答案解析考点若与互为相反数,与互为倒数,的平方与它本身相等,请你求的值.32或.,,或;∴原式或.数有理数相反数相反数的几何意义倒数倒数定义式整式整式加减的化简求值结合非负性化简求值33五、解答题(本大题共4个小题,共32分)答案解析考点已知:关于,的多项式与多项式的差的值与字母的取值无关.求字母的值.(1)求代数式的值.(2),.(1)原式.(2)∵,∴,.(1)代数式.(2)式整式整式的加减整式的加减运算整式加减的化简求值列方程解应用题:某社区超市第一次用元购进甲、乙两种商品,其中甲商品的件数比乙商品件数的倍少件,甲、乙两种商品的进价和售价如下表: 甲乙进价(元/件)售价(元/件)34该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(1)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的倍;甲商品按原售价销售,乙商品在原售价上打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多元,求第二次乙种商品是按原价打几折销售?(2)答案解析考点1950元利润(1)第二次乙种商品是按原价打九折销售.(2)设第一次购进乙种商品件,则甲种商品的件数是件,根据题意列方程,得:,解得:,所以甲商品的件数为:(件),可获得的利润为:(元).(1)设第二次乙种商品是按原价打折销售,根据题意列方程,得:,解得:.(2)方程与不等式一元一次方程一元一次方程的应用打折销售问题点在数轴上对应的数为,点对应的数为,且满足:.35求线段的长.(1)如图,点在数轴上对应的数为,且是方程的根,在数轴上是否存在点使?若存在,求出点对应的数;若不存在,说明理由.(2)图如图,若点是点右侧一点,的中点为,为的五等分点且靠近于点,当在的右侧运动时,有两个结论:①的值不变;②的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.(3)。

2020-2021成都市石室双楠实验学校初一数学上期中试卷(含答案)

2020-2021成都市石室双楠实验学校初一数学上期中试卷(含答案)

2020-2021成都市石室双楠实验学校初一数学上期中试卷(含答案)一、选择题1.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c2.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A.甲B.乙C.相同D.和商品的价格有关3.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 34.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>06.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°7.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元8.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.1909.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4010.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y m m =D.如果2x=3y,那么2629 55x y --=11.将方程247236x x---=去分母得 ( )A.2﹣2(2x-4)= - (x-7)B.12﹣2(2x﹣4)=﹣x﹣7C.12﹣4x﹣8= - (x-7)D.12﹣2(2x﹣4)= x﹣712.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.二、填空题13.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m,n的代数式表示y,即y=_____.14.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.15.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多________个.(用含n 的代数式表示)16.已知3x -8与2互为相反数,则x = ________.17.如图,90AOB ∠=︒,OD 平分BOC ∠,45DOE ∠=︒,则AOE ∠________COE ∠.(填“>”“<”或“=”)18.在数轴上与2-所对应的点相距4个单位长度的点表示的数是______. 19.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.20.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.三、解答题21.已知:223+2A B a ab-=,223A a ab=-+-.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.22.读句画图:如图所示,A,B,C,D在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)连接AB;(4)连接BC,并反向延长BC.(5)已知AB=9,直线AB上有一点F,并且BF=3,则AF=_________23.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.24.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:月用电量不超过180度的部分超过180度但不超过280度的部分超过280度的部分收费标准0.5元/度0.6元/度0.9元/度若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?25.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A、B、C三个景区的位置.(2)若电瓶车充足一次电能行走15千米,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据数轴上的数,右边的总比左边的大写出后即可选择答案.【详解】根据题意得,a<c<b.故选C.【点睛】本题考查了利用数轴比较有理数的大小,熟记数轴上的数右边的总比左边的大是解题的关键.2.B解析:B【解析】【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.【详解】设原价为x元,则甲超市价格为x×(1-10%)×(1-10%)=0.81x乙超市为x×(1-20%)=0.8x,3.C解析:C【解析】试题解析:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.4.无5.B解析:B【解析】【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.D解析:D【解析】【分析】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60-2x,根据∠AOB=60°,∠COD=45°,列出算式,求出x-y的度数,最后根据∠MON与各角之间的关系,即可求出答案.【详解】设∠AOM=∠DOM=x,∠CON=∠BON=y,则∠BOD=60°-2x∵∠COD=45°∴60°-2x+2y=45°,∴x-y=7.5°∴∠MON=x+(60°-2x)+y=60°(x-y)=52.5°故选D.【点睛】本题考查了角平分线的性质、几何图形中角度计算问题,通过代数方法解决几何问题是本题的关键.7.C解析:C【解析】【分析】设乙商品的成本价格为x元,则根据甲、乙两件商品以同样的价格卖出,列出方程,即可求出答案.【详解】解:设乙商品的成本价格为x,则⨯+=•-,x80(120%)(120%)x=;解得:120∴乙商品的成本价是120元.故选:C.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确列出一元一次方程进8.D解析:D【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.考点:完全平方公式.9.B解析:B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n+个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.10.D解析:D【解析】【分析】根据等式性质1对A进行判断;根据等式性质2对B、C进行判断;根据等式性质1、2对D进行判断.【详解】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣13,所以B选项错误;C、由x=y得xm=ym(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以262955x y--=,所以D选项正确.【点睛】本题考查了等式的性质:性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.11.D解析:D 【解析】 【分析】根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案. 【详解】∵原方程分母的最小公倍数为6,∴原方程两边同时乘以6可得:()122247x x --=-, 故选:D . 【点睛】本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键12.D解析:D 【解析】 【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图. 【详解】解:A 、是正方体的展开图,不符合题意; B 、是正方体的展开图,不符合题意; C 、是正方体的展开图,不符合题意;D 、不是正方体的展开图,缺少一个底面,符合题意. 故选:D . 【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二、填空题13.m (n+1)【解析】【分析】【详解】解:观察可得3=1×(2+1)15=3×(4+1)35=5×(6+1)所以x=7×(8+1)=63y=m (n+1)故答案为:63;y=m (n+1)【点睛】本题考查解析:m (n+1) 【解析】 【分析】 【详解】解:观察可得,3=1×(2+1),15=3×(4+1),35=5×(6+1),所以x=7×(8+1)=63,y=m(n+1).故答案为:63;y=m(n+1).【点睛】本题考查规律探究题.14.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25,25+1+3=29,∴“峰6”中C位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A、B、C、D、E中A的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.15.4n+3【解析】【分析】利用给出的三个图形寻找规律发现白色正方形个数=总的正方形个数-黑色正方形个数而黑色正方形个数第1个为1第二个为2由此寻找规律总个数只要找到边与黑色正方形个数之间关系即可依此类解析:4n+3【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】解:方法一:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个, 依此类推,第n 个图形黑、白两色正方形共3×(2n+1)个,其中黑色n 个,白色3×(2n+1)-n 个,即:白色正方形5n+3个,黑色正方形n 个, 故第n 个图案中白色正方形比黑色正方形多4n+3个, 方法二第1个图形白色正方形共8个,黑色1个,白色比黑色多7个,第2个图形比第1个图形白色比黑色又多了4个,即白色比黑色多(7+4)个, 第3个图形比第2个图形白色比黑色又多了4个,即白色比黑色多(7+4×2)个, 类推,第n 个图案中白色正方形比黑色正方形多[7+4(n-1)]个,即(4n+3)个, 故第n 个图案中白色正方形比黑色正方形多4n+3个. 【点睛】本题考查了几何图形的变化规律,是探索型问题,图中的变化规律是解题的关键.16.2【解析】根据互为相反数的两个数的和为0可得3x-8+2=0解得x=2点睛:根据互为相反数的和为零可得关于x 的一元一次方程解方程即可得答案解析:2 【解析】根据互为相反数的两个数的和为0可得,3x -8+2=0,解得x =2.点睛:根据互为相反数的和为零,可得关于x 的一元一次方程,解方程即可得答案.17.【解析】【分析】先根据角的和差得出再根据角平分线的定义得出由此即可得出答案【详解】又即OD 平分故答案为:【点睛】本题考查了角的和差角平分线的定义掌握角的和差运算是解题关键 解析:=【解析】 【分析】先根据角的和差得出45,45BOD C CO O E D A E O ∠+∠+∠==∠︒︒,再根据角平分线的定义得出BOD COD ∠=∠,由此即可得出答案. 【详解】45DOE ∠=︒Q45COE DO COD E ∴∠+∠=∠=︒又90AOB ∠=︒Q90DOE BOD OE AOB A ∠=∠∴+∠+=∠︒,即4905AOE BOD ︒+∠=+∠︒ 45AOE BOD ∴+∠=∠︒BOD CO OE AOE C D ∠=∠+∠∴∠+ Q OD 平分BOC ∠ BOD COD ∴∠=∠AOE COE ∴∠=∠故答案为:=.【点睛】本题考查了角的和差、角平分线的定义,掌握角的和差运算是解题关键.18.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.19.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3 解析:21n +【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴, 依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.20.【解析】【分析】根据平角的定义可得++90°=180°然后进一步计算即可得出的度数然后再根据补角性质用180°减去度数即可得出其补角【详解】由题意得:++90°=180°∴=90°−=;的补角=18解析:6824'o 158.4o【解析】【分析】根据平角的定义可得α∠+β∠+90°=180°,然后进一步计算即可得出β∠的度数,然后再根据补角性质用180°减去α∠度数即可得出其补角.【详解】由题意得:α∠+β∠+90°=180°,2136'α∠=︒∴β∠=90°−α∠=6824'o ;α∠的补角=180°−α∠=158.4o ,故答案为:6824'o ,158.4o .【点睛】本题主要考查了角的性质,熟练掌握相关概念是解题关键.三、解答题21.(1)-5a 2+2ab-6;(2)A >B .【解析】【分析】(1)根据题意目中223+2A B a ab -=,223A a ab =-+-,可以用含a 、b 的代数式表示出B ;(2)根据题目中的A 和(1)中求得的B ,可以比较它们的大小.【详解】(1)∵2A-B=3a 2+2ab ,A=-a 2+2ab-3,∴B=2A-(3a 2+2ab )=2(-a 2+2ab-3)-(3a 2+2ab )=-2a 2+4ab-6-3a 2-2ab=-5a 2+2ab-6,(2)∵A=223a ab -+-,B=-5a 2+2ab-6,∴A-B=(223a ab -+-)-(-5a 2+2ab-6)=-a 2+2ab-3+5a 2-2ab+6=4a 2+3,∵无论a 取何值,a 2≥0,所以4a 2+3>0,∴A >B .【点睛】本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.22.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)6或9【解析】【分析】(1)根据直线向两方无限延伸得出即可;(2)根据射线向一方无限延伸画出图形;(3)根据线段有两个端点画出图形;(4)利用反向延长线段的作法得出即可;(5)利用得出即可.【详解】(1)如图所示,直线AD 为所求;(2)如图所示,射线CD 为所求;(3)如图所示,线段AB 为所求;(4)如图所示,射线CB 为所求;(5)①若点F在线段AB上,则AF=AB-BF=9-3=6;②若点F在线段AB的延长线上,则AF=AB+BF=9+3=12,故答案为:6或9.【点睛】本题考查的是直线、射线、线段的定义及性质等知识,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.23.﹣x2y+4xy+1,-23【解析】【分析】原式去括号再合并即可得到最简结果,将x与y的值代入计算即可求出值.【详解】原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.【点睛】本题考查了整式的加减运算-化简求值,解题的关键是熟练的掌握整式的加减运算. 24.262度【解析】【分析】先判断出是否超过120度,然后列方程计算即可.【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2,所以7月份用电是“超过180度但不超过280度”.故设7月份用电x度,由题意,得180×0.5+(x﹣180)×0.6=139.2解得x=262答:该用户7月份用电为262度.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.25.(1)见解析;(2)电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.【解析】【分析】(1) 根据数轴的三要素画出数轴, 并根据题意在数轴上表示出A B, C的位置;(2) 计算出电瓶车一共走的路程,即可解答.【详解】解:(1)如图,(2)电瓶车一共走的路程为:|+2|+|2.5|+|﹣8.5|+|+4|=17(千米),∵17>15,∴该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务.【点睛】本题考查的是数轴,注意注意根据题意画数轴.。

2021-2022学年四川省成都市青羊区石室中学七年级(上)期中数学试卷

2021-2022学年四川省成都市青羊区石室中学七年级(上)期中数学试卷

2021-2022学年四川省成都市青羊区石室中学七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各有理数中,最小的是()A.﹣B.(﹣1)3C.|﹣3|D.2.(3分)据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为()A.7.01×104B.7.01×1011 C.7.01×1012 D.7.01×10133.(3分)下列四组数相等的是()A.﹣42和(﹣4)2B.﹣23和(﹣2)3C.(﹣1)2020和(﹣1)2021D.和()24.(3分)下列哪个图形不可能是立方体的表面展开图()A.B.C.D.5.(3分)下列各组代数式中,不是同类项的是()A.﹣1和02020B.2x2y与﹣x2yC.﹣3ab与D.2t与2t26.(3分)下列运算正确的是()A.6x﹣2x=4B.7x3﹣3x3=4x3C.2x2+3x2=5x4D.﹣3(a﹣2b)=﹣3a+2b7.(3分)下列等式变形中,不正确的是()A.若a=b,则a+5=b+5B.若a=b,则C.若3x﹣2y=4,则3x=2y+4D.若|a|=|b|,则a=b8.(3分)如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,那么∠AOB的度数是()A.118°B.152°C.28°D.62°9.(3分)下列说法正确的是()A.“a与3的差的2倍”表示为2a﹣3B.单项式﹣32xy2的次数为5C.多项式是一次二项式D.单项式2πr的系数为2π10.(3分)下列说法中正确的选项是()A.连接两点的线段叫做两点之间的距离B.钟面上3:30时,时针和分针的夹角是90°C.用一个平面去截三棱柱,截面可能是四边形D.A、B、C三点在同一直线上,若AB=2BC,则点C一定是线段AB的中点二、填空题:(每小题4分,共16分)11.(4分)﹣1的相反数的倒数是.12.(4分)小明在写作业时不慎将墨水滴在数轴上,根据图中数值,可以确定墨迹盖住的整数和是.13.(4分)用棋子摆成的“T”字形图,如图所示:则第n个“T”字形图案中棋子的总个数是.14.(4分)若关于x的方程=3与kx+1=﹣9的解相同,则k的值为.三、解答题:(共54分)15.(10分)计算:(1)(﹣2)4﹣×[4﹣(﹣3)2];(2)﹣7×|﹣1+(﹣2)|﹣2×(﹣)+3÷.16.(8分)解方程:(1)﹣4x﹣2(1﹣x)=7+5x;(2)=1﹣.17.(6分)先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.18.(10分)如图1,由10个同样大小的小正方体搭成的几何体.(1)请分别画出几何体从正面和从上面看到的形状图;(2)设每个正方体的棱长为1,求出图1原几何体的表面积;(3)如果从这个几何体上取出一个小正方体,在表面标上整数a、b、c、d、e、f,然后将其剪开展开成平面图形如图2所示放置,已知正方体相对的面上的数互为相反数,若整数d是最大的负整数,正整数e的平方等于本身,整数f表示五棱柱的总棱数,求下列代数式的值.19.(10分)如图,已知线段AD=30cm,点C、B都是线段AD上的点,点E是AB的中点.(1)若BD=6cm,求线段AE的长;(2)在(1)的条件下,若AC=AD,且点F是线段CD的中点,求线段EF的长.20.(10分)已知关于x、y的代数式:A=ax2﹣3xy+9x,B=﹣2x2﹣bxy+4,且代数式M=2A﹣3B.(1)若a=﹣3,b=1时,化简代数式M;(2)若代数式M是关于x、y的一次多项式,求a b的值;(3)当a、b满足(a﹣1)2+|ab﹣2|=0且x=﹣2时,求以下代数式的值:+…+.四、填空题(每小题4分,共20分)21.(4分)若a=,则2019﹣2a2+4a的值等于.22.(4分)按如图所示的运算程序进行运算:则当输入的数为时,运算后输出结果为6.23.(4分)已知点A、B在数轴上表示的数分别是a和b:化简|﹣2a|﹣|a﹣b|+3|a+b|=.24.(4分)已知∠AOB=100°,射线OC在同平面内绕点O旋转,射线OE,OF分别是∠AOC和∠COB 的角平分线,则∠EOF的度数为.25.(4分)十九世纪的时候,MorizStern(1858)与AchilleBro cot(1860)发明了“一棵树”,称之为有理数树,它将全体正整数和正分数按照如图所示的方法排列.从1开始,一层一层的“生长”出来:是第一层,第二层是和,第三层是,,,,…,按照这个规律,若位于第m层第n个数(从左往右数),则m+n=.五、解答题26.(8分)居民生活中使用天然气实行阶梯式计价,用户每月用气量在20立方米及以内的为第一级基数,按一级用气价格收取;超过20立方米且不超过30立方米的部分为第二级气量基数,按一级用气价格的1.5倍收取;超过30立方米的部分为第三级气量基数,按一级用气价格的1.8倍收取.为节约用气量,小明记录了1﹣7月份他家每月1号的气表读数.1月2月3月4月5月6月7月气表读数(立方米)433450468485500514535(1)直接写出小明家1月份的用气量立方米及1﹣6月平均每月用气量为立方米.(2)已知小明家2月份的气费为36元,试求他家6月份需交气费多少元?(3)7月份放暑假后,小明的爷爷、奶奶及表哥来到家里和小明一起生活,并多次请客,用气量明显增加,比6月份多用气12立方米,试求小明家7月份需交纳气费多少元?27.(10分)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.28.(12分)数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.如图,数轴上点A表示的数为﹣2,点B表示的数为6.(1)直接写出:线段AB的长度,线段AB的中点表示的数为;(2)x表示数轴上任意一个有理数,利用数轴探究下列问题,直接回答:|x+2|+|x﹣6|有最小值是,|x+2|﹣|x﹣6|有最大值是;当|x+2|﹣|x﹣6|取得最小值时相应的有理数x的取值范围;(3)点C在数轴上对应的数为x,且x是方程2x﹣1=x+4的解.动点P从原点出发在数轴上运动.若存在某个位置,使得P A+PB=PC,则称点P是关于点A、B、C的“石室幸运点”,请问在数轴上是否存在“石室幸运点”?若存在,则求出所有“石室幸运点”对应的数;若不存在,则说明理由.(4)动点P、R分别同时从点A、B出发向左运动,速度分别是1个单位/秒和5个单位/秒,动点Q同时从原点出发在数轴上以v个单位/秒的速度运动,设运动时间为t,点M是线段PR的中点,若在任意时刻总有是一个定值,求动点Q的运动速度和方向.参考答案一、选择题(每小题3分,共30分)1.B;2.C;3.B;4.A;5.D;6.B;7.D;8.B;9.D;10.C;二、填空题:(每小题4分,共16分)11.;12.﹣14;13.(3n+2);14.﹣2;三、解答题:(共54分)15.(1)16;(2)﹣.;16.(1)x=﹣;(2)x=.;17.;18.(1)详见解答;(2)38;(3)﹣1.;19.(1)12cm;(2)8cm.;20.(1)﹣3xy+18x﹣12;(2)9;(3)﹣.;四、填空题(每小题4分,共20分)21.2021;22.1或﹣12;23.﹣4a﹣4b;24.50°或130°;25.139;五、解答题26.17;17;27.80;28.8;2;8;8;x≤﹣2。

成都石室中学数学七年级上册期中精华试题(含答案)下载

成都石室中学数学七年级上册期中精华试题(含答案)下载

成都石室中学数学七上册期中精华试题(含答案)下载第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是( )A .B .C .D .2.如果水位下降3米记作-3米,那么水位上升4米,记作( ) A 、1米. B 、7米. C 、4米. D 、-7米.3.下列方程是一元一次方程的是( ) A .B .C .D .4.数据1600万用科学记数法表示为( )A .1.6×108B .1.6×107C .16×102D .1.6×1065.下列计算正确的是…………………………………………………………………( )A .-3(a +b )=-3a +3bB .2(x +12y )=2x +12y C .x 3+2x 5=3x 8 D .-x 3+3x 3=2x 36.在代数式13ab 、3xy 、a +1、3ax 2y 2、1-y 、4x、x 2+xy +y 2中,单项式有……( )A .3个B .4个C .5个D .6个7.下列各组数中,数值相等的是( )⑴ 1+8=?1+8+16=?⑵ ⑶ 1+8+16+24=? ……A . 34和43B . ﹣42和(﹣4)2C . ﹣23和(﹣2)3D . (﹣2×3)2和﹣22×328、小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示-3的点重合,若数轴上A 、B 两点之间的距离为2014(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数为 ( ) A .-1006B .-1007C . -1008D .-10099.实数a 、b 在数轴上的位置如图所示,下列式子错误的是( )A .a <bB .|a|>|b|C .-a <-bD .b -a >010.观察下列关于x 的单项式,探究其规律: x ,3x 2,5x 3,7x 4,9x 5,11x 6,…按照上述规律,第2015个单项式是( )A .2015x 2015B .4029x 2014C .4029x 2015D .4031x 2015第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.-1/7的倒数是 .12. 我国某年参加高考的总人数约为950万人,则该人数可用科学记数法表示为___________人。

2020-2021成都市石室外语学校七年级数学上期中试卷(带答案)

2020-2021成都市石室外语学校七年级数学上期中试卷(带答案)

2020-2021成都市石室外语学校七年级数学上期中试卷(带答案)一、选择题1.下列各数中,比-4小的数是( ) A . 2.5-B .5-C .0D .22.000043的小数点向右移动5位得到4.3, 所以0.000043用科学记数法表示为4.3×10﹣5, 故选A . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.7-的绝对值是 ( ) A .17-B .17C .7D .7-4.计算3x 2﹣x 2的结果是( ) A .2 B .2x 2 C .2x D .4x 25.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .6.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012 B .8×1013 C .8×1014 D .0.8×1013 7.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x-5=y+5 B .若a=b ,则ac=bc C .若23a bc c =,则2a=3b D .若x=y ,则x y a b= 8.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A .B .C .D .9.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010-11.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .12.下列各图经过折叠后不能围成一个正方体的是( )A .B .C .D .二、填空题13.若计算(x ﹣2)(3x+m )的结果中不含关于字母x 的一次项,则m 的值为_____.14.单项式234x y -的系数是__________,次数是__________.15.实数a ,b 在数轴上的位置如图所示,则化简代数式|a+b|2a _____.16.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.17.已知方程(m-2)x |m|-1+16=0是关于x 的一元一次方程,则m 的值为_______. 18.将从1开始的连续自然数按以下规律排列: 第1行1第2行2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行252423222120191817…则2018在第_____行.19.已知实数x ,y 满足150x y ++-=,则y x 的值是____.20.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题21.某家电商场计划用9万元从生产厂家购进50台电视机,已知该厂家生产3种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元. (1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你计算一下商场有哪几种进货方案?(2)若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,应选择哪种方案?22.先化简再求值:a 2﹣(5a 2﹣3b )﹣2(2b ﹣a 2),其中a =﹣1,b =12. 23.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC=.(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.24.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.25.如图,直线BC与MN相交于点O,AO丄OC,OE平分∠BON,若∠EON=20°,求∠AOM 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则. 2.无3.C解析:C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.4.B解析:B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则. 5.B解析:B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.考点:棱柱的侧面展开图.6.B解析:B【解析】80万亿用科学记数法表示为8×1013.点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.7.B解析:B 【解析】 【分析】根据等式的基本性质对各选项进行逐一分析即可. 【详解】A 、不符合等式的基本性质,故本选项错误;B 、不论c 为何值,等式成立,故本选项正确;C 、∵23a b c c= ,∴•623a bc c c = •6c ,即3a=2b ,故本选项错误;D 、当a≠b 时,等式不成立,故本选项错误. 故选:B . 【点睛】此题考查等式的性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题的关键.8.B解析:B 【解析】 【分析】根据班级序号的计算方法一一进行计算即可. 【详解】A. 第一行数字从左到右依次为1,0,1,0,序号为32101202120210⨯+⨯+⨯+⨯=,表示该生为10班学生.B. 第一行数字从左到右依次为0,1, 1,0,序号为3210021212026⨯+⨯+⨯+⨯=,表示该生为6班学生.C. 第一行数字从左到右依次为1,0,0,1,序号为3210120202129⨯+⨯+⨯+⨯=,表示该生为9班学生.D. 第一行数字从左到右依次为0,1,1,1,序号为3210021212127⨯+⨯+⨯+⨯=,表示该生为7班学生. 故选B. 【点睛】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.9.A解析:A【分析】由平面图形的折叠及正方体的表面展开图的特点解题. 【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体, 故选A . 【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.10.D解析:D 【解析】 【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值. 【详解】 解:00a =,101011a a =-+=-+=-, 212121a a =-+=--+=-, 323132a a =-+=--+=-,434242a a =-+=--+=-, 545253a a =-+=--+=-, 656363a a =-+=--+=-, 767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……, (2019+1)÷2=1010,故20191010a =-, 故选:D . 【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.11.C解析:C 【解析】 【分析】根据余角的定义,可得答案. 【详解】解:C 中的121809090∠∠+=-=o o o ,【点睛】本题考查余角,利用余角的定义是解题关键.12.D解析:D 【解析】 【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图. 【详解】解:A 、是正方体的展开图,不符合题意; B 、是正方体的展开图,不符合题意; C 、是正方体的展开图,不符合题意;D 、不是正方体的展开图,缺少一个底面,符合题意. 故选:D . 【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.二、填空题13.6【解析】试题解析:原式由结果不含x 的一次项得到解得:故答案为6解析:6 【解析】试题解析:原式()2362.x m x m =+--由结果不含x 的一次项,得到60m -=, 解得: 6.m = 故答案为6.14.-4;5【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数【详解】解:单项式-4x2y3的系数是-4次数是5故答案为-45【点睛】此题考查了单项式的知识解析:-4; 5. 【解析】 【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数. 【详解】解:单项式-4x 2y 3的系数是-4,次数是5. 故答案为-4、5.此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.15.2a+b【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案【详解】由数轴可得:a+b>0a<0则原式=a+b-(-a)=2a+b故答案是:2a+b【点睛】考查了二次根式的性质与化简正解析:2a+b【解析】【分析】直接利用二次根式的性质以及绝对值的性质化简得出答案.【详解】由数轴可得:a+b>0,a<0,则原式=a+b-(-a)=2a+b.故答案是:2a+b.【点睛】考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.16.诚【解析】【分析】正方体的平面展开图中相对的两个面中间必须隔着一个小正方形根据这一特点结合题意可正确解答【详解】如果原正方体上友所在的面为前面则信所在的面为左面所以相对的正方体的右面是国后面是诚故答解析:诚【解析】【分析】正方体的平面展开图中,相对的两个面中间必须隔着一个小正方形,根据这一特点,结合题意可正确解答.【详解】如果原正方体上“友”所在的面为前面,则“信”所在的面为左面,所以相对的正方体的右面是“国”,后面是“诚”故答案为:诚【点睛】本题考查正方体相对两个面上的文字,立意新颖,是一道不错的题.关键是分清每一个面的位置.17.-2【解析】【分析】若一个整式方程经过化简变形后只含有一个未知数并且未知数的次数都是1系数不为0则这个方程是一元一次方程据此可得出关于m的方程即可求出m的值【详解】∵(m-2)x|m|-1+16=0解析:-2【解析】【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m 的方程,即可求出m 的值. 【详解】∵(m-2)x |m|-1+16=0是关于x 的一元一次方程, ∴1m -=1且m-2≠0, 解得:m=-2, 故答案为:-2 【点睛】本题考查一元一次方程的定义,注意一次项的系数不为0这个隐含条件,容易漏解.18.45【解析】【分析】分析可得各行最大数依次为1491625可得每行的最大数为行数的平方接下来求得2018两边的平方数再结合结论即可得到答案【详解】观察可知:各行最大数依次为1491625可得每行的最解析:45 【解析】 【分析】分析可得各行最大数依次为1、4、9、16、25,可得每行的最大数为行数的平方,接下来求得2018两边的平方数,再结合结论即可得到答案. 【详解】观察可知:各行最大数依次为1、4、9、16、25,可得每行的最大数为行数的平方. 22441936452025==,, 因为1936<2018<2025, 所以2018是第45行的数. 故答案为45. 【点睛】本题属于探究规律类题目,解答本题需掌握题目中数的排列规律,考虑从最大数与行数入手.19.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为 解析:1-【解析】50y -=, ∴10x +=且50y -=,∴1?5x y =-=,, ∴5(1)1yx =-=-.点睛:(1)两个非负数的和为0,则这两个数都为0;(2)1-的奇数次方仍为1-.20.b+2c 【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题21.(1)有两种进货方案:购进A种25台,B种25台或购进A种35台,C种15台;(2)选择购A、C两种型号的电视机,理由见解析.【解析】【分析】(1)分三种情况讨论:①只购进A、B两种型号,②只购进B、C两种型号,③只购进A、C两种型号,分别列出方程求解;(2)分别计算(1)中进货方案获得的利润,选择利润最多的方案即可.【详解】解:(1)只购进A、B两种型号时,设购进A型x台,则B型(50-x)台,1500x+2100(50-x)=90000,解得x=25,50-x=25台.只购进B、C两种型号时,设购进B型y台,则C型(50-y)台,2100y+2500(50-y)=90000,解得y=87.5(舍去)只购进A、C两种型号时,设购进A型z台,则C型(50-z)台,1500z+2500(50-z)=90000,解得z=35,50-z=15台所以有两种进货方案:购进A种25台,B种25台或购进A种35台,C种15台.(2)当只购A、B两种型号时,利润:25×150+25×200=8750元当只购A、C两种型号时,利润:35×150+15×250=9000元所以选择购A、C两种型号的电视机.【点睛】本题考查一元一次方程的应用,利用单价乘以数量等于总价建立方程是解题的关键.22.﹣2a2﹣b,原式=﹣2.5.【解析】【分析】先将多项式化简,再将a、b的值代入计算.【详解】原式=a2﹣5a2+3b﹣4b+2a2=﹣2a2﹣b,当a=﹣1,b=12时,原式=﹣2﹣12=﹣2.5.【点睛】此题考查多项式的化简求值,正确化简多项式是代入计算的关键.23.(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC﹣2AB=12.【解析】【分析】(1)利用|a+2|+(c−7)2=0,得a+2=0,c−7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以AB=t+2t+3=3t+3,再由AC=9,得AC=t+4t+9=5t+9,由原来BC=6,可知BC=4t−2t+6=2t+6;(4)由3BC−2AB=3(2t+6)−2(3t+3)求解即可.【详解】(1)∵|a+2|+(c−7)2=0,∴a+2=0,c−7=0,解得a=−2,c=7,∵b是最小的正整数,∴b=1;故答案为:−2;1;7.(2)(7+2)÷2=4.5,对称点为7−4.5=2.5,24.(1)180°;(2)见解析;(3)DE⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD平分∠ODC.(3)如图,延长DE交BF于G,,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC,∠CBM=∠EBG=∠ODC=∠EDC.∵∠BEG=∠DEC,∴△DEC∽△BEG,∴∠BGE=∠DCE=90°,∴DE垂直BF.【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.25.o【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°-∠COM即可求解.【详解】解:∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°-∠COM=90°-40°=50°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档