小学数学定义定理
小学六年级数学必背定义定理公式[最新]
千里之行,始于足下。
小学六年级数学必背定义定理公式[最新] 小学六年级数学必背定义、定理、公式
一、定义
1.自然数:0及0后面的整数叫做自然数。
2.整数:自然数、0和它们的相反数叫做整数。
3.小数:有限小数和无限小数。
4.分数:是一个整数与一个非零整数的比。
5.平行四边形:具有两组相对边平行的四边形。
6.正方形:具有四条边相等、四个角相等的四边形。
7.方程:带有未知数的等式。
二、定理
1.叠加性法则:两个数相等,如果两边加(或减)同一个数,仍相等。
2.乘除性法则:两边乘(或除)同一个数,仍相等。
3.线段延长线的分法:一条线段可分为任意两个部分,只需在一点上划一条直线。
4.倒数的性质:一个数与它的倒数的乘积等于1。
三、公式
1.周长公式:正方形的周长=4边长;长方形的周长=2(长+宽);圆的周长=2πr(r为半径)。
2.面积公式:正方形的面积=边长×边长;长方形的面积=长×宽;圆的面积=πr²。
3.等腰三角形的面积公式:S = 1/2bh。
4.一次方程解法公式:已知方程ax + b = 0(a≠0),则x = -b/a。
第1页/共2页
锲而不舍,金石可镂。
以上是小学六年级数学必背的一些定义、定理和公式,希望对你的学习有帮助!。
小学数学公式定理定义大全
9、数是一次的等念第一部分:概8、什么叫方程式?答:含有未知数的等式叫方程式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
算,有几个零都落下,添在积的末尾。
简便乘法:被乘数、乘数末尾有O 的乘法,可以先把O 前面的相乘,零不参加运变。
O 除以任何不是O 的数都得O 。
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不如:(2+4)×5=2×5+4×5把两个积相加,结果不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再个数相乘,它们的积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三3、乘法交换律:两数相乘,交换因数的位置,积不变。
个数相加,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三1、加法交换律:两数相加交换加数的位置,和不变。
什么叫一元一次方程式?答:含有一个未知数,并且未知数的次15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
数相加减,先通分,然后再加减。
分11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
式叫做一元一次方程式。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学基础知识整理(定义定理记忆篇)
小学数学基础知识整理(定义定理记忆篇)必背定义、定理公式三角形的面积=底×高÷2。
公式 S=a×h÷2 正方形的面积=边长×边长公式 S=a×a 长方形的面积=长×宽公式 S= a×b平行四边形的面积=底×高公式 S= a×h梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2内角和:三角形的内角和=180 度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式: V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式: S=ch=πdh= 2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两端的圆的面积。
公式: S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积= 1/3 底面×积高。
公式: V=1/3Sh分数的加、减法例:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,而后再加减。
分数的乘法例:用分子的积做分子,用分母的积做分母。
一般说来,“教师”观点之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子师长教之弗为变”其“师长”自然也赐教师。
这儿的“师资”和“师长”可称为“教师”观点的雏形,但仍说不上是货真价实的“教师”,由于“教师”一定要有明确的教授知识的对象和自己明确的职责。
小学数学各位公式定义定律大全
小学数学公式大全1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a +b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
小学数学必背定义定理公式
小学数学必背定义定理公式一、分数乘法概念总结1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算; 例如:×5的意义是:表示求5个的和是多少;2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;为了计算简便,能约分的要先约分,然后再乘;3.一个数与分数相乘,可以看作是求这个数的几分之几是多少;例如:5×的意义是:表示求5的是多少;4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母;为了计算简便,可以先约分再乘;5.乘积是1的两个数互为倒数;6.求一个数0除外的倒数,只要把这个数的分子、分母调换位置;1的倒数是1;0没有倒数;真分数的倒数大于1;假分数的倒数小于或等于1;注意:倒数必须是成对的两个数,单独的一个数不能称做倒数;7.一个数0除外乘以一个真分数,所得的积小于它本身;8.一个数0除外乘以一个假分数,所得的积大于或等于它本身;9.如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大;例如:a×= b×= c×a、b、c都不为0因为 < < ,所以b > a > c;二、分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算;2.分数除法口诀:被除数不变,除号变乘号,除数变倒数;分数的除法则:除以一个数等于乘以这个数的倒数;3.两个数相除又叫做两个数的比;比的前项除以后项所得的商,叫做比值; 4.比值通常用分数、小数和整数表示;5.比的后项不能为0;分母不能为0,除数不能为06.比同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;7.和分数比较,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值;8.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数0除外,比值不变;9.一个数0除外除以一个真分数,所得的商大于它本身;10.一个数0除外除以一个假分数,所得的商小于或等于它本身;解分数百分数应用题注意事项:1.找单位“1”的方法:从含有分数的句子中找,“的”前“比”后的规则;当句子中的单位“1”不明显时,把原来的量看做单位“1”;2.分数百分数应用题三种基本类型①求比较量,用乘法:单位“1”×分率=比较量;②求单位“1”,用除法:比较量÷分率=单位“1”③求分率,用除法:比较量÷单位“1” =分率3.注意比较量与分率的对应:①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率;⑩总量和的比较量对总量和的分率;4.单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减;5.单位“1”的特点:①单位“1”为分母;②单位“1”为不变量;三、圆概念总结1、圆中心的一点,这一点叫做圆心;圆心一般用字母O表示;2.半径:连接圆心到圆上任意一点的线段叫做半径;半径一般用字母r表示;把圆规两脚分开,两脚之间的距离就是圆的半径;3.圆心确定圆的位置,半径确定圆的大小;4.直径:通过圆心并且两端都在圆上的线段叫做直径;直径一般用字母d 表示;5.在同一个圆内,有无数条半径,所有的半径都相等,有无数条直径;所有的直径都相等;7.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半;用字母表示为:d=2r r = d÷28.圆的周长:围成圆的曲线的长度叫做圆的周长;9.圆的周长总是直径的3倍多一些,这个比值是一个固定的数;我们把圆的周长和直径的比值叫做圆周率,用字母表示;圆周率是一个无限不循环小数;在计算时,取 ;世界上第一个把圆周率算出来的人是我国的数学家祖冲之;圆周率=π≈11.把一个圆切拼成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长×宽,所以圆的面积=πr×r=πr2;12.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长;在一个长方形里画一个最大的圆,圆的直径等于长方形的宽;15.环形的周长=外圆周长+内圆周长16.半圆的周长等于圆的周长的一半加直径;公式:C=πd÷2+d 或C=πr+2r注:半圆的周长不等于圆周长的一半;圆周长的一半=πr17.半圆面积=圆的面积÷2 公式为:S=πr2 ÷ 218.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数;而面积扩大或缩小以上倍数的平方倍;例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍;19.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方;如:两个圆的半径比是2︰3,那么这两个圆的直径比和周长比都是2︰3,面积比是4︰9;20.当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米;21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形;折痕所在的这条直线叫做对称轴; 23.有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆; 有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、同心圆环;注意:平行四边形不是轴对称图形24.直径所在的直线是圆的对称轴;四、百分数概念总结1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数;百分数也叫做百分率或百分比;2.百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称; 3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示;分子部分可为小数、整数,可以大于100,小于100或等于100;4.应纳税额:缴纳的税款叫应纳税额;5.税率:应纳税额与各种收入的比率叫做税率;6.应纳税额=各种收入×税率7.本金:存入银行的钱叫做本金;8.利息:取款时银行多支付的钱叫做利息;9.国家规定,存款的利息要按20%现在是5%,应以题目为准的税率纳税; 国债的利息不纳税;10.利率:利息与本金的比值叫做利率;注意前、后项不要掉转一年的利息与本金的比值叫做年利率;一月的利息与本金的比值叫做月利率;11.银行存款税后利息的计算公式:利息=本金×利率×时间×1-20%12.国债利息的计算公式:利息=本金×利率×时间13.本息:本金与利息的总和叫做本息;五、图形总结几何知识一、直线、射线、线段直线:没有端点,两边无限延长,无法度量;射线:有一个端点,一边可以无限延长,无法度量;线段:有两个端点,可以度量;二、角1、角的大小取决于角两边叉开的大小,与边的长短无关;2、角的分类锐角:大于0度小于90度直角:等于90度钝角:大于90度小于180度平角:等于180度1周角=2平角=4直角周角:等于360度三、三角形1. 意义:由三条线段围成的图形叫做三角形;2. 特性:三角形具有稳定性;3. 三角形的内角和为180°;直角三角形的两锐角之和为90°;4、三角形的分类:按角分:①锐角三角形三个角都是锐角②直角三角形有一个角是直角③钝角三角形有一个角是钝角按边分:①等边三角形三条边相等,三个角都是60度②等腰三角形两条边相等③不等边三角形三条边都不相等四、四边形1. 平行四边形:两组对边分别平行的四边形叫做平行四边形;或有两组对边分别相等的四边形或有一组对边平行且相等的四边形2. 长方形:长方形是特殊的平行四边形,它的两组对边分别平行且相等,四个角都是直角;3. 正方形:正方形是特殊的长方形,它的四条边都相等,四个角都是直角;4. 梯形:只有一组对边平行的四边形叫做梯形;两腰相等的梯形叫做等腰梯形;有一个角是直角的梯形叫做直角梯形;5. 四边形的四个内角和为360°;五、立体图形1、正方体的特征:有6个面都是全等的正方形,12条棱长度都相等,8个顶点;2、长方体的特征:有6个面都是长方形,有可能两个面是正方形,相对面的面积相等,12 条棱相对的棱长相等,8个顶点;正方体是一种特殊的长方体;当长方体的长、宽、高都相等时,即为正方体;3、圆柱的特征:上下底是相等的两个圆,有无数条高,条条相等,侧面是曲面,展开是一个长方形,长等于圆柱底面的周长,宽等于圆柱的高;4、圆锥的特征:1个底面、1个顶点、一个侧面、1条高;底面是一个圆,顶点到底面圆心的距离是高,侧面展开得到一个扇形;它的体积是等底等高的圆柱体积的 ;六图形公式总结几何形体的周长、面积、体积计算公式长方形的周长=长+宽×2 公式C=a+b×2正方形的周长=边长×4 公式C= 4a三角形的面积=底×高÷2; 公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=上底+下底×高÷2 公式S=a+bh÷2内角和:三角形的内角和=180度;多边形的内角和=边数—2×180长方体的体积=长×宽×高公式:V=abh长方体或正方体的体积=底面积×高公式V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa=a3长方体的表面积=长×宽+长×高+宽×高×2公式:S=ab+ac+bc×2正方体的表面积=棱长×棱长×6公式:S=a×a×6=6a 2圆的周长=直径×π或2×半径×π公式:C=πd或C=2πr圆的面积=半径×半径×π公式:S=πr2环形面积=大圆面积—小圆面积公式:S环=πR2 -πr2圆柱的侧面积=底面的周长×高; 公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高﹢底面积×2;公式:S=ch+2s=ch+2πr2=2πrh+2πr2圆柱的体积=底面积×高; 公式:V=Sh=πr2h圆锥的体积=底面积×高×1/3; 公式:V= Sh=1/3Sh圆柱和圆锥的关系:①等底等高:圆柱的体积是圆锥体积的3倍;②等体积等高:圆柱的底面积是圆锥底面积的;③等体积等底;圆柱的高是圆锥高的;平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足;六、定义定理性质总结一、定律性质方面1、加法交换律:两数相加交换加数的位置,和不变; a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变; a+b+c=a+b+c3、减法的运算性质:①一个数连续减去几个数,等于这个数减去几个数的和;②一个数连续减去几个数,可以将几个减数交换位置;4、乘法交换律:两数相乘,交换因数的位置,积不变;a×b=b×a5、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变;a×b×c=a×b×c6、乘法分配律:两个数的和差同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加减,结果不变;a×b+c=a×b+a×c 如:2+4×5=2×5+4×57、除法的运算性质:①在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变;②一个数连续除以几个数,等于这个数除以几个除数的积;例:90÷5÷6=90÷5×6③一个数连续除以几个数,可以将几个除数交换位置;④ 0除以任何不是0的数都得0简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾;7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式;等式的基本性质:等式两边同时乘以或除以一个相同的数,等式仍然成立;8、方程式:含有未知数的等式叫方程式;9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式; 学会一元一次方程式的例法及计算;即例出代有χ的算式并计算; 比例:表示两个比相等的式子叫做比例;如3:6=9:18;10、比例的基本性质:在比例里,两个外项的积等于两个内项的积;11、解比例:求比例中的未知项,叫做解比例;如3:χ=9:1812、代数:代数就是用字母代替数;代数式:用字母表示的式子叫做代数式;如:3x =ab+c13、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变;异分母的分数相加减,先通分,然后再加减;14、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小;异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小;15、分数的基本性质:⑴分数的分子和分母同时乘上或除以同一个数0除外,分数的大小不变;⑵比的基本性质:比的前项和后项同时乘上或除以一个相同的数0除外,比值不变;⑶商不变的性质:被除数和除数同时乘上或除以同一个数0除外,商不变;16、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系;如:y/x=k k一定或kx=y17、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系;如:x×y = k k一定或k / x = y二、数的概念和数的整除1、自然数:用来表示物体个数的整数,叫做自然数;0是最小的自然数;2、整数:自然数是整数的一部分,整数不止包括自然数,还有负整数3、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数;4、真分数:分子比分母小的分数叫做真分数;5、假分数:分子比分母大或者分子和分母相等的分数叫做假分数;假分数大于或等于1;6、带分数:把假分数写成整数和真分数的形式,叫做带分数;7、无限循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数;如3. 141414……纯循环小数:循环节从小数部分第一位开始的;混循环小数:循环节不从小数部分第一位开始的;8、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数9、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数;如π┉┉10、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;其实,把小数化成百分数,只要把这个小数乘以100%就行了;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位;11、把分数化成百分数,通常先把分数化成小数除不尽时,通常保留三位小数,再把小数化成百分数;其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数;12、把小数化成分数,先看小数点后面有几位小数,就在1的后面添上几个0作分母,原来的小数去掉小数点作分子,能约分的要约成最简分数;把分数化成小数,用分子除于分母;13、整除:数a除以数b,a、b是整数且b不为0除得的商是整数而没有余数,就说a 能被b整除或b能整除a;除尽包含整除;如10÷2=5,就说10能被2整除,2能整除10;14、约数、倍数:如果数a能被数b整除,b就叫做a的约数,a就是b的倍数;如:10÷2=5,就说2是10的约数,10是2的倍数;15、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数;或几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做最大公约数;16、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数;17、互质数:公约数只有1的两个数,叫做互质数;18、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分;通分用最小公倍数19、约分:把一个分数化成同它相等,分子、分母是互质的分数,叫做约分;约分用最大公约数20、最简分数:分子、分母是互质数的分数,叫做最简分数;分数计算到最后,得数必须化成最简分数;个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分;个位上是0或者5的数,都能被5整除,即能用5进行约分;在约分时应注意利用;21、偶数和奇数:能被2整除的数叫做偶数;不能被2整除的数叫做奇数;0是自然数中最小的偶数22、质数素数:一个数,如果只有1和它本身两个约数,这样的数叫做质数或素数;最小的质数是223、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数;1不是质数,也不是合数;最小的合数是424、分解质因数:把一个合数用质因数相乘的形式表示出来;如:把12分解质因数:12=2×2×3 不要写成2×2×3=12二、数量关系计算公式方面1、每份数×份数=总数;总数÷每份数=份数;总数÷份数=每份数2、 1 倍数×倍数=几倍数;几倍数÷ 1倍数=倍数;几倍数÷倍数= 1倍数3、速度×时间=路程;路程÷速度=时间;路程÷时间=速度4、单价×数量=总价;总价÷单价=数量;总价÷数量=单价5、单产量×数量=总产量;总产量÷单产量=数量;总产量÷数量=单产量6、比重×体积=重量;重量÷比重=体积;重量÷体积=比重7、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率8、图上距离:实际距离=比例尺9、加数+加数=和;一个加数=和-另一个加数10、被减数-减数=差;减数=被减数-差;被减数=减数+差11、因数×因数=积;一个因数=积÷另一个因数12、被除数÷除数=商;除数=被除数÷商;被除数=商×除数13、单位换算单位间进率长度单位换算:面积单位换算:体容积单位换算:重量单位换算人民币单位换算1元=10角 1角=10分 1元=100分时间单位换算14、解决问题中运用到的公式和差问题的公式和+差÷2=大数;和-差÷2=小数和倍问题和÷倍数-1=小数;小数×倍数=大数或者和-小数=大数差倍问题差÷倍数-1=小数;小数×倍数=大数或小数+差=大数植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×株数-1 株距=全长÷株数-1⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×株数+1株距=全长÷株数+12、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题盈+亏÷两次分配量之差=参加分配的份数大盈-小盈÷两次分配量之差=参加分配的份数大亏-小亏÷两次分配量之差=参加分配的份数行程问题通常可以分为这样几类遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题关键是抓住水速对追及和相遇的时间不产生影响顺流速度=静水速度+水流速度顺水速度=船速+水速逆流速度=静水速度-水流速度逆水速度=船速-水速静水速度=顺流速度+逆流速度÷2水流速度=顺流速度-逆流速度÷2也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个环形行程:抓住往返过程中不变的关系比例应用:运用比例知识解决复杂的行程问题;复杂行程:包括多次相遇、火车过桥、二维行程等;浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=售出价÷成本-1×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%折扣<1利息=本金×利率×时间税后利息=本金×利率×时间×1-20%七、统计图1、用统计图表示有关数量之间的关系,比统计表更加形象具体,使人一目了然,印象深刻;2、常见的统计图有条形统计图、折线统计图和扇形统计图;3、条形统计图:是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条, 然后把这些直条按照一定的顺序排列起来;作用:从条形统计图中很容易看出各种数量的多少4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来;作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况;运算定律共有五个:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律;要求在理解的基础上掌握,并能灵活运用;运算性质指:一个数加上两个数的差;一个数减去两个数的和;一个数减去两个数的差;一个数乘以两个数的商;一个数除以两个数的积;一个数除以两个数的商;几个数的和除以一个数等;这部分内容只是用于简便运算;运算法则包括:整数四则运算法则、小数四则运算法则、分数四则运算法则;要求在理解的基础上掌握法则,并能运用法则熟练地进行计算;。
小学数学公式定理定义大全
小学数学公式定理定义大全1.数与数的运算:定义:数是用来计数、比较大小和进行运算的抽象概念。
数的种类包括自然数、整数、分数、小数等。
定理1:加法交换律:a+b=b+a定理2:加法结合律:(a+b)+c=a+(b+c)定理3:乘法交换律:a×b=b×a定理4:乘法结合律:(a×b)×c=a×(b×c)定理5:乘法分配律:a×(b+c)=(a×b)+(a×c)2.数的整除与倍数:定义:如果一个数b除以另一个数a可以整除,即没有余数,那么a就称为b的约数,b称为a的倍数。
定理6:若a能整除b,b能整除c,则a能整除c。
定理7:任何一个数a都能整除它本身。
3.算式的计算规则:定义:算式是由数字、符号和运算符号组成的表达式,用来表示数与数之间的关系。
定理8:在一个算式中,先进行乘除运算,再进行加减运算。
定理9:在一个算式中,先进行括号内的运算,再进行括号外的运算。
4.分数与小数:定义:分数是表示部分数量的数,小数是表示除法运算结果的数。
定理10:分数可以化简为最简形式,即分子与分母没有公因数。
定理11:小数可以化为分数,分子是小数点后的数字,分母是1后面跟着相应数量的0。
定理12:分数和小数可以相互转换,如1/2和0.5表示同一个数。
5.图形的性质:定义:图形是由点、线、面组成的平面图形。
定理13:平行线在同一平面上,它们不会相交。
定理14:垂直线之间的夹角是90度。
6.长方形和正方形:定义:长方形是一个长和宽不同的四边形,正方形是一个边长相等的长方形。
定理15:长方形的面积等于长乘以宽,即A=l×w。
定理16:正方形的面积等于边长的平方,即A=s^27.三角形的性质:定义:三角形是由三条边和三个内角组成的多边形。
定理17:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2(勾股定理)。
小学数学定义定理公式及初中几何定理
小学数学定义定理公式一、算术方面:1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)x5=2x5+4x5。
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7、等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、方程式:含有未知数的等式叫方程式。
9、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、甲数除以乙数(0除外),等于甲数乘以乙数的倒数21、比:两个数相除就叫做两个数的比。
人教部编版小学1到6年级数学公式定理定义大全
人教部编版小学1到6年级数学公式定理定义大全第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
小学数学定义定理公式小结
千里之行,始于足下。
小学数学定义定理公式小结小学数学是学生数学学习的起点,它包含了许多基础的定义、定理和公式。
这些知识是学生在数学学习中的基础,也是日常生活中运用数学的基本工具。
下面我将对小学数学的一些重要定义、定理和公式进行小结。
一、基础定义1. 自然数:从1开始的整数序列,用N表示。
2. 整数:自然数、自然数的负数加上0构成的集合,用Z表示。
3. 有理数:可以表示为两个整数的比值的数,用Q表示。
4. 实数:包括有理数和无理数的数的集合,用R表示。
5. 偶数:能够被2整除的整数。
6. 奇数:不能被2整除的整数。
7. 相反数:一个数与它的相反数相加等于0。
8. 绝对值:一个数与它的相反数中的正数,用|a|表示。
二、常用定理1. 加法交换定律:对于任意两个数a和b,a+b=b+a。
第1页/共3页锲而不舍,金石可镂。
2. 加法结合定律:对于任意三个数a、b和c,(a+b)+c=a+(b+c)。
3. 加法零元素:任意数a加0等于a,0+a等于a。
4. 减法定义:a-b=a+(-b)。
5. 乘法交换定律:对于任意两个数a和b,a*b=b*a。
6. 乘法结合定律:对于任意三个数a、b和c,(a*b)*c=a*(b*c)。
7. 乘法分配律:对于任意三个数a、b和c,a*(b+c)=a*b+a*c。
8. 乘法零元素:任意数a乘以0等于0,0乘以任意数a等于0。
9. 乘法幂法则:a的n次方乘以a的m次方等于a的n+m次方。
10. 除法定义:a除以b等于a乘以b的倒数。
三、常用公式1. 面积公式:(1) 矩形的面积:面积等于长乘以宽,即S=长×宽。
(2) 三角形的面积:面积等于底乘以高的一半,即S=底×高/2。
(3) 圆的面积:面积等于半径平方乘以π,即S=πr^2。
2. 周长公式:千里之行,始于足下。
(1) 矩形的周长:周长等于长和宽的和的两倍,即P=2(长+宽)。
(2) 三角形的周长:周长等于三边的和,即P=边1+边2+边3。
小学六年级数学必背定义定理公式
小学六年级数学必背定义定理公式体积和表面积三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= axa长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a a长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a a a圆的周长=直径×π公式:L=πd=2πr圆的面积=半径×半径×π公式:S=πr r圆柱的(侧)面积:圆柱的(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a ×( b + c)6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小学六年级数学必背定义定理公式[最新]
小学六年级数学必背定义定理公式体积和表面积三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= axa长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2 公式:S=(a×b+a×c+b×c)×2正方体的表面积=棱长×棱长×6 公式:S=6a a长方体的体积=长×宽×高公式:V = abh长方体(或正方体)的体积=底面积×高公式:V = abh正方体的体积=棱长×棱长×棱长公式:V = a a a圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr r圆柱的(侧)面积:圆柱的(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh算术1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a3、乘法交换律:a × b = b × a4、乘法结合律:a × b × c = a ×(b × c)5、乘法分配律:a × b + a × c = a ×( b + c)6、除法的性质:a ÷ b ÷ c = a ÷(b × c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
小学数学公式定理定义大全
千里之行,始于足下。
小学数学公式定理定义大全小学数学公式定理定义大全 ()一、数的四则运算公式:1. 加法公式:a + b = c, a和b是被加数,c是和数。
2. 减法公式:a - b = c, a是被减数,b是减数,c是差。
3. 乘法公式:a × b = c, a和b是乘数,c是积。
4. 除法公式:a ÷ b = c, a是被除数,b是除数,c是商。
二、数的性质定理:1. 整数的加法性质:对于任意两个整数a和b,有a + b = b + a。
2. 整数的乘法性质:对于任意两个整数a和b,有a × b = b × a。
3. 整数的结合律:对于任意三个整数a,b和c,有(a + b) + c = a +(b + c)和(a × b) × c = a × (b × c)。
4. 整数的分配律:对于任意三个整数a,b和c,有a × (b + c) = a ×b + a × c。
5. 整数的乘法逆元:对于任意非零整数a,存在整数b,使得a × b = 1。
这里的1是整数1。
第1页/共3页锲而不舍,金石可镂。
三、平方数和立方数定理:1. 平方数的定义:如果一个数是某个整数的平方,那么它就是平方数。
2. 平方数的性质:平方数一定是非负数,并且任意一个非负数都可以表示为某个整数的平方。
3. 立方数的定义:如果一个数是某个整数的立方,那么它就是立方数。
4. 立方数的性质:立方数一定是整数。
四、分数的运算公式:1. 分数的加法:a/b + c/d = (a × d + c × b) / (b × d), a和c 是分子,b和d是分母。
2. 分数的减法:a/b - c/d = (a × d - c × b) / (b × d), a和c 是分子,b和d是分母。
小学数学定义定理性质法则重点
小学数学定义、定理、公式精华 (杜老师整理)(一)图形计算公式1、等腰直角三角形:S=21a ×h =41L 2 (L 表示斜边) 2、正方形: S=a ×a =a 2=21L 2 (L 表示对角线) 3、梯 形: 连接梯形的两条对角线后,分割成上下左右4个三角形。
S 左=S 右 S 左×S 右=S 上×S 下3、圆: C=πd=2πr S=πr 2 扇形:S=πr 2×360n C=2πr ×360n +2r S 月牙形(或弓形)=0.285 r 2 S 风筝形=0.215 r 2 S 环=π(R 2-r 2)4、圆柱体: S 侧=Ch=2πrh S 表= S 侧+2S 底 =2πrh+2πr 2 V= S 底h=πr 2h5、圆锥体: V= 31S 底h=31πr 2h 6、阴影面积: S 阴=S 总-S 空白 运用割补法将不规则图形转化为规则图形求面积。
或运用放大法和差不变性质求两个阴影部分面积的差。
(二)定义、性质、法则1、比:两个数相除又叫做两个数的比。
比的基本性质:比的前项和后项同乘或除以相同的数(0除外),比值不变。
化简比:运用比的基本性质将比的前项和后项转化为两个互质的整数。
分数、除法和比是一回事,可用于分、比转化。
如:2÷3=32=2∶3 2、比例:表示两个比相等的式子叫做比例。
比例的基本性质:横式形式的比例,两个外项之积等于两个内项之积。
分数形式的比例,交叉相乘积相等。
3、解比例:利用两个外项之积等于两个内项之积,求出比例中的未知项。
4、正比例:两种相关联的变量的比值(也就是商k )一定,这两种变量就叫做成正比例关系。
如:xy =k ( k 一定)或kx=y 。
5、反比例:两种相关联的变量的积一定,这两种变量就叫做成反比例关系。
如:x ×y = k ( k 一定)或xk = y 6、利息=本金×年利率×时间(年)(三)各类问题的数量关系式1、比例尺:图上距离∶实际距离=比例尺 图上距离=实际距离×比例尺实际距离=图上距离÷比例尺 (注意:单位一般统一成厘米再化简)2、分数应用题 :单位“1”×分数(或百分率)=部分量部分量÷对应分数(或百分率)=单位“1”3、相遇问题:相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间 相遇路程即路程和4、追及问题:追及距离=速度差×追及时间 追及时间=追及距离÷速度差速度差=追及距离÷追及时间 追及路程即路程差5、流水问题:顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷26、工程问题:工作效率=工作时间1 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间7、和差问题:(和+差)÷2=大数 (和-差)÷2=小数8、和倍问题:和÷(倍数-1)=小数 小数×倍数=大数 或:和-小数=大数9、差倍问题:差÷(倍数-1)=小数 小数×倍数=大数 或:小数+差=大数10、等差数列:总和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1 末项=首项+(项数-1)×公差11、植树问题:1、 线段路线上的植树问题: (只在路的一边植树)(1)两端都植树:棵数=段数+1=全长÷棵距+1全长=棵距×(棵数-1) 株距=全长÷(株数-1)(2)只一端植树: 棵数=段数 (3)两端都不植: 棵数=段数-1若在路的两边都植,则给上面结果分别乘2。
小学数学必背定义、定理公式
小学数学必背定义、定理公式
1、三角形的面积=底×高÷2。
公式 S= a×h÷2
2、正方形的面积=边长×边长公式 S= a×a=a²
3、长方形的面积=长×宽公式 S= a×b
4、平行四边形的面积=底×高公式 S= a×h
5、梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
6、内角和:三角形的内角和=180度。
7、长方体的体积=长×宽×高公式:V=abh
8、长方体(或正方体)的体积=底面积×高公式:V=abh
9、正方体的体积=棱长×棱长×棱长公式:V=aaa=a³
10、圆的周长=直径×π公式:L=πd=2πr
11、圆的面积=半径×半径×π公式:S=πr²
12、圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh
13、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2
14、圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh
15、圆锥的体积=1/3底面×积高。
公式:V=1/3Sh
16、分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
17、分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学定义定理公式(二)
一、算术方面
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)¡5=2¡5+4¡5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
??????????????????????
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次??数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数
二、数量关系计算公式方面????????????????
1.单价¡数量=总价????
2.单产量¡数量=总产量
3.速度¡时间=路程????
4.工效¡时间=工作总量
5.加减乘除运算
(1)加数+加数=和??
(2)一个加数=和+另一个加数
(3)被减数-减数=差??
(4)减数=被减数-差??
(5)被减数=减数+差????
(6)因数¡因数=积??
(7)一个因数=积¡另一个因数
(8)被除数¡除数=商??
(9)除数=被除数¡商??
(10)被除数=商¡除数
(11)有余数的除法:??
(12)被除数=商¡除数+余数
6.单位换算
(1)1公里=1千米??1千米=1000米??1米=10分米1分米=10厘米??1厘米=10毫米
(2)1平方米=100平方分米?? 1平方分米=100平方厘米??
1平方厘米=100平方毫米??
(3)1立方米=1000立方分米??1立方分米=1000立方厘米?
?1立方厘米=1000立方毫米
(4)1吨=1000千克?? 1千克= 1000克= 1公斤 = 1市斤
(5)1公顷=10000平方米??1亩=666.666平方米
(6)1升=1立方分米=1000毫升??1毫升=1立方厘米
3.长度单位换算
1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
二. 面积单位换算
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米
=100平方毫米三. 体(容)积单位换算
1立方米=1000立方分米1立方分米=1000立方厘米
1立方米=1000升1立方分米=1升1立方厘米=1毫升四. 重量单位换算
1吨=1000千克1千克=1000克1千克=1公斤
五. 人民币单位换算
1元=10角1角=10分1元=100分
六. 时间单位换算
1世纪=100年1年=12月1日=24小时1小时=60分1分=60秒
1小时=3600秒大月(31天)有:1、3、5、7、8、10、12月小月(30天)有:4、6、9、11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天
7.比:两个数相除就叫做两个数的比。
如:2¡5或3︰6或1/3。
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8.比例
(1)定义:表示两个比相等的式子叫做比例。
如:3︰6=9︰18。
(2)基本性质:在比例里,两外项之积等于两内项之积。
(3)解比例:求比例中的未知项,叫做解比例。
如3︰χ=9︰18。
(4)正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y。
(5)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的
量,它们的关系就叫做反比例关系。
如:x¡y = k( k一定)或k / x = y。
(6)百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比
9.小数、分数、百分数
(1)把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以
100%就行了。
(2)把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
(3)把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
(4)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
10.最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)
11.互质数:公约数只有1的两个数,叫做互质数。
12.最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
13.通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)
14.约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公约数)。