用频率分布直方图估计三个特征数
_众数,中位数,平均数与频率分布直方图
谢谢观看! 2020
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
三 三种数字特征的优缺点
1、众数体现了样本数据的最大集中 点,但它对其它数据信息的忽视使得无 法客观地反映总体特征.如上例中众数是 2.25t,它告诉我们,月均用水量为2.25t的 居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少.
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,在上一节调查的100位居民的月 均用水量的问题中,从这些样本数据的频 率分布直方图可以看出,月均用水量的众 数是2.25t.如图所示:
频率分布直方图如下:
频率 组距
众数(Байду номын сангаас高的矩形的中点)
2200 1500
1100
2000 100 6900
(1)指出这个问题中周工资的众数、中
位数、平均数 (2)这个问题中,工资的平均数能客观
地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,
平均数为300。
因平均数为300,由表格中所列 出的数据可见,只有经理在平均数以 上,其余的人都在平均数以下,故用 平均数不能客观真实地反映该工厂的 工资水平。
3、平均数是频率分布直方图的“重 心”.
是直方图的平衡点. n 个样本数据的平均 数的估计值等于频率分布直方图中每个 小矩形的面积乘以小矩形底边中点的横 坐标之和。 给出.下图显示了居民月均用水量的平 均数: x=2.02
频率分布直方图如下:
频率 组距
平均数
0.50
0.40
0.30
用频率分布直方图估计总体分布
答案 不能,因为把样本数据做成频率分布直方图后就失去了原始数据.
问题 2: 给出样本数据的频率分布直方图,可以求出数据的众数、中位数和平均数吗?
答案
可以近似地求出
课前预学
课堂导学
1.利用频率分布直方图求数字特征
(1)众数是最高的矩形的底边的中点;
(2)中位数左右两侧直方图的面积相等;
(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.
生产的产品是否有 75%以上为一等品?
参考数据: 150≈12.2
课前预学
方法指导
课堂导学
(1)区间中点值和频率相乘,再分别相加可得平均数,再利用方差
公式可求方差;(2)由质量指标值在(185,215)内的频率可得一等品的百分比.
解析
(1)由频率分布直方图可得
=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=20
则 0.0050×20+0.0075×20+0.0150×(a-40)=0.5,解得 a=
中位数的估计值为
170
3
.
170
3
,即所有参赛选手得分的
课前预学
课堂导学
任务 1: 频率分布直方图中简单的数字计算
问题 1:频率分布直方图的横轴表示什么?
答案
频率分布直方图的横轴表示样本数据..
问题 2: 如何计算频率分布直方图中每一小组的频率.
们的得分按照[0,20],(20,40],(40,60],(60,80],(80,100]分组,绘成频率分布直方图(如图).
问题 1:如何求图中 x 的值?
众数、中位数、平均数与样本频率分布直方图的关系
频率 组距
1
初中统计部分曾学过用什么来反映总体的水平? 用什么来考察稳定程度?它们是怎么定义的?
在初中我们学过用平均数、众数和中位数反映总体 的水平,用方差考察稳定程度。
1、众数:在一组数据中,出现次数最多的数据叫做 这组数据的众数
2、中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的平均 数)叫做这组数据的中位数
(1)求分数在[120,130) 内的频率,并补全这个 频率分布直方图
(2)估计本次考试的 平均分、众数、 中位数
9
【解析】(1)分数在[120,130)内的频率为: 1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3
频率 组距
0.3 10
0.03补全后的直方图如图:
(2)众数为125
0.6 0.5 0.4 0.3 0.2
面积有样关数本系的数?比据重的愈频大率,所分以布为直了公
0.25 0.22
0.15
0.14
方图乘平样小数图中以中体本,先在用中每小现平我乘,频其,个矩各各 均 们以率 区等 小 形个个数把其分 间于 长 底组小中每所布 的频 方 边的组所个在直 中的占的小率 形 中平平比小组方 点分 面 点均均例长的图 表布 积 的数数的方平在大形均 横的坐面示标积即之,区和然间后的再两相加个所端得到
走进高考
24
走进高考
25
课外探究
26
走进高考
27
走进高考
28
29
30
31
32
33
解题
34
学习
35
思考题
7用频率分布直方图估计总体的数字特征
用频率分布直方图估计总体的数字特征
众数、中位数、平均数、 方差、 标准差
教学目标: 1.能用频率分布直方图估计总体的平均数,
正确理解样本数据标准差的意义,会计算数据 的标准差。
2.会用样本的基本数字特征估计总体的基 本数字特征。
3,理解数形结合的数学思想和逻辑推理 的数学方法。
本课重点:中位数,平均数的计算,方差的意 义和计算方法。
成绩(单 位: 米)
人数
1.50 1.60 1.65
2
3
2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
分别求这些运动员成绩的众数,中位数与 平均数
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70;
解:(1)由直方图的性质可得 (0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1, 解方程得x=0.0075, ∴直方图中x的值为0.0075
(2)月平均用电量的众数是230. 前三组的频率为(0.002+0.0095+0.011)×20=0.45<0.5 第四组的频率为0.0125×20=0.25
利用频率直方图求中位数、众数、平均数-高考数学微专题突破含详解
高考数学微专题突破利用频率分布直方图求中位数、平均数、总数一、单选题1.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在[]80,150内现将这100名学生的成绩按照[)8090,,[)90100,,[)100110,,[)110120,,[)120130,,[)130140,,[]140150,分组后,得到的频率分布直方图如图所示,则下列说法正确的是()A .频率分布直方图中a 的值为0.040B .样本数据低于130分的频率为0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[)90100,的频数一定与总体分布在[)100110,的频数相等2.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为()A .40B .50C .80D .1003.某地工商局对辖区内100家饭店进行卫生检查并评分,分为甲、乙、丙、丁四个等级,其中分数在[)60,70,[)70,80,[)80,90,[]90,100内的等级分别为:丁、丙、乙、甲,对饭店评分后,得到频率分布折线图,如图所示,估计这些饭店得分的平均数是()A .80.5B .80.6C .80.7D .80.84.下面是甲、乙两位同学高三上学期的5次联考数学成绩,现在只知其从第1次到第5次分数所在区间段分布的条形图(从左至右依次为第1至第5次),则从图中可以读出一定正确的信息是()A .甲同学的成绩的平均数大于乙同学的成绩的平均数B .甲同学的成绩的方差大于乙同学的成绩的方差C .甲同学的成绩的极差小于乙同学的成绩的极差D.甲同学的成绩的中位数小于乙同学的成绩的中位数5.下面是追踪调查200个某种电子元件寿命(单位:h)频率分布直方图,如图:其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是①寿命在300-400的频数是90;②寿命在400-500的矩形的面积是0.2;③用频率分布直方图估计电子元件的平均寿命为:⨯+⨯+⨯+⨯+⨯1500.12500.153500.454500.155500.15④寿命超过400h的频率为0.3A.①B.②C.③D.④6.为了解某电子产品的使用寿命,从中随机抽取了100件产品进行测试,得到图示统计图.依据统计图,估计这100件产品使用寿命的中位数为()A.218.25B.232.5C.231.25D.241.25 7.为了让学生了解社会,拓宽视野,丰富知识,提高社会实践能力和综合素质,哈三中团委组织学生参加了抽测一批棉花的纤维长度(单位:cm)的社会实践活动.利用所学习的数学知识,同学们作出了样本的频率分布直方图.现在,由于原始数据不全,只能通过直方图来估计这一批棉花的纤维长度的平均值(同一组数据用这组数据所在区间的中点的值代替).则估计的平均值为()A.21.75B.22.25C.23.75D.20.75 8.为了了解某校九年级1600名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是()A.该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次B.该校九年级学生1分钟仰卧起坐的次数的众数为27.5次C.该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有320人D.该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有32人9.某地气象局把当地某月(共30天)每一天的最低气温作了统计,并绘制了如下图所示的统计图.记这组数据的众数为M,中位数为N,平均数为P,则()A .M N P <<B .N M P <<C .P M N <=D .P N M<<10.在某次高中学科竞赛中,4000名考生的参赛成绩按[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分成六组,其频率分布直方图如图所示,则下列说法中错误的是().A .成绩在[)70,80内的考生人数最多B .不及格(60分以下)的考生人数约为1000人C .考生竞赛成绩平均分的估计值为70.5分D .考生竞赛成绩中位数的估计值为75分11.在2019年某省普通高中学业水平考试(合格考)中,对全省所有考生的物成绩进行统计,可得到如图所示的频率分布直方图,其中分组的区间为[)40,50,[)50,60,[)60,70,[)80,90,[]90,100,90分以上为优秀,则下列说法中不正确的是()A .从全体考生中随机抽取1000人,则其中得优秀考试约有100人B .若要全省的合格考通过率达到96%,则合格分数线约为44分C .若同一组中数据用该组区间中间值作代表值,可得考试物理成绩的平均分约为70D .该省考生物理成绩的中位数为75分第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题12.某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.则估计高一参赛学生的成绩的众数、中位数分别为____________.13.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:g )绘制的频率分布直方图,样本数据分为8组,分别为[)80,82,[)82,84,[)84,86,[)86,88,[)88,90,[)90,92,[)92,94,[]94,96,则样本的中位数在第______组14.某中学举行了一场音乐知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图.根据频率分布直方图,同一组数据用该区间的中点值代替,估计这次竞赛的平均成绩为______分.三、双空题15.根据高二某班50名同学的数学成绩,绘制频率分布直方图如图所示,虽不小心将其中一个数据污染了,但依然可以推断这个被污染的数据为_________,该班同学的成绩众数为_________.16.中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是5∶7∶12∶10∶6,则这400名学生视力的众数为________,中位数为________.四、解答题17.有一种鱼的身体吸收汞,一定量身体中汞的含量超过其体重的61.0010-⨯的鱼被人食用后,就会对人体产生危害.某海鲜市场进口了一批这种鱼,质监部门对这种鱼进行抽样检测,在30条鱼的样本中发现的汞含量(乘以百万分之一)如下:0.070.340.950.98 1.020.98 1.37 1.400.39 1.021.44 1.580.54 1.080.710.70 1.20 1.24 1.62 1.681.85 1.300.810.820.84 1.39 1.262.200.91 1.31(1)完成下面频率分布表,并画出频率分布直方图;频率分布表:分组频数频率[)0,0.50[) 0.50,1.001 3[) 1.00,1.50[) 1.50,2.002 15[)2.00,2.5011 30合计301频率分布直方图:(2)根据频率分布直方图估算样本数据的平均值(保留小数点后两位,同一组中的数据用该组区间中点值代表),并根据频率分布直方图描述这批鱼身体中汞含量的分布规律.18.经历过疫情,人们愈发懂得了健康的重要性,越来越多的人们加入了体育锻炼中,全民健身,利国利民,功在当代,利在千秋.一调研员在社区进行住户每周锻炼时间的调查,随机抽取了300人,并对这300人每周锻炼的时间(单位:小时)进行分组,绘制成了如图所示的频率分布直方图:(1)补全频率分布直方图,并估算该社区住户每周锻炼时间的中位数(精确到0.1);(2)若每周锻炼时间超过6小时就称为运动卫士,超过8小时就称为运动达人.现利用分层抽样的方法从运动卫士中抽取5人,再从这5人中抽取2人做进一步调查,求抽到的2人中恰有1人为运动达人的概率.19.经历过疫情,人们愈发懂得了健康的重要性,越来越多的人们加入了体育锻炼中,全民健身,利国利民,功在当代,利在千秋.一调研员在社区进行住户每周锻炼时间的调查,随机抽取了300人,并对这300人每周锻炼的时间(单位:小时)进行分组,绘制成了如图所示的频率分布直方图:(1)补全频率分布直方图,并估算该社区住户每周锻炼时间的中位数(精确到0.1);(2)若每周锻炼时间超过6小时就称为运动卫士,超过8小时就称为运动达人.现利用分层抽样的方法从运动卫士中抽取10人,再从这10人中抽取3人做进一步调查,设抽到的人中运动达人的人数为X ,求随机变量X 的分布列及期望.20.某贫困地区经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如图频率分布直方图:(1)根据频率分布直方图,估计这50位农民的平均年收入x (单位:千元,同一组数据用该组数据区间的中点值表示);(2)为推进精准扶贫,某企业开设电商平台,让越来越多的农村偏远地区的农户通过经营网络商城脱贫致富.甲计划在A 店,乙计划在B 店同时参加一个订单“秒杀”抢购活动,其中每个订单由()*2,n n n N ≥∈个商品W 构成,假定甲、乙两人在A 、B 两店订单“秒杀”成功的概率分别为p 、q ,记甲、乙两人抢购成功的订单总数量、商品W 总数量分别为X 、Y .①求X 的分布列及数学期望()E X ;②若27sin4n p n n ππ=-,sin4n q nπ=,求当Y 的数学期望()E Y 取最大值时正整数n 的值.21.某地处偏远山区的古镇约有人口5000人,为了响应国家号召,镇政府多项并举,鼓励青壮劳力外出务工的同时发展以旅游业为龙头的乡村特色经济,到2020年底一举脱贫.据不完全统计该镇约有20%的人外出务工,下图是根据2020年扶贫工作期间随机调查本地100名在外务工人员的年收入(单位:千元)数据绘制的频率分布直方图.(1)根据样本数据估计该镇外出务工人员的创收总额(同一组中的数据用该组区间的中点值为代表);(2)完成脱贫任务后,古镇党政班子并不懈怠,决心带领全镇人民在奔小康道路上再上一个新台阶,出台了多项优惠政策,鼓励本地在外人员返乡创业,调查显示年收入在35千元(含35千元)以上的人中有60%的人愿意返乡投资创业,年收入在35千元以下的人中有40%的人愿意返乡投资创业,请从样本数据中完成下面的22⨯列联表,并判断能否在犯错误的概率不超过0.1的前提下认为“是否愿意返乡投资创业和年收入有关”.35千元(含35千元)以上35千元以下愿意返乡投资创业不愿意返乡投资创业附:()()()()()22n ad bc X a b c d a c b d -=++++,()20P X k ≥0.100.050.0250.0100k 2.7063.8415.0246.63522.某市为大力推进生态文明建设,把生态文明建设融入市政建设,打造了大型植物园旅游景区.为了了解游客对景区的满意度,市旅游部门随机对景区的100名游客进行问卷调查(满分100分),这100名游客的评分分别落在区间[)50,60,[)60,70,[)70,80,[)80,90,[]90,100内,且游客之间的评分情况相互独立,得到统计结果如频率分布直方图所示.(1)求这100名游客评分的平均值(同一区间的数据用该区间数据的中点值为代表);(2)视频率为概率,规定评分不低于80分为满意,低于80分为不满意,记游客不满意的概率为p .(ⅰ)若从游客中随机抽取m 人,记这m 人对景区都不满意的概率为m a ,求数列{}m a 的前4项和;(ⅱ)为了提高游客的满意度,市旅游部门对景区设施进行了改进,游客人数明显增多,对游客进行了继续旅游的意愿调查,若不再去旅游记1分,继续去旅游记2分,每位游客有继续旅游意愿的概率均为p ,且这次调查得分恰为n 分的概率为n B ,求4B .23.2016年春节期间全国流行在微信群里发、抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:金额分组[)1,5[)5,9[)9,13[)13,17[)17,21[)21,25频数39171182(1)求产生的手气红包的金额不小于9元的频率;(2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表);(3)在这50个红包组成的样本中,将频率视为概率.①若红包金额在区间[]21,25内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;②随机抽取手气红包金额在[)[]1,521,25⋃内的两名幸运者,设其手气金额分别为m ,n ,求事件“16m n ->”的概率.24.绿色已成为当今世界主题,绿色动力已成为时代的驱动力,绿色能源是未来新能源行业的主导.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图所示的频率分布直方图.(1)估计这100辆汽车的单次最大续航里程的平均值x (同一组中的数据用该组区间的中点值代表);(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航里程X 近似地服从正态分布()2,N μσ,经计算第(1)问中样本标准差s 的近似值为50.用样本平均数x作为μ的近似值,用样本标准差s 作为σ的估计值;(ⅰ)现从该汽车公司最新研发的新能源汽车中任取一辆汽车,求它的单次最大续航里程恰好在200千米到350千米之间的概率;(ⅱ)从该汽车公司最新研发的新能源汽车中随机抽取10辆,设这10辆汽车中单次最大续航里程恰好在200千米到350千米之间的数量为Y ,求()E Y ;(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正、反面的概率都是12,方格图上标有第0格、第1格、第2格、…、第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k 到1k +),若掷出反面,遥控车向前移动两格(从k 到2k +),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n 格的概率为(1,2,,50)n P n = ,其中01P =,试说明{}1n n P P --是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827P μσξμσ-<+≈ ,(22)0.9545P μσξμσ-<+≈ ,(33)0.9973P μσξμσ-<+≈ .25.某地处偏远山区的古镇约有人口5000人,为了响应国家号召,镇政府多项并举,鼓励青壮劳力外出务工的同时发展以旅游业为龙头的乡村特色经济,到2020年底一举脱贫.据不完全统计该镇约有20%的人外出务工.下图是根据2020年扶贫工作期间随机调查本地100名在外务工人员的年收入(单位:千元)数据绘制的频率分布直方图.(1)根据样本数据怙计该镇外出务工人员的创收总额(同一组中的数据用该组区间的中点值为代表);(2)假设该镇外出务工人员年收入服从正态分布()2,N μσ,其分布密度函数为22()2()x f x μσ--=,其中μ为样本平均值.若()f x 的最大值为10π,求σ的值;(3)完成脱贫任务后,古镇党政班子并不懈怠,决心带领全镇人民在奔小康道路上再上一个新台阶,出台了多项优惠政策,鼓励本地在外人员返乡创业.调查显示务工收入在[],2μσμσ++和[]2,3μσμσ++的人群愿意返乡创业的人数比例分别为15%和20%.从样本人群收入在[],3μσμσ++的人中随机抽取3人进行调查,设X 为愿意返乡创业的人数,求随机变量X 的分布列和数学期望.参考答案1.C 【分析】对于A :由频率分布直方图中所有小矩形面积之和为1,列出等式可求得a 的值,进而作出判断;对于B :先计算高于130分的频率,然后再用1减去于高于130分的频率即可得到低于130分的频率,进而作出判断;对于C :先计算[)80,120的频率和[)120130,的频率,再求出总体的中位数,进而作出判断;对于D :根据样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等作出判断即可.【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-⨯+=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=,[)120130,的频率为:0.030100.3⨯=,∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选:C .【点睛】本题考查频率分布直方图的应用,考查逻辑思维能力和计算能力,属于基础题.2.B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解.由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =,所以学习时长在[)9,11的频率2520.5x n==,解得50n =.故选:B .【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.3.A 【分析】根据频率分布折线图计算该组数据的平均数为650.15750.4850.2950.25⨯+⨯+⨯+⨯.【详解】由折线图可知,该组数据的平均数为650.15750.4850.2950.2580.5⨯+⨯+⨯+⨯=.故选:A.【点睛】此题考查根据频率分布折线图求平均数,关键在于熟练掌握平均数的求解公式.4.D 【分析】根据频数分布表中的数据,对选项中的命题进行分析,判断正误,即可得到本题答案.【详解】甲同学的成绩的平均数1051201201301401235x ++++<=,乙同学的成绩的平均数1051151251351451255y ++++>=,所以A 错误;甲同学的成绩从第1次到第5次变化波动比乙同学的成绩的变化波动更小一些,所以甲同学的成绩的方差小于乙同学的成绩的方差,所以B 错误;甲同学的成绩的极差介于()30,40之间,乙同学的成绩的极差介于()35,45之间,所以甲同学的成绩的极差不一定小于乙同学的成绩的极差,所以C 错误;甲同学的成绩的中位数介于()115,120之间,乙同学的成绩的中位数介于()125,130之间,所以D 正确.故选:D本题主要考查频数直方图的相关问题,其中涉及中位数、平均数、方差、极差的求解. 5.B【详解】若①正确,则300400-对应的频率为0.45,则400500-对应的频率为0.15,则②错误;电子元件的平均寿命为1500.12500.153500.454500.155500.15⨯+⨯+⨯+⨯+⨯,则③正确;寿命超过400h的频率为0.150.150.3+=,则④正确,故不符合题意;若②正确,则300400-对应的频率为0.4,则①错误;电子元件的平均寿命为1500.12500.153500.44500.25500.15⨯+⨯+⨯+⨯+⨯,则③错误;寿命超过400h的频率为0.20.150.35+=,则④错误,故符合题意.故选:B.6.C【分析】设中位数为x,根据中位数左边的频数为50列等式可求得x的值.【详解】设中位数为x,前2组的频数之和为25,前3组的频数之和为65,由题意可得20025405050x-+⨯=,解得231.25x=.故选:C.7.A【分析】利用频率分布直方图计算平均数的方法求解即可.【详解】所给数据频率之和为(0.010.070.080.020.02)51++++⨯=则估计的平均值为5(12.50.0117.50.0722.50.0827.50.0232.50.02) 4.35521.75⨯+⨯+⨯+⨯+⨯=⨯=故选:A8.D 【分析】根据样本估计总体的知识依次判断各个选项即可得到结果.【详解】对于A ,设中位数为x ,则()()0.020.065250.080.5x +⨯+-⨯=,解得:26.25x =,即该校九年级学生1分钟仰卧起坐的次数的中位数为26.25次,A 正确;对于B ,根据频率分布直方图知众数为:253027.52+=次,B 正确;对于C ,该校九年级学生1分钟仰卧起坐的次数超过30次的人数约有16000.045320⨯⨯=人,C 正确;对于D ,该校九年级学生1分钟仰卧起坐的次数少于20次的人数约有16000.025160⨯⨯=人,D 错误.故选:D.9.A 【分析】由统计图分别求出该月温度的中位数,众数,平均数,由此能求出结果.【详解】解:由统计图得:该月温度的中位数为565.52N +==,众数为5M =,平均数为1(233410566372829210) 5.9730P =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯≈.∴M N P <<.故选:A .10.D 【分析】A .根据频率分布直方图中哪一组数据的频率除以组距的值最大进行分析;B .先分析60分以下对应的频率,再利用总体数量乘以所求频率即可得到结果;C .利用每组数据的组中值乘以对应频率并将每组计算结果相加即可得到结果;D .分析频率为0.5时对应的横坐标的值即为中位数.【详解】A .根据统计图可知:[)70,80对应的频率除以组距的值最大,即频率最大,所以人数最多,故正确;B .不及格的频率为:()0.0100.015100.25+⨯=,所以不及格的人数约为40000.25=1000⨯人,故正确;C .根据频率分布直方图可知平均数为:()450.01550.015650.02750.03850.015950.011070.5⨯+⨯+⨯+⨯+⨯+⨯⨯=,故正确;D .前三组的频率之和为:()0.01+0.0150.02100.450.5+⨯=<,前四组的频率之和为:()0.01+0.0150.020.03100.750.5++⨯=>,所以中位数在第四组数据中,且中位数为:0.50.45701071.70.0310-+⨯≈⨯,故错误;故选:D.11.D 【分析】利用频率分布直方图的性质直接求解.【详解】解:对于A ,90分以上为优秀,由频率分布直方图得优秀的频率为0.010100.1⨯=,∴从全体考生中随机抽取1000人,则其中得优秀考试生约有:10000.1100⨯=人,故A 正确;对于B ,由频率分布直方图得[40,50)的频率为0.01100.1⨯=,[50,100)的频率为:10.10.9-=,∴若要全省的合格考通过率达到96%,则合格分数线约为44分,故B 正确;对于C ,若同一组中数据用该组区间中间值作代表值,可得考试物理成绩的平均分约为:450.01010550.01510650.02010750.03010850.01510950.0101070.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=分,故C 正确;对于D ,[40,70)的频率为:(0.0100.0150.020)100.45++⨯=,[70,80)的频率为0.030100.3⨯=,∴该省考生物理成绩的中位数为:0.50.45701071.670.3-+⨯≈分,故D 错误.故选:D .【点睛】本题考查频数、合格分数线、平均数、中位数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,属于基础题.12.65,65【分析】频率分布直方图中最高矩形的中点横坐标即为众数,利用平分矩形面积可得中位数.【详解】由题图可知众数为65,又∵第一个小矩形的面积为0.3,∴设中位数为60+x ,则0.3+x ×0.04=0.5,得x =5,∴中位数为60+5=65.故答案为:65,6513.四【分析】计算前几组的频率之和,判断频率为0.5在哪个区间即可判断中位数.【详解】根据频率分布直方图可知,前三组的频率之和为()0.03750.06250.07520.350.5++⨯=<,前四组的频率之和为()0.03750.06250.0750.120.550.5+++⨯=>,则可以判断中位数在第四组.故答案为:四.【点睛】本题考查根据频率分布直方图判断中位数所在区间,属于基础题.14.67.【分析】本题根据频率分布直方图直接求平均数即可.【详解】解:这次竞赛的平均成绩为:0.03055100.04065100.01575100.01085100.005951067⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=故答案为:67.【点睛】本题考查根据频率分布直方图求平均数,是基础题.15.0.016130【分析】利用频率分布直方图中所有矩形的面积之和为1可求得污染的数据;利用最高矩形底边的中点值可求得众数.【详解】设被污染的数据为a ,利用频率分布直方图中所有矩形的面积之和为1可得0.004100.02100.028100.03210101a ⨯+⨯+⨯+⨯+⨯=,解得0.016a =.由图可知,该班同学的成绩众数为130.故答案为:0.016,13016.4.7 4.75【分析】根据频率分布直方图,取最高矩形底边中点的横坐标即可求出众数,求出第三小组矩形的高,设中位数为x ,由()0.1250.175 4.5510.5x ++-⨯=,解方程即可求解.【详解】由图可知,众数为4.7,第五小组的频率为0.50.30.15⨯=从左至右五个小组的频率之比依次是5∶7∶12∶10∶6,可得第一小组的频率为50.150.1256⨯=,第二小组的频率为70.150.1250.1756⨯==,第三小组的频率为120.150.36⨯=,所以中位在第三小组,第三小组矩形面积为0.3,则第三小组的高为0.310.3=设中位数为x ,则()0.1250.175 4.5510.5x ++-⨯=,解得 4.75x =故答案为:4.7;4.75【点睛】本题考查了根据频率分布直方图求众数、中位数,考查了运算求解能力,属于基础题. 17.(1)填表见解析;作图见解析;(2)平均值为:1.08,答案见解析.【分析】(1)由样本数据,即可完善频率分布表中的数据,并画出频率直方图.(2)由(1)的频率直方图计算样本均值,进而描述汞含量分布规律.【详解】(1)由题设样本数据,则可得频率分布表如下,分组频数频率[)0,0.5031 10[)0.50,1.00101 3[)1.00,1.50122 5[)1.50,2.0042 15[)2.00,2.5011 30合计301(2)根据频率分布直方图估算平均值为:112210.250.75 1.25 1.75 2.25 1.0810351530⨯+⨯+⨯+⨯+⨯≈,分布规律:①该频率分布直方图呈中间高,两边低,大多数鱼身体中汞含量主要集中在区间[]0.5,1.5;②汞含量在区间[]1,1.5的鱼最多,汞含量在区间[]0.5,1的次之,在区间[]2,2.5的最少;③汞含量超过61.0010-⨯的数据所占比例较大,这说明这批鱼被人食用,对人体产生危害的可能性比较大.18.(1)作图见解析;中位数为4.3;(2)35.【分析】(1)设中位数为x ,则有()40.150.05x -⨯=,故可求中位数.(2)利用古典概型的概率公式可求概率.【详解】解:(1)第二组的频率为()120.150.0750.050.10.25-⨯+++=,故第二组小矩形的高为0.125频率分布直方图如图所示,由频率分布直方图可得,第一组和第二组的频率之和为0.20.250.450.5+=<,前三组的频率之和为0.20.250.30.750.5++=>,可知中位数在第三组,设中位数为x ,则有()40.150.50.450.05x -⨯=-=,解得134.33x =≈,所以该社区住户每周锻炼时间的中位数为4.3;。
从频率分布直方图中估计总体的数字特征
0.4
0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 精3.选5课件4 4.5
月平均用水量(t)
问题3:在城市居民月均用水量样本数据的频率分 布直方图中,如何估计各组内的平均数?
0 . 2 5 , 0 . 7 5 , 1 . 2 5 , 1 . 7 5 , 2 . 2 5 , 2 . 7 5 , 3 . 2 5 , 3 . 7 5 , 4 . 2 5
精选课件
2.5 3 3.5 4 4.5
月平均用水量(t)
从左至右各个小矩形的面积为:0.04;0.08;0.15; 0.22;0.25;0.14;0.06;0.04;0.02.
频率
0.0 8 0.50.1 6 0.50.3 0 0.5
组距
0.4 4 0.5x0.50.5
x=0.02
0.5
中位数估计值为2.02t
课堂小结:
1、众数:在样本数据的频率分布直方图中,估算值 为最高矩形的底边中点的横坐标作为代表。 2、中位数:左边和右边的直方图的面积应该相等, 由此可以估计中位数的值。
3、平均数:是频率分布直方图的“重心”,估计值为频率 分布直方图中每个小矩形的面积乘以小矩形底边中点横坐标 之和。
精选课件
三种数字特征的优缺点:
精选课件
问题1:在城市居民月均用水量样本数据的频率分布 直方图中,能否估计出总体众数?如何选择这个数值 作为估计值?
精选课件
由此估计总体的众数是什么?
取最高矩形底 边中点的横坐 标2.25作为众 数的代表.
精选课件
• 因为在频率分布直方图中,各小长方形 的面积表示相应各组的频率,也显示出样 本数据落在各小组的比例的大小,所以从 图中可以看到,在区间[2,2.5)的小长方 形的面积最大,即这组的频率是最大的, 也就是说月均用水量在区间[2,2.5)内的 居民最多,即众数就是在区间[2,2.5)内. 众数在样本数据的频率分布直方图中,
高考数学复习点拨:关注样本数字中的三个特征数
关注样本数字中的“三个特征数”山东杨道叶一、要点扫描1。
众数是在一批数据中,出现次数最多的数。
若该组数据中有两个或几个数据出现地最多,且出现的次数一样,这些数据都是这组数据的众数;若该组数据中,每个数据出现的次数一样多,则认为这组数据没有众数。
当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.2. 中位数是将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数;当数据有偶数个时,处在最中间的两个数的平均数. 中位数可能出现在所给数据中,也可能不在所给数据中。
当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势。
3.众数、中位数和平均数都是描述一组数据集中趋势的量,平均数是最重要的量。
4。
三者在频率直方图中的体现:平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;在频率分布直方图中,中位数左边和右边的直方图的面积相等(注:这样求出的中位数是近似值);在频率分布直方图中最高矩形的中点即为该组数据的众数.5.实际问题中求得的平均数、众数和中位数都应带上单位。
二、范例点悟例1 某农科所有芒果树200棵,2005年全部挂果,成熟期一到,随意摘下其中10棵树上的芒果,分别称得质量如下(单位:千克):10,13,8,12,11,8,9,12,8,9。
(1)求样本平均数;(2)估计该农科所2005年芒果的总产量.分析:应用样本平均数公式计算样本平均数,再估计总体平均数,从而求出该农科所2005年芒果的总产量。
解析:(1)样本平均数1(101381211891289)10x =++++++++++ 1(1010322121221)10=⨯++++----- =10(千克)。
(2)由样本平均数为10千克,估计总体平均数也是10千克,所以总产量为200102000⨯=(千克)。
评注:用样本平均数估计总体平均数是计算的关键,因此计算平均数一定要准确,同时要理解平均数的含义。
§5 5.2 估计总体的数字特征
s甲 = 2, s乙 ≈ 1.095, 由 s甲 > s乙 可以知道, 可以知道,
甲的成绩离散程度大,乙的成绩离散程度小. 甲的成绩离散程度大,乙的成绩离散程度小.由此可以估 计,乙比甲的射击成绩稳定. 乙比甲的射击成绩稳定.
参照课本P 页的数据表完成: 参照课本P37页的数据表完成: 排名 1 2 3 4 5 运动员 李丽珊 简度 贺根 威尔逊 平均积分 积分标准差
s 2方差 来代替标准差作为测量样本数据
分散程度的工具. 分散程度的工具
1 s = ( x1 − x )2 + ( x2 − x )2 + L + ( xn − x )2 n
2
探究: 探究:一个样本中的个体与平均数之间的距离关系可用下图 表示: 表示: 考虑一个容量为2的样本: 考虑一个容量为2的样本:设 x1、x2 ,
甲乙两人同时生产内径为25.40mm的一种零件. 甲乙两人同时生产内径为25.40mm的一种零件.为了对 25.40mm的一种零件 两人的生产质量进行评比,从他们生产的零件中各抽出20 两人的生产质量进行评比,从他们生产的零件中各抽出20 量得其内径尺寸如下(单位:mm) 件,量得其内径尺寸如下(单位:mm)
3.14 4.57 5.00 6.29
1.73 2.77 2.51 3.19 3.33
李科
6. 57
李丽珊的平均积分和标准差都比其他选手小, 李丽珊的平均积分和标准差都比其他选手小,也就表 明,在前7场的比赛过程中,她的成绩最优秀且最稳定. 在前7场的比赛过程中,她的成绩最优秀且最稳定. 于是我们假设之后的比赛中,他们都发挥正常,夺冠 于是我们假设之后的比赛中,他们都发挥正常, 希望最大就是李丽珊. 希望最大就是李丽珊.
高中数学频率分布直方图
频率分布直方图作频率分布直方图的方法为:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)以此线段为底作矩形,它的高等于该组的组距频率,这样得出一系列的矩形;(3)每个矩形的面积恰好是该组上的频率.频率折线图:如果将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起,就得到一条折线,称这条折线为本组数据的频率折线图.作茎叶图的方法是:将所有两位数的十位数字作为“茎”,个位数字作为“叶”,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.知识点1:利用频率分布直方图分析总体分布例题1: 2000辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有 A .30辆 B .60辆 C .300辆 D .600辆变式:某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是 [96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是A.90B.75C. 60D.45变式:某初一年级有500名同学,将他们的身高(单位:cm )数据绘制成频率分布直方图(如图),若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[)130,140内的学生中选取的人数为 .知识点2:用样本分估计总体例题2某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45,96 98 100 102 104 106 0.1500.125 0.1000.0750.050 克 频率/组距100 110 120130 140 150 身高频率|组距0.0050.0100.020a0.035(Ⅰ) 完成频率分布表;(Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
如何用样本的频率分布直方图估计总体的数字特征
如何用样本的频率分布直方图估计总体的数字特征
题目1:某校从500名12岁的男孩中用随机抽样的方式抽出120人,将其身高(单位:cm)分成九段 :[)122126,,[)126130,,[)130140,,…,[)154158,后,得到如下表格:
有人绘制了如下的样本频率分布表和频率分布直方图如下,请你观察信息,回答问题:但是
(1)频率分布直方图中有些矩形的“高”的数据并不明显,请你计算从左到右的第2、4、6、7、8个矩形的“高”。
它们分别为: 、 、 、 、 。
(2)根据频率分布直方图:
①估计这500名学生身高的众数;②估计这500名学生身高的中位数;
③估计这500名学生身高的平均值。
④估计身高小于134cm的人数占总人数的百分比。
⑤估计身高超过148cm的人数占总人数的百分比。
解:(1)样本频率分布表如右: 第2个矩形的“高” 第4个矩形的“高” 第6个矩形的“高” 第7个矩形的“高” 第8个矩形的“高”
(2)
cm )
题目2:为了了解高一学生的体能
(1)第二小组的频率是多少?样本
容量是多少?
(2)若次数在110以上(含110次)
为达标,试估计该学校全体高一
学生的达标率是多少?
在这次测试中,学生跳绳次数的众数
和中位数、平均数各是多少?。
专题06第六章统计-寒假作业(六)(解析版)
专题06第六章统计-寒假作业(六)一、单选题1.为调查某地区中学生每天睡眠时间,采用样本量比例分配的分层随机抽样,现抽取初中生800人,其每天睡眠时间均值为9小时,方差为1,抽取高中生1200人,其每天睡眠时间均值为8小时,方差为0.5,则估计该地区中学生每天睡眠时间的方差为()A.0.96B.0.94C.0.79D.0.752.16名跳高运动员参加一项校际比赛,成绩分别为1.70、1.65、1.68、1.69、1.72、1.59、1.60、1.67、1.74、1.78、1.55、1.56、1.64、1.76、1.75、1.79(单位:m),则比赛成绩的75%分位数是()A.1.755B.1.75C.1.745D.1.74⨯160.75故选:C.3.宏伟公司有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该公司职工的健康状况,用分层抽样的方法从中抽取样本,若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35故选:B.4.第24届冬奥会于2022年2月4日在国家体育场鸟巢举行了盛大开幕式.在冬奥会的志愿者选拔工作中,某高校承办了面试工作,面试成绩满分100分,现随机抽取了80名候选者的面试成绩并分为五组,绘制成如图所示的频率分布直方图,则下列说法错误的是(每组数据以区间的中点值为代表)( )A .直方图中b 的值为0.025B .候选者面试成绩的中位数约为69.4C .在被抽取的学生中,成绩在区间[)65,75之间的学生有30人D .估计候选者的面试成绩的平均数约为69.5分 【答案】C【分析】根据在频率分布直方图中所有小矩形的面积之和为1,结合中位数、平均数的定义、频数的定义逐一判断即可.【详解】对于A ,∵()0.0050.0450.020.005101b ++++⨯=,∴0.025b =,故A 正确; 对于B ,设候选者面试成绩的中位数为x ,则()()0.0050.02510650.0450.5x +⨯+-⨯=,解得69.4x ≈,故B 正确;对于C ,成绩在区间[)65,75的频率为0.045100.45⨯=,故人数有800.4536⨯=,故C 错误; 对于D ,500.00510600.02510700.04510800.0210900.0051069.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,故D正确. 故选:C5.若样本数据122018,,,x x x 的标准差为3,则数据12201841,41,,41x x x ---的方差为( ) A .11 B .12C .143D .144【答案】D【分析】根据数据方差公式()()2D aX b a D X +=求解即可.【详解】因为样本数据122018,,,x x x 的标准差为3,所以方差为9,所以数据12201841,41,,41---x x x 的方差为249144⨯=.故选:D.6.最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是( )A .甲检测点的平均检测人数多于乙检测点的平均检测人数B .甲检测点的数据极差大于乙检测点的数据极差C .甲检测点数据的中位数大于乙检测点数据的中位数D .甲检测点数据的方差大于乙检测点数据的方差 【答案】C【分析】根据题意分别求甲乙监测点的平均人数,极差,中位数及方差判断即可. 【详解】对于A :甲检测点的平均检测人数为2000160012001200800160012001371.437++++++≈乙检测点的平均检测人数为160018001600800120080016001342.867++++++≈故甲检测点的平均检测人数多于乙检测点的平均检测人数,故A 正确; 对于B :甲检测点的数据极差20008001200-= 乙检测点的数据极差180********-=,故B 正确;对于C :甲检测点数据为800,1200,1200,1200,1600,1600,2000,中位数为1200, 乙检测点数据为800,800,1200,1600,1600,1600,1800,中位数为1600,故C 错误; 对于D :通过观察平均数附近数据个数,极差等或计算甲乙数据的方差,都可以判断乙检测点数据比甲检测点数据稳定性强,故甲检测点数据的方差大于乙检测点数据的方差,故D 正确. 故选: C .7.第24届冬季奥运会于2022年2月4日至20日在北京举行,中国代表团取得了9枚金牌,4枚银牌,2枚铜牌的历史最好成绩.已知六个裁判为某一运动员这一跳的打分分别为95,95,95,93,94,94,评分规则为去掉六个原始分中的一个最高分和一个最低分,剩下四个有效分的平均数即为该选手的本轮得分.设这六个原始分的中位数为a ,方差为2S ;四个有效分的中位数为1a ,方差为21S .则下列结论正确的是( )A .1a a ≠,221S S <B .1a a ≠,221S S <C .1a a =,221S S <D .1a a =,221S S <8.甲、乙、丙、丁四人各掷骰子5次(骰子每次出现的点数可能为1,2,3,4,5,6),并分别记录每次出现的点数,四人根据统计结果对各自的试验数据分别做了如下描述:①中位数为3,众数为5;②中位数为3,极差为3;③中位数为1,平均数为2;④平均数为3,方差为2;可以判断一定没有出现6点的描述共有( ) A .1人 B .2人C .3人D .4人【答案】B【分析】根据数据的特征,写出满足要求的数据集判断①②③;写出一个含6的数据集判断是否存在满足的情况判断④.【详解】①5出现两次,又中位数为3,则数据从小到大为{m ,n ,3,5,5},一定没有6; ②中位数为3,极差为3,则数据从小到大为{1,m ,3,n ,4}、{2,m ,3,n ,5}、{3,3,3,m ,6},故可能出现6;③中位数为1,平均数为2,则数据从小到大为{1,1,1,m ,n },即7m n +=,故可能出现6; ④平均数为3,方差为2,则满足要求且含6的数据从小到大为{a ,b ,c ,d ,6},故9a b c d +++=且2222(3)(3)(3)(3)1a b c d -+-+-+-=、a b c d ≤≤≤,显然不能同时满足,故一定没有6. 综上,①④一定没有6. 故选:B二、多选题9.下列抽样方法是简单随机抽样的是( ) A .质检员从50个零件中一次性抽取5个做质量检验B .“隔空不隔爱,停课不停学”,网课上,李老师对全班45名学生中点名表扬了3名发言积极的C .老师要求学生从实数集中逐个抽取10个分析奇偶性D .某运动员从8条跑道中随机抽取一条跑道试跑 【答案】AD【分析】根据简单随机抽样的定义,逐项分析判断即可.【详解】选项A :“一次性”抽取与逐个不放回的抽取等价,符合不放回简单随机抽样要求,故正确;选项B :老师表扬的是发言积极的,对每一个个体而言,不具备“等可能性”,故错误; 选项C :因为总体容量是无限的,不符合简单随机抽样要求,故错误;选项D :8条跑道,抽取1条,总体有限,每个个体被抽到的机会均等,是简单随机抽样,故正确. 故选:AD10.秋季开学前,某学校要求学生提供由当地社区医疗服务站或家长签字认可的返校前一周(7天)的体温测试记录,已知小明在一周内每天自测的体温(单位:C )依次为36.0,36.2,36.1,36.4,36.3,36.1,36.3,则该组数据的( )A .极差为0.4CB .平均数为36.2C C .中位数为36.1CD .第75百分位数为36.3C【答案】ABD【分析】根据极差、平均数、中位数和百分位数的定义判断即可.0.4C ,故36.336.2C 7++=,故36.2C ,故C 错误; 5.25=,所以体温的第75百分位数为从小到大排列的第36.3C ,三、填空题11.总体是由编号为01,02,,29,30的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为__________. 7816157208026315021643199714019832049234493682003623486969387181【答案】19【分析】根据随机数表选取编号的方法求解即可.【详解】随机数表第1行的第5列和第6列数字为15,则选取的5个个体依次为:15,08,02,16,19,故选出来的第5个个体的编号为19.故答案为:19.12.已知样本数据12,,,n x x x 的均值5x =,则样本数据1221,21,,21n x x x +++的均值为_____ (2n x +++1nx n+++=1113.已知一组样本数据1、2、m 、8的极差为8,若0m >,则其方差为______. 【答案】252##12.5 【分析】根据极差的定义可求得m 的值,再根据方差的定义可求得这组数据的方差. 【详解】因为该组数据的极差为8,所以18m -=,解得9m =.因为这组数据的平均数为128954x+++==,所以,这组数据的方差为()()()()22222152585952542 s-+-+-+-==.故答案为:25 2.14.雅言传承文明,经典浸润人生,南宁市某校每年举办“品经诵典浴书香,提雅增韵享阅读”中华经典诵读大赛,比赛内容有三类:“诵读中国”、“诗教中国”、“笔墨中国”.已知高一、高二、高三报名人数分别为:100人、150人和250人.现采用分层抽样的方法,从三个年级中抽取25人组成校代表队参加市级比赛,则应该从高一年级学生中抽取的人数为______.【答案】5【分析】根据分层抽样的性质运算求解.【详解】根据题意可得:高一、高二、高三报名人数之比为100:150:2502:3:5=,故从高一年级学生中抽取的人数为2255235⨯=++.故答案为:5.四、解答题15.新冠肺炎疫情期间,某地为了了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取若干居民进行评分(满分为100分),根据调查数据制成如图频率分布直方图,已知评分在[70,90]的居民有2200人.(1)求频率分布直方图中a的值及所调查的总人数;(2)从频率分布直方图中,估计本次评测分数的众数、中位数(精确到0.1).【答案】(1)0.025a=,4000;(2)众数为85.0,中位数约为82.9.16.2022年2月4日—2月20日,北京冬奥会顺利召开,全民关注冬奥赛事.为了更好的普及冬奥知识,某中学举办了冬奥知识竞赛,并随机抽取了100名学生的成绩,且这100名学生的成绩(单位:分)都在[]50,100,其频数分布表如下图所示.由分布表得知该中学冬奥知识竞赛成绩的中位数的估计值为82分. (1)求a ,b 的值;(2)该中学冬奥知识竞赛成绩的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表). 5.1)。
频率分布直方图知识点
频率分布直方图知识点1. 介绍频率分布直方图是一种用于可视化定量数据分布的图表。
它将数据分割成若干等宽的区间,并显示每个区间的频率或频数。
通过直方图,我们可以直观地了解数据的分布情况,识别异常值和趋势,并得出有关数据集的一些基本统计特征。
2. 绘制频率分布直方图的步骤绘制频率分布直方图的步骤如下:步骤1:确定区间首先,我们需要确定数据的区间个数。
可以根据数据的范围和数据量来选择适当的区间个数。
一般情况下,建议选择5-20个区间。
步骤2:计算区间宽度根据数据的范围和区间个数,计算每个区间的宽度。
宽度可以通过公式(数据范围 / 区间个数)来计算得出。
步骤3:确定每个区间的频数或频率遍历数据集,将每个数据分到对应的区间中。
可以使用逻辑判断或数学公式来确定数据所属的区间。
步骤4:绘制直方图使用柱状图(bar chart)来绘制直方图,其中横轴表示区间,纵轴表示频数或频率。
每个区间对应一个柱状条,柱状条的高度表示该区间的频数或频率。
步骤5:添加标题和标签为直方图添加标题和标签,使得图表更加清晰和易懂。
标题通常描述了数据集的主要特征,标签可以包括横轴和纵轴的名称。
3. 直方图的解读与应用频率分布直方图提供了一种方法来理解数据的分布情况。
通过观察直方图,可以得出以下信息:•数据的中心趋势:观察直方图的峰值,可以推断数据的中心趋势。
峰值较高且集中的直方图表示数据分布较为集中,而峰值较低或分散的直方图表示数据分布较为分散。
•数据的偏斜程度:直方图的偏斜程度可以通过观察分布的形状来判断。
如果数据分布向左偏斜,则直方图的左侧较高;如果数据分布向右偏斜,则直方图的右侧较高;如果数据分布接近对称,则直方图会呈现类似钟型曲线的形状。
•异常值的识别:直方图可以帮助我们识别数据集中的异常值。
异常值通常是与整体数据分布差异较大的值,在直方图中可能会显示为独立的柱状条或与其他柱状条不同高度的柱状条。
直方图的应用广泛,例如在市场调查中,可以通过绘制直方图来分析产品价格的分布;在财务分析中,可以使用直方图来观察公司营收的分布情况;在学术研究中,可以通过绘制直方图来分析样本数据的分布情况。
频率分布直方图如下
(1)解:如图:茎为成绩的整环数,叶为小数点后的数字
甲
乙
85 2 74
7
1
8
57
4
9
112 78
8751
10
11
(2)乙成绩大致对称,甲成绩的中位数为9.05, 乙成绩的中位数为9.15,所以乙成绩较甲好, 乙成绩较集中于峰值,甲成绩分散
所以乙发挥的稳定性好,甲波动大
练习2:课本71页练习第三题
作业:课本71页练习1,上面的练习1和2。
优化设计
小结:1.什么是频率折线图
2.什么是总体密度曲线及其意义 3.1)认识茎叶图,如何做茎叶图 2)分析茎叶图,3)茎叶图的优缺点
频率分布直方图如下:
频率
连接频率分布直方图
组距
中各小长方形上端的
中点,得到频率分布折
线图
0.50
0.40
0.30
0.20
0.10
月均用水量
/t
0.5 1 1.5 2 2.5 3 3.5 4 4.5
利用样本频率分布对总体分布进行相应估计
(1)上例的样本容量为100,如果增至1000, 其频率分布直方图的情况会有什么变化?假如增 至10000呢?
26
思考: 数据大于俩位数的整数时又如何选茎,叶?
数据为小数时又如何选茎,叶?
结论:1>当数据为整数时:通常个位数字在叶上, 其他位数在茎上(一位数时,茎为0)
2>当数据为小数时:通常小数部分在叶上, 整数部分在茎上
甲的茎叶图画法
也可以画一组数据的茎叶图,竖线左边为茎,
右边为叶。
茎
叶
08
1 364
甲的中位数为26,乙的中位数为36,所以乙较甲成绩要好, 另,乙的叶较甲的更集中于峰值附近,所以乙较甲发挥 更稳定
浅谈用频率分布直方图估计总体的数字特征
十教表理化知识篇•知识结构与拓展高一数学2019年2月浅谈用频率分布直方图估计总体的■刘娟娟私字特1在频率分布直方图中,运用样本的数字特征估计总体的数字特征,可以很好地考查同学们的识图能力,也可以很好地考查同学们的数学运算、数据分析和转化推理的核心素养,因此这类试题备受命题者的青睐。
下面分别介绍如下,以供同学们参考。
一、利用频率分布直方图估计平均数在频率分布直方图中,平均数的估计值等于每个小矩形的面积乘以小矩形底边中点的横坐标之和。
例1某校有高三文科学生1000人,统计这些学生高三上学期期中考试的数学成绩后,得到的频率分布直方图如图1所示。
频率/组距0.022 50.017 5 0.0150.01 0.005.八-..1分数/分——--►70 80 90 100 110 120 130 140 150图1(1)求图中a的值,并估计本次考试成绩低于120分的人数。
(2)假设同组的每个数据可用该组区间的中点值代替,试估计本次考试成绩不低于120分的学生的平均分(结果保留一位小数)。
^(1)利用频率之和为1,由图(a+ 0. 015 + 0. 022 5 /0.017 5/0.015/0.01/a/0.005) X 10.1,解得a=0.007 5,所以本次考试成绩低于120分的学生共有1000— 1000X10X (0.01+0.007 5+0.005)=775(人)。
(2)由图1可知,不低于120分的频率为0.1,0.075,0.05,所以本次考试成绩不低于120 分的学生的平均分为125 X100' 135X75145 X100+75+5050100 +75 +50 ’圩100 +75 +50132.8C分)。
在解答这类问题的过程中,需要弄明白的是频率分布直方图中小*形的面积表示的是频率,平均数的计算公式为组中值乘以相应的频率作和。
该题中需要注意的是当前的总体发生了变化,所以对应的频率已经不是对应的小矩形的面积了,应该重新核算。
2.2.2用样本的数字特征估计总体的
25.49 25.32
从生产零件内径的尺寸看,谁生产的零件质量 ks5u精品课件 较高?
x 甲 » 25.401 s甲 » 0.037
x 乙 » 25.406
s乙 » 0.068
甲生产的零件内径更接近内径标准,且稳定 程度较高,故甲生产的零件质量较高.
说明:1.生产质量可以从总体的平均数与标准差 两个角度来衡量,但甲、乙两个总体的平均数与 标准差都是不知道的,我们就用样本的平均数与 标准差估计总体的平均数与标准差. 2.问题中25.40mm是内径的标准值,而不是 总体的平均数.
ks5u精品课件
例5 有20种不同的零食,它们的热量 含量如下: 110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140 (1)以上20个数据组成总体,求总体平 均数与总体标准差; (2)设计一个适当的随机抽样方法,从 总体中抽取一个容量为7的样本,计算样 本的平均数和标准差.
(3)
O
1Байду номын сангаас2 3 4 5 6 7 8
(4)
ks5u精品课件
例2 甲、乙两人同时生产内径为25.40mm的一种 零件,为了对两人的生产质量进行评比,从他们 生产的零件中各随机抽取20件,量得其内径尺寸 如下(单位:mm):
甲 : 25.46 25.45 25.44 乙: 25.40 25.49 25.47 25.32 25.38 25.40 25.43 26.36 25.31 25.45 25.42 25.42 25.44 25.34 25.32 25.39 25.39 25.35 25.48 25.33 25.32 25.36 25.43 25.41 25.48 25.43 25.32 25.34 25.39 25.39 25.47 25.43 25.48 25.42 25.40
频数分布表和频率分布直方图课件
在医学领域,频数分布表和频率分布直方图可以用于分析病例数据 、药物疗效等,为医学研究和临床诊断提供支持。
05
制作频数分布表和频率分布直方图 的注意事项
数据来源的可靠性
确保数据来源可靠
在制作频数分布表和频率分布直 方图时,应确保所使用数据的来 源可靠,避免使用不准确或过时
的数据。
验证数据准确性
作用
方便地展示数据的分布情况,帮助我们了解数据的集中趋势、离散程度以及分布形态等特征,为进一步的数据 分析提供基础。
制作步骤
01
02
03
04
收集数据
首先需要收集需要分析的数据 。
数据分组
将数据按照一定的分类标准进 行分组,分组的方法可以根据
实际需求进行选择。
统计频数
统计每组数据的数量,即频数 。
制作表格
应用场景
频数分布表
适用于需要详细了解数据各组频数的场景,如人口普查、销 售数据统计等。
频率分布直方图
适用于需要直观展示数据分布的场景,如市场调研、产品质 量检测等。
实例对比
频数分布表
一个班级的考试成绩统计,可以得出各分数段的学生人数。
频率分布直方图
同个班级的考试成绩分布图,可以直观地看出成绩的集中区域和离散程度。
数据收集
收集需要分析的数据,并进行必要的整理 和筛选,确保数据的质量和准确性。
添加图表元素
在直方图中添加必要的图表元素,如坐标 轴、标题、图例等,以便更好地解释和展 示数据。
数据分组
将数据按照一定的规则进行分组,分组的 方法可以根据实际需求选择,常见的分组 方式有等距分组和等频分组等。
绘制直方图
根据频数和频率数据,绘制条形图来表示 每个数据组的分布情况,பைடு நூலகம்形图的高度代 表频率,宽度代表组距。
最新众数、中位数、平均数与频率分布直方图的关系
二 、 众数、中位数、平均数 与频率分布直方图的关系
(在只有频率分布直方图的情况下,也可以估计总体特征,而且直方图比较直观 便于形象地进行分析。)
1、众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
频数
20 30 80 40 30 200
频率
0.10 0.15 0.40 0.20
0.15 1
累积频率 0.10 0.25 0.65 0.85 1
0 100 200300400 500 600 寿命(h)
总体分布的估计
(3)由频率分布表 出可 ,以 寿看 命 10在 h0~400
的电子元件出现 为的 :0.6频 5,率 所以我们估计电子
1、通过频率分布直方图的估计精度低;
2、通过频率分布直方图的估计结果与数据分组 有关;
3、在不能得到样本数据,只能得到频率分布直 方图的情况下,也可以估计总体特征,而且直方图 比较直观便于形象地进行分析。
20
30
80
40
30
(1)列出频率分布表;
(2)画出频率分布直方图; (3)估计电子元件寿命在100h~400h以内的概率; (4)估计电子元件寿命在400h以上的概率; (5)估计总体的数学期望.
寿命 100~200 200~300 300~400 400~500 500~600
合计
频率/组距
总体分布的估计
1002000.102003000.153004000.40
2
2
2
4005000.205006000.15151409082.5365.
用直方图算平均数,中位数、众数、标准差
,n ,这n个数的 3、算出 x i -x i=1, 2,… 2 平均数,即为样本方差 s 4、算出方差的算术平均值,即为样本标准差s。
2 2 2 2 1 s = x1 - x x 2 - x x 3 - x … x n - x n 2 2 1 n 1 2 2 2 2 = x i - x = x1 x 2 x 3 … x n -nx n i=1 n 2
的更稳定些吗?
为了从整体上更好地把握总体的规律,我们要通 过样本的数据对总体的数字特征进行研究。——用样 本的数字特征估计总体的数字特征。
1、众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2、中位数 将一组数据按大小依次排列, 把处在最中间位置的一个数据(或两个数据 的平均数)叫做这组数据的中位数. 3、平均数 (1) (2) x = (x1+x2+……+xn) /n x = x1f1+x2f2+……+xkfk
4
4.5
月平均用水
频率 组距
如何在频率分布直方图中估计中位数
0.6 0.5 0.4 0.3 0.2 0.1 0
前四个小矩形的 面积和=0.49
0.25
后四个小矩形的 面积和=0.26
0.22 0.15 0.08 0.04 0.5 1 1.5 2 2.5 3
0.14 0.06
0.04 3.5
0.02 4 4.5
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
标准差
标准差是样本数据到平均数的一种平均距 离.它用来描述样本数据的离散程度.在实际应 用中,标准差常被理解为稳定性.
用样本的数字特征估计总体的数字特征
用样本的数字特征估计总体的数字特征【知识点的知识】1.样本的数字特征:众数、中位数、平均数众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数;(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;(3)平均数:一组数据的算术平均数,即.2、三种数字特征的优缺点::(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响,容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.(4)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.(5)使用者根据自己的利益去选择使用中位数或平均数来描述数据的中心,从而产生一些误导作用.3、如何从频率分布直方图中估计众数、中位数、平均数?利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.4、样本平均数、标准差对总体平均数、标准差的估计现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道(或不可求)的.如何求得总体的平均数与标准差呢?通常的做法是用样本的平均数与标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.如要考查一批灯泡的质量,我们可从中随机抽取一部分作为样本,要分析一批钢筋的强度,可以随机抽取一定数目的钢筋作为样本,只要样本的代表性强就可以用来对总体作出客观的判断.但需要注意的是,同一个总体,抽取的样本可以是不同的.如一个总体包含6个个体,现在要从中抽取3个作为样本,所有可能的样本会有20种不同的结果,若总体与样本容量较大,可能性就更多,而只要其中的个体是不完全相同的,这些相应的样本频率分布与平均数、标准差都会有差异.这就会影响到我们对总体情况的估计.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.02这个中位数的估计值,与样本的中 位数值2.0不一样,你能解释其中的原因吗?
2.02这个中位数的估计值,与样本的中 位数值2.0不一样,这是因为样本数据的 频率分布直方图,只是直观地表明分布 的形状,但是从直方图本身得不出原始 的数据内容,所以由频率分布直方图得 到的中位数估计值往往与样本的实际 中位数值不一致.
1 ( x1 x 2 x n ) n
数,即 x=
频率 组距
众数在样本数据的频率分布直方图中 就是最高矩形的中点的横坐标。 例如下面是100位居民的月均用水量, 从这些样本数据的频率分布直方图可以 看出,月均用水量的众数是 2.25t
0.5 0.4 0.3 0.2 0.1
O
0.5
1
1.5
3、平均数是频率分布直方图的“重心”.是直方图的 频率 组距 平衡点n 个样本数据的平均数由公式:
1 X= ( x1 x 2 x n ) n
0.5 0.4 0.3
0.2
0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
上图显示了居民月均用水量的平均数: x=1.973
用样本的数字特征估计总 体的数字特征
一 众数、中位数、平均数的概念
众数:在一组数据中,出现次数最多的 数据叫做这组数据的众数.
中位数:将一组数据按大小依次排列,把处 在最中间位置的一个数据(或最中间两个数 据的平均数)叫做这组数据的中位数.
平均数: 一组数据 x1 , x2 xn 的算术平均
三、 三种数字特征的优缺点 1、众数体现了样本数据的最大集中点,但它对其它数据信息的 忽视使得无法客观地反映总体特征.如上例中众数是2.25t,它告诉 我们,月均用水量为2.25t的居民数比月均用水量为其它数值的居民 数多,但它并没有告诉我们多多少. 2、中位数是样本数据所占频率的等分线,它不受少数几个极 端值的影响,这在某些情况下是优点,但它对极端值的不敏感有 时也会成为缺点。如上例中假设有某一用户月均用水量为10t, 那么它所占频率为0.01,几乎不影响中位数,但显然这一极端值是 不能忽视的。 3、由于平均数与每一个样本的数据有关,所以任何一个样本数 据的改变都会引起平均数的改变,这是众数、中位数都不具有的 性质。也正因如此 ,与众数、中位数比较起来,平均数可以反映 出更多的关于样本数据全体的信息,但平均数受数据中的极端值 的影响较大,使平均数在估计时可靠性降低。
2 2.25 2.5
3
3.5
4
4.5
月平均用水量(t)
ห้องสมุดไป่ตู้
频率 组距
在样本中,有50%的个体小于或等于中位数, 也有50%的个体大于或等于中位数, 因此,在频率分布直方图中,中位数左边和右边的 直方图的面积应该相等,由此可以估计中位数的值
下图居民月均用水量的中位数的估计值为 2.02
0.5 0.4 0.3 0.2 0.1 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)