高考数学复习:九大核心考点

合集下载

高考数学九大核心考点与知识点总结,DOC

高考数学九大核心考点与知识点总结,DOC

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学复习:九大核心考点

高考数学复习:九大核心考点

高考数学复习:九大核心考点九大中心的知识点:函数、三角函数,平面向量,不等式,数列,平面几何,解析几何,概率与统计,导数。

这些内容十分重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必需清楚,函数图象变换是十分重要的一个中心内容。

此外就是函数的一种性质效果,单调性、周期性,包括前面我们还谈到延续性效果,像这些性质效果是十分重要的。

连同最值也是在函数当中重点调查的一些知识点,我想这些内容特别值得我们在前面要关注的。

再比如说像解析几何这个内容,不论文科还是文科,像直线和圆一定是十分重要的一个内容。

文科和文科有一点差异了,比如说圆锥曲线方面,椭圆和抛物线文科必需到达的水平,双曲线文科只是了解形状就可以了。

而文科呢?椭圆是要求到达了解水平,抛物线和双曲线只是普通的了解形状就可以了。

这里需求有侧重点。

拿详细知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎样判别应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的规范方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我们的一个角度来说。

我们前面有六个大题,普通是侧重于六个重要的板块,由于现阶段不能够一个章节自始至终,你没有时间了,必需把最重要的知识板块拿出来,比如说数列与函数以及不等式,这一定是重要板块。

再比如说三角函数战争面向量应该是一个,解析几何战争面几何战争面向量一定又是一个。

再比如像平面几何当中的空间图形战争面图形,这一定是重要板块。

再前面是概率统计,在处置概率统计效果当中普通和计数原理综合在一同,最后还有一个板块是导数、函数、方程和不等式,四局部外容综合在一同。

应当说我们前面六个大题基本上是围绕着这样六个板块来停止。

这六个板块一定是我们的中心内容之一。

再比如说如今我们高考当中要表达对数学思想方法的调查,数学思想方法以前调查四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,如今又添加了三个,原来这四个方面当中有两类做了改造。

【高中数学】高考备考:数学复习牢记九核心考点

【高中数学】高考备考:数学复习牢记九核心考点

【高中数学】高考备考:数学复习牢记九核心考点关注核心考点非常重要,核心考点一个是九大核心的知识点,函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

例如,解析几何,无论是科学还是文科,比如直线和圆,都必须是一个非常重要的内容。

科学和文科之间有一点区别。

例如,在圆锥曲线方面,椭圆和抛物线科学必须达到这个水平,而双曲线科学只需要了解状态。

那么文科呢?椭圆是达到理解水平所必需的。

抛物线和双曲线只是一般的理解状态。

这里需要有一个焦点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我们的一个角度来说。

我们身后有六个大问题,通常集中在六个重要部分,因为在这个阶段,一章不可能从头到尾。

你没有时间。

你必须去掉最重要的知识部分,比如序列、函数和不等式,它们必须是重要的部分。

例如,三角函数和平面向量应该是一个,而解析几何和平面几何以及平面向量必须是另一个。

另一个例子是立体几何中的空间图形和平面图形,它们必须是重要的板块。

然后是概率和统计学。

在解决概率统计问题时,它通常与计数原理相结合。

最后,还有另一个板块,即导数、函数、方程和不等式。

这四个部分被整合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

这六个板块肯定是我们的核心内容之一。

再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学核心考点

高考数学核心考点

高考数学核心考点一、选择、填空题1、解不等式:一元二次不等式;分式不等式;指数不等式、对数不等式(化为同底). 2、集合的交;并;补运算. 3、充分必要条件的判断(确定互推关系). 4、 四种命题的表达;全称命题、特称命题的否定表达(一改换、二否定);及其真假性判断;或、且、非命题的真假判断。

5、复数的加、减、乘、除运算;模的计算. 6、 向量的加、减、数乘、数量积的坐标运算;模的计算;定义运算;平行、垂直的关系式运用;几何意义的运算(三角形法则,平行四边形法则)。

7、线性规划:求目标函数的最大最小值. 8、古典概型、几何概型的计算. 9、 编读程序框图.10、 求分段函数值. (综合指数式、对数式运算).11、 求定义域(分母0≠、真数0>、偶数根式的被开方数0≥).12、 函数单调性、奇偶性的判断(特殊值法、定义法).13、 函数图像的判断: ①利用变换作图,②性质法(利用定义域、值域、单调性、奇偶性、周期性,过定点)14、 利用零点存在性定理判断零点(即方程的根)所在区间.15、 利用导数求切线方程;求单调区间;求极值;求最值.16、 同角三角函数关系公式;诱导公式;两角和与差公式;二倍角公式的综合运算.17、 三角函数sin()y A x ωϕ=+图像的伸缩、平移的变换,及其性质(周期,对称轴、对称中心、单调区间、最值)18、 等差、等比数列常规量的计算(列方程组求首项和公差或公比;利用性质求解).19、 根据三视图求体积、表面积、侧面积;多面体的外接球与内切球的问题.20、 空间点、线、面位置关系的判断(借助正方体或长方体找反例排除).21、 求直线与圆的方程;直线被圆截得的弦长;及其位置关系(两点间距离、点到线距离公式、两平行线距离公式).22、 求圆锥曲线的方程;及其几何性质(离心率、渐近线等).二、解答题23、 数列:(1) 求通项公式(公式法、累加法、累乘法、构造法).(2) 求前n 项和(公式法、分组求和法、错位相减法、裂项相消法).(3) 证明等差、等比数列(定义法).24、 三角函数与解三角形:(1) 利用正弦定理、余弦定理、勾股定理、内角和定理解三角形,求面积.(2) 化归sin()y A x ωϕ=+形式.(3) 求T A ωϕ、、、值.(4) 给值求值(同角三角函数关系公式、诱导公式、两角和与差公式、二倍角的运用).(5) 求最大最小值(或给定x 的范围),及其对应的x 的集合.(6)求单调区间(当0,0A ω>>时,求增代增,求减代减)25、 统计与概率:(1) 抽样方法:系统抽样(等间距抽样);分层抽样(等比例抽样).(2) 数字特征:众数、中位数、平均数、方差、标准差、极差.(3) 数据分析:茎叶图、频率直方图;回归分析;独立性检验.(4) 从频率直方图估计:众数、中位数、平均数、方差.26、 空间立体几何:(1) 线面平行、面面平行的证明.(2) 线线垂直、线面垂直、面面垂直的证明.(3) 求体积(先证明高、后计算高及底面积、代公式求得体积).(4) 翻折问题.27、 平面解析几何:直线、圆、圆锥曲线的综合运用.28、 用导数研究函数.(恒成立问题,存在性问题)29、 极坐标与参数方程(转化法、数形结合法).。

高考数学主干知识点归纳

高考数学主干知识点归纳

高考数学主干知识点归纳高考数学作为高中阶段学习的重点,其主干知识点主要包括以下几个方面:一、函数与导数- 函数的概念、性质、图像和应用。

- 导数的定义、几何意义、计算方法和应用。

- 函数的单调性、极值、最值问题。

二、三角函数与解三角形- 三角函数的定义、图像和性质。

- 正弦定理、余弦定理及其应用。

- 解三角形的常用方法。

三、不等式与方程- 不等式的基本性质、解法和应用。

- 一元二次方程的解法和判别式。

- 分式不等式和绝对值不等式的解法。

四、数列- 等差数列和等比数列的定义、通项公式和性质。

- 数列的求和问题。

- 数列的极限和无穷等比数列的求和公式。

五、解析几何- 直线、圆、椭圆、双曲线、抛物线等基本几何图形的性质和方程。

- 点、直线、圆等几何元素的位置关系。

- 圆锥曲线的参数方程和极坐标方程。

六、立体几何- 空间直线与平面的位置关系。

- 空间几何体的体积和表面积的计算。

- 空间向量在立体几何中的应用。

七、概率与统计- 随机事件的概率计算。

- 条件概率和独立事件的概念。

- 统计数据的收集、整理和分析。

八、复数- 复数的概念、代数形式和几何意义。

- 复数的四则运算和共轭复数。

- 复数在几何问题中的应用。

九、逻辑与推理- 逻辑运算符的使用和逻辑表达式的化简。

- 推理方法和证明技巧。

结束语:高考数学的主干知识点覆盖了从基础到进阶的多个方面,要求学生不仅要掌握扎实的数学基础知识,还要具备良好的逻辑推理能力和问题解决能力。

通过系统地学习和练习,可以有效地提高数学成绩,为高考的成功打下坚实的基础。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

新高考数学必考知识点归纳

新高考数学必考知识点归纳

新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。

以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。

通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。

高中数学高考考点

高中数学高考考点

高中数学高考考点
高中数学高考的考点如下:
1. 二次函数与一元二次方程:二次函数的图像、顶点、对称轴、单调性、最值、一元二次方程的解、关于二次方程的性质和应用等。

2. 复数与数系:复数的定义、运算、模、共轭、乘法公式、平方根等;实数、有理数、无理数、整数、质数等数系的定义和性质。

3. 平面解析几何:平面直角坐标系、直线、线段、中点、斜率的计算、两条直线的位置关系、平移、旋转、对称等基本概念和题型。

4. 空间解析几何:空间直角坐标系、点、直线、平面的方程与性质、两线垂直、平行的判定、点到直线、点到平面的距离公式、空间中的位置关系等。

5. 数列与数学归纳法:数列的概念、公式、通项、等差数列与等比数列的性质、数列求和公式、数学归纳法的基本思想与应用等。

6. 函数与导数:函数的概念、性质、图像、单调性与极值、导数的定义、基本求导法则、高阶导数与凹凸性、函数的极限与连续性等。

7. 三角函数与解三角形:正弦定理、余弦定理、解三角形的基本方法、三角函数的图像与性质、特殊角的三角函数值等。

8. 概率与统计:随机事件、样本空间、概率的计算、事件的运算、条件概率、独立事件、频率与概率的关系等;统计图表的解读、抽样调查与统计推断等。

9. 数理逻辑与命题推理:命题的定义、真值表、命题联结词及其真值、等值命题、充分必要条件、命题推理等。

10. 三视图与几何体:平面图形的展开图、三视图与几何体的形状、体积、表面积等。

这些考点涵盖了高中数学的各大核心知识点,考生在备考时应重点复习和掌握。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点回顾-精选学习文档

高考数学九大核心考点回顾-精选学习文档

高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗?我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我们的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高考数学九大核心考点与知识点总结

高考数学九大核心考点与知识点总结

高考数学思想方法、九大考点与知识点总结高考数学九大核心考点回顾不管是什么考试,无非都是对各知识点的一个练习、总结,只要我们能够对各个知识点深刻了解,考试中拿高分并不难,你知道高考数学常考的知识点有哪些吗我们不妨一起来了解一下。

九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

应当说我们后面六个大题基本上是围绕着这样六个板块来进行。

高三数学复习知识点总结归纳

高三数学复习知识点总结归纳

高三数学复习知识点总结归纳高三数学复习知识点总结第一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。

难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:第一类所讲的直线和曲线的位置关系,这是考试最多的内容。

考生应该掌握它的通法;第二类我们所讲的动点问题;第三类是弦长问题;第四类是对称问题,这也是2008年高考已经考过的一点;第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。

这是高考所考的七大板块核心的考点。

高考数学复习:九大核心考点

高考数学复习:九大核心考点

高考数学复习:九大核心考点九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容专门重要。

因此每章当中还有侧重,比如说拿函数来讲,函数概念必须清晰,函数图象变换是专门重要的一个核心内容。

此外确实是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是专门重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容专门值得我们在后面要关注的。

再比如说像解析几何那个内容,不治理科依旧文科,像直线和圆确信是专门重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就能够了。

而文科呢?椭圆是要求达到明白得水平,抛物线和双曲线只是一样的了解状态就能够了。

那个地点需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系如何判定应该清晰。

直线和圆的位置关系应该清晰,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们专门关注的一个重要的知识内容。

这是从我们的一个角度来说。

我们后面有六个大题,一样是侧重于六个重要的板块,因为现时期不可能一个章节从头至尾,你没有时刻了,必须把最重要的知识板块拿出来,比如说数列与函数以及不等式,这确信是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量确信又是一个。

再比如像立体几何当中的空间图形和平面图形,这确信是重要板块。

再后面是概率统计,在解决概率统计问题当中一样和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学复习:九大核心考点
九大核心的知识点:函数、三角函数,平面向量,不等式,数列,立体几何,解析几何,概率与统计,导数。

这些内容非常重要。

当然每章当中还有侧重,比如说拿函数来讲,函数概念必须清楚,函数图象变换是非常重要的一个核心内容。

此外就是函数的一种性质问题,单调性、周期性,包括后面我们还谈到连续性问题,像这些性质问题是非常重要的。

连同最值也是在函数当中重点考察的一些知识点,我想这些内容特别值得我们在后面要关注的。

再比如说像解析几何这个内容,不管理科还是文科,像直线和圆肯定是非常重要的一个内容。

理科和文科有一点差别了,比如说圆锥曲线方面,椭圆和抛物线理科必须达到的水平,双曲线理科只是了解状态就可以了。

而文科呢?椭圆是要求达到理解水平,抛物线和双曲线只是一般的了解状态就可以了。

这里需要有侧重点。

拿具体知识来讲,比如说直线当中,两条直线的位置关系,平行、垂直的关系怎么判断应该清楚。

直线和圆的位置关系应该清楚,椭圆、双曲线和抛物线的标准方程,参数之间的关系,再比如直线和椭圆的位置关系,这是值得我们特别关注的一个重要的知识内容。

这是从我们的一个角度来说。

我们后面有六个大题,一般是侧重于六个重要的板块,因为现阶段不可能一个章节从头至尾,你没有时间了,必须把
最重要的知识板块拿出来,比如说数列与函数以及不等式,这肯定是重要板块。

再比如说三角函数和平面向量应该是一个,解析几何和平面几何和平面向量肯定又是一个。

再比如像立体几何当中的空间图形和平面图形,这肯定是重要板块。

再后面是概率统计,在解决概率统计问题当中一般和计数原理综合在一起,最后还有一个板块是导数、函数、方程和不等式,四部分内容综合在一起。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

应当说我们后面六个大题基本上是围绕着这样六个板块
来进行。

这六个板块肯定是我们的核心内容之一。

再比如说现在我们高考当中要体现对数学思想方法的考察,数学思想方法以前考察四个方面,函数和方程思想,数形结合思想,分类讨论,等价转换,现在又增加了三个,原来这四个方面当中有两类做了改造。

函数和方程思想,数形结合思想,分类讨论改成了分类讨论与整合,等价转换转为划归与转化。

有限和无限思想,特殊和一般的思想。

死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

相关文档
最新文档