船舶设计原理课设 型线设计
船舶设计原理教学设计 (2)

船舶设计原理教学设计1. 前言船舶设计原理是船舶专业中的一门重要的基础课程。
在进行船舶设计工作前,需要先掌握船舶设计原理,了解船舶设计的基础知识和方法。
船舶设计原理的教学设计是船舶专业教学的重要组成部分。
本文将以船舶设计原理教学设计为主题,探讨如何有效地开展该课程的教学工作。
2. 教学目标船舶设计原理课程的目标是使学生掌握以下内容:1.掌握船舶的基本结构、航行性能和各种主要设备的布置原理。
2.熟悉船体形状、水线和横剖面上各部分的名称和特点。
3.理解流体力学的基本原理、流动分离和水动力特性的现象和规律。
4.学会使用所学知识,分析解决船体水动力学问题。
3. 教学内容船舶设计原理课程的教学内容包括:1.船舶结构:介绍船艏、船尾、甲板、舱壁、龙骨、船底等船体结构。
2.船舶航行性能:介绍船舶的航速、航程和船舶稳性。
3.船舶设备:介绍船舶的主机、推进器、舵机、泵等主要设备。
4.船体流体力学:介绍船体的阻力、舵效、波浪和水面冲击等水动力学基础知识。
5.船体水动力学:介绍船体的流场分析,船体波浪分析和水动力分析。
4. 教学方法船舶设计原理课程的教学方法应该包括:1.授课法:在讲授船舶设计原理的基础上,注重实例分析和案例研究,使学生了解到实际问题和解决方案。
2.讨论法:在授课的过程中,引导学生展开讨论,分析问题,激发学生的思考能力,增加对所学内容的印象。
3.实验法:通过个别或小组实验,使学生接触到实际问题、动手操作、观察现象、总结规律,形成一个完整的知识体系。
4.案例法:通过案例研究,将课堂内容与实际工作相结合,使课程内容更加贴近实际,提高学生的解决问题能力和实际操作能力。
5. 教学评价教学评价是教学过程的重要环节。
在进行船舶设计原理教学评价时,可以采取以下方法:1.课程论文:要求学生撰写课程论文,对所学知识进行总结、分析和应用。
2.课堂讲解:设立课堂讲解环节,要求学生准备相关材料,进行展示和解说。
3.实验测试:对学生进行实验测试和操作技能考核,了解学生学习和掌握情况。
船舶设计原理_05_船舶型线设计_0511_型线设绘的基本要求

第五章船舶型线设计5.11 型线设绘的基本要求9191第五章船舶型线设计5.11 型线设绘的基本要求型线图的设绘方法型线图的设绘方法主要有4种,自行设绘法、母型改造法、系列船型方法和数学型线方法,我们已经在5.2横剖面面积曲线的特征这一节中学过。
无论采用何种型线设计方法,现在都可以借助计算机和绘图机来进行型线图的设绘。
目前,国内外已开发应用的许多船舶CAD软件系统中,很多具有型线设计功能。
但是,任何型线设计软件的应用,使用者都必须掌握型线图设绘的基本原理和方法,否则,盲目操作软件是不可能得到符合设计意图的优良型线的。
第五章船舶型线设计5.11 型线设绘的基本要求型线图的表达形式型线设计的结果是以型线图来表达的。
型线图是以横剖线图、水线图和纵剖线图(包括斜剖线)来表达船体形状。
横剖线图是以一组沿船长不同位置,垂直于基平面的横剖面与船体型表面相交的横剖线叠绘在一起而得。
由于船体形状一般左右对称,所以仅绘一侧横剖线即可,规定前半体绘在右侧,后半体绘在左侧。
横剖面的位置称为站,站号编排自尾向首(军船和国外有些民船是自首向尾的)。
站距通常按垂线间长20等分,也可取10等分,首尾可再加密(如1/2站或1/4站等)。
第五章船舶型线设计5.11 型线设绘的基本要求型线图的表达形式水线图是以一组平行于基平面的平面与船体型表面相交的水线叠绘在一起而得到的,通常只绘左侧。
设计水线以下的水线根数常取5-8根,在底部船体表面宽度变化剧烈处加密,设计水线以上的水线根数可取2-4根。
水线间距可不按设计吃水等分,而取整数。
纵剖线图是以一组平行于中纵剖面的平面与船体型表面相交的纵剖线叠绘在一起而得到的。
纵剖线的数目和位置根据船体表面的弯曲程度来选取,可取2-5根。
纵剖线的间距最好与水线间距一致或成倍数,这样便于放样。
纵剖线图还包括侧面轮廓线。
甲板边线、折角线、舷墙顶线等空间曲线在三个平面上的投影线均应分别绘制在横剖线图、水线图和纵剖线图上。
船舶设计原理 型线设计

6.2 横剖面面积曲线
船舶原理与设计
第六章、型线设计
二、 浮心纵向位置XB 的选择
水上部分的形状 船首水上部分的横剖线形状通常具有一定的外飘,这样储备浮力和甲 板面积都大些。适量的外飘可减少甲板的上浪和淹湿
1
=
δ xdy =
0
0 a(1 − x)dy = a(1 − CPF )
得:a=δCPF / (1-CPF) , 代入式δx 的表达式,可得:
δ x= 1− x
1 − CPF
δ C PF
6.2 横剖面面积曲线
四、生成横剖面面积的母型改造法
(2)同时修改CP 和 lP (3)同时修改CP,lP 和 xB
(Lackenby 法 ) (4)仅修改浮心纵向位置xB
船舶原理与设计
第六章、型线设计
θ
θ
θ
θ
θ
θ
θ
θ
θ
0
1
2
3
4
K5
6
7
8
9
10
6.3 型线几何形状特征和参数的选择
船舶原理与设计
第六章、型线设计
一、设计水线及横剖线形状特征和参数的选择
设计水线的形状特征和横剖面形状特征是相关的,设计水线丰满意味 着横剖面在设计水线处较宽,在一定的横剖面面积下,下部必然较窄,剖 面形状成V形。反之,设计水线削瘦,横剖面形状成U形
平行中体前、后的两段长度分别称为进流段长 LE 和去流段长 LR; 方形系数小的船一般都没有平行中体,最大横剖面常位于船中(MS)之后。
船舶设计原理课程设计

船舶设计原理课程设计一、选题背景随着海洋产业的不断发展,船舶工程专业也成为重要的学科之一,船舶设计原理也是其中极为关键的部分。
为培养学生的专业能力,本文将以船舶设计原理为主题进行课程设计。
二、课程设计目标本课程设计的目标在于帮助学生:1.理解船舶设计原理和基本概念;2.掌握船舶设计方法和流程;3.熟悉船舶结构和材料;4.能够自主设计和优化船舶结构。
三、课程设计内容1. 船舶设计原理基础船舶设计原理是船舶设计的基础,包括船体的水动力、气动力、结构设计原理、船舶性能分析、计算方法等方面。
本章将介绍船舶设计原理的基本概念和原理。
2. 船舶设计方法和流程船舶设计流程包括需求分析、规格制定、总体设计、详细设计和生产等环节。
本章将介绍船舶各设计阶段的方法和流程,以及船舶设计中的风浪、平稳性、操纵性、装备、发动机、承载等相关设计要点。
3. 船舶结构和材料船舶的主要结构包括船体、底部、船首、船尾、设备舱和船舱等。
本章将介绍船舶的主要结构和材料,并讲解材料力学知识和应力应变分析。
4. 船舶优化设计船舶设计中的优化是非常重要的,不仅与船舶性能、载货能力等关系密切,还与节约资源、降低成本等方面相关。
本章将介绍船舶设计中的优化问题,并帮助学生掌握优化设计方法。
四、课程设计要求1.学生需要从网上或书本上查找一些船型的基本数据和设计参数;2.学生需要使用计算机辅助设计软件进行应用;3.学生需要运用所学知识,设计出一艘满足基本要求的船舶。
五、课程设计总结通过本次船舶设计原理课程的学习,学生深入学习了船舶设计原理,掌握了船舶结构和材料的基本知识,也了解了船舶设计中的流程和方法,并且通过自己的设计经历,体会到了设计的复杂性和设计过程中需要注意的细节问题。
同时,本次课程设计也增强了学生的实践操作能力和团队协作精神。
《船舶总布置及型线设计》任务书

船舶总布置及型线设计概述1、课程设计目的与要求本课程设计是船舶工程和海洋工程专业本科生主要的实践性教学环节之一。
通过本课程设计,使学生学习综合运用船舶设计原理课程及有关先修课程的知识,起到巩固、深化、融会贯通作用;掌握总布置设计和船体线型设计的一般方法和步骤;提高学生的设计能力,如计算能力、绘图能力以及计算机辅助设计(CAD)能力等,使学生熟悉设计资料(规范、手册、图册等)的使用,掌握经验估算等船舶设计的基本技能。
本课程设计的任务和要求是:使学生在满足营运要求和保证船的航行性能、安全性的前提下,参考母型船总布置图,合理的确定船舶的整体布置,独立完善总布置图;根据总布置图的主尺度,参考母型船,采用母型改造法设计绘制出型线图。
同时培养学生仔细认真、一丝不苟的工作态度,为以后学习和工作打下良好的基础。
课程设计的具体任务是:1、根据任务书,进行总图设计计算与绘制;能正确掌握绘制总布置图的方法和步骤。
2、使用1-Cp法和迁移法,正确掌握线型改造和型线图绘制的方法和步骤。
2、时间安排本课程设计总时间为3周,第1周总布置设计,第2、3周型线设计。
3、课程设计报告要求总布置图、型线图各一份(上交ACAD图形文件,并打印2号图幅的纸质图2张)总布置设计与型线改造说明书一份(说明设计思想、方法、过程及结果,上交电子文档和纸质文件)4、课程设计考核与成绩评定课程设计考核包括:听课出勤+图纸完成质量+设计报告质量。
要求独立完成,图纸和报告一旦认定有直接抄袭行为,一律以不及格论处。
5、主要参考书1)《船舶设计原理》方学智等编华中理工大学出版社 19982)《船舶设计实用手册》总体分册中船总编国防工业出版社 19993)《船体制图》茆文玉等编国防工业出版社 19914)《钢质海船入级与建造规范》(2006) CCS5) 《国内航行海船法定检验技术规则》(2006)中船员舱室设备规范船舶总布置及型线设计(总布置设计部分)一总体说明1、航区、航线、用途本船为15000DWT成品油船,无限航区,可以在世界任何海洋航行,主要用于装载成品油。
船舶设计原理_05_船舶型线设计_0508_首部型线的选择

第五章船舶型线设计5.8 首部型线的选择6464第五章船舶型线设计5.8 首部型线的选择横剖线形状如图所示的为四种常规船型的横剖线形状,根据形状特征可分为:U形、V形、中U形、中V形。
第五章船舶型线设计5.8 首部型线的选择横剖线形状(1)U形。
排水量沿吃水高度分布较均匀,使设计水线瘦削,半进流角小,有利于减小兴波阻力。
在尾部U形剖面使伴流比较均匀,有利于提高船身效率,改善螺旋桨工作条件,降低螺旋桨激振力。
但相对于V形,U形剖面湿面积较大,摩擦阻力大些,耐波性也差些。
一般大型运输船及中、高速船舶采用U形剖面。
(2)V形。
V形剖面的面积分布偏于上部,湿表面积较小,对减小摩擦阻力有利。
在尾部,V形剖面使去流段水流顺畅,可减小旋涡阻力。
V形剖面可增加纵摇和升沉的阻尼,对耐波性有利。
小型船舶多采用V形剖面。
(3)中U形或中V形。
兼顾阻力和耐波性两方面的要求,为大多数中型船舶所采用。
5.8 首部型线的选择首部横剖线第五章船舶型线设计首部横剖线形状主要从静水阻力和耐波性这两方面来考虑。
(1)静水阻力方面。
V形横剖面形状湿表面积较小,可减小摩擦阻力,同时它的舭部较瘦,有利于减少丰满船(Cb >0.75) 的舭部旋涡。
但V形剖面设计水线首端丰满、半进流角大,兴波阻力较大。
U形剖面船的排水量相对集中在下部,设计水线瘦削,半进流角小,有利于减小兴波阻力,但湿面积大,摩擦阻力大。
由此,从总阻力方面来考虑,对应不同速度,首部横剖线存在一个阻力上有利的形状选择问题。
第五章船舶型线设计5.8 首部型线的选择首部横剖线哥德堡船舶研究院曾对图示的无球首前体横剖线形状U形和V形的船模进行对比试验,其典型的阻力曲线见图所示。
第五章船舶型线设计5.8 首部型线的选择首部横剖线(2)耐波性方面。
V形横剖面,船舶在纵摇和升沉运动时,浮力和阻尼力矩增大,能明显减小纵摇和升沉运动,且能缓和船底砰击(尤其当波长与船长之比λ/L>1.0时),但V形剖面会增加波浪中航行的阻力(尤其是λ/L<1.2时)。
船舶设计原理_05_船舶型线设计_0510_侧面轮廓线的选择

第五章船舶型线设计5.10 侧面轮廓线的选择7878第五章船舶型线设计5.10 侧面轮廓线的选择型线的侧面轮廓线型线的侧面轮廓线包括首轮廓线(有球首时包括球首)、尾轮廓线、龙骨线、甲板中心线和甲板边线。
侧面轮廓线是船体型线最基本的边界线,也是船体形状特征的重要控制要素之一。
侧面轮廓线的设计也同样关系到船舶性能。
甲板边线与总布置关系密切,设计中必须与总布置设计相互协调。
第五章船舶型线设计5.10 侧面轮廓线的选择首轮廓线常规船不带球首的首轮廓线基本形状如图所示,现代船最常用的首轮廓线形状就是图中的前倾型首。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计尾轮廓线形状的选择主要是考虑舵和螺旋桨的布置以及与横剖型线的配合,现代单桨运输船一般都采用巡洋舰尾,其侧面轮廓形状如图所示。
为了简化工艺,大多在水线以上切除了巡洋舰尾的曲面尾端,改用一块后倾0°-15°的平板作为尾封板,如图中的虚线所示。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计当吃水较浅且螺旋桨直径较大时,为了布置螺旋桨,不得已只好减小浸深,使尾悬体的轮廓线比较平坦,如图中的点划线所示,此时应注意尾悬体横剖线的形状应具有一定的V形,否则容易引起尾部砰击和螺旋桨对船体产生较大的激振力。
5.10 侧面轮廓线的选择尾轮廓线第五章船舶型线设计尾框设有底龙骨(也称舵托)的称为闭式尾框,不设底龙骨的称为开式尾框,如图中的双点划线所示。
第五章船舶型线设计5.10 侧面轮廓线的选择尾轮廓线设计尾轮廓线时,尾框内的形状、尺寸应根据舵和螺旋桨的具体位置、尺寸,考虑桨叶与尾框间的间隙来决定,如图所示。
桨叶与舵及尾框之间的间隙大小主要影响螺旋桨对船体的激振力,同时也与推进效率、阻力有关。
第五章船舶型线设计5.10 侧面轮廓线的选择尾轮廓线总的来说,尾框的设计以防止大的激振为主要考虑因素,为此适当牺牲点快速性的要求也是值得的。
为了防止产生过大的激振,各船级社的船舶建造规范对尾框间隙尺寸提出了最小值的要求,在设计中应予以满足。
船舶设计原理_05_船舶型线设计_0507_设计水线形状的选择

第五章船舶型线设计5.7 设计水线形状的选择5656第五章船舶型线设计5.7 设计水线形状的选择设计水线的形状设计水线的形状特征和横剖面形状特征是相关的,设计水线丰满意味着横剖面在设计水线处较宽,在一定的横剖面面积下,下部必然较窄,横剖面形状成V形。
反之,设计水线瘦削,横剖面形状成U形,如图所示。
第五章船舶型线设计5.7 设计水线形状的选择设计水线的形状设计水线形状确定以后,很大程度上已决定了横剖面形状(UV程度),所以在选择设计水线形状时应对横剖线形状有一个清楚的认识,并将两者结合起来统一考虑。
5.7 设计水线形状的选择设计水线的特征和参数第五章船舶型线设计近水面处的水线形状对兴波阻力影响较大,通常以设计水线为代表进行研究。
设计水线的特征和参数包括:水线面系数C w 、设计水线首段形状及半进流角i e (近首垂线处水线与中心线的夹角)、平行中段长度、尾段形状及去流角等。
(1)水线面系数C w 水线面系数C w 与多种因素有关,这些因素包括快速性、稳性、耐波性、总布置与型线等。
在实际船舶设计中,水线面系数C w 的选取一般先考虑快速性,然后校核稳性、耐波性、总布置与型线等方面,看是否合适。
5.7 设计水线形状的选择设计水线的特征和参数第五章船舶型线设计(2)设计水线首段形状及半进流角ie设计水线首段形状对兴波阻力的影响机理与前面所述的横剖面面积曲线相类似。
它的选取与相对速度密切相关,所以,首段形状特征如下:0.16<Fr <0.20 由凸形到直线形;0.20<Fr <0.22 直线形或微凹形;0.22<Fr <0.32 微凹形;Fr>0.32 直线形,整个进流段保持和缓的曲度。
5.7 设计水线形状的选择设计水线的特征和参数第五章船舶型线设计设计水线的半进流角i e 对船首部兴波阻力有重要影响,适宜的半进流角i e 主要与傅汝德数F r 有关,其次与C p 、L/B、C w等有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5000t江海直达船
——船舶设计原理课程设计书
型线设计部分
指导老师:刘卫斌
学生姓名:韩全生
学号:012006024308
院系班级:船海0606班
完成日期:2009年6月14日
1.补全主尺度
根据母型船舶型线图和相关数据可知,母性船的比例为1:50,设计吃水为T=5.8m,因此作出水线5800,并从半宽水线图中量取设计水线长为LWL=105.2m。
从纵剖线图中量取船舶总长为LOA=102m,垂线间长LPP=102m(站距5.1m,共20站)。
型宽B=17.5m,型深D=7.6m。
梁拱(中站面甲板边线与甲板中心线高度之差)为0.25m,首舷弧(甲板中心线首端与最低点高度差)为0.30m,尾舷弧为0.12m
2.横剖线面积曲线
横剖线面积曲线是以船长为横向坐标,设计水线下各横剖面面积为竖向坐标所绘制的曲线,1.首先作出5800水线,根据横剖面图,用CAD自带量取各站在设计水线下的面积。
所得面积数据如下(单位m2)
2.根据所得横剖面面积数据,以船长为横坐标,以各站面积为纵坐标画横剖线面积曲线(横坐标以m为单位放大20倍,纵坐标以m2为单位放大4倍,方便画图以及观看)图如下:
3.横剖线面积曲线的物理意义
①横剖线面积曲线与横向坐标轴所包围的面积等于设计水线以下船的排水体积;
;
②横剖线面积曲线的丰满度系数等于船在设计水线下的纵向菱形系数C
P
③横剖面面积曲线与横向坐标轴所围的面积的形心横向坐标,等于船的浮心纵向坐标X
;
b ④曲线的最大纵坐标值代表最大横剖面面积A MAX;
4.根据横剖线面积曲线求各项参数
同时.由形心得船舶浮心纵向坐标X b=0.9082m(船中靠前)
5.原船主尺度完整数据如下
总长:110m
垂线间长:102m
设计水线长:105.2m
型宽:17.5m
型深:7.6m
设计吃水: 4.5m
结构吃水: 5.8m
排水量:8855.7t
浮心纵向坐标:0.9115m(船中靠前)
梁拱高:250mm
艏舷弧:300mm
艉舷弧:120mm
肋距:#10-#140:0.7m;其他区域:0.6m
6.根据1-CP法增加船舶排水量
&X=(1—X)&CP/(1—CP)&CP=10%CP
然后根据书本介绍1-C P法进行改造,改造后图如下:
同理量取改造后排水量为9232.3t,增加6.1%,误差0.5%以内。
排水量基本达到要求。
同理量取改造后浮心纵向坐标为0.9328m,增加4.32%。
7.根据迁移法-改造浮心位置
当仅改变浮心位置Xb而不改变菱形系数Cp时,可将横剖面面积曲线向前或向后推移,保持曲线下面积不变,使曲线下的形心纵向位置满足新船Xb的要求,迁移法的形变函数为
,式中,y表示面积曲线在x处的纵坐标;
,为曲线下面积形心的纵坐标,近似估算可用
θ=度。
=7.741,,最后得出8.986
(本班浮心向后移动1.5%L)
因此在各站处向左变做角度为9.109度的射线,并从各站面积线上向做水平线与射线交点即为迁移后面积曲线的坐标点,如此绘图如下:
同理量取迁移后浮心纵向坐标Xb为-0.548m,浮心向船后移动1.48%,与1.5%相比,误差0.02%在0.25%之内,达到要求
同理量取迁移后排水量为9232.3t,与改造后排水量92323.1t相比减小了0.045%,满足要求。
8.横剖面面积曲线的比较
综上三种不同的横剖面面积曲线,将其绘与同一张图,进行比较如下:
9.改造后船舶主尺度如下
总长:110m
垂线间长:102m
设计水线长:105.226m
型宽:17.5m
型深:7.6m
设计吃水: 4.5m
结构吃水: 5.8m
排水量:9232.3t
浮心纵向坐标:-0.548(船中靠前)
梁拱高:250mm
艏舷弧:300mm
艉舷弧:120mm
肋距:#10-#140:0.7m;其他区域:0.6m
10.根据得到的横剖线面积曲线和母型船型线绘制新船的三视图
1.横剖面图的绘制
从母型的横剖面面积曲线上,找出与新船某站横剖面面积(按百分数算)相等的母型船的对应横剖面位置,为方便起见,常将母型面积曲线和经过改造后所得的新船面积曲线绘在一张方格纸上,在从母型的水线半宽图上找到对应剖面处的各水线半宽值;最后,按此半宽成比例的关系换算,就可以绘出新船的横剖型线。
2.纵剖线图的绘制
根据横剖线面积曲线上面显示,在20站处面积一样,这样新船船体首部轮廓与原船保持一致。
0站处面积不一样,按照上述方法平移。
然后利用横剖线图各站横剖线在不同的纵剖线下的高度,绘制纵剖线图。
同时,由于新船排水量变大,平行中体变长,因此首尾楼梯向两端平移。
3.半宽水线图的绘制
根据横剖线图和纵剖线图,这样可以量出每根水线下在不同的站点的半宽值,这样就从BL到6000水线可以依次画出
11.各视图的光顺,以及投影一致性的检查
首先可以通过半宽水线中得到的一系列的水线中,与纵剖线图中的三根纵剖线进行投影一致性检查,然后进行光顺。
然后在利用纵剖线图与横剖线图进行投影一致性检查,然后光顺。
最后尽量保持横剖线图型线的光顺,因为横剖线型线比较复杂,变化曲度大,横剖线图的光顺性正是半宽水线图与纵剖线图协调的间接表现。
12.填写型值表以及更新主要尺度栏并检查各视图是否美观
型值表考虑到幅面的有限,和4到16站数据一样,因此
用一格代替(见型线图)
由于此次型线修改保持在主要尺度不变的情况下进行的,因此只有排水量变为9232.3t,浮心纵向坐标为-0.548m
通过改善视图的排版以及标注大小是否协调来进行美观。
13.型线图(见附件)。