惯性矩和平行移轴公式

合集下载

工程力学第03节 惯性矩的平行移轴公式

工程力学第03节 惯性矩的平行移轴公式

I x A y2dA I y A x2dA
I x A y2dA I y A x2dA
依据两个坐标系 的关系,则有
x xC b y yC a
Ix A(yC a)2dA A yC2dA 2aA yCdA a2 AdA
I y A(xC b)2dA A xC2dA 2bA xCdA b2 AdA
已知任意形状的截面
如图,C 为此截面的形
心,xC 、yC 为一对通过形
心的坐标轴。则截面对形
心轴的 xC 、yC惯性矩分别

I xC A yC2 dA
I yC A xC2 dA
若 x轴平行于 xC ,且两者
的距离为 a ;y 轴平行于yC,且
两者的距离为 b,则截面 x、y
轴惯性矩分别为
解 首先将截面分为两个 矩形,如图所示 (1)矩形 I、矩形 II
A1 9000 mm 2 xC1 0 , yC1 0
A2 13500 mm 2 xC2 0 , yC2 150mm
整个截面形心 C 坐标
xC 0 2
Ai yCi
yC

i 1 2
90mm
Ai
i 1
I2x0 I2xC2 C2C2 A2
运用叠加法公式,得到截面
x0
对 x0 轴的惯性矩
I x0
2
Iix0 i 1
(300 303 12
902 9000)
(50 2703 602 13500)
12
2.04104 m4
运用叠加法公式,得到截面 对 x0 轴的惯性矩
y0 x0
(2)以0截面13形5心00C1为50原m点m,

惯性矩、静矩,形心坐标公式

惯性矩、静矩,形心坐标公式

§I−1 截面得静矩与形心位置如图I −1所示平面图形代表一任意截面,以下两积分(I −1)分别定义为该截面对于z 轴与y 轴得静矩。

静矩可用来确定截面得形心位置。

由静力学中确定物体重心得公式可得利用公式(I −1),上式可写成 (I −2) 或 (I −3) (I −4)如果一个平面图形就是由若干个简单图形组成得组合图形,则由静矩得定义可知,整个图形对某一坐标轴得静矩应该等于各简单图形对同一坐标轴得静矩得代数与。

即:(I −5)式中A i 、y ci 与z ci 分别表示某一组成部分得面积与其形心坐标,n 为简单图形得个数。

将式(I −5)代入式(I −4),得到组合图形形心坐标得计算公式为 (I −6)例题I −1 图a 所示为对称T 型截面,求该截面得形心位置。

解:建立直角坐标系zOy ,其中y 为截面得对称轴。

因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。

将截面分成Ⅰ、Ⅱ两个矩形,则 A Ⅰ=0.072m 2,A Ⅱ=0.08m 2y Ⅰ=0.46m,y Ⅱ=0.2m§I −2 惯性矩、惯性积例题I −1图图I −1与极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。

现在图形内取微面积d A ,d A 得形心在坐标系zOy 中得坐标为y 与z ,到坐标原点得距离为ρ。

现定义y 2d A 与z 2d A 为微面积d A 对z 轴与y 轴得惯性矩,ρ2d A 为微面积d A 对坐标原点得极惯性矩,而以下三个积分(I −7)分别定义为该截面对于z 轴与y 轴得惯性矩以及对坐标原点得极惯性矩。

由图(I −2)可见,,所以有(I −8) 即任意截面对一点得极惯性矩,等于截面对以该点为原点得两任意正交坐标轴得惯性矩之与。

另外,微面积d A 与它到两轴距离得乘积zy d A 称为微面积d A 对y 、z 轴得惯性积,而积分(I −9)定义为该截面对于y 、z 轴得惯性积。

材料力学笔记(惯性矩)

材料力学笔记(惯性矩)

材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d —实心圆直径和空心圆内径,D —空心圆外径,R 0—薄壁圆平均半径。

t —薄壁圆壁厚。

惯性矩I 量纲为长度的四次方(mm 4),恒为正。

二、截面抗弯刚度EI z和抗弯截面模量Wz(a )上式代表距中性层为y 处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数, 所以正应变ε与y 成正比(上缩下伸),与z 无关。

式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。

(b )式(b )表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。

由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E 也是常数,所以横截面上任一点处的正应力与y 成正比(上压下拉) 。

显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。

图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。

令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。

于是得出(7.2-1)上式确定了曲率的大小。

式中EIz称为截面抗弯刚度(stiffness in bending)。

到此为止,式(a)中的y和ρ已经确定。

联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。

当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。

表7.2-I列出了简单截面的Iz 和Wz计算公式。

表中 =d/D,R为薄壁圆平均半径。

三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。

6.3平行移轴公式

6.3平行移轴公式

第6章 平面图形的几何性质6.3 惯性矩和惯性积的平行移轴公式 主轴和主惯性矩6.3.1 惯性矩和惯性积的平行移轴公式任一平面图形如图6.9所示,其面积为A ,形心为C ,坐标轴y c 和z c 为形心轴。

正交坐标轴y 、z 与形心轴y c 、z c 平行,两对平行轴之间的间距分别为a 和b 。

截面对y c 轴、z c 轴的惯性矩I y c、I z c 及惯性积I y z c c 为已知,现求图形对y 、z 轴的惯性矩和惯性积。

图中任一点在两坐标系下的坐标关系为=+z z a c =+y y b c由式(6.5)⎰⎰⎰⎰==+=++I z A z a A z A a z A a AAAAy c c c d ()d d 2d 2222其中⎰=z A I Ac y cd 2,⎰=A A Ad ,⎰=z A S Ac y cd 。

因y c 为形心轴,所以=S y c 0,于是可得同理 ⎭⎪=+⎪⎬=+⎪⎪=+⎫I I abA I I b A I I a A yz y z z z y y c c c 22c (6.9)上式即为惯性矩和惯性积的平行移轴公式(parallel-axis theorem )。

因为a A 2和b A 2均为正,所以在所有相互平行的轴中,同一图形对形心轴的惯性矩最小。

在应用公式(6.9)时需注意,a 、b 是图形的形心C 在yOz 坐标下的坐标,有正、负之分。

同时,y c 、z c 轴一定是形心轴。

6.3.2 主轴和主惯性矩由式(6.6)可知,同一图形对不同的一对直角坐标轴的惯性积是不同的,若图形对某一对直角坐标轴的惯性积等于零,则该直角坐标轴称为主惯性轴,或简称为主轴(principal axes )。

图形对主轴的惯性矩称为主惯性矩(principal moment of inertia )。

通过图形形心的主轴称为形心主轴(centroidal axis ),图形对形心主轴的惯性矩称为形心主惯性矩(principal moment of inertia for an area )。

惯性矩和惯性积的平行移轴公式

惯性矩和惯性积的平行移轴公式
截面的形心必在对称轴 zc 上。 取过矩形 2 的形心且平行 于底边的轴作为参考轴, 记作 y 轴 。
20 140
zc
20
1
yc
2
y
100
A1 20140 A2 100 20
Z1 80 Z2 0
所以截面的形心坐标为
ZC
A1 Z1 A1
A2 Z2 A2
46.7mm
20 140zc20源自1ycxc
ob
x
二、组合截面的惯性矩 惯性积
Ixi , Iyi , Ixyi —— 第 i个简单截面对 x ,y 轴的惯性矩、
惯性积。
组合截面的惯性矩,惯性积
n
I x I xi i1
n
I y I yi i1
n
I xy I xyi i 1
例 3 -1 求梯形截面对其形心轴 yc 的惯性矩。
解:将截面分成两个矩形截面。
xc
b
x
Ix , Iy , Ixy _____ 截面对 x , y 轴的惯性矩和惯性积。
Ixc ,Iyc , Ixc yc —— 截面对形心轴 xc , yc 的惯性矩和惯性积。
则平行移轴公式为
y
yc
I x I xc a2 A
Iy Iyc b2 A
I xy I xcyc abA
a
C(a,b)
§8-3 惯性矩和惯性积的平行移轴公式 组合截面的惯性矩和惯性积
一、 平行移轴公式
y x , y ——任意一对坐标轴
C —— 截面形心
a
(a , b ) _____ 形心 c 在 xoy 坐标系下的
坐标。
o
xc , yc ——过截面的形心 c 且与 x , y 轴平 行的坐 标轴(形心轴)

5.2惯性矩和平行移轴公式教学内容

5.2惯性矩和平行移轴公式教学内容
教学目的和要求
*
优学课堂
§5.2 惯性矩 惯性半径
一、惯性矩
二、惯性矩与极惯性矩的关系
三、惯性半径
四、平行移轴公式
*
优学课堂
1、惯性矩、极惯性矩的概念和计算方法; 2、平行移轴公式。
教学重点
*
优学课堂
平行移轴公式的应用。
教学难点
*
优学课堂
一、惯性矩
整个图形 A 对x 轴的惯性矩
若 x 、 y 轴为一对正交坐标轴
*
优学课堂
§A.2 惯性矩 惯性积 惯性半径
1.矩形截面
常用图形的惯性矩:
*
优学课堂
2.圆形截面
由对称性
3.环形截面
常用图形的惯性矩:
*
优学课堂
惯 性 矩——对某一轴而言
极 惯 性 矩——对某一点而言
特别指出:
*
优学课堂
——图形对 x 轴的惯性半径
整个图形 A 对 y 轴的惯性矩
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩
定义:
其值:+
单位:m4
1.惯性矩
*
优学课堂
二、惯性矩与极惯性矩的关系
即:
平面图形对任意一点的极惯性矩等于该图形对通过
该点的任意一对相互垂直的坐标轴的惯性矩之和
性质 :
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式
第五章 平面图形的几何性质
*
优学课堂
平面图形的几何性质是影响构件承载能力的重要因素之一。如何确定平面图形的几何性质的量值,是本章讨论的内容。本章主要介绍了形心、静矩、惯性矩、惯性积等几何量,学习时要掌握其基本的概念和计算方法,同时要掌握平行移轴公式及其应用。

平行移轴公式

平行移轴公式

IyC , IzC , IyCzC ̄ 截面对形心轴 yC , zC的惯性矩
和惯性积。
z
zC
I yC z12dA z z1 b
z1
I y z2dA
b
C(a,b)
z yC
y
(z1 b)2dA
Oa
平行移轴公式
(z12 2z1b b2 )dA
A z12dA
A 2z1bdA
b2dA
A
I yC
?
b2 A
A 2z1bdA 2b A z1dA
z
zC
2bSyC
0
b
C(a,b)
ቤተ መጻሕፍቲ ባይዱOa
z1 z yC
y
平行移轴公式
I y I yC b2 A Iz IzC a2 A
I yz I yCzC abA
z
zC
b
C(a,b)
Oa
z1 z yC
y
截面对形心轴的惯性矩最小, 但惯性积不能确定是否最小
平行移轴公式
二、组合截面的惯性矩和惯性积
n
I y I yi i 1
n
Iz Izi i 1
n
I yz I yzi i 1
I yi , Izi , I yzi —第 i个简单截面对 y, z 轴的惯性矩
和惯性积。
平行移轴公式
平行移轴公式
一、 平行移轴公式
zzC
y, z —任意一对坐标轴;
b
C(a,by)C
C ―截面形心;
y
Oa
(a , b ) ―形心C在 yOz坐标系下的坐标;
yC , zC —过截面的形心 C 且与 y, z轴平行 的坐标轴(形心轴)。

惯性矩、静矩、截面抵抗矩计算

惯性矩、静矩、截面抵抗矩计算

惯性矩和对Y轴的惯性矩。
y
解:
100
1)求出A1和A2分别对自身形心 2
轴的惯性矩
0
I x1
b1h13 12
100 203 12
66.67 103
100
A1 •Ⅱ•ຫໍສະໝຸດ A2Ⅰx1
xc a2 30 x
Ix2
b2h23 12
20 100 3 12
16.67 105
2 0
2)求对整个截面形心X轴的惯性矩
截面对x轴的惯性矩:
I x y2dA
量纲:L4 y
A
截面对y轴的惯性矩: I y x2dA
A
注意:
1)同一截面对不同的轴惯性 矩不同;
2)惯性矩永远为正值;
x
dA
y r
x
3)惯性矩的单位为m4;
2、惯性半径(回转半径)
截面对x轴的惯性半径: ix I x / A 截面对y轴的惯性半径: iy I y / A
二、常见截面的惯性矩和惯性半径
形心轴:通过截面形心的坐标轴 ➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性矩。
y
对x轴的惯性矩
x
Ix
1 12
bh3
h 对y轴的惯性矩:
b
Iy
1 12
hb3
➢ 矩形截面对于其对称轴(即形心轴)x,y的惯性半径。
y
对x轴的惯性半径
x
h
ix
Ix A
1/12bh3 h
截面的几何性质
知识点:截面惯性矩和静矩的计算 一、截面惯性矩的定义及计算 二、常见截面的惯性矩和惯性半径 三、组合截面的概念 四、惯性矩的平行移轴公式 五、静矩的概念及公式 六、常见截面的静矩

建筑工程技术 教材 组合图形的惯性矩

建筑工程技术 教材 组合图形的惯性矩

Iz Iy
a 2 A
b
2
A
I z1y1 I zy abA
特别注意:式中 I与Iy必须是平面图形对其形心轴的惯性矩 。
上式表明:图形对任一轴的惯性矩,等于图形对与
该轴平行的形心轴的惯性矩,再加上图形面积与两
平行轴间距离平方的乘积。 由于 a2 恒为正值,故在所有平行轴中,平面图形
对形心轴的惯性矩最小。
yC2=29cm
yC
Ai yCi Ai
600 64 1450 29 39.2cm 600 1450
2 计算组合图形对形心轴的惯 性矩I、Iy。
首先分别求出矩形Ⅰ、Ⅱ对形心轴的惯性矩。由平行移轴公 式可得
平面图形的几何性质
I1z I1z1 a12 A1 50123 24.82 600 12 3.76105 cm4
I y I1y I2y
12503 58 253
12
12
2.01105 cm4
当把组合图形视为几个简单图形之和时,其惯性矩等于简单 图形对同一轴惯性矩之和;当把组合图形视为几个简单图形 之差时,其惯性矩等于简单图形对同一轴惯性矩之差。
平面图形的几何性质
例6-5 计算图示的矩形截面对1轴和y1轴的惯性矩。

2
I z1
Iz
h 2
A
bh3 12
h 2
2
bh
bh3 3
2
I y1
Iy
b 2
A
hb3 12
b 2
2
bh
hb3 3
平面图形的几何性质
二、组合图形惯性矩的计算
由矩形、圆形和三角形等几个简单图形组成,或 由由几惯个性型矩钢定组义成可,知称:为组组合合图图形形对。任一轴的惯性矩,

材料力学常用基本公式

材料力学常用基本公式

1.外力偶矩计算公式〔P功率,n转速〕2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式〔杆件横截面轴力F N,横截面面积A,拉应力为正〕4.轴向拉压杆斜截面上的正应力与切应力计算公式〔夹角a 从x轴正方向逆时针转至外法线的方位角为正〕5.纵向变形和横向变形〔拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1〕6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律〔切变模量G,切应变g 〕16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩〔a〕实心圆〔b〕空心圆18.圆轴改变时横截面上任一点切应力计算公式〔扭矩T,所求点到圆心间隔r〕19.圆截面周边各点处最大切应力计算公式20.改变截面系数,〔a〕实心圆〔b〕空心圆21.薄壁圆管〔壁厚δ≤ R0 /10 ,R0为圆管的平均半径〕改变切应力计算公式22.圆轴改变角与扭矩T、杆长l、改变刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同〔如阶梯轴〕时或24.等直圆轴强度条件25.塑性材料;脆性材料26.改变圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴外表某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式〔形心轴z c与平行轴z1的间隔为a,图形面积为A〕42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式〔为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度〕46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载结合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸〔压缩〕59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪实在用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.68.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的平安系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴改变 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M ztmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉〔压〕弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5〞与“6〞两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 改变 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L 〔m / 〕3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)根本变形表(注意:以下各公式均指绝对值,使用时要根据详细情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律〔1〕、表达形式之一〔用应力表示应变〕)(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=〔2〕、表达形式之二〔用应变表示应力〕)(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,,Gxyxy τγ=()zx yz xy ,,7、强度理论 〔1〕[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=〔2〕[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 〔1〕αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 〔2〕22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式〔假设把直杆分为三类〕①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ〞=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= 〔圆截面4di z =,矩形截面12min b i =〔b 为短边长度〕〕五、动载荷〔只给出冲击问题的有关公式〕 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 〔自由落体冲击〕st20d ∆=g v K 〔程度冲击〕六、截面几何性质1、 惯性矩〔以下只给出公式,不注明截面的形状〕⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。

惯性矩总结含常用惯性矩公式

惯性矩总结含常用惯性矩公式
常用图形的惯性矩:
2.圆形截面
由对称性
3.环形截面
常用图形的惯性矩:
惯 性 矩——对某一轴而言
极 惯 性 矩——对某一点而言
特别指出:
——图形对 x 轴的惯性半径
单位:m
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
——图形对 y 轴的惯性半径
注意:
试问:
即:
三、惯性半径
四、平行移轴Байду номын сангаас式
一、定理推导
二、应用
一、定理推导
即:
§A.3 平行轴定理
显然:
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
同理
——惯性矩和惯性积的平行轴定理
一、定理推导
解:

二、应用
解:
教学目的和要求
惯性矩 惯性半径
一、惯性矩
二、惯性矩与极惯性矩的关系
三、惯性半径
四、平行移轴公式
1、惯性矩、极惯性矩的概念和计算方法;2、平行移轴公式。
教学重点
平行移轴公式的应用。
教学难点
一、惯性矩
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩
定义:
其值:+
单位:m4
1.惯性矩
二、惯性矩与极惯性矩的关系
即:
平面图形对任意一点的极惯性矩等于该图形对通过
该点的任意一对相互垂直的坐标轴的惯性矩之和
性质 :
若 x 、 y 轴为一对正交坐标轴
§A.2 惯性矩 惯性积 惯性半径

惯性矩的计算方法及常用截面惯性矩计算公式

惯性矩的计算方法及常用截面惯性矩计算公式

LOGO惯性矩的计算方法及常用截面惯性矩计算公式在此输入你的公司名称惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA,定义它对任意轴的一次矩为它对该轴的静矩,即dS y 二xdAdSx = ydA整个图形对y、z轴的静矩分别为S y = A xdA(1-Sx= A ydA1)2.形心与静矩关系图1-1设平面图形形心C的坐标为y C,z C则0-S y x =A (1-2)推论1如果y轴通过形心(即x = 0),则静矩Sy=0 ;同理,如果x轴通过形心(即y = 0),则静矩Sx=o;反之也成立。

推论2如果x、y轴均为图形的对称轴,则其交点即为图形形心;如果y轴为图形对称轴,贝昭形形心必在此轴上。

3.组合图形的静矩和形心设截面图形由几个面积分别为A,A2,A3……A n的简单图形组成,且一直各族图形的形心坐标分别为x1,y1; x2,y2; x3,y3,则图形对y轴和x轴的静矩分别为n nS y = * S yi i A i Xii -1 i-1 nnS x 八 S xi 八 A i y ii 4i 4截面图形的形心坐标为A i4.静矩的特征(1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。

(2)静矩有的单位为m 3(3)静矩的数值可正可负,也可为零。

图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。

⑷ 若已知图形的形心坐标。

则可由式(I-1)求图形对坐标轴的静矩。

若已知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。

组 合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静 矩,然后由式(I-4)求出其形心坐标。

(二)■惯性矩惯性积惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A (2dA(1-5)图形对y 轴和x 轴的光性矩分别定义为 I y 二 A X 2dA , I x 「A y 2dA (I-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐标轴定义的。

惯性矩和平行移轴公式.ppt

惯性矩和平行移轴公式.ppt

xC1
a1 57.5 xC
a2 57.5 xC2
I x I xC a2 A
同理
I y I yC b2 A I xy I xC yC abA
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I和xC I yC
200 y
A
h y2 bdy bh3
0
3
y dy
_h_
2
dA y
C
yx
_h_
2
O
_b_ _b_
x1
22
常用图形的惯性矩:
2.圆形截面
D4
I x I y Ip 32
由对称性
y
O
x
Ix
Iy
1 2
Ip
D4
64
d
D
3.环形截面
Ix
Iy
1 2
Ip
(D4 64
d
4
)
D4 (1 4 )
64
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
Ix
A
i
2 x
Iy
A
i
2 y
ix
I x ——图形对 x 轴的惯性半径 A
iy
I y ——图形对 y 轴的惯性半径 A
单位:m
三、惯性半径
试问: 即: 注意:
I x
A
y 2dA
A
i
2 x

惯性矩总结(含常用惯性矩公式)

惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。

惯性矩的国际单位为(m^4)。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2—2.5)确定。

(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。

惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。

1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公

1、静矩与形心2、惯性矩、极惯性矩和惯性积3、平行移轴公

1. 转轴公式
y
y
A dA
C E
D
O
x
B
新坐标系ox1y1 旧坐标系o x y
x1 x cos y sin y1 y cos x sin
将上述关系代入平 面图形对x1轴的惯性矩:
x
I x1 A y12 d A
Ix1
cos2
y2 d A sin2
(4)由转轴公式得
80 aⅡ 20 10
40 C
bⅠ Ⅰ
aⅠ
xC
tan 20

2I xc yc I xc I yc
1.093
=113°.8
yc0
bⅡ
20 227 .6 0 113 .8
10 Ⅱ
I xc0
Imax
I xc
I yc 2
1 2
I xc
目录
§ I-2 极惯性矩 ·惯性矩 ·惯性积
1.极惯性矩(或截面二次极矩)
y
I p
2d A
A
2.惯性矩(或截面二次轴矩)
y
I y
x2 d A
A
I x
y2d A
A
O
由于 2 y2 x2
dA
x
x
所以
Ip
2 d A
A
(y2
A
x2)
dA IxIy
(B) Ixy<0 (D) Ix=Iy
(思考题I—2)A
y
bO
(思考题I—3)
x
a
y a

x
Ba
D
思考题I—3:等腰直角三角形如图所示,x、y轴是过斜边中点的

平行移轴公式

平行移轴公式
力学
截面的几何性质\平行移轴公式
平行移轴公式
1.1 惯性矩和惯性积的平行移轴公式
图示截面的面积为A,xC、yC轴为 其形心轴,x、y轴为一对与形心轴平行
的正交坐标轴,微面积dA在两个坐标系
OxCyC和Oxy中的坐标分别为xC、yC和x、 y。截面对x轴的惯性矩为
Ix
y2dA AA( yC Nhomakorabea)2 dA
目录
力学
24.122 2030mm4
267104 mm4
3)求组合截面对x轴和y轴的惯性矩。组合截面对x轴和y轴的 惯性矩为
Ix=Ix+2 Ix=3690×104 mm4+2×2110×104
mm4=7910×104mm4
Iy=Iy+2 Iy=431×104 mm4+2×267×104 mm4=965×104mm4
组合截面对x、y轴的惯性矩和惯性积为
Ix Ixi , I y I yi , Ixy Ixyi
式中:Ixi、Iyi、Ixyi——各个简单截面对x、y轴的惯性矩和惯性积。 对于工程中常用的截面,其主要的几何性质列于表Ⅰ.1中,以
备查用。
目录
截面的几何性质\平行移轴公式 表Ⅰ.1 常用截面的几何性质
I y I yC b12 A 218.415104 mm4
19.21 26.47 24.12 4491mm4
431104 mm4
目录
截面的几何性质\平行移轴公式 角钢截面对x、y轴的惯性矩为
I x I xC a2 A 149.22104 mm4 98.322 2030mm4
3690104 mm4 I y I yC b2 A 149.22104 mm4
r 4

桥梁结构动力分析中质量惯性矩的定义及计算

桥梁结构动力分析中质量惯性矩的定义及计算

桥梁结构动力分析中质量惯性矩的定义及计算赵凯 李永乐(西南交通大学桥梁工程系,四川成都,610031)1.概 念1.1 定义质量惯性矩(或称质量惯矩,转动惯量)是刚体动力学里的一个重要概念,与质量具有同等重要的地位。

质量惯性矩为空间中质量关于距离的二次矩。

对于离散质点系,它对空间任意一条直线z 的质量惯矩表示为:21nz i i i J m r ==∑式中,m i 是第i 个质量块质量,r i 表示第i 个质量块到直线z 的距离。

对于连续体,则需用积分表示:2z J r dm =∫1.2 几何意义由定义表达式可见,质量惯矩的大小不仅与质量大小有关,而且与质量的分布情况有关。

在国际单位制中单位为kg·m 2。

质量惯矩越大,则表示质量分布离z 轴越远。

若设想刚体的质量集中于离z 轴距离为ρz 处,令2z zJ m ρ=,则z ρ=称之为对z 轴的回转半径。

显然,它代表质量分布到z 轴距离的一种“平均”。

物体的质量惯矩等于该物体的质量与回转半径平方的乘积。

1.3 物理意义理论力学中有关于刚体运动的两个重要定理,分别是动量定理:22d ym Fdt =∑动量矩定理:22()z z d J M Fdtϕ=∑这两个定理分别描述刚体曲线运动和绕定轴的转动运动规律。

动量定理表示质量为物体运动惯性的一种度量。

类似地,由动量矩定理可见,力矩大,转动角加速度大;如力矩相同,刚体质量惯矩大,则角加速度小,反之,角加速度大。

可见,质量惯性矩的大小表现了物体转动状态改变的难易程度,即:质量惯矩是转动惯性的度量。

若将转动与位移类比,力矩与力类比,则转动惯矩对应于质量。

1.4 质量惯性矩 VS 截面极惯性矩截面极惯性矩表示平面上面积区域关于距离的二次矩,表示为:2p i X Y I r dA I I ==+∫材料力学推导了悬臂梁的扭转公式,pTlGI ϕ=因此,极惯性矩是截面抗扭能力的一种度量,代表转动刚度,而质量惯性矩代表了转动惯性。

惯性矩和平行移轴公式课件

惯性矩和平行移轴公式课件

实例二:平行移轴公式的应用
总结词
平行移轴公式在工程中有着广泛的应用,它 可以用来计算物体的质心位置和转动惯量。
详细描述
平行移轴公式是一种常用的计算方法,在工 程中广泛应用于机械、航空、航天等领域。 该公式可以用来计算物体的质心位置和转动 惯量,是设计和分析各种机构和机器的关键 工具。通过应用平行移轴公式,可以优化机 构和机器的性能,提高其稳定性和精度。
在计算机图形学和虚拟现实领域, 惯性矩与平行移轴公式被广泛应 用于碰撞检测和响应算法中,以
实现更加真实和精确的模拟效果。
CHAPTER 04
常见问题解答
如何计算截面的惯性矩?
总结词
通过计算截面的面积和边缘到中心的距离,可以计算出截面的惯性矩。
详细描述
首先,需要确定截面的形状,如圆形、矩形、三角形等。然后,根据形状计算截面的面积。接下来,确定截面的 边缘到中心的距离,即截面边缘到截面中心的垂直距离。最后,利用惯性矩的计算公式,即惯性矩 = 面积 × (边 缘到中心的距离)^2,可以计算出截面的惯性矩。
惯性矩和平行移轴公式 课件
• 惯性矩的基本概念 • 平行移轴公式 • 惯性矩与平行移轴公式的应用 • 常见问题解答 • 惯性矩和平行移轴公式的实例
CHAPTER 01
惯性矩的基本概念
定义与公式
惯性矩的定义
惯性矩是物体对于某一点或某轴 线的惯性大小的量度,用I表示。
平行移轴公式
平行移轴公式是计算惯性矩的一 种常用方法,适用于具有平行轴 线的物体。
什么是平行移轴公式?
总结词
平行移轴公式是一种计算组合图形惯性矩的方法,通过将图形分解为简单的组成部分,并分别计算各 部分的惯性矩,再根据平行移轴公式进行组合。

工字钢平行移轴公式

工字钢平行移轴公式

工字钢平行移轴公式工字钢是一种常见的钢材,在工程和建筑领域有着广泛的应用。

而说到工字钢,就不得不提到一个重要的概念——平行移轴公式。

平行移轴公式是材料力学和结构力学中一个相当重要的知识点。

对于工字钢这样的截面,我们要搞清楚它的惯性矩等特性,平行移轴公式就派上大用场啦。

咱先来说说这个公式到底是啥。

平行移轴公式就是:Iz1 = Iz + A *d²。

这里的 Iz 是原来轴的惯性矩,Iz1 是新轴的惯性矩,A 是截面面积,d 是两轴之间的距离。

就拿一个实际的例子来说吧,我之前在一个建筑工地上,看到工人们正在搭建一个钢结构的厂房。

其中就用到了大量的工字钢。

当时负责的工程师拿着图纸,嘴里不停地念叨着平行移轴公式,计算着工字钢的受力情况。

他眉头紧皱,一边在纸上写写画画,一边还自言自语:“这工字钢要是算错了,整个厂房的结构可就不稳了。

”我在旁边看着,心里也跟着紧张起来。

只见他把各种数据代入公式,一会儿功夫,脸上就露出了笑容,大喊一声:“成了!就这么干!”在学习和运用平行移轴公式的时候,可千万不能马虎。

要仔细确定好原来轴和新轴的位置,准确计算出截面面积和两轴之间的距离。

一旦有一个数据出错,那结果可就差之千里了。

而且这个公式不仅仅是在建筑领域有用,在机械制造、桥梁设计等很多方面都有着重要的应用。

比如说在制造机械零件的时候,为了保证零件的强度和稳定性,就得通过平行移轴公式来计算工字钢或者其他材料的惯性矩等参数。

其实,学习平行移轴公式就像是一场解谜游戏。

我们要根据已知的条件,找到隐藏在其中的规律,算出最终的答案。

这过程中,可能会遇到各种各样的难题,但只要我们不放弃,一步一步地去分析,总能找到解决的办法。

总之,工字钢平行移轴公式虽然看起来有点复杂,但只要我们认真学习,多做练习,结合实际的例子去理解,就一定能够掌握它,让它成为我们解决工程问题的有力工具。

相信大家在今后的学习和工作中,都能熟练运用这个公式,创造出更安全、更稳固的建筑和结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即:
Ip I y Ix
性质 :
平面图形对任意一点的极惯性矩等于该图形对通过 该点的任意一对相互垂直的坐标轴的惯性矩之和
常用图形的惯性矩:
§A.2 惯性矩 惯性积 惯性半径
1.矩形截面
I x
y 2dA
A
h 2 y2 bdy bh3
h 2
12
hb3 I y 12
I x1
y 2dA
xC1
a1 57.5 xC
a2 57.5 xC2
C
I xC
I xC
I
xC
6.01 107
mm
4

I xC
I xC 1
a12 A1
200 303 57.52 200 30 mm 4 12
2.03 107 mm 4
30 I C
200 157.5 30 II
xC1
a1 57.5 xC
a2 57.5 xC2
I xC
I xC 2
a
2 2
A2
A
h y2 bdy bh3
0
3
y dy
_h_
2
dA y
C
yx
_h_
2
O
_b_ _b_
x1
22
常用图形的惯性矩:
2.圆形截面
D4
I x I y Ip 32
由对称性
y
O
x
Ix
Iy
1 2
Ip
D4
64
d
D
3.环形截面
Ix
Iy
1 2
Ip
(D4 64
d
4
)
D4 (1 4 )
64
特别指出: 惯 性 矩——对某一轴而言 极 惯 性 矩——对某一点而言
x A
整个图形 A 对x 轴的惯性矩
I x
y 2dA
A
整个图形 A 对 y 轴的惯性矩
I y
x 2dA
A
单位:m4
其值:+
dA y x
二、惯性矩与极惯性矩的关系 y
若 x 、 y 轴为一对正交坐标轴
x dA
Ip
2dA
A
(x2 y2 )dA
A
A
y
x2dA y2dA
A
A
O
x
5.1 形心和静矩
第五章 平面图形的几何性质
5.1 静矩和形心 5.2惯性矩、极惯性矩 、平行移轴公式
教学目的和要求
• 平面图形的几何性质是影响构件承载能力的重要 因素之一。如何确定平面图形的几何性质的量值, 是本章讨论的内容。本章主要介绍了形心、静矩、 惯性矩、惯性积等几何量,学习时要掌握其基本 的概念和计算方法,同时要掌握平行移轴公式及 其应用。
一、定理推导 二、应用
一、定理推导
y y
C
x
x xC b y yC a
b
xC
dA
y C
C
Ix y 2dA A Nhomakorabea(
A
yC
a)2 dA
A O
y xC a
A yC2 dA 2a A yCdA a2
dA
A
x
I xC
0
a2A
即:
I x I xC a2 A
§A.3 平行轴定理
一、定理推导
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
Ix
A
i
2 x
Iy
A
i
2 y
ix
I x ——图形对 x 轴的惯性半径 A
iy
I y ——图形对 y 轴的惯性半径 A
单位:m
三、惯性半径
试问: 即:
I x
A
y 2dA
A
i
2 x
A yC2
?
ix yC ?
注意:
ix yC
iy xC
四、平行移轴公式
§5.2 惯性矩 惯性半径
一、惯性矩 二、惯性矩与极惯性矩的关系 三、惯性半径 四、平行移轴公式
教学重点
1、惯性矩、极惯性矩的概念和计算方法; 2、平行移轴公式。
教学难点
• 平行移轴公式的应用。
一、惯性矩
y
1.惯性矩 定义:
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩 O
I x I xC a2 A
同理
I y I yC b2 A I xy I xC yC abA
——惯性矩和惯性积的平行轴定理
显然:
I x I xC
I y I yC
性质4:在平面图形对所有相互平行的坐标轴的惯性矩 中,以对形心轴的惯性矩为最小。
二、应用
解: 例 求 I和xC I yC
200 y
30 2003 57.52 200 30 mm 4 3.98 107 mm 4
12
例2

I

xC
I yC
解:
I xC
I xC
I
xC
6.01 107
mm
4
I yC
I yC
I
yC
30 2003 200 303
12
12
2.05107 mm 4
30 I
200 y
C
C
200 157.5 30 II
相关文档
最新文档