钢结构设计说明书
(完整)钢结构平台计算书
钢结构平台设计说明书设计:校核:太原市久鼎机械制造有限公司二零一四年十月目录1.设计资料。
.。
.。
..。
.。
.。
....。
...。
.。
..。
..。
.。
..。
.。
..。
.。
..。
.。
. .....。
.。
.。
.。
..。
..。
.。
..。
.。
.。
.。
.。
(3)2.结构形式。
.。
....。
....。
.。
..。
.。
.。
.。
.。
.。
..。
.。
.。
..。
.。
..。
...。
.。
.。
...。
.。
.。
.。
.。
..。
..。
....。
....。
..33.材料选择.。
..。
.。
......。
.。
.。
......。
...。
..。
..。
..。
.。
..。
.。
...。
.。
.。
..。
...。
.。
.。
.。
.。
..。
.。
..。
...。
34.铺板设计。
....。
.。
..。
.。
....。
..。
.........。
..。
.。
...。
...。
...。
.。
...。
.。
....。
.。
...。
...。
.。
..。
.。
.. (3)5.加劲肋设计。
..。
..。
..。
.。
...。
..。
....。
.。
.........。
.。
.。
...。
...... .。
...。
......。
.。
.。
.。
..。
...。
.56.平台梁..。
.。
.。
.。
..。
..。
.。
..。
.。
.。
.。
..。
.。
.。
..。
...。
.。
.。
.。
.。
..。
..。
...。
...。
.......。
..。
.....。
.。
.。
.。
.。
66.1 次梁设计。
...。
..。
......。
.。
...。
.。
..。
..。
..。
.。
...。
..。
.。
...。
.。
.。
.。
..。
..。
.。
..。
.。
.。
.。
..。
....。
.。
.。
.。
66.2 主梁设计。
..。
..。
..。
.。
..。
.。
.。
...。
....。
.。
.。
.。
..。
.。
..。
.。
.。
..。
.。
..。
..。
..。
.。
..。
..。
....。
.。
.。
.。
..。
77.柱设计.。
.......。
.。
.。
...。
..。
.。
.。
..。
.。
.。
.。
.。
.。
..。
.。
.。
......。
钢结构课程设计任务书
钢结构课程设计任务书一、课程设计的目的和任务《钢结构》课程设计是土木工程专业的理论实践课。
本实践课的主要目的和任务是:1、文件资料的查询、收集,并初步学习各相关规范的查找及使用;2、掌握钢屋架荷载的计算;3、掌握杆件内力的计算和组合,杆件的计算长度,截面型式,截面选择及构造要求,填板的设置及节点板的厚度选择;4、掌握普通钢屋架节点设计的原则和要求,主要节点的设计和构造;掌握钢屋架施工图的内容和绘制。
二、课程设计题目和内容1、题目:设计某车间的三角形钢屋架2、设计资料1)某厂房跨度为18m/21m/24m/27m,总长120m,柱距6.0m,屋架下弦标高为15m。
车间柱网布置见图1。
无吊车,无天窗、无振动。
不考虑抗震设防。
2)屋架铰支于钢筋混凝土柱顶,上柱截面400×400,混凝土强度等级为C30。
3)屋面采用形式具体见小组分表,槽钢檩条。
钢材选用Q235B,焊条采用E43型。
4)采用三角形钢屋架,荷载分类情况见附录1,屋架几何尺寸和内力系数情况见附录2。
5)采用三角形钢屋架3、设计内容1)确定屋架形式和几何尺寸内容:确定屋架高度;确定节点间距及腹杆图形;按比例画出屋架单线图。
2)屋架支撑布置包括:上弦横向水平支撑,下弦横向水平支撑,下弦纵向水平支撑,垂直支撑,系杆。
按1:600比例尺画出屋架上弦、下弦支撑布置图及垂直支撑布置图。
3)进行荷载和内力计算:包括计算屋架荷载;计算屋架杆件内力(用图解法或结构力学求解器);4)屋面杆件截面选择。
5)设计节点包括屋脊节点,上下弦拼接节点,上下一般节点,支座节点等4-5个典型节点。
6)完成设计计算书,绘制屋架运送单元施工图。
4、内力计算考虑下面4种情况1) 满载(全跨静荷载加全跨可变荷载)2) 全跨静荷载和半跨可变荷载。
3)恒载+风荷载。
4)全跨屋架自重(包括檩条、支撑等)+半跨屋面板荷载+半跨活荷载。
成果要求1、计进度安排(1周),详见进度表。
2、设计计算书,内容包括:(1)设计资料,设计依据。
钢结构课程设计计算说明书(2024版)
一、荷载计算永久荷载(设计值):预应力混凝土屋面板 1.45kN/m2×1.35=1.96kN/m2三毡四油(上铺绿豆砂)防水层0.40kN/m2×1.35=0.54kN/m2水泥砂浆找平层0.40kN/m2×1.35=0.54kN/m2保温层0.70kN/m2×1.35=0.95kN/m2一毡二油隔气层0.05kN/m2×1.35=0.07kN/m2水泥砂浆找平层0.30kN/m2×1.35=0.41kN/m2屋架和支撑自重(0.12+0.011×16)×1.35=0.40kN/m2管道荷载0.10kN/m2×1.35=0.135kN/m2合计 5.005kN/m2可变荷载:施工荷载和雪荷载不同时考虑,而是取两者的较大值。
屋面活荷载0.70kN/m2×1.4=0.98kN/m2积灰荷载0.70kN/m2×1.4=0.98kN/m2合计 1.96kN/m2屋面坡度不大,对荷载影响小,未予考虑。
风荷载对屋面为吸力,重屋盖可不考虑。
二、荷载组合本设计按全跨荷载的永久效应组合:5.005+0.7×0.98+0.9×0.98=6.573kN/m2本设计为16m跨度,取5等分,即每单跨3.2m,根据结构布置,存在两种形式的节点荷载,即6m×3.2m和6m×1.6m,分别计算其大小。
F d=6.573×6×3.2=126.20 kNF d=6.573×6×1.6=63.10 kN内力计算kN 利用ansys软件,计算出各节点的杆件内力,得出最大拉力杆件值为596.10;最大压力在杆件值为606.87。
kN 三、杆件截面设计根据腹杆最大内力值,由屋架节点板厚度参考可知:支座节点板厚度取14mm ;其余节点板与垫板厚度取12mm 。
钢结构屋架计算说明书
课程设计说明书课程名称:钢结构设计题目:钢屋架设计院系:土木与建筑工程学院学生姓名:学号:专业班级:10土木工程2班指导教师:李珂2012年12月16日课程设计任务书梯形钢屋架课程设计摘要:本设计说明说包括梯形钢屋架的形式及尺寸、支撑布置,内力计算,节点焊缝计算及设计方法,屋架施工图绘制,相关的详图大样绘制以及必要的结构剖面图。
关键词:梯形钢屋架节点节点焊缝支撑目录1 设计背景 (1)1.1设计资料 (1)1.2屋架形式 (1)2 设计方案 (2)3 方案实施 (3)3.1荷载与内力计算 (3)3.2杆件截面设计 (4)3.3节点设计 (10)4 结果与结论 (17)5收获与致谢 (18)5.1收获 (18)5.2致谢 (18)6 参考文献 (19)7 附件 (20)1.1 设计资料某地区一金加工车间。
厂房总长度为150m ,柱距6m ,跨度为24m 。
车间内设有两台中级工作制桥式吊车。
该地区冬季最低温度为-20℃。
屋面采用1.5m ⨯6.0m 预应力大型屋面板,屋面坡度为i=1:10,上铺120mm 厚泡沫混凝土保温层和三毡四油防水层等。
屋面可变荷载标准值为20.50/kN m ,雪荷载标准值为20.50/kN m , 积灰荷载标准值为20.50/kN m 。
屋架采用梯形钢屋架, 其两端铰支于钢筋混凝土柱上。
柱头截面为mm mm 400400⨯, 所用混凝土强度等级为C20。
根据该地区的温度及荷载性质, 钢材采用235Q B , 其设计强度2/215mm N f =,焊条采用E43型, 手工焊接。
构件采用钢板及热轧型钢, 构件与支撑的连接用M20普通螺栓。
屋架的计算跨度:024000215023700L mm =-⨯=,端部高度:2000h mm = (轴线处),2015h mm =(计算跨度处),桁架的中间高度:3200h mm =。
1.2 屋架形式屋架形式及几何尺寸见图 1所示图1屋架形式及几何尺寸屋架支撑符号说明:GWJ-(钢屋架);SC-(上弦支撑);XC-(下弦支撑);CC-(垂直支撑);GG-(刚性系杆);LG-(柔性系杆)图2屋架支撑3方案实施3.1 荷载与内力计算1.荷载计算屋面可变荷载与雪荷载不会同时出现,故取两者较大的可变荷载计算。
钢结构课程设计
《钢结构》课程设计任务书、指导书(建筑工程专业方向)土木建筑工程系年月42014《钢结构》课程设计任务书、指导书一、设计题目简支梯形钢屋架设计二、设计原始资料1.结构平面布置某地区单层单跨工业厂房机加工车间,屋架跨度及厂房长度90m,柱距6m,屋架下弦标高16.5m。
2.排架结构体系钢筋混凝土柱(混凝土强度等级为C20,上柱截面400×400);钢屋架铰支于柱上;1.5×6.0m预应力钢筋混凝土大型屋面板;1。
?i屋面坡度100。
的吊车,计算温度高于-20C.车间内设有中级工作制、起重量?300KN3.材料4型,手工焊。
钢,焊条为E43钢屋架选用Q235-B.荷载(标准值)52kN/m防水层0.352kN/m0.40砂浆找平层(厚20mm)2)( 保温层 kN/m按附表取2kN/m1预应力钢筋混凝土大型屋面板.344(包括灌缝)2kN/m屋架及支撑自重)(0.12+0.011l2kN/m0.15悬挂管道2kN/m0.50屋面活荷载2)(按附表取屋面积灰荷载kN/m2kN/m雪荷载0.35)见附图(6.钢屋架计算简图及构件几何尺寸示意图三、设计任务.绘制钢屋架结构支撑系统布置简图(包括上弦水平支撑、下弦水平支撑、垂直支撑1。
)及系杆.设计该指定跨度的双坡梯形钢屋架,并绘制安装单元施工图及编制整榀屋架材料表。
2四、主要参考资料2004高等教育出版社,张耀春.钢结构设计原理.北京:1.1991:北京中国建筑工业出版社,钢结构2.欧阳可庆..2002中国建筑工业出版社,钢结构基本原理.北京:.3.沈祖炎、陈扬骥、陈以一,2001建筑钢结构设计.4.王肇民.上海:同济大学出版社5.钢结构设计规范(GB50017-2003)6.钢结构施工质量验收规范(GB50205-2001)7.建筑钢结构焊接规程(JGJ81-2002)8.建筑结构荷载规范(GB50009-2001)9.建筑结构制图标准(GB/T50105-2001)10.房屋建筑制图统一标准(GB/T50001-2001)五、设计计算说明书要求1.设计资料;2.结构平面布置简图、支撑体系简图;3.钢屋架计算简图及几何长度;4.荷载计算、荷载组合、节点荷载及支座反力计算;5.屋架内力计算:(1)单位节点荷载(P=1)作用于左半跨屋架的内力图;(2)利用结构的对称特点,当单位节点荷载(P=1)分别作用于屋架左半跨和右半跨时,可将屋架中相互对称的各杆件内力叠加,得到相当于单位节点荷载(P=1)作用在全跨屋架节点上的内力;(3)考虑三种荷载组合:a、全跨恒载+全跨活载(使用阶段);b、全跨恒载+半跨活载(使用阶段);c、屋架自重和支撑自重+半跨屋面板重+半跨屋面活荷载(施工阶段);(4)杆件设计内力的确定:按上述三种荷载组合情况,进行内力组合;6.屋架杆件截面选择(不考虑支撑与弦杆连接的螺栓孔对截面的削弱,不考虑上、下弦杆变截面);.屋架节点计算,至少计算一个下弦节点、一个上弦节点、支座节点、屋脊节点及下7.弦中央节点,并绘制节点大样草图(按1:3~1:5比例尺)。
钢结构设计说明
1总则钢结构的图纸分为钢结构设计图和钢结构施工详图(也称为钢结构加工制作详图)两个部分,土建结构专业施工图设计阶段提供钢结构设计图,本总说明为钢结构设计图的说明。
钢结构施工详图需由具有相应资质级别的钢结构加工制造企业或委托设计单位完成。
本工程土建结构部分主厂房及附属部分等钢结构的设计、制作、运输、堆放与安装,除本工程土建部分施工图总说明以及设计图纸中另有注明的外,均应按本说明书下列各项要求进行(如各施工图卷册中有关钢结构要求与本说明有冲突之处应以本说明为准)。
钢结构建(构)筑物设计使用年限为50年。
2规程、规范及标准本钢结构工程在遵照本说明第1条“总则”的前提下,设计、制作与安装应符合下列规程、规范及标准(最新版):GB50017-2003 钢结构设计规范GB50205-2001 钢结构工程施工质量验收规范JGJ81-2002 建筑钢结构焊接技术规程JGJ82-1991 钢结构高强度螺栓连接的设计、施工及验收规程GB/T700-1988 碳素结构钢GB/T1591-1994 低合金高强度结构钢GB/T5313---1985 厚度方向性能钢板GB/T3632---1995 钢结构用扭剪型高强度螺栓连接副GB/T3633---1995 钢结构用扭剪型高强度螺栓连接副技术条件GB/T1228---1991 钢结构用高强度大六角头螺栓GB/T1229---1991 钢结构用高强度大六角螺母GB/T1230---1991 钢结构用高强度垫圈GB/T1231---1991 钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件GB/T5780-2000 六角头螺栓C级GB/T41---2000 六角螺母C级GB/T95-1985 平垫圈C级GB/T852--1988 工字钢用方斜垫圈GB/T853--1988 槽钢用方斜垫圈GB/T708--1988 冷轧钢板和钢带的尺寸、外形、重量及允许误差GB/T709--1988 热轧钢板和钢带的尺寸、外形、重量及允许误差GB/T3277-1991 花纹钢板GB/T5117-1995 碳钢焊条GB/T5118-1995 低合金钢焊条GB/T983--95 不锈钢焊条YB3301--92 焊接H型钢YB/T4001-98 压焊钢格栅板GB/T11263-1998 热轧H型钢和部分T型钢GB324-88 焊缝符号表示法GB/T9787-1988 热轧等边角钢GB/T9788-1988 热轧不等边角钢GB/T706-1988 热轧工字钢GB/T707-1988 热轧槽钢尺寸GB10854-89 钢结构焊缝外形尺寸GB8923-88 涂装前钢材表面锈蚀等级和除锈等级3钢材钢材采用碳素结构钢Q235B、低合金结构钢Q345B。
钢结构建筑外墙装饰的设计指南说明书
august 2012 MODERN STEEL CONSTRUCTIONSLab EDgE DETaILS whERE the structural frame of the building meets the architectural skin can be cumbersome and complex. But they don’t have to be!The design and detailing of the structural components around the slab edge to support the façade can have a tremen-dous impact on the overall cost of the project, as well as the façade’s functionality. There are many factors to consider when developing a design strategy to accommodate the façade loads, including the type of façade, its location relative to the struc-tural frame, the length of cantilever of the slab past the spandrel beam, the strength of the slab and metal deck and the orienta-tion of the metal deck and adjacent framing.AISC Steel Design Guide 22, Façade Attachments to Steel Framed Structures , available on /epubs , gives the practicing engineer guidelines to address these issues. This article draws from the design guide to provide tips and consid-erations on how to detail slab edges for supporting façade loads in an efficient and economical manner.Loads and Forces Let’s first examine the loads and forces that are involved. The gravity load on the façade generally consists of solely the dead self-weight of the façade panel. Most façades carry no ver-tical live load, but it’s important to recognize when there are flat areas that project from the structure and provide working space for building maintenance and window washers. In these cases, live, rain and/or snow loads must also be considered. The center of gravity of the façade elements is almost always offset some distance from the centerline of the support locations on the steel frame. This eccentricity between the center of gravity of the façade panel and the support loca-tions on the steel frame produces a moment that usually is resolved with a horizontal force couple from the top and bot-tom attachments (as shown in Figure 1). The top attachment may be in tension from the gravity loads due to resolving the eccentricity, and often, negative wind pressures combined with this horizontal force couple will be critical in the design of the façade attachment.Often, the weights of the façade panels are supported on the slab edge. The slab edge details must transmit these forces and moments into the structural frame without exceeding deflec-tion, tolerance and clearance limits. Conceptually, there are two methods to transfer the forces from the slab edge and into the structural frame:Method 1 – The slab and metal deck act as a cantilever to resist the façade loads. In this approach, the strength and stiffness of the slab and metal deck resist the shear and moment, essentially treating it like a cantilevered beam to support the façade loads. This method is economical when the typical slab and metal deck are adequate or can easily be reinforced to take the additional facade loads. (See Figure 2, p. 18, for free body diagrams of the structural components involved in this method.) If, however, the thickness of the slab must be increased to accommodate the façade loads, this may diminish the cost effectiveness of this method.The façade panel loads may be transferred into theslab by direct bearing on theslab or by attachment to steelembedments or bent platesthat also serve as pour stops. If a bent plate pour stop is used, a steel headed stud anchor or deformed bar anchor is often welded to the pour stop at the end of the slab, which engages the concrete reinforcement and transfers the forces into the slab. The stud or bar attachment cannot be shop-welded when it projects over the spandrel beam, as this would violate OSHA requirements that prohibit tripping hazards.DETaILS FROM ThE EDgEBy Jie ZuosteelwiseConsiderations for detailing the slab edge and designing façade attachments.Fig. 1: Horizontal force couple due to eccentricity.➤Resolving the eccentricity of the façade load location and the spandrel beam support with the slab and metal deck as a cantilever eliminates the need to design the spandrel beam for torsion or brace it against twist. However, the façade load induces negative moment in the slab as it passes over the span-drel, which may require additional flexural reinforcement in the top of the slab in that area.Method 2 – A bent plate or other steel assembly is used as a means to transfer the loads to the spandrel. This approach has a load path that bypasses the slab and metal deck; it relies on the strength and stiffness of an attached bent plate, angle or other structural steel assembly to transfer the loads directly into the spandrel (as seen in Figure 3). This method generally is used in cases where the slab and metal deck are inadequate to resist the façade loads. Examples of such scenarios include a long, over-hanging slab that produces a large moment or when there is a slab opening in the back-span that limits its capacity. Due to the eccentricity of the façade load, the spandrel must resist the induced torsion or be braced against it.Concrete Slab and Metal DeckThe concrete slab cantilever can be designed according to ACI 318 and there exist design tables in AISC Steel Design Guide 22 for flexural strength and slab geometries. When the slab and metal deck act as a cantilever to support the façade (Method 1), the façade should transfer its loads to the slab through direct bearing. T o determine the effective slab width, a conservative approach is to take the effective width equal to the width of the concentrated load plus twice the distance to the line of bending in the slab (as shown in Figure 4, p. 20).➤Fig. 2: Design concept of Method 1, where the slab is utilized to resolve eccentricity of façade panel loads.➤Fig. 3: Design concept of Method 2, where the spandrel is used to resolve eccentricity of façade panel loads.MODERN STEEL CONSTRUCTION august 2012MODERN STEEL CONSTRUCTION august 2012The orientation of the flutes of the metal deck also may affect the effective width and effective depth of the slab. When the flutes are oriented parallel to the spandrel beam, the effec-tive depth is taken at the location where the depth is reduced at the flute; the effective width is unaffected. If the flutes are oriented perpendicular, the full slab depth is effective but the effective width must be reduced to account for the area of con-crete not present in the compression zone. The design guide also addresses other forces that slab and deck must also be able to resist, including forces from kickers or roll (back-up) beams, when used, and the horizontal force couple due to eccentricity.Spandrel beam In the case of Method 2, the eccentricity of the façade load induces torsion on the spandrel beam. Wide flange sections make great flexural members, but offer little torsional resis-tance and often require bracing against twist. If the spandrel Fig. 4: effective widthfor concentrated loadsat slab edge.beam is a girder with in-fill beams framing to it, the secondary framing may provide adequate restraint against twist. If there is no secondary framing, however, the spandrel must have suf-ficient torsional strength and stiffness or additional restraint must be provided.One common solution is to add intermittent perpendicu-lar kickers or bracing angles between the bottom flange of the spandrel and the top flange of the first interior beam (as shown in Figure 5). It can also be an anchored connection in the slab. Another common solution is to include additional framing per-pendicular to the spandrel, referred to as “roll beams” (shown in Figure 6, p. 22). The connections on roll beams must bedesigned with enough moment resistance to sustain the tor-sional shear. The presence of a kicker or roll beam results in vertical and horizontal reactions in the spandrel, and the hori-zontal force couple between the top and bottom flanges resolves the twisting force.➤Fig. 5: a kicker brace can be used to resolve the torsion in the spandrel.➤Light-gauge Metal Pour StopOne economical slab edge detail incorporates a light-gauge metal pour stop. T ypically used in Method 1 and made of cold-formed steel of 10- to 20-gauge thickness with a yield strength of 33 ksi, its sole purpose is to form the edge of the slab. It is an item that usually comes with the metal deck procurement package and is welded to the spandrel during erection of the metal deck. The Steel Deck Institute provides a design table for light-gage metal pour stops to support the weight of wet concrete, concrete pore water pressure on the vertical leg and a uniform construction live load of 20 psf; this table is also printed in AISC Steel Design Guide 22.SDI recommends that the designer limit the design flexural stress to 20 ksi for the wet concrete load, temporarily increased by one-third for the construction live load. The table provides designs for an overhang length of up to 12 in. It is also recommended that the horizontal and vertical deflection should be limited to a maxi-mum of 1/4 in. for concrete dead load. (The design approach of the light-gauge metal pour stop is detailed in Figure 7.)These pour stops are generally not strong enough to be expected to carry any of the façade loads. Use of this type of detail is limited to the slab being able to resist all of the superimposed loads, including the façade. Overlap between the spandrel flange and the pour stop is commonly specified as 2 in.Fig. 6: a roll beam can also be used to brace thespandrel against twist.➤Fig. 7: Design considerations for a light-gauge metal pour stop.➤MODERN STEEL CONSTRUCTION august 2012bent PlateInstead of a light-gauge metal pour stop, a bent plate, angle or other steel assembly can be used. Bent plates are stronger and have more versatility than light-gauge metal pour stops. A bent plate can be designed to act as a pour stop, and also as a transfer element to provide a load path between the façade attachment and the slab, or between the façade attachment and the spandrel beam.Designers might choose to use a bent plate in lieu of a light-gauge metal pour stop for several reasons, including:The cantilever slab overhang is too large to be sup-1.ported by a light-gage metal pour stop.T o transmit the façade forces into the slab by attaching2.it to the façade and welding a headed stud on the verti-cal leg (Method 1).The slab and metal deck are inadequate in strength 3.or stiffness to support the façade, so the bent plate isused as a means to transfer the forces into the spandrel(Method 2).Note that as thickness increases, practical lengths of the bent plate get shorter. Hot-rolled angles do not have this length lim-itation and have tighter tolerances, but required thicknesses andleg sizes are not always readily available. Minimum and maxi-mum thicknesses of bent plates are generally x in. and 1/2 in., respectively, limited by the bending equipment capacity. They can be shop- or field-welded or bolted, though shop attachment requires that field adjustment must be provided for in another way. AISC Steel Design Guide 22 contains design tables for bent plates up to an overhang length of 18 in.Steel Design Guide 22 is a good resource when designing and detailing the slab edge to sufficiently transmit the façade loads into the structural frame. There are many solutions, but the keyis to develop one that is economical and efficient. Also, refer tothe MSC SteelWise column in December 2007, titled “Pushingthe Envelope,” and AISC’s webinar on façade attachments at /elearning.steelwiseaugust 2012MODERN STEEL CONSTRUCTION。
钢结构课程设计计算书
Harbin Institute of Technology课程设计说明书(论文)课程名称:钢结构课程设计设计题目:钢屋架设计院系:土木工程学院班级:土木二班设计者:麦浩学号:1093310208指导教师:张文元设计时间:2011-12-7——2011-12-16哈尔滨工业大学1.设计资料哈尔滨一金工车间,长96m,跨度27m,柱距6m,采用梯形钢屋架,1.5×6m预应力钢筋混凝土大型屋面板,上铺珍珠岩制品保温层(容重为4KN/,厚度),采用封闭结合。
卷材屋面,屋面坡度i=1/10,屋架简支于钢筋混凝土柱上,混凝土强度等级C20(抗压设计强度c f=10N/).车间内设有两台30/5T中级工作制桥式吊车,轨顶标高18.5m,柱顶标高27m。
2.荷载计算桁架计算长度:02720.1526.7l m=-⨯=跨中及端部高度:桁架的中间高度:在的两端高度:在轴线处端部高度:桁架跨中起拱:荷载计算屋面活荷载与雪荷载不会同时出现,从资料可知屋面活荷载大于雪荷载,故取屋面活荷载计算。
沿屋面斜面分布的永久荷载应乘以换算为沿水平投影分布的荷载。
桁架沿水平投影面积分布的自重(包括支撑)按经验公式计算,跨度的单位为。
标准永久荷载:预应力混凝土大型屋面板二毡三油防水层找平层厚珍珠岩保温层桁架和支撑自重管道荷载——————————————————————————————————合计标准可变荷载:屋面活荷载积灰荷载设计桁架时,应考虑以下三种荷载组合:(1)全跨永久荷载+全跨可变荷载(按永久荷载控制的组合)全跨节点荷载设计值:222(1.35 3.085/ 1.40.70.7/ 1.40.90.3/) 1.56F kN m kN m kN m m m=⨯+⨯⨯+⨯⨯⨯⨯(2)全跨永久荷载+半跨可变荷载全跨节点永久荷载设计值:对结构不利时:(按永久荷载控制的组合)(按可变荷载控制的组合)对结构有利时:半跨节点可变荷载设计值:(按永久荷载为主的组合)(按可变荷载控制的组合)(3)全跨桁包括支撑+半跨面板自重+半跨屋面活荷载(按可变荷载控制组合)全跨节点桁架自重设计值,对结构有利时,对结构不利时,半跨节点屋面板自重及活荷载设计值:(1)、(2)为使阶段荷载情况,(3)为施工阶段荷载情况。
钢结构基本原理课程设计
2013级土木工程专业《钢结构》课程设计任务书钢结构课程是土木工程专业重要的实践性教学环节,是对学生知识和能力的总结。
通过钢结构课程设计,使学生进一步了解钢结构的结构型式、结构布置和受力特点,掌握钢结构的计算简图、荷载组合和内力分析,掌握钢结构的构造要求等。
要求在老师的指导下,参考已学过的课本及有关资料,综合应用钢结构的材料、连接和基本构件的基本理论、基本知识,进行基本的钢结构设计计算,并绘制钢结构施工图。
设计题目:钢结构平台梁板柱的设计钢结构平台的梁格布置如如上图所示。
铺板为预制钢筋混凝土板。
平台永久荷载(包括铺板重力)为5kN/m2,荷载分项系数为1.2,可变荷载分项系数为1.5kN/m2,荷载分项系数为1.4;活荷载F=552.9kN,钢材采用Q235, E43型焊条,焊条电弧焊。
试对此钢结构平台的次梁、主梁和柱子(包括柱脚)进行设计要求:1. 每位同学自己独立完成,不能有任何雷同的课程设计计算书,否则都记为不及格;2. 课程设计计算书可以手写也可以打印,打印使用A4纸张;3. 完成并提交期限时间为第15周周五(12月9日)。
提示:可以参考教材P131例题4-2,P135例题4-4,P149习题4-10,P186习题5-2。
(b)次梁布置简图设计资料:(b)课程设计说明书》格式规范一、封面要求学生提交的正稿封面样式附后。
评定成绩必须有教师签名并写出评语。
二、正文规范1、字体字号要求①设计标题用小三号黑体、居中,英文标题对应用小三号Times NewRoman、居中,“摘要”用5号黑体,中文摘要内容用5号宋体,“ Abstract”用5号黑体,英文摘要内容用5号Times New Roman。
②课程设计正文内容第一级标题用四号黑体、靠左;第二级标题用小四号黑体、靠左;正文全文用小四号宋体、英文用Times New Roman 12。
③页码用小五号居中,页码两边不加修饰符,页码编号从正文开始。
轻型屋面三角形钢屋架12米跨度
钢结构课程设计(说明书)题目 12m轻型屋面三角形钢屋架设计指导教师付建科学生朗学号 2011106143专业材料成型及控制工程班级 20111061班完成日期 2014 年 6 月 19 日轻型屋面三角形钢屋架设计说明书学 生:孟杰 学号:2011106141指导教师:付建科 (三峡大学 机械与材料学院)1 设计资料与材料选择设计一位于市近郊的单跨屋架结构(封闭式),要求结构合理,制作方便,安全经济。
原始资料与参数如下:①、单跨屋架总长36m,跨度12m ,柱距S=4m ;②、屋面坡度i=1∶3,恒载0.3kN/mm 2,活(雪)载0.3kN/mm 2; ③、屋架支承在钢筋混凝土柱顶,混凝土标号C20,柱顶标高6m ; ④、屋面材料:波形石棉瓦(1820×725×8); ⑤、钢材标号:Q235-B.F,其设计强度为215N ∕mm 2 ⑥、焊条型号:E43型;⑦、荷载计算按全跨永久荷载+全跨可变荷载(不包括风荷载),荷载分项系数取: γG =1.2,γQ =1.4。
2 屋架形式及几何尺寸对于于屋面坡度较大(i ≤1/8)的屋盖结构多用三角形钢屋架,而且三角形芬克式轻型钢屋架一般均为平面桁架式,其构造简单,受力明确,腹杆长杆受拉,短杆受压,受力较小,且制作方便,易于划分运送单元,适用于坡度较大的构件自防水屋盖。
本课题采用八节间的三角形芬克式轻钢屋架。
已知屋面坡度i=1∶3,即,屋面倾角: 43.18)/31arctan(==α3162.0sin =α 9487.0cos =α屋架计算跨度:L 0=L-300=12000-300=11700mm屋架跨中高度:mm i L h 1950321170020=⨯=⨯=上弦长度: mm L l 89.61579487.0211700cos 200=⨯==α上弦节间长度:mm ll 47.153940==上弦节间水平投影长度:mm l a 5.14629487.047.1539cos =⨯=⋅=α根据已知几何关系,求得屋架各杆件的几何长度如图1所示(因对称,仅画出半榀屋架)。
钢结构计算说明书
普通梯形钢屋架设计(2)-3说明书摘要:本说明书针对内蒙古工业大学钢结构课设-普通梯形钢屋架(2)-3方案编制。
屋架位于北京地区,抗震设防烈度8度,建筑面积324㎡,厂房长度54m ,跨度30m ,柱距6m 。
包括屋架布置,荷载计算,内力计算,截面设计,节点设计等几个方面的计算设计。
关键词:钢屋架1.设计资料普通梯形钢屋架,采用无檩屋盖体系,梯形钢屋架。
跨度为30m ,柱距6m ,长度为54m 。
,地震设计烈度为8度,1.5m ×6m 轻型混凝土保温屋面板。
屋架铰支在钢筋混凝土柱上,设计荷载标准值见表1(单位:kN/㎡)。
表12.钢材和焊条的选用根据当地区的计算温度、荷载性质和连接方法,屋架刚材采用 Q235B ,要求保证屈服强度 fy 、抗拉强度 fu 、伸长率δ和冷弯实验四项机械性能及硫(S )、磷(P )、碳(C )三项化学成分的合格含量。
焊条采用 E43型,手工焊。
3.屋架形式和几何尺寸屋面材料为轻型混凝土保温屋面板,采用无檩屋盖体系,平坡梯形钢屋架。
屋面坡度。
10/1=i屋架计算跨度。
mm l l 2700015023000015020=⨯-=⨯-= 屋架端部高度取:mm H 18000=。
跨中高度:mm i l H 330010/12/3000018002H 00=⨯+=⋅+=为了使屋架节点受荷,配合屋面板1.5m宽,腹杆体系大部分采用下弦节间水平尺寸为3.0m的人字形式,上弦节间水平尺寸为 1.5m,屋架几何尺寸如图1图1 30米跨屋架几何尺寸4.屋盖支撑布置根据车间长度、跨度及荷载情况,在车间两端 5.5m 开间内布置上下弦横向水平支撑,在设置横向水平支撑的同一开间的屋架两端及跨中布置三道竖向支撑,中间各个屋架用系杆联系,在屋架两端和中央的上、下弦设三道通长系杆,其中:上弦屋脊节点处及屋架支座出的系杆为刚性系杆(图2),安装螺栓采用 C 级,螺杆直径:d=20mm,螺孔直径:d0=21.5mm。
《钢结构课程设计》教学大纲(正式版)
《钢结构课程设计》教学大纲课程英文名称: Steel Structure Design Course课程编码:课程要求:必修课课程类别:专业课适用专业:土木工程、港口航道及海岸工程学时数:一周学分:教学大纲说明(一) 课程的性质、教学目的与任务《钢结构》是土木工程专业的重要专业课,为了加强学生对基本理论的理解和《钢结构》设计规范条文的应用,培养学生独立分析问题和解决问题的能力,必须在讲完有关课程内容后,安排1周的课程设计,以提高学生的综合运用能力。
课程设计又是知识深化、拓宽的重要过程,也是对学生综合素质与工程实践能力的全面锻炼,是实现本科培养目标的重要阶段。
通过课程设计,着重培养学生综合分析和解决问题的能力以及严谨、扎实的工作作风。
为学生将来走上工作岗位,顺利完成设计任务奠定基础。
课程设计的任务是,通过进一步的设计训练,使学生熟悉钢结构基本构件的设计和构造设计的基本原理和方法,具备一般钢结构设计的基本技能;能够根据不同情况,合理地选择结构、构造方案,熟练地进行结构设计计算,并学会利用各种设计资料。
(二)课程教学的基本要求课程设计是综合性很强的专业训练过程,对学生综合素质的提高起着重要的作用。
基本要求如下:1、时间要求。
一般不少于1周;2、任务要求。
在教师指导下,独立完成一项给定的设计任务,编写出符合要求的设计说明(计算)书,并绘制必要的施工图。
3、知识和能力要求。
在课程设计工作中,能综合应用各学科的理论知识与技能,去分析和解决工程实际问题,使理论深化,知识拓宽,专业技能得到进一步延伸。
通过设计,使学生学会依据设计任务进行资料收集、和整理,能正确运用工具书,掌握钢结构设计程序、方法和技术规范,提高工程设计计算、理论分析、技术文件编写的能力,提高计算机的应用能力。
(三)本课程与相关课程的关系本课程设计是建立在《建筑材料》、《材料力学》、《结构力学》、《房屋建筑学》及认识实习、生产实习基础上的一门相对独立的专业课程设计,该课程设计还是土木工程专业毕业设计必须具备的先修课。
钢结构课程设计计算说明书
一、荷载计算永久荷载(设计值):预应力混凝土屋面板 1.45kN/m2×1.35=1.96kN/m2三毡四油(上铺绿豆砂)防水层0.40kN/m2×1.35=0.54kN/m2水泥砂浆找平层0.40kN/m2×1.35=0.54kN/m2保温层0.70kN/m2×1.35=0.95kN/m2一毡二油隔气层0.05kN/m2×1.35=0.07kN/m2水泥砂浆找平层0.30kN/m2×1.35=0.41kN/m2屋架和支撑自重(0.12+0.011×16)×1.35=0.40kN/m2管道荷载0.10kN/m2×1.35=0.135kN/m2合计 5.005kN/m2可变荷载:施工荷载和雪荷载不同时考虑,而是取两者的较大值。
屋面活荷载0.70kN/m2×1.4=0.98kN/m2积灰荷载0.70kN/m2×1.4=0.98kN/m2合计 1.96kN/m2屋面坡度不大,对荷载影响小,未予考虑。
风荷载对屋面为吸力,重屋盖可不考虑。
二、荷载组合本设计按全跨荷载的永久效应组合:5.005+0.7×0.98+0.9×0.98=6.573kN/m2本设计为16m跨度,取5等分,即每单跨3.2m,根据结构布置,存在两种形式的节点荷载,即6m×3.2m和6m×1.6m,分别计算其大小。
F d=6.573×6×3.2=126.20 kNF d=6.573×6×1.6=63.10 kN内力计算kN 利用ansys软件,计算出各节点的杆件内力,得出最大拉力杆件值为596.10;最大压力在杆件值为606.87。
kN 三、杆件截面设计根据腹杆最大内力值,由屋架节点板厚度参考可知:支座节点板厚度取14mm ;其余节点板与垫板厚度取12mm 。
钢结构课程设计
钢结构课程设计湘潭大学课程设计说明书题目:仓库三角形钢屋架设计学院:土木工程与力学学院专业:土木工程学号: 2011800813 姓名:谭振峰指导教师:尹志明完成日期:《钢结构》课程设计指导书一、本课程设计要求与目的:要求同学们通过本课程设计,能掌握钢结构屋架的设计计算方法;以及钢结构绘图的一般做法规律。
二、设计资料:某仓库跨度18m,长度36m,砖墙承重,每隔4m设有一砖半见方的砖柱墩,柱墩上设砼块以支承屋架,砼C20。
屋面采用波形石棉瓦,油毡(0.05KN/m2)、屋面板(0.07+n/100 KN/m2)(n为学号的最后两位数)、檩条按0.1 KN/ m2考虑,不全部支于节点上。
雪荷载按0.5 KN/ m2取用,不考虑积灰荷载。
试设计一三角形芬克式屋架,坡度自定。
钢材为Q235B,焊条E43型。
内容:(一)支撑布置只布置上弦横向水平支撑、下弦横向水平支撑、竖向支撑,并在下弦及上弦各布置三道系杆。
檩条、屋架设计杆件截面选择、节点设计结构施工图2#图纸一张三角形钢屋架设计1 设计资料及说明设计一位于湘潭市郊区的单跨屋架结构(封闭式),主要参数如下:1、单跨屋架,平面尺寸为36m×18m,S=4m,即单跨屋架结构总长度为36m,跨度为18m,柱距为4m。
2、屋面材料为规格1820×725×8的波形石棉瓦。
3、屋面坡度i=1:3。
恒载为0.3kN/m2 ,活(雪)载为。
4、屋架支承在钢筋混凝土柱顶,混凝土标号C20,柱顶标高6m。
5、钢材标号为Q235-B.F,其设计强度值为f=215N/mm2。
6、焊条型号为E43型。
7、荷载计算按全跨永久荷载+全跨可变荷载(不包括风荷载)考虑,荷载分项系数取:γG =1.2,γQ =1.4。
2 屋架杆件几何尺寸的计算根据所用屋面材料的排水需求及跨度参数,采用芬克式三角形屋架。
屋面坡度为i=1:3,屋面倾角α=arctg(1/3)=18.435°,sinα=0.3162,cosα=0.9487屋架计算跨度 l0 =l-300=18000-300=17700mm屋架跨中高度h= l0×i/2=17700/(2×3)=2950mm上弦长度L=l0/2cosα≈9329mm节间长度a=L/6=9329/6≈1555m m节间水平段投影尺寸长度 a'=acosα=1555×0.9487=1475mm根据几何关系,得屋架各杆件的几何尺寸如图1所示图1 屋架形式及几何尺寸3 屋架支撑布置3.1 屋架支撑1、在房屋两端第一个之间各设置一道上弦平面横向支撑和下弦平面横向支撑。
钢结构课程设计说明书
钢结构课程设计计算说明书目录-、设计资料 (2)二屋架形式,尺寸及支撑布置 (2)三、荷载与内力计算 (4)1.荷载计算 (4)2.内力计算 (4)四、杆件截面设计 (6)1.上弦杆 (7)2.下弦杆 ...................... 错误!未定义书签。
3.端斜杆Ba (9)4.斜杆Bb (9)5.再分腹杆c1G (100)6.中竖杆Je (101)五、节点设计 (122)1. 下弦节点b ................................ 133 2 .上弦节点B ................................ 134 3 .屋脊节点K ................................ 155 4 .下弦跨中节点e ............................ 176 5 .端部支座节点a . (187)钢结构梯形屋架课程设计-、设计资料已知条件:天津某厂金工车间,梯形钢屋架跨度27m ,长度180m ,柱距6m 。
该车间内设有一台30t 中级工作制桥式吊车。
采用1.5m×6m 预应力混凝土大型屋面板,冬季最低温为-20度,采用80mm 厚泡沫混凝土保温层,卷材屋面,屋面坡度i =1/10。
屋面活荷载标准值为0.7 kN/m 2,雪荷载标准值为0.3 kN/m 2,积灰荷载标准值为0.35 kN/m 2。
屋架铰支在钢筋混凝土柱上,上柱截面为400 mm×400 mm,混凝土标号为C20。
钢材采用Q235B 级,焊条采用E43型。
二 屋架形式,尺寸及支撑布置屋架的计算跨度:Lo=27000-2×150=26700mm端部高度:h=2000mm (轴线处),h=2015mm (计算跨度处) 跨中高度:002670020150.1335022L H H i mm =+=+⨯= 屋架的高跨比:33500.1254626700O H L == 屋架形式及几何尺寸见图1所示。
钢结构图纸说明
钢结构图纸说明一、工程概述本钢结构工程位于_____,总建筑面积为_____平方米。
建筑主体结构为钢结构,设计使用年限为_____年,抗震设防烈度为_____度。
该工程的主要用途为_____,旨在为用户提供_____的使用空间。
二、设计依据1、相关的国家和地方规范、规程,包括但不限于《钢结构设计规范》(GB 50017-2017)、《建筑抗震设计规范》(GB 50011-2010)(2016 年版)等。
2、建设单位提供的设计任务书和相关要求。
3、地质勘察报告。
三、钢结构材料1、钢材主结构钢材选用 Q355B 钢,其质量应符合国家标准《低合金高强度结构钢》(GB/T 1591-2018)的要求。
次结构钢材选用 Q235B 钢,应符合国家标准《碳素结构钢》(GB/T 700-2006)的规定。
钢材的化学成分和力学性能应满足设计要求,并具有合格的质量证明文件。
2、焊接材料手工电弧焊焊条选用 E50 型和 E43 型,应符合国家标准《碳钢焊条》(GB/T 5117-2012)和《低合金钢焊条》(GB/T 5118-2012)的要求。
气体保护焊焊丝选用 ER50-6 型,应符合国家标准《气体保护电弧焊用碳钢、低合金钢焊丝》(GB/T 8110-2008)的规定。
焊接材料应与母材相匹配,并具有合格的质量证明文件。
3、高强螺栓高强螺栓采用 109 级摩擦型高强螺栓,其性能应符合国家标准《钢结构用高强度大六角头螺栓、大六角螺母、垫圈技术条件》(GB/T 1231-2006)的要求。
高强螺栓连接副应按批配套供货,并具有扭矩系数和紧固轴力的检验报告。
4、普通螺栓普通螺栓采用 C 级螺栓,性能等级为 46 级,应符合国家标准《六角头螺栓 C 级》(GB/T 5780-2016)的规定。
四、钢结构制作1、钢结构构件的制作应符合设计图纸和相关规范的要求。
2、切割钢材的切割应采用机械切割或自动、半自动火焰切割,切割面的质量应符合规范要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1设计资料 (1)2屋架形式及几何尺寸 (1)3支撑布置 (1)4檩条布置 (1)4.1 檩条布置 (1)4.2 荷载计算 (1)4.3 内力计算 (3)4.4 强度验算 (3)4.5 整体稳定性验算 (3)4.6 刚度验算 (3)5屋架设计 (3)5.1 荷载计算 (3)5.2 屋架杆件内力计算 (3)5.3 杆件截面选择 (6)5.3.1上弦杆 (6)5.3.2下弦杆 (7)5.3.3 腹杆 (7)5.4节点设计 (10)5.4.1下弦中间节点I (11)5.4.2 脊节点 (10)5.4.3上弦节点D (12)5.4.4下弦中央节点J (12)5.4.5 支座节点A (13)6绘制施工图 (14)致谢........................................................................................................................ 错误!未定义书签。
参考文献........................................................................................................................ 错误!未定义书签。
1设计资料1)某厂房总长度90m ,跨度24m ,纵向柱距6m 。
2)结构形式: 芬克式三角形钢屋架。
屋架简支在钢筋混凝土柱上,上柱截面为400mm ×400 mm ,柱的混凝土强度等级为C30,屋面坡度i=1:2.5;L 为屋架跨度。
地区计算温度高于-200C ,无侵蚀性介质,地震设防烈度为8度,屋架下弦标高为18m ;厂房内桥式吊车为2台150/30t (中级工作制),锻锤为2台5t 。
3)屋架采用的钢材Q345钢,焊条为E50型,手工焊。
4)屋架采用压型钢板作屋面板,自重2/58.0m kN ;木丝板保温层,自重为2/55.0m kN ,檩条采用槽钢。
屋面均布活荷载为2/7.0m kN ;基本雪荷载为20.35kN m ,基本风压为20.5kN m 。
屋面积灰荷载为2/3.1m kN 。
2屋架形式及几何尺寸屋面倾角()12.52148'arctg α︒==,屋架的计算跨度mm l l 237003000=-=,屋架跨中高度mm mm H 47405/23700==,上弦长度为mm l L o 127638.21cos 2/23700cos 2/0===α,取8节间,节间长度为mm s 159512763==,节间水平投影长度为mm s 14818.21cos 2127cos 0=⨯=⋅=αα。
如图1所示。
图1 屋架几何尺寸(单位:mm ) 3支撑布置根据厂房长度为90m>60m,跨度m l 24=和有桥试吊车及锻锤情况,在厂房两端第二柱间和厂房中部设置三道上弦横向水平支撑、下弦横向水平支撑及垂直支撑;并在上弦及下弦各设三道系杆。
上弦因有檩条亦可不设系杆。
如图2示。
4 檩条布置4.1 檩条布置檩条采用型钢檩条,每节间放一根,共19根,檩距为mm 7972/1595=,檩条跨中设一条拉条。
4.2 荷载计算屋面坡度2148'25α︒︒=<,雪荷载按不均匀分布最不利情况考虑,取21.250.30.0.375k S kN m =⨯=。
雪荷载与活荷载不同时考虑取较大值,按雪荷载计算。
恒荷载压型钢板屋面板 m kN /462.0.0797.058.0=⨯ 保温板重 m kN /438.0797.055.0=⨯ 檩条和拉条重 0.12kN m合计 m kN g k /02.11=2.屋面活荷载屋面活荷载0.5kN/2m 。
3.风荷载基本风压 200.5/kN m ω= 房屋高度为H=22.74m <30m ,高宽比22.740.948 1.524H B ==<,取风振系数 1.0z β= 风荷载系数:迎风面: 10.33s μ=- 背风面: 20.5s μ=-地面粗糙度 10 2.512.5H m =+=, 1.07z μ=所以负风压的设计值(垂直于屋面)为迎风面: 21 1.0 1.250.33 1.070.50.19/kN m ω=-⨯⨯⨯⨯=- 背风面: 22 1.0 1.070.50.50.29/kN m ω=-⨯⨯⨯=-4.雪荷载重 m kN q k /355.08.21cos 02.1375.001=⨯⨯= 檩条均布荷载设计值:m kN q g /721.1355.04.102.12.1)(11=⨯+⨯=+m kN q g q g x x /639.03714.0721.1sin )()(1111=⨯=+=+α m kN q g q g y y /6.19285.0721.1cos )()(1111=⨯=+=+α11-1图3 檩条受力分析图2 屋盖支撑布置4.3 内力计算m kN l q g M y y x /2.766.181)(812211=⨯⨯=+=m kN l q g M x x y /72.03639.081)(812211-=⨯⨯-=+-=4.4 强度验算试选12.6号型钢,自重m kN /12.0,2692.15cm A =,mm h 126=,mm b 53=,mm t 9=,,9.2359.1/38,2.10,1.62333cm w cm w cm w A y yB x ====41.39cm I x =1 1.05x γ=, 1.05yA γ=,1.2yB γ=。
截面及受力情况如图3示。
验算点A (压):2233/310/139109.2305.1720000101.6205.17200000mm N f mm N W M W M ny y y nx x x =<=⨯⨯+⨯⨯=+γγ 验算点 B (拉):223/310/6.2642.1005.11072000101.6205.110725000mm N f mm N W M W M ny y y nx x x =<=⨯+⨯⨯=+γγ 满足强度要求。
4.5 整体稳定性验算因在檩条跨中设有一道拉条,故可不进行整体稳定性验算。
4.6 刚度验算验算与屋面垂直平面的相对挠度,按短期荷载效应组合进行。
荷载标准值m kN q g k k /375.1355.002.1)(11=+=+m kN q g q g k k x k x k /277.19285.0375.1cos )()(1111=⨯=+=+α1501][1941103911006.26000277.13845)(3845453311=<=⨯⨯⨯⨯⨯=+⨯=l f l EI l q g l f x y k y k 满足刚度要求。
12.6号槽钢强度和刚度均满足要求。
5屋架设计5.1 荷载计算因檩条沿节间布置,先将檩条作为屋架集中荷载计算,再按经验公式计算屋架和支撑自重,最后折算为屋架上弦节点荷载。
因为屋架坡度较小,风荷载为吸力,可不考虑风荷载和积灰荷载影响。
檩条作用在屋架上弦的集中力为:kN l q g F q 68.92/821.122/)(211=⨯⨯=⨯+⨯=屋架和支撑自重,按轻屋盖估算:m kN L F G /384.02411.012.011.012.0=⨯+=+= 节点荷载设计值为: (1.2 1.02 1.40.35)8 1.97527.08/F kN m =⨯+⨯⨯⨯= 5.2 屋架杆件内力计算芬克式三角形屋架在半跨活荷载作用下,腹杆内力不变号。
故只需按全跨活荷载和全跨永久荷载组合计算屋架杆件内力。
利用结构力学求解器,解得杆件内力系数,再乘以节点荷载kN F 08.27=,既可得出杆件内力。
见图4。
最不利内力组合设计值,见表1。
图4 屋架内力图按弦杆最大内力-401.07kN ,由表2选出中间节点板厚度10mm ,支座节点板厚度为12mm 。
5.3.1上弦杆上弦杆内力有:kN F 07.40120\9-=,kN F 03.37819\10-=等,按最大内力401.07KN 选择截面,整个上弦杆采用等截面。
故该杆应按弯杆计算。
cm l cm l y x 790,200000==。
假定长细比,60===λλλy x 查附表D.2得807.0=ϕ 所需截面积为2335.30310807.0/10790/cm f N A =⨯⨯==ϕ所需回转半径为32.160/79/,33.360/200/000======y oy y x x x l i l i λλ根据1, y x i i 00,查型钢表选择2L90×7组成的T 型截面:2024.31512.152cm A =⨯=;cm i cm i y x 52.4,86.2==根据所选用的角钢验算截面刚度验算48.1752.4/79/,93.6986.2/200/00======y y y x x x i l i l λλ150][93.69]max [,=<==λλλλy x 。
刚度验算满足要求。
整体稳定性验算按b 类截面,查附录D.2 得701.0=ϕ则2223/310/18410024.31701.0/1007.401/mm N mm N A N <=⨯⨯⨯=ϕ 稳定性验算满足要求,所选截面合适。
上弦填板的设置一个角钢对于平行于填板的自身形心轴的回转半径86.2=x i ,cm i x 4.11486.24040=⨯=。
上弦为压杆,节间长度为cm 8.185,每节间设一块填板,则间距为cm 6.1111002/200<=。
填板尺寸为mm mm mm 1001060⨯⨯。
5.3.2下弦杆下弦杆均为拉杆,整个下弦采用等截面,按最大内力kN F 35.3728\1+=计算。
屋架平面内计算长度按最大节间(4),即cm l l x 3215\40==;屋架平面外计算长度因跨中有一道系杆,故cm l l y 1205\10==。
下弦杆所需截面面积为:223121347310/1035.372/cm mm f N A ==⨯==选用2L75×5,45.3,33.2,824.14412.722===⨯=y x i i cm A 。
下弦杆与支撑及系杆螺栓采用,16mm d =则下弦杆净截面面积为2225.10)5.075.1212(cm cm A n =⨯⨯-=强度验算:2223)1(/310/3091012/1035.372/mm N f mm N A F =<=⨯⨯==σ强度验算满足要求。
刚度验算:35022645.3/790/,35019333.2/9.449/00<===<===y y y x x x i l i l λλ刚度验算满足要求 5.3.3腹杆1)中间竖腹杆(31)中间竖腹杆0N F =,mm l 4740=。