一元二次函数、方程和不等式

合集下载

.3 二次函数与一元二次方程、不等式

.3 二次函数与一元二次方程、不等式
式对应方程根的情况,利用根与系数的关系进行求解.
首页
探究一
探究二
探究三
探究四
思维辨析
随堂演练
解:(1)由题意知 a>0,且-1 和 2 是关于 x 的方程 ax2+bx+a2-1=0
的两个根,
> 0;

= -1 + 2,
-1
+
2
=
,
所以有
解得
= 1- 2.
2 -1
-1 × 2 =
得n的值;(2)由s≤12.6解出v的取值范围,从而得到行驶的最大速度.
40
1 600
6 < 100 + 400 < 8,
解:(1)由题意得
70 4 900
14 < 100 + 400 < 17,
5 < < 10,
解得 5
95 因为 n∈N,所以 n=6.
<

<
2
14 .
3
2
(2)由于刹车距离不超过 12.6 m,即 s≤12.6,所以 +
≤12.6,因
50
400
此 v2+24v-5 040≤0,解得-84≤v≤60.因为 v≥0,所以 0≤v≤60,即行
驶的最大速度为 60 km/h.
首页
探究一
探究二
探究三
探究四
思维辨析
随堂演练
反思感悟 用一元二次不等式解决实际问题的操作步骤
1.理解题意,搞清量与量之间的关系.
2.建立相应的不等关系,把实际问题抽象为数学中的一元二次不
一元二次函数、方程和不等式

新教材高中数学第二章一元二次函数方程和不等式

新教材高中数学第二章一元二次函数方程和不等式

新教材高中数学第二章一元二次函数方程和不等式2.3 二次函数与一元二次方程、不等式最新课程标准要求学生从函数的角度来看待一元二次方程。

学生需要结合一元二次函数的图像,判断一元二次方程实根的存在性及实根的个数,并了解函数的零点与方程根的关系。

此外,学生还需要从函数的角度来看待一元二次不等式。

他们需要通过从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义。

他们需要掌握利用一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集。

同时,通过一元二次函数的图像,学生还需要了解一元二次不等式与相应函数、方程的联系。

知识点:二次函数与一元二次方程、不等式的解的对应关系当Δ>0时,一元二次方程y=ax^2+bx+c(a>0)有两个不相等的实数根x1,x2(x1<x2);当Δ=0时,有两个相等的实数根x1=x2=-b/2a;当Δ<0时,没有实数根。

当a>0时,二次不等式ax^2+bx+c>0(a>0)的解集为{x|xx2};当ax^2+bx+c0)时,解集为{x|x10时相同。

状元随笔一元二次不等式的解法:1.图像法:当a>0时,解形如ax^2+bx+c>0(≥0)或ax^2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax^2+bx+c=0的解;②画出对应函数y=ax^2+bx+c 的图像简图;③由图像得出不等式的解集。

2.代数法:将所给不等式化为一般式后借助分解因式或配方求解。

当p0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q。

有口诀如下:“大于取两边,小于取中间”。

教材解难]教材P50思考:从函数的角度和方程的角度两个角度来看待一元二次不等式。

从函数的角度来看,一元二次不等式ax^2+bx+c>0表示二次函数y=ax^2+bx+c的函数值大于0,图像在x轴的上方;一元二次不等式ax^2+bx+c>0的解集即二次函数图像在x轴上方部分的自变量的取值范围。

关于一元二次函数,一元二次方程,一元二次不等式及其关系

关于一元二次函数,一元二次方程,一元二次不等式及其关系

1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。

1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。

当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。

一元二次函数、方程和不等式——基本不等式

一元二次函数、方程和不等式——基本不等式

一元二次函数、方程和不等式一、教材分析:相等关系和不等关系是数学中最基本的数量关系,可以利用相等关系、不等关系构建方程、不等式,再通过方程、不等式解决数学内外的各种问题.《一元二次函数、方程和不等式》这一章内容是安排在“集合”之后,“函数”之前.本章有“等式性质与不等式性质”、“基本不等式”、“二次函数与一元二次方程、不等式”三节内容。

通过学生易于接受的“等式性质与不等式性质”进入本章节的学习,继而借助前面不等式的性质的学习,引出“基本不等式”,再以二次函数、一元二次方程与一元二次不等式(后面称三个“二次”)三者之间的关系及其应用为核心内容,特别是用函数的观点来处理方程与不等式问题,引导学生感悟高中阶段数学课程的特征,适应高中阶段的数学学习,为高中数学课程的学习作学习心理、学习方式和知识技能等方面的准备,帮助学生完成初高中数学学习的过渡.三个“二次”是初中三个“一次”(一次函数、一元一次方程与一元一次不等式)在知识上的延伸和发展,它是函数、方程、不等式问题的基础和核心,在高中数学中,许多问题的解决都会直接或间接用到三个“二次”.同时,此部分内容又培养函数与方程思想、数形结合思想、分类讨论思想以及等价转化思想.二、学情分析:学生已经掌握了一次函数、二次函数的图象与性质,简单的一元二次不等式的解法,能利用函数图象解决简单的方程和不等式问题.但是,当所研究的问题中含有参数或者综合性较强、或者运算较复杂的时候,学生往往不能正确理解题意,不能准确地利用三个“二次”之间的内在联系进行合理转化,不善于分类讨论,不善于归纳总结,对函数、方程、不等式的处理方法不够完整,没有形成基本的规律.三、章节学习目标:学习目标核心素养1.通过具体实例体会不等式在现实生活中的应用.数学建模2.掌握比较法的解题步骤.数学运算3.理解不等式的性质及证明.逻辑推理4.从数与形的角度体会基本不等式的证明方法.直观想象5.注重基本不等式的变形,求最值的关键是“拼”“凑”“拆”数学运算6.熟练掌握用基本不等式证明不等式.逻辑推理7.体会从实际情境中抽象出一元二次不等式的过程.数学抽象8.通过函数图像了解一元二次不等式与相应函数、方程的联系.直观形象9.会解一元二次不等式,能够利用一元二次不等式解决一些实际问题.数学运算、数学建模2.2基本不等式(2课时)教学目标:1.理解基本不等式的内容及其证明,能应用基本不等式解决求最值、证明不等式、比较大小、求取值范围等问题.2.能够整理并建立不等式的知识链.3.通过运用基本不等式解答实际问题,提高用数学手段解答现实生活中的问题的能力和意识.教学重难点:重点:基本不等式的内容及其证明;应用基本不等式求解最值.难点:基本不等式的理解与证明;运用基本不等式解答实际问题;不等式知识链的建立.教学过程:一导入(温故而知新):回顾旧知:重要不等式: 2+ 2≥2 (a,b∈R)当且仅当 = 时,等号成立.问题1:当 、 都是正数时,如果对重要不等式中的 、 进行开方运算,那么你会得到什么结论呢?利用旧知探索新知,便于提高学生的学习自信,利于培养学生知识迁移、探索的能力.公式辨析:1.已知 , ∈ ,且 >0,则下列结论恒成立的是()A. 2+ 2>2B.2 ≤ +B.1 +1 >2 D. + ≥22.已知x>−1,求 2+7 +10 +1的最小值.不等式的“一正,二定,三相等”.四数学生活化:例3.(1)用篱笆围一个面积为100 2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)有一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?例4.某工厂要建造一个长方体形无盖贮水池,其容积为4800 3,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池使总造价最低?最低总造价是多少?解决实际生活中的问题,把数学生活化,增强学生学习数学的兴趣.培养阅读理解能力,知识的灵活应用能力.五课堂小结:给出小结框架,让学生自己总结.(主要从两个方面进行总结:知识+能力)培养学生总结的能力.将知识进行内化,形成知识链.六课后作业:以书后练习和习题册为主.回归教材,吃透书本.七板书设计:标题知识点例题演算八教学反思:主要从以下几点进行反思:1.学生对新知的接受情况;2.课堂的实施情况;及时进行反思,不断反思,不断进步.3.教师的教学方法,学生的学习方法;4.教学内容的设置.。

高中一元二次方程、函数、不等式题型总结

高中一元二次方程、函数、不等式题型总结

第一课:基础知识一、知识点: 1、二次方程: 解法:韦达定理:2、二次函数 解析式: 一般式: 顶点式: 两根式:对称轴: 顶点:( ) 图象的画法:自变量无范围的 自变量有范围的最值求法:3、简单不等式一元一次不等式ax >b 的解集为: (1)当a >0时,解集为_______________ (2)当a <0时,解集为_______________ (3)当a =0时,若______,则_______; 若______,则________. 绝对值不等式:二次不等式: 分式不等式:二典例剖析题型一:二次方程解法及韦达定理例1、解下列方程(组)方法不限。

(如有需要,答案須準確至三位有效數字(a) .x 2 + 4x – 396 = 0 (b) 3 + x (x + 5) = 0 (c) 15(x 2 + 1) = 34x (d)4(x + 3)2 = 81判别式△符号 方程根函数图像(a >0) 不等式解集))(()()()()(2122x x x x a x f n m x a x f c bx ax x f --=+-=++=变式(a)解二次方程x2– 5x– 6 = 0 。

根據(a)的結果,解方程(y– 3)2– 5(y– 3) – 6 = 0题型二:韦达定理及应用例2如果α和β是方程3x2– 6x– 4 =0 的根,求下列各式的值(a) α + β(b) αβ(c) 3α + 3β(d) 4α⨯ 4β (e) (2α– 3)(2β– 3)(f) α2β + αβ2变式1如果α和β是方程 2x2 + kx- 6 =0 的根。

(a) 以k表示α + β並計算αβ的值。

(b) 如果6 是方程的一個根,求另一個根和k的值变式2如果α和β是方程2x2 + 3x– 5 = 0 的根,求以x為變數及下列各項為根的二次方程。

(a) 3α,3β(b) 2α– 1, 2β– 1(c) αββα,题型三:二次函数图象的画法例3、已知:822--=xxy求:顶点坐标对称轴方程与y轴的交点最小值图象:变式1、已知[]7,3,142-∈-+=xxxy,画出此函数的图像并求出其最值。

高中数学必修一 (教案)二次函数与一元二次方程、不等式

高中数学必修一 (教案)二次函数与一元二次方程、不等式

二次函数与一元二次方程、不等式【教材分析】三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。

【教学目标】课程目标1.通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。

2.使学生能够运用二次函数及其图像,性质解决实际问题。

3.渗透数形结合思想,进一步培养学生综合解题能力。

数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

【教学重难点】重点:一元二次函数与一元二次方程的关系,利用二次函数图像求一元二次方程的实数根和不等式的解集;难点:一元二次方程根的情况与二次函数图像与x轴位置关系的联系,数形结合思想的运用。

【教学准备】【教学方法】以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

【教学过程】一、情景导入在初中,我们从一次函数的角度看一元一次方程、一元一次不等式,发现了三者之间的内在联系,利用这种联系可以更好地解决相关问题。

类似地,能否从二次函数的观点看一元二次方程和一元二次不等式,进而得到一元二次不等式的求解方法呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察。

研探。

二、预习课本,引入新课阅读课本,思考并完成以下问题1.二次函数与一元二次方程、不等式的解的对应关系。

2.解一元二次不等方的步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:判别式Δ=b 2-4acΔ>0Δ=0Δ<0二次函数y=ax 2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2没有实数根ax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}{x|x≠−2ba}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅ab2-=2.一元二次不等式ax2+bx+c>0(a>0)的求解的算法。

一元二次函数、方程和不等式小结

一元二次函数、方程和不等式小结
对于 C, c 0 时不成立,故错误;
对于 D,由于 c 2 1 0 ,根据不等式的性质,
故选 ABC.
a
b
总成立,

2
2
c 1 c 1
举反例是说明命题
为假的一种好方法
基本不等式及其应用
二、基本不等式及其应用
9
例 2(1)若 x 0 ,则 x 2 有( )
x
A.最小值 6
二、基本不等式及其应用
1
已知 x 1 ,则 y x
的最小值为____.
x 1
解:因为 x 1 ,所以 x 1 0 ,
所以 y x 1
1
1
1 2 ( x 1) (
) 1 3
x 1
x 1
1
当且仅当 x 1
,即 x 2 时取等号,所以 n 3 .
1 1
A.
a b
B. a b
2
2
C. ac bc
4

a
b
D. 2
2
c 1 c 1
4
解:对于A, 取正值,取负值时不成立,
如 = 1, = −1时,产生1 < −1错误的结论;
对于B, 和都取负值时不成立,如 = = −1时,
2 = 2 = 1, 2 > 2 的结论是错误的;
2 y 8x
2 y 8x
2

8,
x
y
x y
2 8
当且仅当
=
,即 = 2时取等号,


所以8 > 2 + 2,解得 − 4 < < 2,
因此实数的取值范围是 − 4 < < 2.

高中数学复习 一元二次方程、不等式

高中数学复习  一元二次方程、不等式
索引
(3)错误.当a=0时,其解集为{0},当a<0时,其解集为 . (4)若方程ax2+bx+c=0(a<0)没有实根,则不等式ax2+bx+c>0(a<0)的解集为
.
索引
2.(教材改编)不等式-2x2+x≤-3的解集为_(_-__∞_,__-__1_]_∪__32_,__+_∞___. 解析 由-2x2+x≤-3可得2x2-x-3≥0, 即(2x-3)(x+1)≥0,得 x≤-1 或 x≥32, 故不等式的解集为(-∞,-1]∪32,+∞.
索引
(2)(多选)(2024·长治质检)已知函数 y=x2+ax+b(a>0)有且只有一个零点,则
( ABD )
A.a2-b2≤4 B.a2+b1≥4 C.若不等式 x2+ax-b<0 的解集为(x1,x2),则 x1x2>0 D.若不等式 x2+ax+b<c 的解集为(x1,x2),且|x1-x2|=4,则 c=4
索引
训练1 (1)(2024·潍坊质测)若a∈R,则关于x的不等式4x2-4ax+a2-1<0的解集 a-1 a+1
为___x_|__2___<_x_<___2______. 解析 原不等式可转化为[2x-(a+1)][2x-(a-1)]<0, 因为a+2 1>a-2 1, 所以不等式的解为a-2 1<x<a+2 1.
即(x-1)2≤0,所以x=1;
当a=-2时,原不等式可化为x2+2x+1≤0,
即(x+1)2≤0,所以x=-1.
索引
③当Δ=a2-4<0,即-2<a<2时,
原不等式的解集为 .
综上,当 a>2 或 a<-2 时,原不等式的解集为x|a-
2a2-4≤x≤a+

一元二次不等式、方程和函数的关系

一元二次不等式、方程和函数的关系

一元二次函数、方程和不等式一、定义1、等式的定义等式是数学中表示两个量或两个表达式之间相等关系的式子。

它由等号(=)连接,等号两边的数值或表达式在特定条件下是相等的。

换句话说,如果两个量或两个表达式用等号连接,那么这两个量或表达式就构成了等式。

2、不等式的定义不等式是数学中表示两个量或两个表达式之间大小关系的式子。

它不使用等号(=)连接,而是使用大于(>)、小于(<)、大于等于(≥)、小于等于(≤)或不等号(≠)这样的关系符号来连接两边的数值或表达式。

二、性质1、等式的性质:性质1:如果a=b ,那么b=a性质2:如果a=b ,b=c ,那么a=c性质3:如果a=b ,那么a±c=b±c性质4:如果a=b ,那么ac=bc 。

性质5:如果a=b ,c ≠0,那么c b c a =2、不等式的性质:性质1:如果a >b ,那么b <a;如果b <a ,那么a >b .即:a >b ⇔b <a 。

性质2:如果a >b ,b >c ,那么a >c 。

即:a >b ,b >c ⇒a >c .性质3:如果a >b ,那么cb c a ++>性质4:如果a >b ,c>0,那么ac >bc ;如果a>b ,c<0,那么ac<bc性质5:如果d c b a >,>,那么db c a ++>性质6:如果0d c 0b a >>,>>,那么bdac >性质7:如果a >b >0,那么),(>2n n b a nn ≥∈N三、基本不等式对于∀a >0,b >0,ab 2b a ≥+变形为2b a ab +≤①当且仅当a=b 时,等号成立.通常我们称不等式①为基本不等式。

其中2b a +叫做正数a ,b 的算术平方根,ab 叫做正数a ,b 的几何平均数基本不等式表明:两个正数的算术平均数不小于它们的几何平均数四、用分析法证明基本不等式分析法是一种“执果索因”的证明方法,即从要证明的结论出发,逐步寻求使他成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理)为止要证明2b a ab +≤,只要证明b a ab 2+≤,要证明b a ab 2+≤,只要证明0b a ab 2≤--,要证明0b a ab 2≤--,只要证明0b a 2≤--)(,要证明0b a 2≤--)(,只要证明0b a 2≥-)(,很显然,平方恒大于等于0,0b a 2≥-)(成立,当且仅当a=b 时,0b a 2≥-)(中的等号成立。

第二章一元二次函数、方程和不等式

第二章一元二次函数、方程和不等式

<
������������.故该结论错误.
课堂篇 探究学习
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟 1.解决这类问题时,通常有两种方法:一是直接利用不 等式的性质,进行推理,看根据条件能否推出相应的不等式;二是采 用取特殊值的方法,判断所给的不等式是否成立,尤其是在选择题 中经常采用这种办法.
一二三四
课前篇 自主预习
3.做一做
若x为实数,则x2-1与2x-5的大小关系是
.
解析:∵(x2-1)-(2x-5)=x2-2x+4=(x-1)2+3>0,∴x2-1>2x-5.
答案:x2-1>2x-5
一二三四
课前篇 自主预习
三、重要不等式 1.∀a,b∈R,a2+b2与2ab大小有何关系? 提示:因为a2+b2-2ab=(a-b)2≥0恒成立,所以a2+b2≥2ab. 2.填空 ∀a,b∈R,a2+b2≥2ab,当且仅当a=b时,等号成立.
(4)由1������
>
1������,可知1������

1 ������
=
������������-������������>0.因为
a>b,所以
b-a<0,于是
ab<0.
又因为 a>b,所以 a>0,b<0.故该结论正确.
(5)依题意取
a=-2,b=-1,则������������
=
1 2
,
������������=2,显然������������
2.1 等式性质与不等式性质
-1-

一元二次方程、二次函数、一元二次不等式。知识归纳

一元二次方程、二次函数、一元二次不等式。知识归纳

一元二次方程、二次函数、一元二次不等式。

知识归纳高2017级(文科)数学一轮复《一元二次方程、二次函数、一元二次不等式》知识归纳一、一元二次方程一元二次方程的一般形式为ax^2+bx+c=0(a≠0),其中ax^2、bx、c分别称为二次项、一次项、常数项。

a、b、c分别称为二次项系数、一次项系数、常数项。

解法:1.直接开平方法:形如(x+m)^2=n(n≥0)的方程,可直接开平方求解。

2.“十字相乘”因式分解法:可化为(ax+m)(bx+n)=0的方程,求解。

3.公式法:一元二次方程ax^2+bx+c=0的求根公式为x=(-b±√(b^2-4ac))/2a(b^2-4ac≥0)。

4.配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法。

根的判别式:1.当Δ=b^2-4ac>0时,原方程有两个不相等的实数根。

2.当Δ=b^2-4ac=0时,原方程有两个相等的实数根。

3.当Δ=b^2-4ac<0时,原方程没有实数根。

根与系数的关系:若关于x的一元二次方程ax^2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a;x1x2=c/a。

二、二次函数一般式:f(x)=ax^2+bx+c(a≠0)三顶点式:f(x)=a(x-h)^2+k(a≠0)(其中h=-b/2a,k=(4ac-b^2)/4a)两根式:f(x)=a(x-x1)(x-x2)(a≠0)(仅限于二次函数图形与x 轴有两个交点时)对称轴x=-b/2a,顶点坐标(-b/2a。

(4ac-b^2)/(4a))单调性:函数在(-∞,-b/2a]上递减,函数在(-∞,-b/2a]上递增,在[-b/2a,+∞)上递增,在[-b/2a,+∞)上递减。

三、二次函数在闭区间[m,n]上的最大、最小值问题探讨设f(x)=ax^2+bx+c(a>0),则二次函数在闭区间[m,n]上的最大、最小值有如下的分布情况:m<n<-b/2a:f(x)单调递增,最小值为f(n);m<-b/2a<n:顶点在区间内,最大值为f(-b/2a),最小值为f(n)或f(m);b/2a<m<n:顶点在区间内,最大值为f(-b/2a),最小值为f(m);m=n<-b/2a:f(x)取常数值f(m)=f(n);m=n>-b/2a:f(x)单调递减,最小值为f(n)。

一元二次方程、二次函数、一元二次不等式 知识归纳

一元二次方程、二次函数、一元二次不等式    知识归纳

高2017级(文科)数学一轮复习
《一元二次方程、二次函数、一元二次不等式》 知识归纳
制卷:王小凤 学生姓名:
一.一元二次方程
二.二次函数
三.二次函数在闭区间[]
n m ,上的最大、最小值问题探讨
设()()02
>++=a c bx ax x f ,则二次函数在闭区间[]n m ,上的最大、最小值有如下的分布情况:
a
2a
2a
2
五.一元二次方程根的分布
设方程()2
00ax bx c a ++=>的不等两根为12,x x 且12x x <,相应的二次函数为
()2f x ax bx c =++,方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)
表一:(两根与0的大小比较即根的正负情况)
表二:(两根与k 的大小比较)
表三:(根在区间上的分布)
k
k
k。

一元二次函数方程和不等式知识点

一元二次函数方程和不等式知识点

一元二次函数方程和不等式知识点
一元二次函数方程是指在椭圆坐标系中,形如ax^2 + bx + c = 0 (a≠0)的一元二次方程,它是数学分析中一个重要的内容。

一元二次函数方程有3个常数参数a,b,c,其中a,b,c都是实数,a不能为0,而b,c可以任意取值。

还有两个根的值,这两个根的取值范围受a,b,c 参数的影响。

推导出结果的方法有三种:一是直接求解,利用公式求出解;二是先把方程转换成一元一次方程形式,再应用一元一次方程求解;三是利用卡方法。

一元二次不等式是指根据一元二次函数,把函数两边分成大于、小于或不等于,来描述函数画图特征上下边界等情况的式子表达,不等式中,参数a,b,c也是实数,a,b,c都不能为0。

一元二次函数的应用范围很广泛,它可以用来求解许多实际问题,例如,在物理学中它可以用来模型弹性力学中的弹簧定律;在热学中,它可以用来模拟体积块的变形。

在经济学中,它可以用来模拟企业的投资回报率;在力学中,它可以模拟示性运动的轨迹等等。

回到一元二次不等式上来,必须要对参数a,b,c有详细的把握,只有这样才能准确地把握函数变化特征,才能够解决实际问题,再配合一元二次函数方程,可以精确地求出具体的解,并且也能发现其中的函数关系。

总之,一元二次函数方程和不等式具有广泛的应用前景,只要把握正确的参数,不断结合深刻的思考,就可以更好地解决各种实际问题。

一元二次函数、方程和不等式

一元二次函数、方程和不等式
(3)(x + 2)(3 - x) ≥ 0 (4)xy + x2 > 0
思考:如何解这个一元二次不等式 x2 - 12x + 20 < 0
回顾:我们初中学了一元一次不等式的解法, 比如-x+2<0
我们是通过观察一次函数y=-x+2
函数图像,发现
x=2时,y=0;
x<2时,y>0;
x>2时,y<0.
二次函数来解一元二次不等式; 2、数形结合的思想。
作业: 1、课本P80 A组T1; 2、课本P80 A组T4; 3、课本P103 A组T2.
因此原不等式的解集为
{x|x<2或x>3}
o
x
例题1、求不等式-x2+2x-3>0的解集。
解:原不等式可化为x2-2x+3<0 对于方程x2-2x+3=0,因为∆=b2-4ac=22-4×3=-8<0
所以它无实根
y
所以二次函数y=x2-2x+3的图像与x轴
没有交点
因此原不等式的解集为 Ø
o
x
归纳解不等式步骤: 1、一般地,先将不等式化成标准型; 2、将x2的系数化成正数; 3、判断对应的一元二方程的∆的符号,确定方程根的情况, 求出方程的实根,有些用因式分解可直接求出实根; 4、画出二次函数草图,确定不等式的解集范围。
2.3一元二次函数、 方程和不等式
问题 园艺师打算在绿地上用栅栏围一个矩形区域种植 花卉 . 若栅栏的长度是 24 m , 围成的矩形区域的面积要 大于 20 m2 , 则这个矩形的边长为多少米?
问题: (1)这是一个等式还是不等式?
不等式

第二章 一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章  一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章一元二次函数、方程和不等式(公式、定理、结论图表)1.不等关系不等关系常用不等式来表示.2.实数a,b的比较大小文字语言数学语言等价条件a-b是正数a-b>0a>ba-b等于零a-b=0a=ba-b是负数a-b<0a<b3.重要不等式一般地,∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.4.等式的性质(1)性质1如果a=b,那么b=a;(2)性质2如果a=b,b=c,那么a=c;(3)性质3如果a=b,那么a±c=b±c;(4)性质4如果a=b,那么ac=bc;(5)性质5如果a=b,c≠0,那么ac=b c .5.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n>0(n∈N,n≥2).6.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab≤a+b2,当且仅当a=b时,等号成立.7.已知x、y都是正数,(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值S24.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值2p.上述命题可归纳为口诀:积定和最小,和定积最大.8.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.9.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.10.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.11.三个“二次”的关系|b提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则>0,+4a<0,解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R. 12.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式思考1:x -3x +2>0与(x -3)(x +2)>0等价吗?将x -3x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.13.(1)不等式的解集为R (或恒成立)的条件设二次函数y =ax 2+bx +c若ax 2+bx +c ≤k 恒成立⇔y max ≤k 若ax 2+bx +c ≥k 恒成立⇔y min ≥k14.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.<解题方法与技巧>1.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.典例1:已知x≤1,比较3x3与3x2-x+1的大小.[解]3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(3x2+1)(x-1).∵x≤1得x-1≤0,而3x2+1>0,∴(3x2+1)(x-1)≤0,∴3x3≤3x2-x+1.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.典例2:若a>b>0,c<d<0,e<0,求证:e(a-c)2>e(b-d)2.[思路点拨]可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.两边同乘以1(a-c)2(b-d)2,得1(a-c)2<1(b-d)2.又e<0,∴e(a-c)2>e(b-d)2.3.对基本不等式的理解2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a、b都是正典例3:给出下面四个推导过程:①∵a、b为正实数,∴ba+ab≥2ba·ab=2;②∵a∈R,a≠0,∴4a+a≥24a·a=4;③∵x、y∈R,xy<0,∴xy+yx=-- 2.其中正确的推导为()A.①②B.①③C.②③D.①②③B[解]①∵a、b为正实数,∴ba、ab为正实数,符合基本不等式的条件,故①的推导正确.②∵a∈R,a≠0,不符合基本不等式的条件,∴4a+a≥24a·a=4是错误的.③由xy<0,得xy、yx均为负数,但在推导过程中将整体xy+yx提出负号后,为正数,符合均值不等式的条件,故③正确.]4.利用基本不等式比较大小1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件.等号成立的条件是a=b;a2+b2≥2ab成立的条件是a,b∈R,等号成立的条件是a=b.典例4:(1)已知a,b∈R+,则下列各式中不一定成立的是()A.a+b≥2ab B.ba+a b ≥2C.a2+b2ab ≥2ab D.2aba+b≥ab(2)已知a,b,c是两两不等的实数,则p=a2+b2+c2与q=ab+bc+ca的大小关系是________.(1)D(2)a2+b2+c2>ab+bc+ac[解](1)由a+b2≥ab得a+b=2ab,∴A成立;∵ba+ab≥2ba·ab=2,∴B成立;∵a2+b2ab≥2abab=2ab,∴C成立;∵2aba+b≤2ab2ab=ab,∴D不一定成立.(2)∵a、b、c互不相等,∴a2+b2>2ab,b2+c2>2ac,a2+c2>2ac.∴2(a2+b2+c2)>2(ab+bc+ac).即a2+b2+c2>ab+bc+.]5.利用基本不等式证明不等式1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.典例5:已知a,b,c是互不相等的正数,且a+b+c=1,求证:1a+1b+1c>9.[思路点拨]看到1a+1b+1c>9,想到将“1”换成“a+b+c”,裂项构造基本不等式的形式,用基本不等式证明.[证明]∵a,b,c∈R+,且a+b+c=1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+2+2+2=9.当且仅当a =b =c 时取等号,∴1a +1b +1c>9.6.利用基本不等式求最值利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;典例6:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12(1-2x )的最大值.[思路点拨](1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y=12x (1-2x )的最值,需要出现和为定值.[解](1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=--4x 3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x<12,∴1-2x>0,∴y=14×2x(1-2x)≤14×=14×14=116∴当且仅当2x=1-2xx=14时,y max=116.7.利用基本不等式求条件最值1.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.f(x)=ax(b-ax)型.典例7:已知x>0,y>0,且满足8x+1y=1.求x+2y的最小值.[解]∵x>0,y>0,8x+1 y=1,∴x+2yx+2y)=10+xy+16yx≥10+2xy·16yx=18,+1y=1,=16yx,=12,=3时,等号成立,故当x=12,y=3时,(x+2y)min=18.8.利用基本不等式解决实际问题1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.时,可用函数的单调性求解典例8:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?[解]设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy ,所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.x +3y =18,x =3y ,=4.5,=3.故每间虎笼长为4.5m,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =-32y =32y (6-y ).∵0<y <6,∴6-y >0.∴S ≤32(6-y )+y 22=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.9.不等式恒成立问题对于恒成立不等式求参数范围问题常见类型及解法有以下两种:(1)变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.(2)转化法求参数范围已知二次函数y=ax2+bx+c的函数值的集合为B={y|m≤y≤n},则(1)y≥k恒成立⇒y min≥k即m≥k;(2)y≤k恒成立⇒y max≤k即n≤k.典例9:已知y=x2+ax+3-a,若-2≤x≤2,x2+ax+3-a≥0恒成立,求a的取值范围.[思路点拨]对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.[解]设函数y=x2+ax+3-a在-2≤x≤2时的最小值为关于a的一次函数,设为g(a),则(1)当对称轴x=-a2<-2,即a>4时,g(a)=(-2)2+(-2)a+3-a=7-3a≥0,解得a≤73,与a>4矛盾,不符合题意.(2)当-2≤-a2≤2,即-4≤a≤4时,g(a)=3-a-a24≥0,解得-6≤a≤2,此时-4≤a≤2.(3)当-a2>2,即a<-4时,g(a)=22+2a+3-a=7+a≥0,解得a≥-7,此时-7≤a<-4.综上,a的取值范围为-7≤a≤2.。

第2章+一元二次函数、方程和不等式知识点汇总

第2章+一元二次函数、方程和不等式知识点汇总

《人教A版必修一知识点汇总》第2章《一元二次函数、方程和不等式》知识点汇总2.1 等式性质与不等式性质1.实数的大小比较(1)方法一:数轴法(优点是形象生动)(2)方法二:作差法(优点是快捷方便,并且适合一切实数比较大小)当 a ∈ R ,b ∈ R 时a −b >0⟺ a > ba −b <0⟺ a < ba − b=0 ⟺ a = b作差法:比较两个实数(或代数式)的大小,可以转化为考察它们的差是正数、负数、或零,这种比较大小的方法称为作差比较法.(3)方法三:作商法(优点是快捷方便,并且只适合两个正数比较大小)当 a>0 ,b >0 时a>1 ⟺ a >bba<1 ⟺ a <bba=1 ⟺ a =bb作商法:比较两个正数的大小,可以转化为考察它们的商是大于1、小于1、或等于1,这种比较大小的方法称为作商比较法.2.不等式的性质(1)性质1(可加性)如果a > b, 那么 a±c > b±c;(2)性质2(可乘性)① 如果 a > b,c>0,那么 ac > bc 或ac >bc;②如果 a > b,c<0,那么 ac < bc 或ac <bc.(3)性质3 (传递性)如果 a > b ,b > c , 那么 a > c;(4)性质4(对称性) a > b ⟺ b < a ;(5)性质5 (可移性) a+b > c ⇔ a > c − b ;(6)性质6(同向可加性)如果a>b ,c>d ,那么 a+c >b+d;(7)性质7(同向同正可乘性)如果 a > b >0,c > d >0 ,那么 ac > bd.(8)性质8(同向同正可乘方性)如果 a > b > 0,n ∈N∗ ,那么 a n>b n;(9)性质9(同正可开方性)如果 a > b > 0,n ∈N∗ , 那么√a n>√b n;(10)性质10(同号可倒性)如果 ab > 0,且 a > b , 那么1a <1b;2.2《基本不等式》1.基本不等式对于 ∀ a >0 ,b > 0 ,都有√a2+b22≥a+b2≥√ab≥21a+1b(当且仅当a=b 时等号成立)注1:a+b2叫正数 a 与 b 的算术平均数,√ab叫正数 a 与 b 的几何平均数;注2:基本不等式通常用于求解与两个正项相关的最值问题,且在实际运用中,通常变形为对于 ∀ a > 0,b > 0 ,都有a+b ≥2 √ab(当且仅当a=b 时等号成立)2.实例运用例1.已知x > 0 , 求x +1x的最小值.解:∵ 已知x > 0,∴ 1x>0∴ 据基本不等式可得x +1x ≥2√x ∙1x=2(当且仅当x =1x(即x=1)时等号成立)故x +1x的最小值为2例5.已知 x>0 ,y >0,且1x +9y=1,求 x+y 的最小值.解:∵ 已知1x +9y=1∴ x+y=(x+y) ( 1x +9y=1)=yx+9xy+10又∵ 已知x>0 ,y >0∴ yx >0,9xy>0∴ yx +9xy≥2√yx∙9xy=2√9=6y x +9xy+10≥6+10(可加性)即x+y≥16(当且仅当yx =9xy,即y=3x 时等号成立)故x+y 的最小值为16.2.3 二次函数与一元二次方程、不等式1.一元二次不等式的概念像x2−7x+6>0这样,含有一个未知数,并且含有未知数项的最高次数为2的不等式,就称为一元二次不等式.其一般式为ax²+bx+c > 0 (a ≠ 0)注:上面一般式中的“>”也可以换成“<”,“≥”或“≤”.2.一元二次不等式的图解法三作图一 化二解 四答(1)典例讲解:解不等式 −x 2+2x >−3解:原一元二次不等式等价于x 2−2x −3 <0∵∆=b 2−4ac =(−2)2−4×1×(−3)=16>0解一元二次方程 x 2−2x −3 =0 可得x 1=−1,x 2=3又∵二次项系数a =1>0二次函数y =x 2−2x −3的图像如图所示由上图可知不等式 x 2−2x −3 <0的解集为 {x | −1< x < 3}即原不等式的解集为{x | −1< x < 3}(2)一元二次不等式的图解法小结①一化:将原不等式化成一般式,即ax²+bx +c > 0 (a ≠ 0)或ax²+bx +c < 0 (a ≠ 0)的形式,其中二次项系数a >0;②二解:判断∆=b 2−4ac 的符号,并利用配方法、公式法、因式分解法求出一元二次方程ax²+bx +c = 0 的实数根(x =−b±√b 2−4ac 2a); ③三作图:根据二次函数y =ax²+bx +c (a > 0)的图像与x 轴的位置关系确定一元二次不等式ax²+bx +c > 0 (a ≠ 0)或ax²+bx +c < 0 (a ≠ 0)的解集.④四答:通常要将不等式的解集用数集或区间来表示.(3)实例运用例1 看图口答.①不等式x²−2x−3 >0的解集为{ x | x<−1 或 x>3 } ;②不等式x²−2x−3 ≤0的解集为{ x | −1≤x≤3 } ;③不等式x²−2x−3 >0的解集为{ x | x≤−1 或 x≥3 } ;例2 求不等式9x2−6x+1>0的解集.解:∵ 已知9x2−6x+1>0∴ a=9 ,b=−6 ,c=1又∵ ∆=b2−4ac=(−6)2−4×9×1=0∴解一元二次方程9x2−6x+1=0可得x=13又∵二次项系数 a=9>0,∴可得二次函数y=9x2−6x+1的图像如图所示:由图可知原一元二次不等式的解集为{ x | x≠1}3例3 求不等式−x2+2x−3>0的解集.解:原不等式−x2+2x−3>0可化为x2−2x+3< 0∴ a=1 ,b=−2 ,c=3又∵ ∆=b2−4ac=(−2)2−4×1×3=−8<0∴ 一元二次方程 x2−2x+3=0没有实数根又∵二次项系数 a=1>0,∴可得二次函数 y=x2−2x+3的图像如图所示:由图可知一元二次不等式 x2−2x+3< 0的解集为 ∅故原一元二次不等式−x2+2x−3>0的解集为∅。

新人教版高中数学必修第一册2.3 二次函数与一元二次方程、不等式

新人教版高中数学必修第一册2.3 二次函数与一元二次方程、不等式
其中,,都是常数且 ≠ 0.
1.“一元”指的是只有一个未知数,不代表只有一个字母,如,,等;
2.“二次”指的是未知数的最高次必须存在并且是2,并且最高次系数不为0.
二次函数的零点
在初中,我们学习了从一次函数的观点看一元一次次方程、一元一次不等式的思想
方法.类似的,能否从二次函数的观点来看一元二次不等式,进而得到
因为Δ的正负未知,故需要分类讨论:
③当 = −4时, Δ = 0,2 2 + + 2 = 0有两个相等实根1 = 2 = 1,
所以原不等式的解集为{| ≠ 1}
④当−4 < < 4时, Δ < 0,方程2 2 + + 2 = 0无解
所以原不等式的解集为R
【三个“二次”的关系】
1
1
【解】根据题意得: 180 2 + 20 > 39.5,整理得:
2 + 9 − 7110 > 0,方程 2 + 9 − 7110 = 0有两个实数
−9− 28521
= −88, 2
2
结合图像可知 2 + 9 − 7110
根1 =
=
−9+ 28521
2

= 80,
> 0的解集为
计算 = − 的值
>
=
方程 + + =
方程 + + =
有两个不等实根 ,
有两个相等实根 ,
( < )
原不等式的解集为
{| < 或 > }
<
( = = −


没有实根
)

一元二次方程二次函数一元二次不等式知识归纳

一元二次方程二次函数一元二次不等式知识归纳

一元二次方程二次函数一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式是高中数学中的重要内容,掌握了这些知识可以帮助我们解决实际问题和推导数学关系。

本文将对一元二次方程、二次函数和一元二次不等式进行归纳总结,以帮助读者更好地理解和掌握这些知识。

一、一元二次方程一元二次方程是形如ax^2 + bx + c = 0(其中a ≠ 0)的方程,其中x 表示未知数。

解一元二次方程的常用方法有因式分解法、配方法和求根公式法。

1. 因式分解法当一元二次方程可以因式分解为两个一次因子相乘时,我们可以通过将方程两边置零,将每个因子等于零来求解。

例如,对于方程x^2 -5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,从而得到x = 2和x = 3两个解。

2. 配方法当一元二次方程无法直接因式分解时,我们可以通过配方法将方程转化为完全平方式,然后再进行求解。

例如,对于方程x^2 - 5x + 6 = 0,我们可以通过将常数项进行拆分,得到x^2 - 2x - 3x + 6 = 0,进而变为(x(x - 2) - 3(x - 2) = 0,再经过合并同类项和提取公因式的步骤得到(x -2)(x - 3) = 0,进而求得x = 2和x = 3两个解。

3. 求根公式法对于一元二次方程ax^2 + bx + c = 0,我们可以通过求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解。

其中,±表示两个相反的解,而√表示平方根。

这种方法适用于所有一元二次方程的求解,包括没有实数解的情况。

二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。

二次函数的图像通常是一个开口朝上或朝下的抛物线。

掌握了二次函数的性质和图像特点可以帮助我们分析函数的变化趋势和解决实际问题。

高考数学专项复习专题二一元二次函数一元二次函数方程和不等式

高考数学专项复习专题二一元二次函数一元二次函数方程和不等式

专题二一元二次函数、方程和不等式06 等式性质与不等式性质题型一由不等式性质比较数(式)大小题型二作差法比较代数式大小题型三作商法比较代数式大小题型四由不等式性质证明不等式题型五利用不等式求值或取值范围07 基本不等式(1)题型一由基本不等式比较大小题型二由基本不等式证明不等关系题型三基本不等式求积的最大值题型四基本不等式求和的最小值题型五二次与二次(或一次)的商式的最值问题07 基本不等式(2)题型一条件等式求最值题型二基本不等式的恒成立问题题型三对勾函数求最值题型四基本不等式的应用08 二次函数与一元二次方程、不等式(1)题型一解含有参数的一元二次不等式题型二由一元二次不等式的解确定参数题型三一元二次方程根的分布问题题型四一元二次不等式与二次函数、一元二次方程的关系08 二次函数与一元二次方程、不等式(2)题型一 一元二次不等式在实数集上恒成立问题 题型二 一元二次不等式其他恒成立问题 题型三 一元二次不等式有解问题 题型四 一元二次不等式的应用一元二次函数、方程和不等式讲义§2.1等式性质与不等式性质 1.作差法比较大小0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=.2.不等式的基本性质(1)(对称性)a b b a >⇔> (2)(传递性),a b b c a c >>⇒> (3)(可加性)a b a c b c >⇔+>+(4)(可乘性),0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< (5)(同向可加性),a b c d a c b d >>⇒+>+ (6)(正数同向可乘性)0,0a b c d ac bd >>>>⇒> (7)(正数乘方法则)0(,1)n n a b a b n N n >>⇒>∈>且 §2.2基本不等式① 重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式: ()2222()()a b a b a b R +≥+∈,② 基本不等式:2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥; 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”. §2.3二次函数与一元二次方程.不等式b06 等式性质与不等式性质题型一 由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是( ) A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .2.已知,,R a b c ∈,下列命题为真命题的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则a d b c ->- C .若a b >,c d >,则ac bd > D .若22a b >,且0ab <则11a b< 【答案】B【解析】:A 若,0a b c >=则220ac bc ==,A 不正确;B :因为a b >,c d >,则c d -<-,所以a d b c ->-,故B 正确;C :当0b c ==时,可得不等式不成立,故C 不正确.D :若3,2a b ==-,满足条件,但11a b>,所以D 不正确. 故选:B .3.已知,,a b c ∈R ,若a b c >>,且230a b c ++=,则下列不等关系正确的是( ) A .ac bc < B .a b c b >C .c c a c b c>-- D .()2a bc abc +>+【答案】ACD【解析】230a b c ++=,a b c >>,0c ∴<,0a >, 对于A ,a b >,0c <,ac bc ∴<,A 正确;对于B ,当0b =时,满足a b c >>,此时0a b c b ==,B 错误; 对于C ,a b c >>,0a c b c ∴->->,11a cbc ∴<--,又0c <,c c a c b c∴>--,C 正确; 对于D ,a b >,0a b ∴->,()()a a b c a b ∴->-,即2a ab ac bc ->-,整理可得:故选:ACD.4.已知g b 糖水中含有g a 糖(0b a >>),若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有( ) A .a a m b b m+<+B .22mm a m a b m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313ba -<- 【答案】ABD【解析】对于A ,由题意可知a a mb b m+<+,正确; 对于B ,因为2mm <,所以2222m mm ma m a m m ab m b m m b +++-+<=+++-+,正确; 对于C ,22a m a m m a mb m b m m b m ++++<=++++即()()()()22a m b m a m b m ++<++,错误; 对于D ,1122131131311333b b b b a --+<==<--+,正确. 故选:ABD5.已知1m n >>,则下列不等式中一定成立的是( ) A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二 作差法比较代数式大小1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误.而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.2.设2243P a a =-+,()()13Q a a =--,a ∈R ,则有( ) A .P Q ≥ B .P Q > C .P Q < D .P Q ≤【答案】A【解析】解:∵ ()()22214330P a a Q a a a -=-+---=≥,∵ P Q ≥. 故选:A.3.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B【答案】B 【解析】()2234A B a ab ab b-=+--22a ab b =-+223204b a b ⎛⎫=-+ ⎪⎝⎭≥,A B ∴≥.故选:B4.已知a b c d ,,,均为实数,下列命题正确的有( ) A .若0ab >,0bc ad ->,则0c da b ->B .若0ab >,0c da b ->,则0bc ad ->C .若0bc ad ->,0c da b->,则0ab >D .如果0a b >>,0c d >>,则bc bd > 【答案】ABCD【解析】对于A ,因为0ab >,0bc ad ->,所以0c d bc ada b ab --=>,故A 正确; 对于B ,因为0ab >,又0c d a b ->,即0bc adab ->,所以0bc ad ->,故B 正确; 对于C ,因为0bc ad ->,又0c d a b ->,即0bc adab->,所以0ab >,故C 正确; 对于D ,因为0a b >>,0c d >>,,所以bc bd >,故D 正确. 故选:ABCD5.已知221110,1,1,,a A a B a C D -<<=+=-==,则,,,A B C D 的大小关系是________.(用“>”连【答案】C A B D >>> 【解析】由题意不妨取14a =-,这时171544,,,161635A B C D ====. 由此猜测:C A B D >>>下面给出证明:()()2221324111111a a a a a C A a a a a⎡⎤⎛⎫-++⎢⎥ ⎪-++⎝⎭⎢⎥⎣⎦-=-+==+++, 又21310,0,0,24a a a C A ⎛⎫+>->++>∴> ⎪⎝⎭222(1)(1)20A B a a a A B -=-=>∴>+-,,()2221512411111a a a a a B D a a a a⎡⎤⎛⎫--⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦-=--==---. 又∵102a -<<,10a ∴->,又∵22151150,24224a B D ⎛⎫⎛⎫--<---<∴> ⎪ ⎪⎝⎭⎝⎭,综上所述,C A B D >>>. 故答案为:C A B D >>>.6.现有A B C D 、、、四个长方体容器,A B 、的底面积均为2x ,高分别为,x y ;C D 、的底面积均为2y ,高也分别为x y 、 (其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种? 【答案】未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案.【解析】由条件得3223,,,,A B C D V x V x y V xy V y ====,则()()()()()23223A B C D V V V V x x y xy y x y x y +-+=+-+=+-当x y >时, A B C D V V V V +>+,当x y <时, A B C D V V V V +<+()()()()()322322A C B D V V V V x xy x y y x y x y +-+=+-+=+-当x y >时, A C B D V V V V +>+,当x y <时, A C B D V V V V +<+()()()()()233220A D B C V V V V x y x y xy x y x y +-+=+-+=-+>所以未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案. 题型三 作商法比较代数式大小(2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.∵当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ∵当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且ab 时,a b b a a b a b >.2.已知0a >,0b >,试比较+a b 与a b b a+的大小; 【答案】a ba bb a++(当且仅当a b =时取等号) 【解析】方法一:由题意()()()a b a b a b a a b b a b b a a b ba ab ab--+--⎛⎫+-+==⎪⋅⎝⎭()()2a ba bab+-=,因为0a >,0b >,所以0a b +>,()20a b-≥,0ab >,所以()()20a ba bab+-≥,当且仅当a b =时等号成立,所以a ba b b a+≤+(当且仅当a b =时取等号). 方法二:由()()()()a b a b a b aba ab b a b ab ba ab ab ab a bab a b +++-++-===+++()2a babab-+==()211a b ab-+,当且仅当a b =时等号成立,所以a ba bb a++(当且仅当a b =时取等号). 3.设,a b R +∈,试比较a b a b 与b a a b 的大小. 【答案】当a b =时两者相等;当a b 时a b b a a b a b >.【解析】依题意,,a b R +∈,当ab 时,a ba b b a a b a a b b -⎛⎫= ⎪⎝⎭:当0a b >>时,1,0a a b b >->,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭;当0b a >>时,01,0b a b a <<-<,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭.故当ab 时,1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭,即a b b a a b a b >.4.(1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小;(2)已知a ,b ,c ∵{正实数},且a 2+b 2=c 2,当n ∵N ,n >2时比较c n 与a n +b n 的大小. 【答案】(1)(x 2+y 2)(x -y )>(x 2-y 2)(x +y );(2)a n +b n <c n . 【解析】(1)(x 2+y 2)(x -y )-(x 2-y 2)(x +y )()()()222x y x y x y ⎡⎤=-+-+⎣⎦()()2x y xy =-⨯-因为0x y <<, 则0,20x y xy -<-<, 故()()20x y xy -⨯->, 即(x 2+y 2)(x -y )-(x 2-y 2)(x +y )>0 (x 2+y 2)(x -y )>(x 2-y 2)(x +y ).(2)∵a ,b ,c ∵{正实数},∵a n ,b n ,c n >0.而n n n a b c +=n na b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∵a 2+b 2=c 2,则22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1,∵0<a c <1,0<bc<1. ∵n ∵N ,n >2,∵2na a c c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,2nb bc c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. ∵n n n a b c +=n n a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭<22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1. ∵a n +b n <c n .1.设a ,b 为正实数,则下列命题中是真命题的是( ) A .若221a b -=,则1a b -< B .若111b a-=,则1a b -<C .若1a b -=,则1a b -<D .若1a ,1b ,则1a b ab --【答案】AD【解析】对于A 选项,由a ,b 为正实数,且221a b -=,可得1a b a b-=+,所以0a b ->, 所以0a b >>, 若1a b -≥,则11a b≥+,可得1a b +≤,这与0a b a b +>->矛盾,故1a b -<成立,所以A 中命题为真命题;对于B 选项,取5a =,56b =,则111b a -=,但5516a b -=->,所以B 中命题为假命题;对于C 选项,取4a =,1b =,则1a b -=,但31a b -=>,所以C 中命题为假命题;对于D 选项,由1,1a b ≤≤,则()()()()2222222211110a b ab a b a b a b---=+--=--,即()()221a b ab -≤-,可得1a b ab --,所以D 中命题为真命题.故选AD.2.已知三个不等式:0,0,0c dab bc ad a b>->->(其中a b c d ,,,均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成正确命题的个数是______. 【答案】3【解析】若0,0ab bc ad >->成立,不等式0bc ab ->两边同除以ab 可得0c da b->,即0,0c dab bc ad a b>->⇒->; 若0,0c d ab a b >->成立,不等式0c da b ->两边同乘ab ,可得0bc ad ->,即0,00c dab bc ad a b>->⇒->;若0c d a b ->,0bc ad ->成立,则0c d bc ada b ab --=>,又0bc ad ->,则0ab >, 即0c da b->,00bc ad ab ->⇒>. 综上可知,以三个不等式中任意两个为条件都可推出第三个不等式成立,故可组成的正确命题有3个.故答案为:3.3.设n N ∈,1n >,1A n n =--,1B n n =+-,试比较A 与B 的大小. 【答案】A B >【解析】()()11111111n n n n n n A n n n n n n --+---=--===+-+-,同理可得11B n n=++,n N ∈,1n >,所以11n n n n +-<++,则1111n n n n>+-++,因此,A B >,故答案为A B >. 3.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--; (3)在(2)中的不等式中,能否找到一个代数式,满足2()bc a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为 0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意.4.设绝对值小于1的全体实数构成集合S ,在S 中定义一种运算“*”,使得*1a ba b ab+=+,求证:如果a ,b S ∈,那么*a b S ∈. 【答案】证明见解析【解析】由题意,绝对值小于1的全体实数构成集合S ,因为a S ∈,b S ∈,所以1a <,1b <,可得21a <,21b <, 则210b ->,210a -<,所以()()22110ba--<,即222210a b a b +--<,所以2222212a b ab ab a b ++<++,即()()221a b ab +<+,所以()()2211a b ab +<+,即11a bab+<+,所以*a b S ∈. 5.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证xx a+>y y b +. 【答案】见解析【解析】,,,a b x y 都是正数,且1a >1b,x >y ,,x y a b a b x y∴>∴<, 故11a b x y +<+,即0x a y b x y ++<<, x yx a y b∴>++. 题型五 利用不等式求值或取值范围1.实数x ,y ,z 满足0x y z ++=,0xyz >,若111T x y z=++,则( ) A .0T > B .0T < C .0T =D .0T ≥【答案】B【解析】因为0x y z ++=且0xyz >,所以不妨设0x >,则0y <,0z <, 则()2y x z xz xy yz xz y xzT xyz xyz xyz++++-+===. 因为0x >,0z <,所以0xz <,又20y -<, 所以20y xz -+<,又0xyz >,所以0T <. 故选:B.2.设实数,x y 满足01xy <<且01x y xy <+<+,那么,x y 的取值范围是 A .1x >且1y > B .01x <<且1y < C .01x <<且01y << D .1x >且01y << 【答案】C【解析】∵1x y xy +<+, ∵10,x xy y -+-< ∵()110,x y y -+-<∵()()110,x y --< ∵()()110,x y -->∵1x >,1y >或1x <,1y <.又∵01xy <<,0x y +>,∵01x <<,01y <<. 故选C.3.设实数x ,y 满足238xy ≤≤,249x y ≤≤,求34x y的最大值. 【答案】27【解析】令()3224mn x x xy y y ⎛⎫=⋅ ⎪⎝⎭,则3422m n n m x y x y -+-⋅=⋅,所以2324m n n m +=⎧⎨-=-⎩,解得2,1m n ==-,所以()232124x x xy y y -⎛⎫=⋅ ⎪⎝⎭,由题意得2249,38x xy y≤≤≤≤, 所以2221111681,83x y xy ⎛⎫≤≤≤≤ ⎪⎝⎭,所以()[]2321242,27x x xy y y -⎛⎫=⋅∈ ⎪⎝⎭.故34x y 的最大值为27. 故答案为:274.若108a b -<<<,求a b +的取值范围. 【答案】018a b <+<【解析】当0a ≥时有08a ≤<,08b <<,故016a b <+<,即0616a <+<; 当0a <时,100a -<<,故010a <-<,因为108b -<<所以1018a b -<-+< 又a b <,所以018a b <-+<,即018a b <+<. 综上018a b <+<.5.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ 【答案】137x y ≤-≤【解析】令3()()x y s x y t x y -=++- ()()s t x s t y =++-则31s t s t +=⎧⎨-=-⎩, 12s t =⎧∴⎨=⎩, 又11x y -≤+≤∵ 13x y ≤-≤, 22()6x y ∴≤-≤⋯∵∴∵+∵得137x y ≤-≤.07 基本不等式(1)题型一 由基本不等式比较大小 1.设b aM a b=+,其中a ,b 是正实数,且a b ,242N x x =-+-,则M 与N 的大小关系是( ).A .M N ≥B .M N >C .M N <D .M N ≤【答案】B【解析】∵a ,b 都是正实数,且a b ,∵22b a b a M a b a b=+>⋅=,即2M >, 又∵()2242442N x x x x =-+-=--++,()2222x =--+≤,即2N ≤,∵M N >, 故选B.2.已知0a >,0b >,2a b A +=,B ab =,2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤ B .A C B ≤≤ C .B C A ≤≤ D .C B A ≤≤【答案】D【解析】由于0a >,0b >,故2a b ab +≥,则2a bab +≥,即A B ≥, 结合02a b ab +<≤可得:12a bab ≥+,两边乘以ab 可得:2ab ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选D .3.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥C .2216a b +≥D .228a b +≥【答案】ABD【解析】A .因为4a b +=,所以24ab ≤,所以4ab ≤,取等号时2a b ==,故正确; B .因为1141a b a b ab ab++==≥,取等号时2a b ==,故正确; C .因为22222228a b a b a b ++≥⋅==,取等号时2a b ==,故错误;D .因为2222a b a b++≥,所以228a b +≥,取等号时2a b ==,故正确. 故选:ABD.4.设0a >,0b >,下列不等式恒成立的是( ). A .21a a +>B .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .296a a +>E.若111a b+=,则4ab ≤【答案】ABC【解析】解:对于选项A ,由于22131024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴21a a +>,故A 恒成立;对于选项B ,由于12a a+≥,12b b +≥,∴114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当1a b ==时,等号成立,故B 恒成立;对于选项C ,由于2a b ab +≥,1112a b ab+≥,∴()114a b a b ⎛⎫++≥ ⎪⎝⎭,当且仅当a b =时,等号成立,故C 恒成立;对于选项D ,当3a =时,296a a +=,故D 不恒成立; 对于选项E ,111a b +=,∴111112a b a b=+≥⨯,∴4ab ≥,当且仅当2a b ==时,等号成立.故E 不恒成立,即不等式恒成立的是ABC , 故选ABC.题型二 由基本不等式证明不等关系1.若0x >,0y >,4x y +≤,则下列不等式中成立的是( ) A .114x y ≤+ B .111x y+≥C .2xy ≥D .11xy≥ 【答案】B【解析】对于A ,因为4x y +≤,所以114x y ≥+,所以A 不正确; 对于B ,若0,0x y >>,设,04x y a a +=<≤,得1x ya+=,所以11111114()2(22)1y x x y x y a x y a x y a a ⎛⎫⎛⎫+=++=++≥+=≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2x y ==时,等号成立,所以B 正确;对于C ,因为0,0x y >>,由4x y +≤,所以42x y xy ≥+≥,即2xy ≤,当且仅当2x y ==时,等号成立,所以C 不正确;对于D ,由上面可知2xy ≤,则4xy ≤,得114xy ≥,所以D 不正确; 故选:B2.已知a,b,c 均为正实数,且a+b+c=1,求证:(1a -1)(1b -1)(1c-1)≥8.【答案】证明见解析【解析】主要考查不等关系与基本不等式.证明:因为a, b, c (0,),∈+∞且a+b+c=1,所以111(1)(1)(1)()()()2)22)8.a b c a a b c b a b c c a b c a b c b c a c b a a a b b c c b c a c b aa ab bc c ++-++-++----=⋅⋅=+++≥⨯⨯⨯⨯⨯=. 3.已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c>9.【答案】证明见解析【解析】∵a ,b ,c ∵R +,且a +b +c =1,∵1a +1b +1c =a b c a b c a b c a b c++++++++ , =3+b a +c a +a b +c b +a c +b c =3+⎛⎫+ ⎪⎝⎭b a a b +⎛⎫+ ⎪⎝⎭c a a c +⎛⎫+ ⎪⎝⎭c b b c ,≥3+2b a a b ⋅+2⋅c aa c +2⋅cb b c=3+2+2+2=9. 当且仅当a =b =c 时取等号, 所以1a +1b +1c>9.4.已知0a >,0b >,1a b +=,求证:11254a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【答案】见解析 【解析】()()()22222211254112541254a b a b ab a b a b ab a b ⎛⎫⎛⎫++⇔++⇔+++ ⎪⎪⎝⎭⎝⎭ 2243380(41)(8)0a b ab ab ab ⇔-+⇔--1a b +=,2212a b ab ∴+=-.104ab<,410ab ∴-,80ab -<. ∵(41)(8)0ab ab --成立,故原不等式成立.5.已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. 【答案】见解析【解析】设,,a b x b c y c a z +=+=+=,则0,0,0x y z >>>, 且()()22x y z z x ya abc b c y +++-=++-+=-=. 同理,,22x y z y z xb c +-+-==. 所以原不等式的左边222y z x z x y x y zx y z+-+-+-=++ 1322y x zx z y x y x z y z ⎡⎤⎛⎫⎛⎫⎛⎫=+++++-⎢ ⎪⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦133(222)222≥⨯++-=. 当且仅当,x y z x y x x z ==,且z yy z=,即,x y z a b c ====时,等号成立. 题型三 基本不等式求积的最大值1.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为( )(单位:cm 2).A .8B .10C .16D .20【答案】C【解析】设BC =x ,连结OC ,得OB =216x -,所以AB =2216x -, 所以矩形ABCD 面积S =2216x x -,x ∵(0,4), S =2()22222162161616x x x x x x -=-≤+-= . 即x 2=16﹣x 2,即x =22时取等号,此时max 16y =故选:C2.已知,a b 为正数,2247a b +=,则21a b +的最大值为( ) A .7B .3C .22D .2【答案】D【解析】222211411212222a b a b a b ⎛⎫+++=⨯+≤= ⎪⎝⎭,当且仅当2241a b =+时,取得最大值.故选:D3.(1)已知x ,y R +∈,求x y x y++的最大值;(2)求满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值,并说明理由. 【答案】(1)2 (2)2.见解析【解析】(1)∵x ,y R +∈,∵22212x y x y xy xyx y x y x y ⎛⎫+++==+≤ ⎪ ⎪+++⎝⎭, 当且仅当x y =时,对等号, ∵当x y =时,x y x y++的最大值为2.(2)∵a ,b R +∈,∵设0a m =>,0b n =>,2a m =,2b n =, ∵22222m n mn mn +≥=,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值, ∵222224242m n k m n k m n k mn +≥+≥=, ∵222k ≤,解得2k ≤,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值为2. 4.我们学习了二元基本不等式:设0a >,0b >,2a bab +≥,当且仅当a b =时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值. (1)对于三元基本不等式请猜想:设0,0,c 0,3a b ca b ≥ 当且仅当a b c ==时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设0,0,0,a b c >>>求证:2229a b ca b c abc(3)利用(1)猜想的三元基本不等式求最值:设0,0,c 0,1,a b a b c 求111a b c 的最大值.【答案】(1)33a b cabc (2)证明见解析(3)827 【解析】(1)通过类比,可以得到当0a >,0b >,0c >时33a b c abc ,当且仅当a b c ==时,等号成立;(2)证明:0a >,0b >,0c >,由(1)可得22232223a b c a b c ++≥,∴22233222333333a b c a b c a b c abca b c abc()()2229a b c a b c abc ∴++++≥(3)解:由(1)可得,33a b c abc ++⎛⎫≥ ⎪⎝⎭,即33a b c abc ++⎛⎫≤ ⎪⎝⎭,由题,已知0a >,0b >,0c >,1a b c ++=,10a b c ∴-=+>,10b a c -=+>,10c a b -=+>,∴33322811133327b ca ca ba b c b c a c a ba b c ∴当且仅当b c a c a b +=+=+,即a b c ==时取等,即111a b c 的最大值为8275.设∵ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且C =3π,a +b =λ,若∵ABC 面积的最大值为93,求λ的值. 【答案】 12 【解析】S ∵ABC =12absin C =34ab , 根据基本不等式2224a b ab λ+⎛⎫≤= ⎪⎝⎭ , 当且仅当a=b 时,等号成立, ∵S ∵ABC =34ab≤34·223216a b λ+⎛⎫= ⎪⎝⎭,令2316λ=93,解得λ=12. 题型四 基本不等式求和的最小值1.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是_______. 【答案】6【解析】由xy +x -y -10=0,得101y x y +=+=91,111y y ++>+, 故()99121611x y y y y y +=++≥⋅+=++,当且仅当911y y =++,即y =2时,等号成立. 故答案为:6.2.若0a b +≠,则2221()a b a b +++的最小值为________.【答案】2【解析】由于()222222222a b a b a b ab a b +++⎛⎫≤≤⇒+≥ ⎪⎝⎭, 所以()()222222211122()2()2()a b a b a b a b a b a b ++++≥+≥⋅=+++,当且仅当a b =且()2212()a b a b +=+时等号成立, 即()34144222a b a b a b a b a b -=⎧=⎧⎪⎪⇒⇒==⎨⎨+=⎪⎪+=⎩⎩时等号成立. 所以2221()a b a b +++的最小值为2.故答案为:23.已知ab >0,则()()22222424541ab a b ab +++++的最小值为_____.【答案】4.【解析】解:根据题意,ab >0,故22224244a b a b ab +≥⨯=,当且仅当a =2b 时等号成立,则原式()()()22222224245(4)245(41)4414141ab a b ab ab ab ab ab ab ++++++++=≥==+++44141ab ab +++,又由ab >0,则4ab +1>1, 则有44141ab ab ++≥+()424141ab ab +⨯=+4,当且仅当4ab +1=2,即4ab =1时等号成立,综合可得:()()22222424541ab a b ab +++++的最小值为4,当且仅当a =2b 12=时等号成立 故答案为:4.4.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值为__________. 【答案】4【解析】因为0a b c >>>,所以()222221111210251025()a ac c a a ac c ab a a b ab a a b ++-+=+⎡⎤⎢⎥⎣⎦++-+-- ()()()()222222222211445 55204 2a a c a a c a a c a b a b a a b a b ⎡⎤⎢⎥⎛⎫=++-≥++-=++-≥⋅+=-+-⎣⎦⎪⎝⎭,当且仅当252a b c === 时取等号,此时221121025()a ac c ab a a b ++-+-的最小值为4. 故答案为:4.题型五 二次与二次(或一次)的商式的最值问题1.若41x -<<,则当22222x x x -+-取最大值时x 的值为( )A .3-B .2-C .1-D .0【答案】D【解析】变形,可得()()()()222112221111222121221x x x x x x x x x x -+-+-++-===+----,41x -<<,510x ∴-<-<,原式()()()11111121221221221x x x x x x ⎡⎤---=+=-+≤-⋅=-⎢⎥---⎣⎦, 当且仅当()11221x x -=-,即0x =时取等号,因此,22222x x x -+-取最大值时0x =. 故选:D.2.(1)若,0x y >,且280x y xy +-=,求x y +的最小值;(2)若41x -<<,求22222x x x -+-的最大值.【答案】(1)18;(2)-1.【解析】(1)由280x y xy +-=,得821x y+=,()828210y x x y x y x y x y ⎛⎫+=++=++ ⎪⎝⎭8210218y xx y ≥+⋅=,当且仅当212x y ==时取等号故当212x y ==,x y +取最小值18.(2)若41x -<<,则()2221112221x x x x x -+⎡⎤=--+⎢⎥--⎣⎦()1121x x-+≥-当且仅当0x =时取等号 ()111121x x ⎡⎤∴--+≤-⎢⎥-⎣⎦.即若41x -<<,22222x x x -+-的最大值为1-.3.(1)求当0x >时,2342x x y x ++=的最小值;(2)求当1x >时,221x y x +=-的最小值.【答案】(1)72;(2)232+.【解析】(1)当0x >时,234322372222222x x x x x x x ++=++≥⋅+=,当且仅当2x =时等号成立,所以当0x >时,函数2342x x y x++=的最小值为72;(2)()22112312111xxy x x x x -+⎡⎤+⎣⎦===-++---, 当1x >时,10x ->,所以()32122321y x x ≥-⋅+=+-, 当且仅当311x x -=-,即在13x =+时等号成立, 所以,当1x >时,221x y x +=-的最小值为232+.4.若,,x y z 均为正实数,则222xy yzx y z +++的最大值是_______.【答案】22【解析】因为,,x y z 均为正实数,所以2222222()11(2)2xy yz xy yzx y y x z y z ++=+++++ 22222()2222xy yzxy yz xy yz x y y z ++≤==+⋅+⋅⋅, 当且仅当2222x y y z ⎧=⎪⎪⎨⎪=⎪⎩,即22x z y ==时等号成立.故答案为:22. 、专题7 基本不等式(2)题型一 条件等式求最值1.已知0<a <1,0<b <1,且44430ab a b --+=,则12a b+的最小值是______.【答案】4243+【解析】已知01,01a b <<<<,由44430ab a b --+=得44441ab a b --+=,即1(1)(1)4a b --=, 令()()10,1,10,1,41x a y b xy =-∈=-∈=, 所以()10,14y x =∈,所以1,14x ⎛⎫∈ ⎪⎝⎭, 故12121218111114114x a b x y xx x x+=+=+=+------()()12421422224441141444134441x x x x x x x x ⎛⎫⎡⎤=++=++=++-+- ⎪⎣⎦------⎝⎭ ()()()()4412444412441242264434441344413x x x x x x x x ⎡⎤----=+++≥+⋅=+⎢⎥----⎣⎦, 当且仅当()()4412444441x x xx --=--即3224x -=时,取等号. 故答案为:4243+. 2.已知正实数x ,y 满足14xy <,且2441y y xy x ++=,则13x y x+-的最小值为______. 【答案】22【解析】解:正实数x ,y 满足14xy <,且2441y y xy x++= 所以21442y y xy x +--=,即()42y x y x y x +-+=,也即()142x y y x ⎛⎫+-= ⎪⎝⎭ 则()1123422x y y x y x y x x x y+-=-++=++≥+ 当且仅当()2142x y x y x y y x ⎧+=⎪+⎪⎨⎛⎫⎪+-= ⎪⎪⎝⎭⎩,即2142x y y x ⎧+=⎪⎨-=⎪⎩,则5234832348x y ⎧-=⎪⎪⎨+⎪=⎪⎩时取等号,此时1711164xy -=<,所以取得最小值22. 故答案为:22.3.已知0a >,0b >,1c >且1a b +=,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值为______. 【答案】422+【解析】因为0a >,0b >,1a b +=,所以222221()22a a a b a b ab ab ab ab +++++==222222ab abab+≥=+,又1c >,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭2221c c ≥+- =122(c 1)21c ⎡⎤-++≥⎢⎥-⎣⎦1222(1)24221c c ⎡⎤-⋅+=+⎢⎥-⎣⎦,其中等号成立的条件:当且仅当222112(1)1a b a b c c ⎧⎪=⎪+=⎨⎪⎪-=-⎩,解得21a =-,22b =-,212c =+,所以21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值是422+. 故答案为:422+.4.若正实数a ,b 满足()2261a b ab +=+,则21aba b ++的最大值为______.【答案】16【解析】()()()221621216a b ab a b a b ab +-=⇒+++-= ,即21216ab a b a b +-=++又()22236323224a b ab a b a b +⎛⎫=⋅⋅≤=+ ⎪⎝⎭,等号成立的条件为2a b = ,原式整理为()()()2223212244a b a b a b +≤++⇒+≤ ,即022a b <+≤ ,那么2121121666ab a b a b +--=≤=++,所以21ab a b ++ 的最大值是16.5.求下列函数的最值(1)求函数22(1)1x y x x +=>-的最小值.(2)若正数x ,y 满足35x y xy +=,求34x y +的最小值. 【答案】(1)223+;(2)5.【解析】(1)2(1)2(1)33(1)223211x x y x x x -+-+==-+++--,当且仅当2(1)3x -=即31x =+时等号成立,故函数y 的最小值为223+.(2)由35x y xy +=得13155y x+=, 则1331213133634(34)()2555555525x y x y x y y x y x +=++=+++=, 当且仅当12355y x x y =,即12y =,1x =时等号成立, 故34x y +的最小值为5.题型二 基本不等式的恒成立问题1.已知a ,b 为正实数,且23a b ab +=,若0a b c +-≥对于满足条件的a 、b 恒成立,则c 的取值范围为.( ) A .2213c c ⎧⎫⎪⎪≤+⎨⎬⎪⎪⎩⎭B .322c c ⎧⎫≤+⎨⎬⎩⎭C .{}6c c ≤D .{}322c c ≤+【答案】A【解析】将23a b ab +=变形为213a b+=,所以()()11121223322132333a b a a b a b b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2a b =时,即632,333a b =-=-时取等号.0a b c +-≥恒成立等价于c a b ≤+恒成立,即()min c a b ≤+,所以2213c ≤+故选:A .2.已知x 、y 都为正数,且4x y +=,若不等式14m x y +>恒成立,则实数m 的取值范围是________.【答案】94m ∴< 【解析】x 、y 都为正数,且4x y +=,由基本不等式得()14144x y x y x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭445259y x y xx y x y=++≥⋅+=,即1494x y +≥,当且仅当2y x =时,等号成立,所以,14x y +的最小值为94,94m ∴<.3.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围. 【答案】(1)10;(2)9122m -≤≤.【解析】(1)2025225x y x y =+≥⋅,解得10xy ≤, 当且仅当5x =,2y =取等号, ∵xy 最大值为10. (2)101555592104421042101041x y y x y x x x x y x y y y ⎛⎫⎛⎫++=++≥+⋅= ⎪⎪⎝⎭⎝⎭+=, 当且仅当203x =,43y =取等号, ∵2944m m +≤,解得9122m -≤≤. 4.设a b c >>,且11ma b b c a c+≥---恒成立,求实数m 的取值范围. 【答案】4m ∴≤ 【解析】由a b c >>知0a b ->,0b c ->,0a c ->. ∴原不等式等价于a c a cm a b b c--+≥--.要使原不等式恒成立,只需a c a ca b b c--+--的最小值不小于m 即可. ()()()()2224a b b c a b b c a c a c b c a b b c a ba b b c a b b c a b b c a b b c-+--+-------∴+=+=++≥+⋅=-------- 当且仅当b c a ba b b c--=--,即2b a c =+时,等号成立. 4m ∴≤5.已知16k >,若对任意正数x ,y ,不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】12k k ⎧⎫⎨⎬⎩⎭【解析】∵0x >,0y >,∵不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立等价于1322x y k ky x ⎛⎫-+ ⎪⎝⎭恒成立.又16k >,∵1132322x y k k k k y x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(当且仅当132k x ky ⎛⎫-= ⎪⎝⎭时,等号成立),∵12322k k ⎛⎫- ⎪⎝⎭,解得13k -(舍去)或12k ,∵实数k 的取值范围为12k k ⎧⎫⎨⎬⎩⎭.题型三 对勾函数求最值1.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174- B .最小值174-C .最大值174D .最小值174【答案】D【解析】设a x =-,b y =-,则0a >,0b >.由12a b ab +=≥得14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立.综上可得,1xy xy +有最小值174. 故选D .2.已知52x ≥,则24524x x y x -+=-有( )A .最大值52B.最小值54C .最大值1D.最小值1【答案】D【解析】解:由522x≥>得,()()()2221451121242222xx xy xx x x-+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当122xx-=-,即3x=时,等号成立,故选:D.题型四基本不等式的应用1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则()A.2a bx+=B.2a bx+≤C.2a bx+>D.2a bx+≥【答案】B【解析】解:由题意得,2(1)(1)(1)A a b A x++=+,则2(1)(1)(1)a b x++=+,因为211(1)(1)2a ba b+++⎛⎫++≤ ⎪⎝⎭,所以21122a b a bx++++≤=+,所以2a bx+≤,当且仅当a b=时取等号,故选:B2.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB上取一点C,使得AC a=,BC b=,过点C作CD AB⊥交圆周于D,连接OD.作CE OD⊥交OD于E.由CD DE可以证明的不等式为()A.2(0,0)abab a ba b>>+B.(0,0)2a bab a b+>>C.22(0,0)22a b a ba b++>>D.222(0,0)a b ab a b+>>【答案】A【解析】解:由射影定理可知2CD DE OD=,即222DC ab abDEa bOD a b===++,由DC DE得2ababa b+,故选:A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

说说上面题目中的解题思想
上述的10道题目都用到了哪 01
些数学思想,请对号入座 每一个小组汇总讨论完成后
02 ,汇总到组长那里进行总结 由组长指定一人代表小组
03 阐述意见
课堂小测,10道题,学 的怎么样




ab≤a+2 b
(1)基本不等式成立的条件:a__>_0__,__b_>__0__.
(2)等号成立的条件:当且仅当___a_=___b___时取等号.
(3)其中a+2 b称为正数 a,b 的_算__术__平__均__数__, ab称为正数 a,b 的_几 ___何__平__均__数_.
2.基本不等式的变形
பைடு நூலகம்必修1
一元二次函数、方程和不 等式复习


一.教学目标:通过回顾不等式的基本知 识和解题方法,归纳数学解题思想。
二.教学重点:回顾基本知识与解题,提 炼数学思想方法。
复习不等式,简单框架图
不等式的基本性质 基本不等式
求一元二次不等式的解集
环节一:知识清单
“ “
2.基本不等式
1.基本不等式:
3.一元二次不等式与一元二次方程、二次函数之 间的关系( a) 0
环节二:常见的题型归 类(限时训练15分钟)
请同学们打开平板,登录朱丛云老师的数学课 堂,并开始限时训练
环节三:说说解题中的数学思想
请输入文本请输入文本请输入文 本请输入文本请输入文本请输入
文本请输入文本请输入文本
分类讨论的思想: 数形结合的思想: 转化与化归思想:
(1)重要不等式:a2+b2≥___2_a_b__ (a,b∈R).当且仅当 a=b 时取等号.
(2)ab≤a+2 b2,(a,b∈R),当且仅当 a=b 时取等号.
(3)a+a1≥_2___(a>0),当且仅当 a=1 时取等号.
a+a1≤__-_2__(a<0),当且仅当 a=-1 时取等号.
(4)ab+ba≥_2_____(a,b 同号),当且仅当 a=b 时取等号.
相关文档
最新文档