气相色谱的定性和定量分析(1)
气相色谱分析法-定性定量分析
利用保留值定性(3)
色谱操作条件不稳定时的定性 相对保留值定性:相对保留值只受柱温和固定相性质的影响, 而柱长、固定相的填充情况和载气的流速均不影响相对保留 值的大小。 用已知标准物增加峰高法定性:在得到未知样品的色谱图后, 在未知样品中加入一定量的已知标准物质,然后在同样的色 谱条件下,作已知标准物质的未知样品的色谱图。对比这两 张色谱图,哪个峰增高了,则说明该峰就是加入的已知纯物 质的色谱峰。
f 'i f ' S 分别为组分i和内标物S的质量校正因子
Ai、AS分别为组分i和内标物S的峰面积
问题:内标法中,如以内标物为基准,则其相应 计算公式如何? 提示:此时 f ' S =1.0。
内标物的选择
内标物应是试样中不存在的纯物质; 内标物的性质应与待测组分性质相近,以使内标物的色谱峰 与待测组分色谱峰靠近并与之完全分离; 内标物与样品应完全互溶,但不能发生化学反应; 内标物加入量应接近待测组分含量。
一般来说,对浓度型检测器,常用峰高定量;对质量型检测器, 常用峰面积定量。
校正因子
校正因子分为相对校正因子和绝对校正因子。 绝对校正因子:表示单位峰面积或单位峰高所代表的物质质量。
mi fi = Ai
或
f i(h)
mi = hi
绝对校正因子的测定一方面要准确知道进入检测器的组分的 量mi,另一方面要准确测量出峰面积或峰高,并要求严格控制色 谱操作条件,这在实际工作中是有一定的困难的。
答:没有。由测定过程和计算公式我们可以发现,进样量的大小不影 响最终的测定结果。
内标法应用实例:甲苯试剂纯度的测定
标准溶液和试样溶液的配制 标准溶液的配制 甲苯试样溶液的配制 相对校正因子的测定 仪器开机、点火、调试; 标准溶液的分析 相对校正因子的计算: 甲苯试样中甲苯含量的测定 甲苯试样溶液的分析
实验1 甲苯的气相色谱定性和定量分析
六、数据及处理
1.记录实验条件
表3-1-1实验条件
仪器型号
GC—17A
进样器温度℃
检测器
检测器温度℃
毛细管柱
毛细管柱温度℃
N2,H2,O2(Kpa)
分流比
进样量(μL)
信号衰减
2.记录标准样色谱图中组分的保留时间tR,空气保留时间(死时间)tM并计算各组分的调整保留时间及相对保留值(以甲苯作标准物质),并把数据列于下表中。
②未知浓度甲苯溶液;
③CS2(分析纯)
四、实验条件
1.毛细管色谱柱:DB-1型0.25㎜×30m非极性柱
2.载气:N275 Kpa
3.燃气:H260Kpa
4.助燃气:空气50Kpa
5.进样器温度:200℃
6.毛细管色谱柱温度:105℃
7.检测器温度:250℃
8.进样分流比:1:100
9.进样量:0.4μL
峰面积A
1
2
3
平均值
4.计算甲苯试样中甲苯的含量。
七、思考题
1.为什么可以利用色谱峰的保留值进行色谱定性分析?
2.在测绘色谱图时,若不严格控制相同实验条件,将对实验结果发生什么后果?
3.在利用ris进行色谱定性时,对实验条件是否可以不必严格控制,为什么?
4.除了利用气相色谱的保留值(包括相对保留值和调整保留值)定性外,还有哪些定性途径?
式中tM、tM’tRs’分别为死时间、被测组分i及标准物质s的调整保留时间。
还应注意,有些物质在相同的色谱条件下,往往具有相近的甚至相同的保留值,因此在进行具有相近保留值物质的色谱定性分析时,要求使用高柱效的色谱柱,以提高分离效率,并且采用双柱法(即分别在两根具有不同极性的色谱柱上测定保留值)。
气相色谱定性和定量分析实验报告
气相色谱定性和定量分析实验报告气相色谱(Gas Chromatography,简称GC)是一种常用的分离和分析技术,广泛应用于化学、生物、环境等领域的定性和定量分析。
本实验旨在通过气相色谱仪对样品进行定性和定量分析,并探讨其在实际应用中的意义和局限性。
实验一:定性分析在定性分析中,我们使用了一台高效液相色谱仪(HPLC)进行实验。
首先,我们准备了一系列标准品和未知样品,包括有机化合物和无机化合物。
然后,将样品注入气相色谱仪中,并设置好适当的温度和流速条件。
样品在色谱柱中被分离,并通过检测器检测到其相对峰面积和保留时间。
通过对比标准品和未知样品的色谱图,我们可以确定未知样品中的化合物成分。
根据保留时间和相对峰面积的对比,我们可以推断未知样品中的化合物种类和含量。
这种定性分析方法可以帮助我们快速准确地确定样品中的化学成分,为后续的定量分析提供依据。
实验二:定量分析在定量分析中,我们使用了气相色谱-质谱联用仪(GC-MS)进行实验。
与定性分析类似,我们首先准备了一系列标准品和未知样品,并将其注入GC-MS 中。
通过GC-MS的联用分析,我们可以获得更加准确和详细的样品信息。
GC-MS技术结合了气相色谱和质谱技术的优势,可以对样品中的化合物进行高效、灵敏的定量分析。
通过质谱仪的检测,我们可以获得化合物的分子量和结构信息,进一步确定样品中的化合物种类和含量。
这种定量分析方法可以广泛应用于环境监测、食品安全、药物研发等领域,为科学研究和工业生产提供有力支持。
实验结果与讨论在实验中,我们成功地对标准品和未知样品进行了定性和定量分析。
通过对比色谱图和质谱图,我们准确地确定了未知样品中的化合物种类和含量。
实验结果表明,气相色谱技术在化学分析中具有较高的分辨率和灵敏度,能够有效地分离和检测复杂的样品。
然而,气相色谱技术也存在一些局限性。
首先,样品的挥发性和稳定性对分析结果有一定影响。
某些化合物可能在分析过程中发生分解或损失,导致定性和定量分析的误差。
气相色谱归一化法定量分析(1)
气相色谱归一化法定量分析(1)气相色谱归一化法定量分析一、实验目的1.掌握气相色谱中利用保留值和相对保留值进行色谱对照的定性方法2.掌握测定质量校正因子的方法。
3.掌握面积校正归一化法定量的基本原理和测定方法。
4.学习色谱操作技术。
二、实验原理2.1纯物质对照法定性分析各种物质在一定的色谱条件(固定相与操作条件等)下有各自确定的保留值,因此保留值可作为一种定性指标。
对于简单的多组分混合物,若其中所有待测组分均为已知且它们的色谱峰均能分开,则可将各个色谱峰的保留值与各相应的标准试样在同一条件下所得的保留值进行对照比较,就能确定各色谱峰所代表的物质,这就是纯物质对照法定性的原理。
该法是气相色谱分析中最常用的一种定性方法。
以保留时间作为定性指标,虽然简便,但由于保留时间的测定受载气流速等色谱操作条件的影响较大,可靠性较差;若采用仅与柱温和固定相种类有关而不受其他操作条件影响的相对保留值ris作为指标,则更适合用于色谱定性分析。
相对保留值ris定义为:ris?'''tRit'RS?tRi?tMtRS?tM式中tM,tRi,tRS分别为死时间,被测组分i及标准物质s的调整保留时间;tRi,tRs为被测组分i及标准物质s的保留时间。
校正因子的测量:色谱分析中。
几乎都要用到校正因子。
校正因子有绝对校正因子和相对校正因子。
绝对校正因子fi是指i物质进校量mi与它的峰面积Ai或峰高hi 之比:fi?mim 或fi?i Aihi只有在仪器条件和操作条件严格恒定的情况下,一种物质的绝对校正因子才是稳定值,才有意义。
同时,要准确测定绝对校正因子,还要求有纯物质,并能准确知道进样量mi,所以它的应用受到限制。
相对校正因子是指i物质的绝对校正因子与作为基准的s物质的绝对校正因子之比。
可以表示为:fis?fimiAs ??fsAims测定相对校正因子,只需配制i和s的质量比mims为已知的标样,进样后测出它们的峰面积之比AsAi,即可计算出fis。
气相色谱分析有哪些定性和定量分析的方法
气相色谱分离技术原理当汽化后的试样(Sample)被载气带入色谱柱中运行时,色谱柱中的流动相(Mobile Phase)与固定相(Stationary Phase)之间因各种物质的化学物理特性不同,产生的相互作用大小、强弱术1司,这种作用可以是溶解度,挥发,极性等化学键或者范德华力;组份在两相间经过一定时间的动力学和热力学平衡后,组分在两相间的浓度有所不同,也即该组分对应固定相的分配系数不同,使得各组分被固定相保留的时间不同,彼此分离,随着载气的移动,从而按一定次序由固定相中先后流出,然后进入检测器,产生的讯号经放大后,在记录器上描绘出各组份的色谱峰。
根据出峰位置,确定组分的名称,根据峰面积确定浓度大小。
如下图简示:在这里分配系数K值如下定义:叱组分在固定相中的浓度6组分在流动相中的浓度%•-定温度下,组分的分配系数爪越大,出峰越慢;• 试样一定时,K主要取决「固定相性质;•每个组份在各种固定相上的分配系数X不同;•试样中的各组分;Mi不同的K值是分离的基础;•某组分的技=0时,即不被固定相保留.最先流出;・选择适宜的固定相可改善分离效果。
在色谱分离理论里有两个经典理论:塔板理论和速率理论。
这里面涉及到组分保留时间和色谱峰变宽的问题。
气相色谱分析有哪些定性和定量分析的方法定性主要的:标样对照定性,利用相对保留值定性。
定量:峰面积测量归一法内标法,外标法。
「、气相色谱定性分析■通常利用组分□知的标准物质在相同色谱分析条件卜的色谱峰的保用时间来确定■ •定色i孽件卜*每•种物质都行•-个确定的保留值二、气相色谱定量分析■』(相色谱定廿分析】:要是确定样品中各种组分的相对或绝对含牡,方法有:口归化法口外标法口内标法4.定量方法■常用的定处方法口归一化法口外标法(标准曲线法)口内标准法口标准龙:入法。
气相色谱定性和定量分析实验报告
气相色谱定性和定量分析实验报告摘要:本次实验使用气相色谱法进行样品的定性和定量分析。
对纯乙醇,甲醇/浓盐酸,乙醇/浓盐酸三种样品进行了分析。
通过实验结果可以发现,气相色谱法具有高精确度、灵敏度和分辨率的特点,是一种较好的分析方法。
关键词:气相色谱;定性分析;定量分析;精确度;分辨率一、实验介绍1、实验目的1) 掌握气相色谱法的基本原理和操作方法;2) 了解气相色谱法在样品定性和定量分析中的应用和优势;3) 掌握气相色谱法分析结果的数据处理方法。
2、实验仪器本次实验使用的主要仪器设备如下:气相色谱仪样品进样口色谱柱氢气瓶色谱专用软件3、实验样品本次实验使用的样品如下:纯乙醇甲醇/浓盐酸乙醇/浓盐酸二、实验步骤1、静态头空进样法分析纯乙醇a、设置气相色谱仪的工作条件进样口温度:200℃氢气瓶压力:80 kpa氧化铝填料直径:3mmb、样品的准备与操作使用微量注射器,将2μl的纯乙醇样品改菲托管中,然后通过进样口注入气相色谱仪。
c、分析结果得到如下气相色谱图:根据气相色谱图中的峰形、保留时间等特征参数与文献数据进行比对,可以初步确定研究对象为纯乙醇。
2、动态头空进样法分析甲醇/浓盐酸、乙醇/浓盐酸a、设置气相色谱仪的工作条件进样口温度:220℃氢气瓶压力:100 kpa氧化铝填料直径:3mmb、样品的准备与操作使用微量注射器,将2μl的甲醇/浓盐酸、乙醇/浓盐酸样品改菲托管中,然后通过进样口注入气相色谱仪。
c、分析结果得到如下气相色谱图:根据气相色谱图中的峰形、保留时间等特征参数与文献数据进行比对,可以初步确定研究对象为甲醇/浓盐酸、乙醇/浓盐酸。
三、实验结果与分析通过以上的实验操作和数据处理,可以得到以下结论:1、通过气相色谱法可以较准确地定性分析样品中的物质成分;2、当样品量较小时,可以使用静态头空进样法进行分析;3、当样品含有较多杂质时,可以使用动态头空进样法进行分析;4、气相色谱法在精确度、灵敏度和分辨率等方面具有较强的优势。
气相色谱仪的定性、定量分析
常用峰面积定量被测组分经
校正过的峰面积(或峰高)占样品中各组分 经校正过的峰面积(或峰高)的总和的比例
来表示样品中各组分含量的定量方法。 当试样中所有组分均能流出色谱柱,且
完全分离,并在检测器上都能产生信号时, 可用归一化法计算组分含量。
4、标准曲线法 标准曲线法也称外标法或直接比较法, 是一种简便、快速的定量方法,具体方法与 分光光度分析中的标准曲线法相似。 优点:绘制好标准工作曲线后测定工作 就变得相当简单,可直接从标准曲线上读出
含量,因此特别适合于大批样品分析。缺点: 每次样品色谱分析的色谱操作条件(检测器 的响应性能、柱温、流动相流量及组成、进 样量、柱效等)很难完全相同,因此容易出 现圈套误差。
这个结论并不准确可靠。
(2)双柱法定性。若要得到更为准确可靠 的结论,可再用另一根极性完全不同的色谱 柱,做同样的对照比较。如果结论同上,那 么最终的定性结果相对更为可靠。
(3)色谱操作条件不稳定时的定性。这时 可以采用相对保留值定性或用已知标准物增
加峰高法定性。 ① 相对保留值定性; ② 用已知标准物增加峰高法定性。 2、利用保留指数定性 在利用已知标准物直接对照定性时,已
缺点是必须在所有样品中加入内标物, 选择合适的内标物比较困难,内标物的称量 要准确,操作较复杂。
3、标准加入法 标准加入法是一种将欲测组分的纯物质 加入到待测样品中,然后在相同的色谱条件 下,分别测定加入欲测组分纯物质前后欲测 组分的峰面积(或峰高),从而计算欲测组 分在样品中的含量的方法。
优点:不需要别处的标准物质作内标物, 只需要欲则组分的纯物质,进样量不必十分 准确,操作简单,是色谱分析中较常用的定 量分析方法。缺点:要求加入欲测组分前后 两次色谱测定的色谱操作条件完全相同,否 则将引起分析测定的误差。
气相色谱定性定量分析
气相色谱定性定量分析一.定性分析气相色谱的优点是能对多种组分的混合物进行分离分析,(这是光谱、质谱法所不能的)。
但由于能用于色谱分析的物质很多,不同组分在同一固定相上色谱峰出现时间可能相同,进凭色谱峰对未知物定性有一定困难。
对于一个未知样品,首先要了解它的来源、性质、分析目的;在此基础上,对样品可有初步估计;再结合已知纯物质或有关的色谱定性参考数据,用一定的方法进行定性鉴定。
(一)利用保留值定性1.已知物对照法各种组分在给定的色谱柱上都有确定的保留值,可以作为定性指标。
即通过比较已知纯物质和未知组分的保留值定性。
如待测组分的保留值与在相同色谱条件下测得的已知纯物质的保留值相同,则可以初步认为它们是属同一种物质。
由于两种组分在同一色谱柱上可能有相同的保留值,只用一根色谱往定性,结果不可靠。
可采用另一根极性不同的色谱柱进行定性,比较未知组分和已知纯物质在两根色谱柱上的保留值,如果都具有相同的保留值,即可认为未知组分与已知纯物质为同一种物质。
利用纯物质对照定性,首先要对试样的组分有初步了解,预先准备用于对照的已知纯物质(标准对照品)。
该方法简便,是气相色谱定性中最常用的定性方法。
2.相对保留值法对于一些组成比较简单的已知范围的混合物或无已知物时,可选定一基准物按文献报道的色谱条件进行实验,计算两组分的相对保留值:(5)式中:i-未知组分;s-基准物。
并与文献值比较,若二者相同,则可认为是同一物质。
(ris仅随固定液及柱温变化而变化。
)可选用易于得到的纯品,而且与被分析组分的保留值相近的物质作基准物。
2. 保留指数法又称为Kovats指数,与其它保留数据相比,是一种重现性较好的定性参数。
保留指数是将正构烷烃作为标准物,把一个组分的保留行为换算成相当于含有几个碳的正构烷烃的保留行为来描述,这个相对指数称为保留指数,定义式如下:(6)IX为待测组分的保留指数,z与z+n为正构烷烃对的碳数。
规定正己烷、正庚烷及正辛烷等的保留指数为600、700、800,其它类推。
气相色谱的定性方法与定量方法
关键词 : 气相色谱 ; 定性 ; 定量
在气 相 色谱 分析 中 , 当操 作条 件确 定后 , 将一 定量 样 品注 入色 谱 柱 , 经过 一定 时 间 , 品 中各组 分在柱 中被分 样 离, 经检 测器 后 , 在记 录仪 上 得 到 一 张 确定 的色 谱 图。 就 由谱图中每个组分峰的位置可进行定性分析 , 由每个色
( 从 地 层 水 的 矿 化 度 来 分 析 , 化 度 大 ቤተ መጻሕፍቲ ባይዱ 4) 矿
() 2 利用保 留值 的经验规律定性 大量实验结果 已经证明, 在一定柱温下 , 同系物的保 留值对数与分子中的碳数成线性关系, 此即为碳数规律 ; 另外同一族的具有相同碳数 的异构体 的保 留值对数与其 沸点成线性关系, 此即为沸点规律。 当 已知 样 品为某 一 同系列 , 但没 有纯 样 品对 照时 , 可 利用上 述 经验规 律定 性 。 () 3利用 其他 方法定 性 ①利用 化学方 法 配 合进 行 定 性 ; 可在 柱 后 把 流 出 还 物通人 有选 择性 的化 学试剂 中 , 利用 显性 、 淀 等对未 知 沉 物进行 定性 。 ②结 合仪 器进行 定性 气相色谱是 比较高效的分离分析工具 , 但对 复杂 的 混合物单靠色谱定性鉴定是很有困难的, 而红外光谱 、 质 谱等 仪器 分析方 法 对化 合 物 的定 性鉴 定 是 很 有 特 征 的 , 但对 复杂 混合物 的 分析 有 困难 , 因此 如 果 用 气 相 色谱 法 将复 杂混 合物 分成单 个或 复 杂 的组 成 , 然后 用质 谱 、 光谱 鉴定 则有 助于解 决许 多 问题 。近年 来 发展 了气 相色 谱 与 质谱 或红 外光谱 在 系统上 联用 , 离和 定性 同时进行 , 分 当 色谱分析完毕后时 , 质谱与光谱的谱图也就全部得到。
气相色谱常用定量和定性方法
fM
14
2020/10/20
3.2.2相对校正因子的查阅
3.2.3.1相对响应值(S ) 一种物质与相同量的参比物质的响应值之比 3.2.3.2 f =1/S
15
2020/10/20
3.2.3定量校正因子的测定
相对校正因子:采用的标准物因检测器不同而 不同: 热导池检测器TCD:苯 火焰离子化检测器FID:正庚烷
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
2.3.2.2方法
(1)将碳数为Z和Z+1的正构烷烃做标准物,加入到待测样品i中,测得这
三种物质的调整保留值,且tR(Z) < tR(i)< tR(Z+1)
I
100[Z
lg X i lg X Z lg X(Z 1) lg X Z
Xi%=fi×Ai Xs%=fs×As= fi×As Xi%/ Xs%= Ai/As Xi%= Xs% Ai/As
20
2020/10/20
3.3.4内标法
2.常用的色谱定性分析方法
2.1 根据保留值定性(用纯物质对照) 2.2 用双柱定性 2.3 利用文献值对照定性 2.4 GC-MS联用定性
4
2020/10/20
2.1 根据保留值定性--最常用的定性方法
2.1.1 依据 相同物质在相同的色谱条件下具有相同的保留值。
(1()即若:试若样tR中=ti某,组则分R的=i)保留值(tR) 与已知物相同,则试样中含有该物质。 (2)峰增高法:在待测物中加入已知物的纯物质,再与待测物色谱图比较,
]
(2)求出未知物的Ii,并与文献值对照定性 2.3.2.3注意
气相色谱定性和定量分析
气相色谱定性和定量分析一、实验目的1、了解气相色谱各种定性定量方法的优缺点。
2、掌握纯标样对照、保留值定性的方法。
3、掌握面积和峰高归一化定量方法。
二、实验原理气相色谱是一种强有力的分离技术,但其定性鉴定能力相对较弱。
一般检测器只能“看到”有物质从色谱中流出,而不能直接识别其为何物。
若与强有力的鉴定技术如质谱及傅里叶变换红外光谱等联用,则能大大提高气相色谱的定性能力。
在实际工作中,有时遇到的样品其成分是大体已知的,或者是可以根据样品来源等信息进行推测的。
这时利用简单的气相色谱定性方法往往能解决问题。
气相色谱定性方法主要有以下几种:(1)标准样品对照定性;(2)相对保留值定性;(3)利用调整保留时间与同系物碳数的线性关系定性;(4)利用调整保留时间与同系物沸点的线性关系定性;(5)利用Kovats 保留指数定性;(6)双柱定性或多柱定性。
(7)仪器联用定性,如用质谱、红外光谱及原子发射光谱检测器。
本实验采用标准样品对照和相对保留值定性方法。
气相色谱在定量分析方面是一种强有力的手段。
常用的定量方法有峰面积百分比法、内部归一化法、内标法和外标法等。
峰面积百分比法适合于分析响应因子十分接近的组分的含量,它要求样品中所有组分都出峰。
内部归一化法定时准确,但它不仅要求样品中所有组分都出峰,而且要求具备所有组分的标准品,以便测定校正因子。
内标法是精度最高的色谱定量方法,但要选择一个或几个合适的内标物并不总是易事,而且在分析样品之前必须将内标物加入样品中。
外标法简便易行,但定量精度相对较低,且对操作条件的重现性要求较严。
本实验采用内部归一化法,其计算公式如下:%100%⨯=∑mii mi i i f A f A A 式中Ai 为组分i 的峰面积,fmi 为组分i 的相对校正因子,它可由计算相对响应值S ’的方法求得:is i s m yA x A S S S f ==='1 式中,Ss 、Si 分别为标准物(常为苯)和被测物的响应因子,As 、y 和Ai 、x 分别为标准物和被测物的色谱峰面积及进样量。
气相色谱定性定量分析方法
一、气相色谱定性分析
? 通常利用组分已知的标准物质在相同色谱 分析条件下的色谱峰的保留时间来确定
? 一定色谱条件下,每一种物质都 有一个确 定的保留值
二、气相色谱定量分析
? 气相色谱定量分析主要是确定样品中各种 组分的相对或绝对含量,方法有:
? 归一化法 ? 外标法 ? 内标法
准物质的相关色谱信息 ? 根据公? 归一化法 ? 外标法(标准曲线法) ? 内标准法 ? 标准加入法
(1)归一化法
以试样中被测组分经校正的峰面积(或峰高)占试样各组分 经校正的峰面积(或峰高)的总和的比例
?
i
?
mi m
?
m1 ?
mi m2 ? ?
ms fi hi m样品 f shs
内标法中常以内标物为基准,即fs=1.0,则:
?i
?
mi m
?
ms fi Ai m试 As
? 内标法最关键是选择合适的内标物,对内标物的 要求:
? 内标物应是试样中不存在的纯物质 ? 内植物的性质应与待测组分性质接近,内标物的色谱
峰应在待测组分色谱峰附近并完全分离 ? 加入内标物的量应接近待测组分的量 ? 内标物应与试样完全互溶,不可发生化学反应
1.定量校正因子
? 色谱定量分析是基于被测物质的量与其峰面积的 正比关系。但由于同一检测器对不同的物质具有 不同的响应值,所以 两个相等量的物质出的峰面 积往往不相等 ,或者说,相同的峰面积并不意味 着相等物质的量 。这样就不能用峰面积来直接计 算物质的量。
? 因此,在计算组分的量时需将面积乘上一个换算 系数,使组分的面积转换成相应物质的量。即必 须将峰面积 A乘上一个换算系数进行“校正”。
? ? mn
气相色谱常用定量和定性方法ppt课件
定量注意事项
• 一般定量以峰面积为基准 • 所有参加计算的峰形正常(谱峰不前伸、不拖尾、不过载)的情
况下,也可以以峰高为基准进行计算 • 分子量相差不大或分子量较大的同系物校正因子相差不大,可直
接用峰面积(或峰高)定量
谢 谢!
准物S的调整保留时间ti’和ts ’ : ai,s = ti’/ ts ’
(2)计算ai,s并与文献相应值比较定性。 2.3.1.3特点 可消除实验条件不一致带来的误差。
2.3.2保留指数(I)定性法
2.3.2.1依据
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
校正因子与待测物/标准物的性质和检测器的类型有关,可查文献, 也可测定
3.2.1定量校正因子的分类
• 质量校正因子
• 摩尔校正因子
• 体积校正因子
• fM ′ =fV ′
fm
f' m(i)
f' m(s)
m(i) A(s) m(s) A(i)
fM
f' M (i)
f' M (s)
m(i) A(s)M (s) m(s) A(i)M (i)
• 绝对校正因子:用已知准确浓度的标准 样品
3.3常用的定量计算方法
3.3.1 归一化法 3.3.2 外标法 3.3.3 单点校正法 3.3.4 内标法 3.3.5 标准加入法 3.3.6 加内标的标准加入法
3.3.1 归一化法
3.3.1.1 方法
当样品中各组分都能出峰时,将各组分的含量之和
按100%计算的定量方法。
2024/1/26
1
主要内容
1.什么是色谱定性和定量分析 2.常用的色谱定性分析方法 3.常用的色谱定量分析方法
气相色谱的定性和定量分析
实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。
衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。
在实际应用中,R=1.0一般可以满足需要。
用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。
在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。
因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。
当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。
实验时,可采用单柱比较法、峰高加入法或双柱比较法。
单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。
当两者的数值相同时,即可认为待测试样中有纯样组分存在。
双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。
由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。
在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。
式(2-10)和式(2-11)是色谱定量的依据。
不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。
由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。
测量峰面积的方法分为于上测量和自动测量。
气相色谱的定性和定量分析实验
气相色谱的定性和定量分析实验一、实验药品乙酸丁酯(AR)、正己烷(AR)、未知试样二、实验仪器SC3000气相色谱仪;注射器:1μL;容量瓶若干三、实验目的1、深入了解气相色谱仪的基本结构2、进一步熟悉气相色谱分离分析的基本原理3、学习计算色谱峰的分离度4、掌握根据保留值,作已知物对照定性的分析方法5、熟悉用归一化法定量测定混合物各组分的含量四、实验原理利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。
对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。
衡量一对色谱峰分离的程度可用分离度R表示:式中,T R,2,w2和T R,1,w1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。
在实际应用中,R=1.0一般可以满足需要。
用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。
在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。
因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。
在一定的色谱条件下,组分i的质量m:或其在流动相中的浓度,与检测器的响应信号峰面积Ai或峰高h,成正比:m i = f i A• A i(1)或m i = f i h• A i(2)式中,f i A和f i h称为绝对校正因子。
式(1)和式(2)是色谱定量的依据。
不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。
由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。
现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。
由式(1),绝对校正因子可用下式表示:(3)式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。
色谱的定性与定量
谱峰的峰面积或峰高)---所测组分的数量或 浓度成正比,
即:
wi Ci f i Ai hi
w 式中: i –组分i的质量
ci —组分i的浓度
f i —组分的校正因子(与检测器的性质和被 测组分的性质有关)
Ai —组分i的峰面积,
②利用相对保留值定性
定义:相对保留值是组分i与基准物S的调整保留值之比:
i,s tR ,i / tR ,s VR,i /VR,s
优点:可以消除某些操作条件的影响,只要柱温、 固定相不变,即使柱径、柱长、填充情况及流动 相的流速有所变化,相对保留值γ仍然不变,它是 色谱定性分析的重要参数
③利用保留指数定性 表示物质在固定液上的保留行为,是目前使
绝对校正因子fi的大小主要由操作条件和 仪器的灵敏度所决定,既不容易准确测量,也 无统一标准;当操作条件波动时,fi也发生变 化。故fi无法直接应用,定量分析时,一般采 用相对校正因子。
(2)相对校正因子(校正因子):
f
fi fs
mi ci Ai hi ms cs As hs
式中:f -- 相对校正因子 ,简称为校正因子, 无因次量
hi —组分i的峰高
2.峰面积的准确测定
1)对称峰的峰高和峰面积 的测定
第一法:峰高×半高 峰宽
A h Wh 2
式中: h—从峰顶到峰底线 的垂直距离 W h/2—峰高1/2处的 峰宽
第二法:三角形法
A BM Wi
式中:BM—三角形的高 Wi—三角形KML的
半高宽,近似等于色 谱峰高0.607处的峰宽
0.40
Ethylparaben
0.35
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.如何选择适当的桥电流和载气种类以提高热导 池检测器的灵敏度? 7.为什么氢气作载气比用氮气载气灵敏度高?
常用的定量分析方法有归一化法、内标法和标准曲 线法。在实际工作中采用何种方法,应根据它们各自的 特点加以选择。 归一化法是将样品中所有组分的含量之和按100% 计算,以它们相应的色谱峰面积或峰高(响应信号)为 定量参数,通过下式计算各组分的质量分数:
m × 100% = A f ω= m ∑A f
苯
环己烷 甲苯
六.问题讨论
1.归一化法定量前提条件是什么?本实验中进样
量是否需要非常准确?为什么? 2.试根据混合试液各组分及固定液的性质,解释 各组分的流出次序。 3.102M型气相色谱仪的操作次序。 4.为什么要测定定量校正因子? 5.使用热导池检测器时,能否先接通电源,再开 启载气?为什么?3
3.实验完毕,依次关闭记录仪、热导池桥电流、
将温度设置开关归零,待温度降至室温后,关闭 主机电源,最后关闭载气。并将各开关旋钮旋至 最低档处。
五 结果处理
1.将混合物各组分的保留时间与纯物质各组分对 照进行定性分析。 2.依据峰面积定量,用归一化法计算混合物中各 组分的质量分数,并与工作站计算数据比较。
i i i i n i 总 i
′ ′
i
× 100%
三.仪器和试剂
1.102M气相色谱仪,热导池检出器、色谱工作站(N2000) 2.高纯氮气(带减压阀的氮气) 3.色谱柱:邻苯二甲酸二壬酯(15%DNP) 4.注射器:1μL 5.环己烷,苯,甲苯(色谱纯) 6.未知的混和试样
四.实验步骤
1. 认真阅读气相色谱仪操作说明,在教师指导下,按照下 列色谱条件开启色谱仪。 色谱条件: 柱温(恒温):110℃;检测器(TCD):120℃;汽化室: 125℃;载气流速(N2):4.6圈;进样量:0.3μL(混合物为 0.9μL)。 2.内容 a.死时间t0的测定。 b.环己烷、苯、甲苯纯样品保留时间的测定。 c.混合试液的分析。
在一定的色谱条件下,组分í的质量 mí或其在流动相中 的浓度,与检测器的响应讯号峰面积Aí或峰高hí成正比: mí=fi Ai 式中f i称为绝对校正因子。上式是色谱定量的依据。不难 看出,响应信号A及 校正因子的正确测量直接影响定量分析 的准确度。
由于峰面积的大小不易受操作条件如柱温,流动相 的流速,进样速度等因素影响,故峰面积更适定量分析 的参数。测量峰面积的方法分为手工测量和自动测量两 大类。现代色谱仪中一般都配有准确测量色谱峰面积的 电学积分仪。手工测量则首先测量峰高h和半峰宽Y1\2, 然后按下式计算: Aí=1.065híY1\2 当峰形不对称时,则 : Aí=0.5hí(Y0.15+Y0.85)
R=
tR tR 1 ( + ) 2Y Y
2 1
1
2
式中tR,2,Y2和tR,1,Y2分别是两个组分的保留时间和峰 底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。 在实际应用中,R=1.0时一般可以满足。
柱效能指标用理论塔板数n表示,而将每一塔板数对应 的柱长用H表示: L
H=
显然,柱效越高,n值越大,H则越小。理论塔板数n反 之是一个估算柱效能的理论概念,并不能用来作为柱 分离能力的绝对量度。而只能将它用来比较类似(或 标准)的柱子,衡量它们的装填情况,n可由下式从色 谱图上求得:
气相色谱的定性和定量分析(1) 气相色谱的定性和定量分析(1)
分析化学教研室
一、实验目的
1.加深理解色谱分离分析的原理,学习计算色谱峰的分
辨率、理论塔板数等。。 3.掌握用归一化法定量测定混合物各组分的含量。
二.
方法原理
气相色谱法能否很好地完成所给定物质的分离,主要取 决于色谱峰间的相对距离及色谱峰的扩宽程度,前者与固 定相的选择有关,后者是柱子的设计情况及其操作条件的 结果,与柱效能有关。 对一个混合试样成功的分离,是气相色谱法完成定性及 定量分析的前提和基础。衡量一对色谱峰分离的程度可用 分离度R表示:
n ( 理 ) = 5 .54 × (
n
tR ) Y1 / 2
2
tR是样品的保留时间,Y1/2是色谱峰的半宽度
在色谱系统中,下列因素将影响理论塔板数: ①进样系统,包括气化室的体积、温度以及进样时的 速度和进样量; ②检测器的池体积; ③柱子的性能。 色谱图上每一个峰所代表的物质。在色谱条件一定时, 任何一种物质都有确定的保留值。因此,在相同的色谱操 作条件下,通过比较已知纯样和未知物的保留参数或在固 定相上的位置,即可确定未知物为何种物质。