非参数统计学讲义(第二章)讲稿
《非参数统计分析》(1-8章)教案.doc
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
非参数统计讲义二单样本模型通用课件
02
单样本模型介绍
单样本模型定义
单样本模型是指仅使 用一个样本数据来构 建统计模型的统计方 法。
单样本模型常用于分 析单个样本数据的分 布、参数估计和假设 检验等。
它与双样本模型相对 ,后者需要两个独立 样本数据进行比较。
单样本模型的特点
简单易用
灵活性
单样本模型仅需一个样本数据,无需 复杂的配对或分组操作,计算过程相 对简单。
秩和检验的应用步骤
将数据排序,计算秩次,根据秩次计算统计量,与临界值进行比较。
秩和检验的优点
不受数据分布形式的限制,能够处理异常值和离群点。
案例三:直方图在单样本模型中的应用
直方图
直方图是一种非参数统计方法, 用于展示数据的分布情况。在单 样本模型中,直方图可以用于分
析一组数据的分布特征。
直方图的应用步骤
成本,对于大规模数据集可能存在计算效率问题。
02
对数据量和样本代表性要求较高
非参数统计方法需要足够的数据量和样本代表性,才能保证分析结果的
稳定性和可靠性。
03
对数据质量要求较高
非参数统计方法对数据的质量和完整性要求较高,如果数据存在缺失、
异常或偏差等问题,可能会影响分析结果的准确性和可靠性。
04
非参数统计在单样 本模型中的具体应 用
核密度估计在单样本模型中的应用
核密度估计是一种非参数统计方法,用 于估计未知概率密度函数。在单样本模 型中,核密度估计可以用来检验数据是 否符合特定的概率分布,或者比较两组
数据的分布是否相似。
核密度估计的基本思想是利用核函数和 权重函数对概率密度函数进行加权平均 ,从而得到未知概率密度函数的估计。 常用的核函数包括高斯核、多项式核等
非参数统计讲义通用课件
假设检验方法
总结词
假设检验方法用于检验一个关于总体 参数的假设是否成立。
详细描述
假设检验方法包括提出假设、构造检 验统计量、确定临界值和做出决策等 步骤。常见的假设检验方法有t检验、 卡方检验、F检验等,用于判断样本数 据是否支持假设。
关联性分析方法
总结词
关联性分析方法用于研究变量之间的相关性。
02
非参数统计方法
描述性统计方法
总结词
描述性统计方法用于收集、整理、描述数据,并从数据中提取有意义的信息。
详细描述
描述性统计方法包括数据的收集、整理、描述和可视化,例如均值、中位数、 众数、标准差等统计量,以及直方图、箱线图等图形化表示。这些方法可以帮 助我们了解数据的分布、中心趋势和离散程度。
非数统计与机器学习算法的结 合将有助于解决复杂的数据分析 问题。
02
与大数据技术的融 合
非参数统计将借助大数据技术处 理海量数据,挖掘数据背后的规 律和模式。
03
与社会科学研究的 互动
非参数统计方法将为社会科学研 究提供更有效的研究工具和方法 。
决策树分析方法
总结词
决策树分析方法是一种基于树形结构的非参 数统计学习方法。
详细描述
决策树分析方法通过递归地将数据集划分为 更小的子集,构建出一棵决策树。决策树的 每个节点表示一个特征属性上的判断条件, 每个分支代表一个可能的属性值,每个叶子 节点表示一个分类结果。决策树分析可以帮 助我们进行分类、预测和特征选择等任务。
非参数统计的发展趋势
多元化发展
非参数统计将不断拓展其应用领域,从传统的医学、生物 、经济领域向金融、环境、社会学等领域延伸。
01
算法优化
随着计算能力的提升,非参数统计的算 法将进一步优化,提高计算效率和准确 性。
非参数统计学讲义(第二章)讲稿
非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。
例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S -∑-=为样本标准差。
t —检验的统计量在零假设下有n —1个自由度的t —分布。
检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。
t —检验也许是世界上用得最广泛的检验之一。
但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。
这时就要考虑使用非参数方法。
对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。
本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。
非参数统计讲义
第一章 绪 论本章主要内容: 1.非参数方法介绍 2.预备知识第一节 非参数方法介绍一. 非参数方法的概念和实例复习参数方法定义:设总体X 的分布函数的形式是已知的,而未知的仅仅是分布函数具体的参数值,用样本对这些未知参数进行估计或进行某种形式的假设检验,这类推断方法称为参数方法。
先来看两个实例。
例1.1 供应商供应的产品是否合格? 某工厂产品的零件由某个供应商供应。
合格零件标准长度为(8.5±0.1)cm 。
这也就是说合格零件长度的中心位置为8.5cm ,允许误差界为0.1cm ,即长度在8.4-8.6cm 之间的零件是合格的。
为评估近年来供应的零件是否合格,随机抽查了n=100个零件,它们的长度数据X 见第一章附表1.1。
解答:根据我们已学过的参数统计的方法,如何根据数据来判断这批零件合格否? 用参数数据分析方法,在参数统计中,运用得最多的是正态分布,所以考虑假设供应商供应的零件长度X 服从正态分布,即X ~),(2σμN其中两个参数均未知,但可用样本均值估计μ,样本方差估计2σ。
由已知的数据计算可得:零件的平均长度,即样本均值为x =8.4958cm ,样本标准差为s=0.1047cm 。
则零件合格的可能性近似等于)/)4.8(()/)6.8(()6.84.8(σμσμ-Φ--Φ=≤≤X P)1047.0/)4958.84.8(()1047.0/)9458.86.8((-Φ--Φ≈%66≈这个说明:约有三分之一的零件不合格,该工厂需要换另一个供销商了。
但这个结论与实际数据符不符合呢?这是我们要思考的问题。
我们可以对数据做一个描述性分析,先对这100个样本数据做一个频率分布。
观察到:在这100个零件中有91个零件的长度在8.4cm ~8.6cm 之间,所以零件合格的比例为91%,超过66%很多!统计分析的结论与数据不吻合的!这是什么原因呢?我们可以作出数据的直方图来分析数据的分布情况。
非参数统计讲义通用课件
通过实际案例展示如何使用Python进行非 参数统计,包括分布拟合、假设检验和模 型选择等步骤。
SPSS实现
SPSS简介
SPSS(Statistical Package for the Social Sciences) 是一款流行的社会科学统计 软件。
操作界面
SPSS的非参数统计功能通常 在“分析”菜单下的“非参 数检验”选项中,用户可以 通过直观的界面进行操作。
聚类分析方法在数据挖掘、 市场细分等领域有广泛应用, 可以帮助我们发现数据的内 在结构和模式。
异常值检测方法
• 异常值检测方法用于识别和剔除数据中的异常值,提高数据分析的准确性和可靠性。
• 常见的异常值检测方法包括基于统计的方法、基于距离的方法、基于密度的方等。 • 基于统计的方法利用统计学原理,如z分数、IQR等,判断数据是否为异常值;基于距离的方法通过计算对象与其它对象的距离来判断是否为异常值;基于密度的方法则根据对象周围的密度变化来判断是否
解释性较差
相对于参数统计,非参数统计结果通 常较为抽象,难以直接解释其具体含 义。
假设检验能力较弱
非参数统计在假设检验方面的能力相 对较弱,对于确定性的结论和预测不 如参数统计准确。
如何克服非参数统计的局限性
01
02
03
04
利用高效计算方法
采用并行计算、分布式计算等 高效计算方法,提高非参数统
计的计算效率和准确性。
描述性统计方法在数据分析中起到基 础作用,为后续的统计推断提供数据 基础和初步分析结果。
假设检验方法
假设检验方法是一种统计推断 方法,通过提出假设并对其进
行检验,判断假设是否成立。
假设检验方法包括参数检验和 非参数检验,其中非参数检验 不依赖于总体分布的具体形式,
非参数统计分析PPT课件
思考的要点 什么是计数统计量; 什么是秩统计量,为什么要讨论秩; 为什么要讨论秩的分布、秩的期望和方差; 什么是符号秩和线性符号秩; 线性符号秩的期望和方差。
第7页/共61页
第一节 关于非参数统计
在参数统计学中,最基本的概念是总体、样本、随机 变量、概率分布、估计和假设检验等。其很大一部分内容是 建立在正态分布相关的理论基础之上的。总体的分布形式或 分布族往往是给定的或者是假定了的,所不知道的仅仅是一 些参数的值。于是,人们的任务就是对一些参数,比如均值 和方差(或标准差),进行点估计或区间估计,或者是对某 些参数值进行各种检验,比如检验正态分布的均值是否相等 或 等 于 零 等 等 . 最 常 见 的 检 验 为 对 正 态 总 体 的 t— 检 验 、 F—检验和最大似然比检验等。又比如,线性回归分析中, 需要估计回归系数j, j称为参数,所以线性回归分析应 该属于参数统计的范畴。
其一是样本容量不大; 其二是总体服从何种分布未知。下面我们来构造一 种检验的方法,看他们的资产负债有无显著性差异。
第11页/共61页
将两类企业的资产负债混合排序,并给出其序次, 这在统计中称为“秩”。在这张表中我们有两个可用的 信息。
负债率 55 59 61 64 64 65 70 73 75 76 77
第9页/共61页
在不知总体分布的情况下如何利用数据所包 含的信息呢?一组数据最基本的信息就是次序。如 果可以把数据按大小次序排队,每一个具体数目 都有它在整个数据中(从最小的数起)的位置或次 序,称为该数据的秩(rank)。数据有多少个观察值, 就有多少个秩。在一定的假定下,这些秩和秩的 统计量的分布是求得出来的,而且和原来的总体 分布无关。这样就可以进行所需要的统计推断。 注意:非参数统计的名字中的“非参数 (nonparametric)”意味着其方法不涉及描述总体 分布的有关数值参数(均值和方差等);它被称 为和分布无关(distribution—free),是因为其 推断方法和总体分布无关;不应理解为与所有分 布(例如有关秩的分布)无关。
《非参数统计分析》(1-8章)教案.doc
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
《非参数统计分析》(1-8章)教案.doc
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
王静龙《非参数统计分析》(1-8章)教案讲课讲稿
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
《-非参数统计-》课程教学大纲上课讲义
《-⾮参数统计-》课程教学⼤纲上课讲义《⾮参数统计》课程教学⼤纲Non-parametric statistics课程代码:课程性质:专业⽅向理论课/选修适⽤专业:统计开课学期:5总学时数:32 总学分数:2.0编写年⽉:2007.5 修订年⽉:2007.7执笔:孙琳⼀、课程的性质和⽬的本课程是学习⾮参数统计和了解统计前沿的基本课程。
本课程结合S-Plus 或R 软件来讲解⾮参数统计⽅法的原理与应⽤。
本课程的⽬的是使学⽣认识到⾮参数统计⽅法是统计中最常⽤的推断⽅法之⼀,理解⾮参数统计⽅法和参数统计⽅法的区别,理解⾮参数统计的基本概念,掌握⾮参数统计的基本⽅法,能应⽤⾮参数统计⽅法去解决实际问题。
⼆、课程教学内容及学时分配第⼀章引⾔(2学时)本章内容:统计的概念,⾮参数统计的⽅法,参数统计与⾮参数统计的⽐较,本章要求:了解⾮参数统计的历史,了解⾮参数统计⽅法和参数统计⽅法的区别,认识⾮参数统计⽅法的必要性。
第⼆章 S-Plus基础(6学时)本章内容:S-Plus环境,向量的定义和表⽰,向量的基本操作,向量的基本运算,向量的逻辑运算,S-Plus 的图形功能,本章要求:熟悉在S-Plus命令⾏中S-Plus基本数据处理,掌握在S-Plus命令⾏中进⾏基本数据基本运算,能编写简单的计算函数,会绘制基本图形。
第三章单⼀样本的推断问题(6学时)本章内容:单样本推断问题,中⼼位置推断,符号检验,游程检验,Cox-staut趣势检验,分位数检验,Wilcoxon符号秩检验,分布检验,Kolmogorov-smirnov正态检验,Liliefor正态检验,中位数检验问题、定性数据检验问题和成对数据检验问题,秩和检验。
本章要求:掌握符号检验,能⽤符号检验解中位数检验问题、定性数据检验问题和成对数据检验问题。
由成对数据检验问题引出符号秩和检验。
掌握Wilcoxon秩和检验法,掌握符号秩和检验,能⽤符号秩和检验解对称中⼼的检验问题和成对数据检验问题,初步理解秩的概念。
非参数统计讲义
秩 9.5 14.0 12.0 21.0 7.5 9.5 2.0 17.5 7.5 14.0 17.5 24.0
Histogram
For GROUP= Group2
6
5
4
3
2
Frequency
1 0 0.0 5.0 10.0 15.0 20.0 25.0
Std. Dev = 9.17 Mean = 14.8 N = 15.00
定义(连续分布) 定义(连续分布)
假定X ~ f ( x), 令0 < p < 1, 满足等式F ( x)=p( X < m p ) = p 的唯一根m p 称为F ( x)的分位数。
二、秩统计量 1、秩统计量 设X1,X2,X3,…,Xn 来自总体的样本,记Ri为样本 点Xi 的秩,即样本中小于或等于Xi 的样本点的个数, n 即
44 33 22 8 47 31 40 30 33 35 18 21 35 28 22
26.0 19.5 5.5 1.0 27.0 16.0 25.0 14.0 19.5 22.5 3.0 4.0 22.5 11.0 5.5
Histogram
For GROUP= Group1
6
RANK of SCORE
注意:非参数统计的名字中的“ 注意:非参数统计的名字中的“非参数 (nonparametric)” (nonparametric) 意味着其方法不涉及描述总 体分布的有关参数;它被称为和分布无关 体分布的有关参数;它被称为和分布无关 (distribution—free) free), (distribution free),是因为其推断方法和 总体分布无关;不应理解为与所有分布( 总体分布无关;不应理解为与所有分布(例如有 关秩的分布)无关. 关秩的分布)无关. 什么是非参数统计? 什么是非参数统计? 不假定总体分布的具体形式, 不假定总体分布的具体形式,从数据本身获得 所需要的信息, 所需要的信息,通过推断方法得到相关结论的 一种分析方法。 一种分析方法。
非参数统计课件 精华版
非参数统计目录⏹第一章绪论⏹第二章S-Plus基础⏹第三章单一样本的推断问题⏹第四章两样本位置和尺度检验⏹第五章多总体的统计检验⏹第六章分类数据的关联分析⏹第七章秩相关分析和秩回归第一章绪论主要内容1. 统计的实践2. 非参数统计方法简介3. 参数统计过程与非参数统计的比较4. 非参数统计的历史5. 必要的准备知识1. 统计的实践我们周围的世界⏹符号和数据就是整个世界。
⏹数据繁衍,信息匮乏:观察数据激增,设计数据细分。
⏹数据的复杂性和不确定性的特点更为突出。
⏹数据分析方法和手段不足。
统计的方法论⏹就方法论而言,统计分析主要解决两方面的问题:–寻找数据内部差异中共同的特征。
–寻找数据之间本质的差异。
⏹统计分析的目标是从数据中发现比数据本身更为有用的知识2. 非参数统计方法简介参数方法⏹定义:样本被视为从分布族的某个参数族抽取出来的总体的代表,而未知的仅仅是总体分布具体的参数值,推断问题就转化为对分布族的若干个未知参数的估计问题,用样本对这些参数做出估计或者进行某种形式的假设检验,这类推断方法称为参数方法。
⏹比如:(1)研究保险公司的索赔请求数时,可能假定索赔请求数来自泊松分布P(a);(2)研究化肥对农作物产量的影响效果时,平均意义之下,每测量单元(可能是)产量服从正态分布N(a,b).一个典型的参数检验过程1. 总体参数Example: Population Mean2. 假定数据的形态为Whole Numbers or FractionsExample: Height in Inches (72, 60.5, 54.7) 3. 有很强的假定Example: 正态分布4. 例子: Z Test, t Test, 2Test一个例子:对两组学生进行语法测试,如何比较两组学生的成绩是否存在差异?RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group1F r e q u e n c y6543210Std. Dev = 6.28 M ean = 13.0N = 12.00原始数据秩2530293424251332243032379.514.012.021.07.59.52.017.57.514.017.524.04433228473140303335182135282226.019.55.51.027.016.025.014.019.522.53.04.022.511.05.5RANK of SCORE25.020.015.010.05.00.0HistogramFor GROUP= Group2F r e q u e n c y6543210Std. Dev = 9.17 Mean = 14.8N = 15.00非参数检验过程⏹1.不涉及总体的分布–Example: Probability Distributions, Independence⏹2. 数据的形态各异–定量数据–定序数据–Example: Good-Better-Best–名义数据–Example: Male-Female⏹3.例子: Wilcoxon Rank Sum Test/Run TestF, F, F, F, F, F, F, F, M, M, M, M, M, M, MF, M, F, M, F, M, F, M, F, M, F, M, F, M, F3. 参数统计与非参数统计比较非参数检验的优点⏹对总体假定较少,有广泛的适用性,结果稳定性较好。
《非参数统计分析》(1-8章)教案.doc
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
非参数统计分析教学课件
Python
介绍
Python是一种通用编程语 言,因其易读性和易用性 而被广泛用于数据分析和 科学计算。
特点
Python拥有强大的科学计 算库,如NumPy、 Pandas和SciPy等,可进 行数据清洗、统分析等 多种任务。
教程资源
Python的在线教程和书籍 资源丰富,同时还有大量 的科学计算社区和论坛可 供交流。
数据流处理
数据流处理技术可以实时处理大规模数据,为非参数统计分析提供 新的可能性。
云计算
云计算平台可以提供弹性可扩展的计算资源,方便非参数统计分析 的进行。
THANKS
感谢观看
洗和校验。
高维数据的非参数统计分析挑战
维度诅咒
高维数据可能导致传统的非参数统计分析方法失 效,需要开发新的方法。
数据稀疏性
高维数据可能导致数据稀疏,使得统计分析结果 不稳定。
特征选择
高维数据需要进行特征选择,以减少噪声和冗余 ,提高分析效率。
大数据处理技术在非参数统计分析中的应用前景
并行计算
利用并行计算技术可以提高非参数统计分析的效率和准确性。
应用场景与优势
应用场景
适用于数据类型复杂、分布不明确或 数据量较小的情况;例如,生物医学 研究、金融数据分析、社会学调查等 领域。
优势
能够更好地揭示数据的内在结构和关 系;对数据的假设较少,避免过度拟 合和误判;同时具有较高的灵活性和 普适性,能够适用于多种场景。
02
CATALOGUE
非参数统计方法
聚类分析
01
聚类分析是一种非参数统计方法 ,用于将相似的对象归为同一类 ,将不相似的对象归为不同类。
02
聚类分析通过计算对象之间的距 离或相似性来将它们分组,常见 的聚类分析方法有层次聚类、K均 值聚类和DBSCAN聚类等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非参数统计学讲义第二章 单样本模型 §1 符号检验和有关的置信区间在有了一个样本n X X ,,1 之后,很自然地想要知道它所代表的总体的“中心”在哪里.例如,在对人们的收入进行了抽样之后,就自然要涉及“人均收入”和“中间收入”等概念.这就与统计中的对总体的均值(mean),中位数(median)和众数(mode)等位置参数的推断有关。
例如,在知道总体是正态分布时,要检验其均值是否为μ;一个传统的基于正态理论的典型方法是t 检验.它的检验统计量定义为ns X t /μ-=这里X 为样本均值,而211)(X X n S-∑-=为样本标准差。
t —检验的统计量在零假设下有n —1个自由度的t —分布。
检验统计量是用样本标准差s 代替了有标准正态分布的检验统计量的总体标准差后而产生的在大样本时,二者几乎相等。
t —检验也许是世界上用得最广泛的检验之一。
但是,t —检验并不稳健,在不知总体分布时,特别是小样本时,应用t —检验就可能有风险。
这时就要考虑使用非参数方法。
对于本章所要介绍的数据趋势或随机性检验,就不存在简单的参数方法.非参数方法总是简单实用的。
本章所介绍的一些检验有代表性,因此这里的讨论将比其它章节更为仔细.一旦熟悉了非参数方法的一些基本思路,后面的内容就很容易理解了.一、问题的提出【例2-1】联合国人员在世界上66个大城市生活花费指数(以纽约市1962年12为100)按自小至大的次序排列如下(这里北京的指数为99):表2-1 生活花费指数数据66 75 78 80 81 81 82 83 83 83 83 84 85 85 86 86 86 86 87 87 88 88 88 88 88 89 89 89 89 90 90 91 91 91 91 92 93 93 96 96 96 97 99 100 101 102 103 103 104 104 104 105 106 109 109 110110110111113115116117118155192在例子中,人们可能会问:①总体的平均(或者中间)水平1是多少?②北京是在该水平之上还是之下?可以假定这个样本是从世界许多大城市中随机抽样而得的所有大城市的指数组成总体.可能出现的问题是:这个总体的平均(或者中间)水平是多少?北京是在该水平之上还是之下?这里的平均(或中间)水平是一个位置参数。
一般的统计书中的均值就是一个位置参数.中位数是另一个位置参数.它们都是数据总体中心位置的度量和位置参数相对的一个参数为尺度参数;比如在标准统计课本中的描述数据集中和分散程度的方差或标准差.这个例子经过简单计算,得到样本均值为96.45,而样本中位数为91;它们都可作为总体的中心的估计,除此之外,众数(频率最大的点,本例是88)可作为中间位置.通常在正态总体分布的假设下,关于总体均值的假设检验和区间估计是用与t 检验有关的方法进行的。
然而,在本例中,总体分布是未知的为此首先看该数据的直方图从图中很难说这是什么分布。
在右边的两个点分别是东京和香港。
1刻划位置参数的量有:①平均值:∑i x n 1;②中位数:⎩⎨⎧+=++为偶数为奇数n x x n x M n n n 2/)(2/)1()()1(;③修整均值:∑-+=-=j n j i i j n x j T 1)(2)(,2nj <;④众数;⑤中列数:2/)()1()(X X n -。
由于此时我们不知道总体是否为正态分布(或者数据表明它就不是一个正态分布),所以有关参数统计中的t-统计量就不能用,势必要选择非参数的统计量来解决这样的问题。
符号检验(Sign Test )是利用正、负号的数目对某种假设作出判定的非参数统计方法。
二、普通的符号检验 1.基本方法如果所研究的问题,可以看作是只有两种可能:“成功”或“失败”,并且成功或失败的出现被假定遵从二项式分布,以“+”表示成功,以“-”表示失败,那么随机抽取的样本就有两个参数:成功的概率P +和失败的概率P —。
这样就可以构造一个假设:-+=P P H :0 -+≠P P H :1这是双侧检验,对备择假设H 1来说,不要求P +是否大于P —。
如果所研究的问题,要求考虑是P +比较大还是P —比较大,则需用单侧备择假设,即-+=P P H :0 -+=P P H :0-++>P P H : -+-<P P H :这里+H 表示P +是比较大的,-H 被用来说明P —是比较大的。
为了检验上面的假设,普通的符号检验所定义的检验统计量为+S 和-S 。
+S 表示为正符号的数目,-S 表示为负符号的数目,n S S =+-+是符号的总数目。
要对假设作出判定,需要找到一个P 值。
因为对于+S 和-S 来说,抽样分布是一个带有5.0=θ(θ表示成功的概率)的二项式分布,所以如果H 0为真,从二项分布表中能够根据n 、+S 和-S 查到P 值。
若P 值很小,表明H 0为真的可能性很小,数据不支持H 0,而支持H 1。
注:①双边假设检验中的尾概率P-值应是单边假设检验中的P-值的2倍;②在n (20≤n )较小时,可以利用二项分布表查表,计算出精确的P-值;在n (n >20)较大时,则要用正态分布来近似,因为)2/1,(~n Bin k ,所以)1,0(~2/2/4/2/N n n k n n k Z -=-=,并且要作连续性修正。
Z +=Z -=(0.1)③普通的符号检验其判定可以归纳如表2—2所示。
表2-2 生活花费指数数据22注意与教材中取最小二者之间最小值的等价性。
2.应用在实际问题的研究中,常常会遇到难以用数值确切表达的问题,而采用符号检验可以帮助解决这类问题的研究。
【例2-2】女性在对事物的看法上是否倾向于比男性保守—些社会科学家对这样的事实很感兴趣,当夫妇俩人有一个类似的观点时,妻子可能比丈夫要保守。
为了验证这一事实是否成立,随机选取了50对夫妇进行调查。
按预先制定的问题每人分别被间问,结果只有10对夫妇的看法倾向性差异较大,而其中9对夫妇的妻子确实比丈夫保守。
分析;研究这—问题,可以看作是“成功”与“失败”的问题,妻子比丈夫保守为成功,妻子不如丈夫保守为失败。
因为希望得出妻子比丈夫较为保守的结论,故而备择假设是单侧的,即P +>P —。
这样建立的假设为:-+=P P H :0-++>P P H :由于在10对符合条件的夫妇中,有9对妻子比丈夫保守,因而+S =9,-S =1,n =10。
根据n =10,+S =9,查附表,+S 为9的右尾概率P =0.0107,也就是说,对于成功概率θ=0.5的二项分布来说,在10次试验中,有9次或9次以上成功的概率P 为0.0107,这是个极小的概率。
因此,可以得出结论:这批调查的数据不支持H 0,而支持备择假设,即妻子确实比丈夫要保守些。
【例2-3】广告对商品促销是否起作用人们一般认为广告对商品促销起作用,但是否对某种商品的促销起作用并无把握。
为了证实这一结论,随机对15个均销售该种商品的商店进行调查,得到的数据如表2—3。
表2-3 广告前后销售稿况表商 店 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 未作广告每日销量 2 2 2 2 2 3 3 3 2 3 2 3 2 3 3 广告后每日销量 2 334423 433 42344差值的符号+ + + + -+ ++ - + + +分析:由于假定随机油取的15个商店在广告前后其它条件均没有变化,如营业员人数,营业面积,服务质量等等,仅仅是考察广告的作用,因此符合普通符号检验的条件。
由于想得出广告起作用的结论,因而是单侧检验,即广告后销量增加。
建立的假设为-+=P P H :0-++>P P H :根据表2-3可知,+S =10,而-S =2,n =12。
在附表中,n =12,+S =l0的右尾概率P =0.0193。
这也是一个很小的概率,表示调查结果不支持H 0,而支持H 1,即广告确实对这种商品促销起了作用。
【例2-4】顾客对咖啡、茶的喜好是否有差异。
若有差异,是否更喜欢茶。
为了解顾客对咖啡,茶的喜好情况,在某商店随机抽取l5名顾客进行调查,结果有12名顾客更喜欢茶,2名顾客更喜欢咖啡,1名对两者同样爱好。
分析:顾客对咖啡、茶的喜好调查,其目的只是为了比较两者中哪个更受欢迎,并无定量的数值,因而可以来用符号检验。
在咖啡、茶中更喜欢茶为“成功”,反之为“失败”故可建立假设-+=P P H :0 -+≠P P H :1这一假设仅判定对二者喜欢程度有无差异。
由调查结果知:+S =12,-S =2,n =14。
查附表,n =14时,+S 与-S 中大者+S=12右尾概率的2倍是2×0.0065=0.0130。
显然P =0.0130很小,以显著性水平α=0.05,P 足够小,故这批数据不支持H 0,即顾客对咖啡和茶的喜爱有显著差异。
要判断是否更喜欢茶,建立单侧备择假设-+=P P H :0-++>P P H :根据上面的分析,n =14,+S =12时,附表显示的P 值为0.0065。
对于α=0.01,P 值也足够小,故数据不支持H 。
,而支持H +。
顾客在咖啡和茶中更喜欢茶。
三、位置的符号检验 1.基本方法一个随机抽取的样本,有n 个数据n x x x ,,,21 ,其实际的总体中位数记作M ,假定的中位数是某个特定值,记作M 0。
若研究问题时关心的是:真实的中位数M 是否不同于M 0,可以建立假设00:M M H =01:M M H ≠如果关心的是:真实的中位数M 是否大于或小于特定的数M 0,则应建立单侧备择假设00:M M H = 00:M M H = 0:M M H >+ 0:M M H <-只要样本数据n x x x ,,,21 能够被测量,至少是定距尺度测量,若定序尺度测量的,应能与M 0相比并决定大小次序,也就是说,数据与M 0比较的结果能用“十”或“一”表示,设定n x x x ,,,21 在M 0附近是连续的,则普通的符号检验方法可以应用。
这就是符号检验法用于单样本位置的推断。
检验统计量。
位置的符号检验所定义的检验统计量也是+S 和-S ,+S 表示每一个观察数据),,2,1(n i x i =与特定的数M 0的差值0M x D i i -=的符号为正的数目,即∑>-=+)0(M X I S i ;-S 表示i D 符号为负的数目,即(0)iS I XM -=-<∑。
n S S =+-+,n 表示符号的总数目。
由于M 为中位数,故每一个样本点要么大于M ,要么小于M (除去相等的那些点)且概率都为0.5。