人教版高一数学第一学期期末测试卷1(有答案)
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)
高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0B .1C .2D .32.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y =B .3y x =C .cos y x =D .||y ln x =3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( )A .()0,2B .[]0,2C .(1+D .1⎡⎣6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .807.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .810.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭;(2)941451log log 3log 5log 272⋅--+. 19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值. (2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.高一数学必修一第一学期期末测试卷(人教版浙江)(含答案和解析)第I 卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)已知集合{}1013M =-,,,,{}13N =-,,则集合M N ⋂中元素的个数是( ) A .0 B .1C .2D .3【答案】B 【解析】{}1013M =-,,,,{}13N =-,{}1M N ∴⋂=故选:B2.(2020·湖南长沙市·长郡中学高一月考)下列函数中,既是偶函数又在(0,)+∞单调递增的是( ) A .2x y = B .3y x =C .cos y x =D .||y ln x =【答案】D 【解析】根据题意,依次分析选项:对于A ,2x y =,为指数函数,其定义域为R ,不是偶函数,不符合题意; 对于B ,3y x =,为幂函数,是奇函数,不符合题意;对于C ,cos y x =,为偶函数,在(0,)+∞不是增函数,不符合题意; 对于D ,,0(),0lnx x y ln x ln x x ⎧==⎨-<⎩,为偶函数,且当0x >时,y lnx =,为增函数,符合题意;故选:D .3.(2020·渝中区·重庆巴蜀中学高三月考)已知函数,0()1,0x e x f x x x ⎧≤=⎨->⎩,则()()1f f =( )A .0B .1C .eD .1e -【答案】B 【解析】0((1))(0)1f f f e ===,故选:B4.(2020·广东揭阳市·高一期末)已知lg lg 0a b +=,则函数()x f x a =与函数1()log bg x x =的图象可能是( )A .B .C .D .【答案】B 【解析】lg lg 0,lg 0a b ab +=∴=,即1ab =.∵函数()f x 为指数函数且()f x 的定义域为R ,函数()g x 为对数函数且()g x 的定义域为()0,∞+,A 中,没有函数的定义域为()0,∞+,∴A 错误;B 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递增,即01b <<,ab 可能为1,∴B 正确;C 中,由图象知指数函数()f x 单调递减,即01a <<,()g x 单调递增,即01b <<,ab 不可能为1,∴C 错误;D 中,由图象知指数函数()f x 单调递增,即1a >,()g x 单调递减,即1b >,ab 不可能为1,∴D 错误. 故选:B.5.(2020·浙江高一期中)已知函数()1xf x e =-,()22g x x x =-+,若存在a R ∈,使得()()f a g b =,则实数b 的取值范围是( ) A .()0,2B .[]0,2C .(12,12+D .12,12⎡⎤⎣⎦【答案】C 【解析】()11x f x e =->-,所以,()221g b b b =-+>-,整理得2210b b --<,解得1212b <故选:C.6.(2020·淮安市阳光学校高一月考)某养鸭户需要在河边用围栏围起一个面积为2200m 的矩形鸭子活动场地,面向河的一边敞开不需要围栏,则围栏总长最小需要多少米?( ) A .20B .40C .60D .80【答案】B 【解析】设此矩形面向河的一边的边长为x ,相邻的一边设为y , 由题意得200xy =, 设围栏总长为l 米,则240l x y =+≥=, 当且仅当2x y =时取等号, 此时20,10x y ==; 则围栏总长最小需要40米; 故选:B.7.(2020·浙江高一期中)已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立, 即当[,2]x t t ∈+时,不等式22x t x +>恒成立 即2x t <恒成立 即22t t +< 解得2t >故实数t 的取值范围是(2,)+∞ 故选:A8.(2020·江苏南通市·高二期中)“a >1,b >1”是“log a b +log b a ≥2”的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要【答案】A 【解析】∵1log log log log a b a a b a b b+=+,又1,1a b >>,∴log 0a b >,即1log 2log a a b b +≥=当且仅当a b =时等号成立, 而11,28a b ==时有110log log log 2log 3a b a a b a b b +=+=>,显然1,1a b >>不一定成立; 综上,所以有1,1a b >>是log log 2a b b a +≥充分不必要条件. 故选:A9.(2020·全国高一课时练习)定义集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭,已知集合{2,4,6}S =,|1,2k T x x k S ⎧⎫==-∈⎨⎬⎩⎭,则集合S T T ⋃中的元素个数为( )A .5B .6C .7D .8【答案】B 【解析】∵集合的商集运算为|,,A m x x m A n B B n ⎧⎫==∈∈⎨⎬⎩⎭, 集合{2,4,6}S =,|1,{0,1,2}2k T x x k S ⎧⎫==-∈=⎨⎬⎩⎭, ∴{}1,2,3,4,6ST =, ∴{}0,1,2,3,4,6ST T=. ∴集合STT ⋃元素的个数为6个.故选:B.10.(2020·长春市·吉林省实验高一期末(理))已知()sin (0)3f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=- ⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是( ) A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤⎥⎝⎦C .511,1212ππ⎛⎤⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦【答案】D 【解析】 由t π=,可得2=2ππωω=⇒因为3y f x π⎛⎫=-⎪⎝⎭是奇函数 所以sin 23x πϕ⎛⎫+- ⎪⎝⎭是奇函数,即,3k k z πϕπ-=∈又因为()06f f π⎛⎫<⎪⎝⎭,即()2sin sin 3k k ππππ⎛⎫+<+⎪⎝⎭所以k 是奇数,取k=1,此时43πϕ= 所以函数()5sin 2sin 233f x x x ππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭因为()f x 在[)0,t 上没有最小值,此时2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭所以此时432,332t πππ⎛⎤-∈ ⎥⎝⎦解得511,612t ππ⎛⎤∈ ⎥⎝⎦. 故选D.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞. 12.(2018·江苏苏州市·高一期末)已知函数232,1,(),1,x x f x x x -≤⎧=⎨>⎩ 则函数()()2g x f x =-的零点个数为______. 【答案】2 【解析】()g x 的零点即为()0g x =的解.当1x ≤时,令322x -=,解得12x =,符合;当1x >,令22x =,解得x =()g x 的零点个数为2.13.(2019·福建漳州市·龙海二中高三月考(文))已知tan()24πα-=,则sin(2)4πα-的值等于__________.【答案】10【解析】 由tan 1tan()241tan πααα--==+,解得tan 3α=-,因为22sin(2)2cos 2)(2sin cos cos sin )422πααααααα-=-=-+2222222sin cos cos sin 2tan 1tan 2cos sin 21tan ααααααααα-+-+=⨯=++222(3)1(3)21(3)10⨯--+-==+-. 14.(2020·浙江高一课时练习)里氏震级M 的计算公式为:M=lgA ﹣lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A 0为0.001,则此次地震的震级为 级;9级地震的最大的振幅是5级地震最大振幅的 倍.【答案】6,10000 【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA ﹣lgA 0=lg1000﹣lg0.001=3﹣(﹣3)=6. 设9级地震的最大的振幅是x ,5级地震最大振幅是y , 9=lgx+3,5=lgy+3,解得x=106,y=102,∴62101000010x y ==. 故答案耿:6,10000.15.(2020·浙江杭州市·高三期中)已知34a =,2log 3b =,则ab =________;4b =________. 【答案】2 9 【解析】因为34a =,所以3log 4a =,又2log 3b =, 因此32lg 4lg3log 4log 32lg3lg 2ab =⋅=⋅=;222log 32log 3log 944229b ====. 故答案为:2;9.16.(2020·全国高一课时练习)设函数()sin f x A B x =+,当0B <时,()f x 的最大值是32,最小值是12-,则A =_____,B =_____. 【答案】121- 【解析】根据题意,得3212A B A B ⎧-=⎪⎪⎨⎪+=-⎪⎩,解得1,12A B ==-.故答案为:1,12- 17.(2020·浙江高一单元测试)已知4sin 5α,,2παπ⎛⎫∈ ⎪⎝⎭,则cos α=________,tan 2α=________.【答案】35247【解析】由已知得3cos 5α==-,所以445tan 335α==--,242243tan 27413α⎛⎫⨯- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭. 故答案为:35;247. 三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·安徽省蚌埠第三中学高一月考)计算下列各式的值: (1)()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭; (2)941451log log 3log 5log 272⋅--+. 【答案】(1)3;(2)174. 【解析】(1)根据指数幂的运算法则,可得()2223327389.682--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭222333333(24441399)1[()]22--⎛⎫=--+ -⎪⎝-+⎭==.(2)根据对数的运算法则,可得941451log log 3log 5log 272⋅--+ 325211111log 2log log 5log 2414224341722=-⨯+-+=-+-+=.19.(2020·全国高一单元测试)已知函数()()()log 1log 1a a f x x x =+--,其中0a >且1a ≠.()1判断()f x 的奇偶性并予以证明; ()2若1a >,解关于x 的不等式()0f x >.【答案】(1)奇函数,证明见解析;(2)()0,1. 【解析】()1要使函数有意义,则{1010x x +>->,即{11x x >-<,即11x -<<, 即函数的定义域为()1,1-,则()()()()()()log 1log 1log 1log 1a a a a f x x x x x f x ⎡⎤-=-+-+=-+--=-⎣⎦, 则函数()f x 是奇函数.()2若1a >,则由()0.f x >得()()log 1log 10a a x x +-->,即()()log 1log 1a a x x +>-, 即11x x +>-,则0x >, 定义域为()1,1-,01x ∴<<,即不等式的解集为()0,1.20.(2020·湖北荆州市·荆州中学高一期末)(1)已知角α的终边经过点(,6)P x ,且5cos 13α=-,求sin α和tan α的值.(2)已知1cos 7α=,13cos()14αβ-=,且02πβα<<<,求角β. 【答案】(1)12sin 13α=,12tan 5α=-(2)3πβ=【解析】 (1)55cos 132x α==-⇒=-, ∴5,62P ⎛⎫- ⎪⎝⎭∴12sin 13α==,612tan 552α==--;(2)由1cos 7α=,02πα<<,得sin 7α=, 由13cos()14αβ-=,02πβα<<<,得02παβ<-<,得sin()αβ-=所以cos cos[()]cos cos()sin sin()βααβααβααβ=--=-+-11317142=⨯=, 又02πβ<<,∴3πβ=.21.(2020·北京密云区·高一期末)已知函数2()cos cos f x x x x =-. (1)求函数()f x 的最小正周期和单调区间; (2)求函数()f x 的零点.【答案】(1)T π=;单调递增区间为[,]63k k ππππ-+,k Z ∈;单调递减区间为5[,]36k k ππππ++ ,k Z ∈; (2)6x k ππ=+或2x k π=+π,k Z ∈.【解析】(1)2()cos cos f x x x x -cos 21222x x +=-1sin 262x π⎛⎫=-- ⎪⎝⎭,即()1sin 262f x x π⎛⎫=-- ⎪⎝⎭, 所以()f x 的最小正周期22T ππ==. 因为sin y x =的单调增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,令222262k x k πππππ-≤-≤+,解得63k xk ππππ,k Z ∈.因为sin y x =的单调减区间为32,222k k ππππ⎡⎤+⎢⎥⎣⎦+,k Z ∈,令3222262k x k πππππ-++≤≤, 解得536k x k ππππ++≤≤,k Z ∈. 所以()f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.单调递减区间为5,36ππk πk π⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)函数1()sin 262f x x π⎛⎫=-- ⎪⎝⎭的零点, 令1sin(2)062x π--=,即1sin(2)62x π-=.2266x k πππ-=+或52266x k πππ-=+,k Z ∈ 解得6x k ππ=+或2x k π=+π,k Z ∈所以()f x 的零点为6x k ππ=+或2x k π=+π,k Z ∈22.(2020·浙江高一期中)已知函数2()21x xaf x a -=⋅+为奇函数,其中a 为实数. (1)求实数a 的值;(2)若0a >时,不等式()(())20xf f x f t +⋅<在[1,1]x ∈-上恒成立,求实数t 的取值范围.【答案】(1)±1;(2)1,5⎛⎫-∞- ⎪⎝⎭. 【解析】(1)由函数2()21x xaf x a -=⋅+为奇函数,可得()()f x f x -=-, 代入可得:222121x x x xa aa a ----=⋅+⋅++, 整理可得:2222(2)1(2)x a a x -=-,所以21a =, 解得:1a =±;(2)若0a >,由(1)知1a =,所以212()12121x x xf x -==-++, 由2x 为增函数,21x u =+为增函数且210x u =+>, 又因为2u 为减函数,所以2u-为增函数, 所以()f x 为增函数, 又因为()f x 为奇函数,由()(())20xf f x f t +⋅<可得:()20x f x t +⋅<,即21+2021x x x t -⋅<+在[1,1]x ∈-上恒成立, 若0t ≥,1x =时不成立,故0t <, 令2x s =,则1(,2)2s ∈, 整理可得:2(1)10t s t s ⋅++-<, 令2()(1)1g s t s t s =⋅++-,若1122t t +-≤或122t t +-≥ 需131()0242g t =-<,(2)610g t =+<,可得1156t -≤<-或12t ≤-,若11222t t +<-<,需1()02t g t+-<, 解得1125t -<<-,综上可得:实数t 的取值范围为1,5⎛⎫-∞- ⎪⎝⎭.。
人教版高一数学上期末试题及答案
高一数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出四个选项中,只有一个是符合题目要求.1.设集合}6,5,4,3,2,1{=U ,}3,2,1{=A ,}6,5,2{=B ,则)(B C A U 等于( )(A )}2{ (B )}3,2{ (C )}3{ (D )}3,1{2.α是第四象限角,34tan -=α,则αsin 等于( ) (A )54 (B )54- (C )53 (D )53- 3.设⎪⎩⎪⎨⎧<-=->+=)0(,1)0(,1)0(,1)(x x x x x x f ,则=)]0([f f ( )(A)1 (B)0 (C)2 (D)1-4.如果31sin(=-)απ,那么=+)απ2cos(等于( ) (A )31- (B )31 (C ) 322 (D ) 322- 5.函数xx e e x f 1)(2-=的图像关于( ) (A )原点对称 (B )y 轴对称 (C )x 轴对称 (D )关于1=x 对称6.已知函数x y ωtan =在⎪⎭⎫ ⎝⎛-4,4ππ内是增函数,则( ) (A )20≤<ω (B )02<≤-ω (C )2≥ω (D )2-≤ω 7.设18log ,12log ,6log 642===c b a ,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )a b c >>8.︒-︒20sin 155sin 22的值为( ) (A )12 (B ) 12- (C ) 1- (D ) 1 9.已知函数)cos()(ϕω+=x A x f ,R x ∈(其中πϕπω<<->>,0,0A ),其部分图象如图所示,则ϕω,的值为( ) (A)43,4πϕπω== (B) 4,4πϕπω-== (C) 4,2πϕπω== (D) 4,2πϕπω-==10. 若函数)(x f 的零点与82ln )(-+=x x x g 的零点之差的绝对值不超过5.0, 则)(x f 可以是( )(A)63)(-=x x f (B)2)4()(-=x x f (C) 1)(2-=-x e x f (D))25ln()(-=x x f11.使奇函数)2cos()2sin(3)(θθ+++=x x x f 在]4,0[π上为增函数的θ值为( ) (A)3π- (B)6π- (C)65π (D)32π 12.已知函数⎩⎨⎧>≤≤=)1(log )10(sin )(2018x x x x x f π,若c b a ,,互不相等,且)()()(c f b f a f ==,则c b a ++取值范围是( ) (A))2018,2( (B) )2019,2( (C) )2018,3( (D) )2019,3(二、填空题(本题共4个小题,每小题5分)13.=︒660cos .14.已知方程05)2(2=-+-+a x a x 的两个根均大于2,则实数a 取值范围是 .15.设()f x 是以2为周期的奇函数,且2()35f -=,若sin 5α=,则(4cos 2)f α的值等于 , 16. 已知函数(1)y f x =+是定义域为R 的偶函数,且()f x 在[1,)+∞上单调递减,则不等式(21)(2)f x f x ->+的解集为 .三、解答题(本题共6个小题,共70分)17.(本小题满分10分) 已知集合{}{}42,20,01sin 22>=<<>-=-x x x B x x x A π (1)求集合A 和B ;(2)求B A .18.(本小题满分12分)已知若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-= 求(1)求αcos 的值;19.(本小题满分12分)已知函数2cos sin 34cos 4)(2++-=x x a x x f ,若)(x f 图象关于点)0,12(π对称.(1)求实数a ,并求出)(x f 单调减区间;(2)求)(x f 的最小正周期,并求)(x f 在]6,4[ππ-上的值域.20.(本小题满分12分)已知函数3)ln(2ln )(2+-=ex a x x f ,],[21e e x -∈(1)当1=a 时,求函数()f x 值域;(2)若4ln )(+-≤x a x f 恒成立,求实数a 取值范围.21.(本小题满分12分) 设函数1cos 2)32cos()(2+++-=a x x x f π,且]6,0[π∈x 时,)(x f 的最小值为2. (1)求实数a 的值;(2)当]2,2[ππ-∈x 时,方程2123)(+=x f 有两个不同的零点βα,,求βα+的值.22.(本小题满分12分)已知函数()223x x f x m =⋅+⋅,m R ∈.(1)当9m =-时,求满足(1)()f x f x +>实数x 的范围;(2)若9()()2x f x ≤对任意的x R ∈恒成立,求实数m 范围.高一数学答案 )3,31(-}2------6分31)4cos(=+απ ∴322)4sin(=+απ------4分642+=------6分33)24cos(=-βπ ∴36)24sin(=-βπ------10分∴935)24sin()4sin()24cos()4cos()]24()4cos[()2cos(=-++-+=--+=+βπαπααα------12分19、(1)∵0)12(=πf ∴1=a ------2分 ∴)62sin(4)(π-=x x f ------4分∴单调递减区间为)](65,3[Z k k k ∈++ππππ------6分π=------8分 ∵]6,4[ππ-∈x ∴]6,32[62πππ-∈-x ------10分 ∴]2,4[)(-∈x f ------12分1ln 2ln )(2+-=x x x ------1分 令]2,1[ln -∈=x t ------2分∴12+-=t t y ∴]4,0[∈y ------4分(2)∵4ln )(+-≤x a x f ∴012ln ln 2≤---a x a x 恒成立 令]2,1[ln -∈=x t ∴0122≤---a at t 恒成立------5分 设122---=a at t y ------∴当1212≤≤a a 即时,034max ≤+-=a y ∴143≤≤a ------8分 当1212>>a a 即时,0max ≤-=a y ∴1>a --------11分 综上所述,43≥a ------12分 21、(1)a x x f +++=2)32sin(3)(π------2分 ∵]6,0[π∈x ∴]32,3[32πππ∈+x ------4分∴]1,23[)2sin(∈+πx ∴227)(min =+=a x f ∴23-=a ------6分2123+ ∴21)32sin(∈+πx ------8分 ∵]2,2[ππ-∈x ∴]34,32[32πππ-∈+x ------10分 6532ππβ=+ ∴4,12πβπα=-= ∴6πβα=+------12分)()1(x f x >+ ∴2232--<x x ∴1)32(2<-x ∴2>x ------6分 x )29( ∴x x m )23(2)23(2-≤--------8分 令0)23(>=x t ∴t t m 22-≤ 1-= ∴1-≤m ------12分。
人教版高一数学上学期期末试题(解析版)
【点睛】本题考查利用函数单调性判断大小的问题,关键是能够利用奇偶性将自变量变到同一单调区间内,再通过指数、对数函数的单调性,利用临界值确定自变量的大小关系,属于基础题.
10.函数 则关于 的方程 的根的个数是( )
A. 5B. 6C. 7D. 8
【答案】B
【解析】
【分析】
作出 的图象,解得方程 或 ,数出根的个数即可.
【分析】
先判断函数的奇偶性,再根据函数值的变化规律即可得到答案.
【详解】∵函数
∴
∴函数 为奇函数,即图象关于原点对称
当 向右趋向于1时, 趋向于 ,故排除D;
当 向左趋向于1时, 趋向于 ,故排除B、C.
故选A.
【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及 时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除
不满足条件 , ;
不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,不满足条件 , ;
不满足条件 , ;不满足条件 , ;
满足条件 ,满足条件 ,输出 .
故选:B.
【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.
三、解答题:解答应写出文字说明、证明过程和演算步骤.
17.已知全集 , , .
(1)求 ;
人教版高一数学上学期期末试题(解析版)
60个班级中,随机抽取6个班级进行卫生检查,其间隔为 ,因为抽取的编号可能是选项A.
考点:系统抽样.
点评:系统抽样是将总体分成几个部分,然后按照事先确定的规则在各部分抽取一定数量的样本.
3.设 均为正数,且 , , .则( )
(2)用分层抽样的方法,在分数段为 的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2个,求至多有1人在分数段 内的概率
【答案】(1)详见解析(2)
【解析】
【分析】
(1)首先可以计算出除了 之外的其他分数段的频率,然后计算出分数在 内的频率,再用频率除以组距即可,然后用每一分数段的中间数乘以每一分数段的概率再相加即可得出平均分;
令 ,则 , ,利用配方法求二次函数的值域即可.
【详解】解:由 得 ,令 ,则 , ,
当 ,即 , 时, ,
当 时,即 , 时,
【点睛】本题考查指数型二次函数的最值,考查配方法,考查转化能力,属于中档题.
18.函数 的定义域为 , 定义域为 .
(1)求 ;
(2)若 ,求实数 取值范围.
【答案】(1) ;(2) .
【解析】
【分析】
(1)求函数的定义域,就是求使得根式有意义的自变量 的取值范围,然后求解分式不等式即可;
(2)因为 ,所以一定有 ,从而得到 ,要保证 ,由它们的端点值的大小列式进行计算,即可求得结果.
【详解】(1)要使函数 有意义,
则需 ,即 ,
解得 或 ,
所以 ;
(2)由题意可知,因为 ,所以 ,
故答案为86.
【点睛】这个题目考查的是框图中的循环结构,计算输出结果,对于循环结构的框图关键是将每一次循环的结果都按题意写出来,直到满足输出条件为止.
人教版高一第一学期期末数学模拟试卷(附答案)
学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -高中一年级第一学期人教版高一数学期末考试模拟试题第 Ⅰ 卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.210sin 的值为( )A .21 B. 23 C. 21- D. 23-2.18sin 27cos 18cos 27sin +的值为( )A .22 B. 23 C. 21D. 13. 已知集合}821|{<<=xx A ,集合}1log 0|{2<<=x x B ,则A B =( )A .}31|{<<x x B. }21|{<<x x C. }32|{<<x x D. }20|{<<x x 4. 已知80sin =a ,1)21(-=b ,3log 21=c ,则( )A .c b a >> B. c a b >> C. b a c >> D. a c b >>5. 一扇形的圆心角为60,所在圆的半径为6 ,则它的面积是( )A .π6B. π3C. π12D. π96. 若),0(,πβα∈且 31tan ,21tan ==βα,则=+βα( ) A .4πB. 43πC. 45πD. 47π7. )32sin(3π-=x y 的一条对称轴是( )A .32π=x B. 2π=x C. 3π-=x D. 38π=x8. 要得到)32cos(3π-=x y 的图象,只需将x y 2cos 3=的图象( )A .右移3π B. 左移3π C. 右移6π D. 左移6π9. 函数1)2sin(2--=x y π的定义域为( )A .},65262|{Z k k x k x ∈+≤≤+ππππ B.},656|{Z k k x k x ∈+≤≤+ππππC. },32232|{Z k k x k x ∈+≤≤+ππππD. },12512|{Z k k x k x ∈+≤≤+ππππ10. 函数x x y cos sin +=的值域是( )A .]2,2[- B. ]1,1[- C. ]2,2[- D. ]2,0[ 11. 下列函数中既是偶函数,最小正周期又是π的是( )A .x y 2sin = B. x y cos = C. x y tan = D. |tan |x y = 12. 函数1ln )(2-++=a x x x f 有唯一的零点在区间),1(e 内,则实数a 的取值范围是 ( )A .)0,(2e - B. )1,(2e - C. ),1(e D. ),1(2e第 Ⅱ 卷二、填空题:本题共4小题,每小题5分。
人教版高一数学上学期期末试题(解析版)
【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.
5.过直线 与 交点,且垂直于直线 的直线方程是( )
A.
B.
C.
D.
【答案】A
【解析】
【分析】
两直线方程联立求得交点坐标;根据垂直关系求得斜率,可写出直线点斜式方程,整理可得结果.
【详解】由 得两条直线交点坐标为:
【答案】见详解
【解析】
【详解】设裁员 人,可获得的经济效益为 万元,则
=
依题意 ≥ ∴0< ≤ .
又140< <420, 70< <210.
(1)当0< ≤ ,即70< ≤140时, , 取到最大值;
(2)当 > ,即140< <210时, , 取到最大值;
20.如图,四棱锥 中, 底面 , , , , 为线段 上一点, , 为 的中点.
A. 或 B. C. D. 或
【答案】C
【解析】
如图,设切点分别为A,B.连接AC,BC,MC,由 及 知,四边形MACB为正方形,故 若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心 到直线 的距离 ,即 ∴ ,故选C.
点睛:直线与圆的位置关系常用处理方法:
(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;
【解析】
【分析】
根据函数的限制条件,列出不等式,即可求解.
【详解】 ∴ .
故答案为: .
【点睛】本题考查函数的定义域,属于基础题.
14.函数 是定义在R上的奇函数,当 时, ,则当 时, ______.
【答案】
新人教版高一数学上学期期末试题答案解析(1)
高一数学必修一综合测试一、单项选择(每题5分共12小题 60分)1.函数21)2()5(x x y()A .}2,5|{x x x B .}2|{x x C .}5|{xx D .}552|{xxx 或2.设函数y =lg(x 2-5x )的定义域为M ,函数y =lg(x -5)+lg x 的定义域为N ,则()A .M ∪N=RB .M=NC .MND .MN3.当时,函数和的图象只可能是()4.函数2422x xy的单调递减区间是()A .]6,(B .),6[C .]1,(D .),1[5. 函数22232x yxx的定义域为()A 、,2B 、,1C 、11,,222D 、11,,2226. 已知(1)f x 的定义域为[2,3],则(21)f x 定义域是()A.5[0,]2B.[1,4]C.[5,5]D.[3,7]7.函数()f x 定义域为R ,对任意,x y R 都有()()()f xy f x f y 又(8)3f ,则(2)f A.12B.1C.12D.28.若偶函数)(x f 在1,上是增函数,则下列关系式中成立的是()A .)2()1()23(f f f B .)2()23()1(f f f C .)23()1()2(f f f D .)1()23()2(f f f9.下列四个命题:(1)函数f x ()在0x 时是增函数,0x 也是增函数,所以)(x f 是增函数;(2)若函数2()2f x axbx 与x 轴没有交点,则280ba 且0a ;(3) 223yxx 的递增区间为1,;(4)1yx 和2(1)yx 表示相等函数。
正确的个数()A .0B .1C .2D .310.三个数60.70.70.76log 6,,的大小关系为()A . 60.70.70.7log 66B . 60.70.70.76log 6C .0.760.7log 660.7D . 60.70.7log 60.7611.设833x x f x,用二分法求方程2,10833xxx在内近似解的过程中得,025.1,05.1,01f f f 则方程的根落在区间()A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定12.直线3y 与函数26yxx 的图象的交点个数为()A .4个B .3个C .2个D .1个二、填空题(每小题5分共20分)13.已知221)(xxx f ,那么)41()4()31()3()21()2()1(f f f f f f f =____ 14.方程33131xx 的解是____________。
新课标人教版高一数学上学期期末试卷及答案
上学期期末考试卷年级:高一科目:英语注意事项: 1.答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
(试卷总分:150分;考试时间:120分钟)第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
听力结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。
1. What would the man like?A. A cold drink.B. Sleeping pills.C. A cup of coffee.2. Where is the bus station?A. Opposite a stadium.B. Next to a car park.C. On the left of a bridge.3. What does the man dislike about the sweater?A. The price.B. The material.C. The color.4. What does the man think of the course?A. Easy.B. Interesting.C. Difficult.5. What are the speakers mainly talking about?A. A sports game.B. An animal.C. An actor.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。
人教版高一数学第一学期期末测试卷1(有答案)
D .余弦函数在[2k ,2k ](k Z)上都是减函数人教版高一数学第一学期期末测试卷(一)第I 卷(选择题,共60分)、选择题:本大题共 12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合 A { 1,1,B {x|mx 1},A . 1B . 1 D2. 已知集合A { y | yIn x, x 1}, BA . {y|0 y 1}B . {y|0B3. 下列函数中,在 R 上单调递增的是(A . y |xB . y log ; C且AUBA ,,则 m 的值为 ( )C. 1 或1D . 1或 1或0{y|y(2)x,x1},则AI B =()11y2}C .{y|- 2y 1} D)1x;•yx 3D . ytanx6.下列说法中不正确的是( )A .正弦函数、余弦函数的定义域是 R ,值域是[1,1]B.余弦函数当且仅当 x 2k (k Z)时,取得最大值13C. 正弦函数在[2k—,2k ](k Z)上都是减函数2 24 •如图所示,是全集,A 、B 是U 的子集,则阴影部分所表示的集合是(A . AlBC . AUBB B . BlC u AD . Al C u B5•已知函数f(x)是R 上的增函数,A(0,1)、B(3,1)是图象上两点, A • ( 1,2))1的解集是(那么f(x 1)B . (1,4)C. (, 1]U[4,)D . (, 1]U[2,)D7 .若sin cos5,则tan1( )2tanA. 4B. 4C. 8D. 8C8 .若a si n46o,b cos46°, c cos36°, 则a,b, c的大小关系是( )A. c a bB. a b cC. a c bD. b c aA9.函数y si n(2x)(0)的图象:关于直线x 对称,则8的值是( )A. 0B.— c.—D.42B10•已知从甲地到乙地通话m分钟的电话费由f(m) 1.06(0.5[m] 1)元给出,其中m 0, [m]表示不超过m的最大整数,(如[3]=3,[]=3),则从甲地到乙地通话时间为分钟的话费为( )A •B. 3.97 C. D.A11. 函数f (x) In x -的零点所在的大致区间是( )x1A. (1,2)B. (2,3)C. (1-)和(3,4)D. e,eB1 12. 已知y f (x)是定义在R上的奇函数,当x 0时,f(x) x 2,那么不等式f(x)—的解2集是( )A. x|05,3x 0 x B. x| -22C. x |3x 0,或05x D. x | x3,或05x 2222D第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分.13.方程2x3 2x的解的个数为_______________________14.函数y sin(2x 才)的单调递增区间为 ____________________15.函数y 、. cosx tan x的定义域是+2k,— 2k k Z22 216 .已知函数f(x) lg[(a 1)x (a 1)x 1]的值域为R,则实数a的范围是三、解答题:解答应写出文字说明、证明过程或演算步骤.17. (本题满分10分)已知集合M={x|x2—3x+2=0}, N={x z| 1 x 1 2}, Q={1, a2+1, a+1} (1 )求M N; (2)若M Q,求实数a的值.解:(1) M={1 , 2}, N={0, 1 , 2, 3} .......................... 分.2M N={1 , 2} ................................................................ 4-分(2). M Q当a2+1=2即a=1或一1时,a=1Q={1, 2, 2}(舍)a=1符合题意;……分当a+1=2 即a=1 时,Q={1, 1, 1}(舍)............................... 分..8 a=—1 ................................................................. 分 (9)18. (本题满分12分)2 si n3 cos 八(n )解:原式=.................. 分4 cos sin2ta n 3 八=9 ................................ 分124 tan20. (本题满分12分)已知定义域为R 的函数f (x)1 2x 2^是奇函数.(1) 求 a 的值;(2)若对任意的t R ,不等式f(t 2 2t) f (2t 2 k)0恒成立,求实数 k 的取值范围.(1)解:•••函数f(x)是定义域为R 的奇函数.f(x) f(x) 0对x R 恒成立.为计算方便,取x 1 ,f( 1)0 2 a 0 a 2 .(2)解:Q f(t 22t)f (2t 2k) 0 f(t 2 2t)f (2t 2k).Q f(x)为奇函数, f (t 22t) f( 2t 2k).由(1 )得 f (X)Y Y1 2 (2 1) 2 12 2 2(2 1),f (x)在定义域内为单调递减函数.t 2 2t 2t 2 k ,即:3t 2 2t k 0 恒成立., 1 0 ,二 k319. (本题满分12分)(I )化简:—匚缈20如60sin 160 V1 sin 2 20(n )已知:tan 3,求2C0右3si n(324cos( ) sin(—2)的值.)(I)解:原式=1 2sin20co s20sin 20cos 20分・3cos20 sin 20 sin 20 cos201 ................ 分设函数f(x) Asin( x ) ( A 0, 0, | | )的图象的最高点D的坐标为(2, 2),由最高(1 )求A 、3、$的值;(2)求函数y g(x),使其图象与y f(x)图象关于直线x 8对称.(1)解:最高点 D(2,.2), A = 2 .T2由题意一=6 — 2= 4 , T = 16 , T =,(3=—48f (x) = 2sn (—+ ®, Q 过最高点 D(2,2), 8(2)解:设P(x , y)为y = g (x)上任一点, Q(X o , y o )是f (x)上关于x = 8对称点.x x 0一y = y o ,=8; y = y o , x o = 16 — x ,又 y o = 2sin(x °).284y = . 2sin[—(16 x) -]=、2sin(2-x-) = . 2sin( —x -).848 4 8 421. (本题满分12分)2x已知函数f(x)=-综上,A = 2,3= —,$=—.8 4 —x 2"+ = 2k n — ,$ = 2k n+ —.8241 x2-1 - 1⑴、求f⑵与f( ), f(3)与f();2 31(2)、由(1)中求得结果,你能发现f(x)与f(—)有什么关系并证明你的结论;x⑶、求f(1)+f(2)+f (3) +??? f(2009) f(l) f(b ??? f (-)的值•2 3 200922. (本小题满分12分)2已知定义在区间[, ]上的函数y f (x)的图象关于直线x3时,函数f(x) Asin( x ) (A 0, 0,-2(1) 求函数y f(x)在[,2]的表达式;3、、42(2) 求方程f (x)—的解.即f(x) sin( x ) sinx ,—对称,当x [ ] 6 6 32),其图象如图所示2 T 解:(1) x [ -, ] , A 1,6 3 42且f (x) sin(x )过(——,0)3当x 一时,一x6 6 2,T 2, 13 6小2则,f (x)sin(x ) 3332,f ( x—)sin( x)3 33 3 3而函数y f (x)的图象关于直线x对称,则f(x) f( x )6 3x63 3x6f(x) (2)当sin(x —), x 6,_3]sin x,x [,6时,6,或—,x4 46 时,f(x)34' ~43 ,f(x)sin(x -)迪3 2—或—J12 12sin x ——,sin x2xx。
人教版高一上学期期末数学试卷(有答案)
人教版高一(上)期末数学试卷一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或03.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a25.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.187.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=,并求出=.14.(5分)如图所示几何体的三视图,则该几何体的表面积为.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.参考答案与试题解析一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)【解答】解:由,解得x>且x≠1.的定义域是(,1)∪(1,+∞).∴函数f(x)=log(2x﹣1)故选:B.2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或0【解答】解:当a=0时,两直线重合;当a≠0时,由,解得a=,综合可得,a=,故选:A.3.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)【解答】解:∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3,x3>﹣x1,又f(x)是定义在R上单调递减的奇函数,∴f(x1)<f(﹣x2)=﹣f(x2),f(x2)<f(﹣x3)=﹣f(x3),f(x3)<f(﹣x1)=﹣f(x1),∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,∴三式相加整理得f(x1)+f(x2)+f(x3)<0故选B4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a2【解答】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上,可求得其长度为a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2a,∴原平面图形的面积为=故选:C.5.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③【解答】解:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选A.6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.18【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,侧高为,故棱台的高h==2,故棱台的体积为:=,棱锥的底面是棱台上底面的一半,故底面面积为2,高为2,故棱锥的体积为:×2×2=,故组合体的体积V=﹣=,故选:B7.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.【解答】解:已知如图所示:过O做平面PBA的垂线,交平面PBC于Q,连接PQ则∠OPQ=90°﹣45°=45°.∵cos∠OPA=cos∠QPA×cos∠OPQ,∴cos∠QPA=,∴∠QPA=45°,∴∠QPB=45°∴cos∠OPB=cos∠OPQ×cos∠QPB=.故选C.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=1,并求出=.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.14.(5分)如图所示几何体的三视图,则该几何体的表面积为16+2.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:E和F分别是AB和CD中点,作EM⊥AD,连接PM,且PD=PC,由三视图得,PE⊥底面ABCD,AB=4,CD=2,PE═EF=2在直角三角形△PEF中,PF==2,在直角三角形△DEF中,DE==,同理在直角梯形ADEF中,AD=,根据△AED的面积相等得,×AD×ME=×AE×EF,解得ME=,∵PE⊥底面ABCD,EM⊥AD,∴PM⊥AD,PE⊥ME,在直角三角形△PME中,PM==,∴该四棱锥的表面积S=×(4+2)×2+×4×2+×2×2+2×××=16+2.故答案为:16+2.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.【解答】解:当x1∈[2,5]时,可得A(2,4),B(5,﹣2).设P(﹣1,﹣1),则k PA==,k PB==,∴的取值范围是.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.【解答】解:以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂直线为z轴,建立空间直角坐标系,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,∴P到平面ABCD的距离为PCsin30°=.∴A(1,0,0),P(0,﹣1,),B(1,2,0),C(0,2,0),=(1,1,﹣),=(1,3,﹣),=(0,3,﹣),设平面PAB的法向量=(x,y,z),则,取z=1,得=(),设平面PBC的法向量=(a,b,c),则,取c=,得=(2,1,),设二面角A﹣PB﹣C的平面角为θ,则cosθ===,sinθ==,tanθ==.∴二面角A﹣PB﹣C的正切值为.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.【解答】解:设A(a,0),B(0,b),则直线l的方程为:+=1.把点P(3,2)代入可得:+=1.(a,b>0).∴1≥2,化为ab≥24,当且仅当a=6,b=4时取等号.=ab≥12,l的方程为:+=1,即4x+6y﹣24=0∴S△AOB18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.【解答】(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2.…(1分)∴V P=S▱ABCD•PC=.…(3分)﹣ABCD(Ⅱ)证明:∵E、O分别为PC、BD中点∴EO∥PA,…(4分)又EO⊄平面PAD,PA⊂平面PAD.…(6分)∴EO∥平面PAD.…(7分)(Ⅲ)不论点E在何位置,都有BD⊥AE,…(8分)证明如下:∵ABCD是正方形,∴BD⊥AC,…(9分)∵PC⊥底面ABCD且BD⊂平面ABCD,∴BD⊥PC,…(10分)又∵AC∩PC=C,∴BD⊥平面PAC,…(11分)∵不论点E在何位置,都有AE⊂平面PAC,∴不论点E在何位置,都有BD⊥AE.…(12分)19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.【解答】解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,故OG∥PC,所以,OG=PC=.又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,故∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,tan∠AGO=,即m=.所以,当m=时,直线AP与平面BDD1B1所成的角的正切值为4.(2)可以推测,点Q应当是A I C I的中点,当是中点时因为D1O1⊥A1C1,且D1O1⊥A1A,A1C1∩A1A=A1,所以D1O1⊥平面ACC1A1,又AP⊂平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG⊂平面A1DE,BF⊄平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H⊂面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.【解答】附加题:(本题共10分)解:(1)g(x)=a(x﹣1)2+1+b﹣a,当a>0时,g(x)在[2,3]上为增函数,故,可得,⇔.当a<0时,g(x)在[2,3]上为减函数.故可得可得,∵b<1∴a=1,b=0即g(x)=x2﹣2x+1.f(x)=x+﹣2.…(3分)(2)方程f(2x)﹣k•2x≥0化为2x+﹣2≥k•2x,k≤1+﹣令=t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=0,∴k≤0.…(6分)(3)由f(|2x﹣1|)+k(﹣3)=0得|2x﹣1|+﹣(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|+﹣(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如右图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0.…(10分)。
人教版高一上期末数学试卷(有答案)
人教版高一(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,选出22C.3A.c>b>a B.b>c>a C.a>b>c D.c>a>b9.(3 分)某商场在2017 年元旦开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500 元再减100 元,如某商品标价1500 元,则购买该商品的实际付款额为1500×0.8﹣200=1000 元.设购买某商品的实际折扣率=,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为(11.(3 分)若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y ≠0},则y=f(x)的图象可能是()C.12.(3 分)关于x 的方程(a>0,且a≠1)解的个数是(二、填空题:本题共6小题,每小题4分,共24分.a若存在x ,x ∈R,x ≠x ,使f(x )=f(x )12121219.(10 分)已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.(Ⅰ)求A∪B;21.(10分)已知函数f(x)=kx+2x为奇函数,函数g(x)=a﹣1(a>0,且a≠1).2(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;时,求h(x)=cosx•F(x+sinx)的零点个数和值域.一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,选出2【解答】解:由题意知,M={x∈R|x+2x=0}={﹣2,0},2则由l=rα,可得:α==.故选:B.∴=3.故选:C.4.(3分)二次函数f(x)=ax+bx+1的最小值为f(1)=0,则a﹣b=()22∴C.【解答】解:对于A,函数g(x)=x﹣1(x∈R),与函数f(x)=|x﹣1|(x∈R)的对应关系=|x﹣1|(x≠1),与函数f(x)=|x﹣1|(x∈R)的定义域不=x﹣1(x≥1),与函数f(x)=|x﹣1|(x∈R)的定义域不同,=|x﹣1|(x∈R),与函数f(x)=|x﹣1|(x∈R)的定义域相同,3A.c>b>a B.b>c>a C.a>b>c D.c>a>b33∴g(﹣x)+g(x)=0,即2+﹣m+2﹣﹣m=0,9.(3 分)某商场在2017 年元旦开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500 元再减100 元,如某商品标价1500 元,则购买该商品的实际付款额为1500×0.8﹣200=1000 元.设购买某商品的实际折扣率=,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为(A.55% B.65% C.75% D.80%11.(3分)若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y ≠0},则y=f(x)的图象可能是()C.12.(3分)关于x的方程(a>0,且a≠1)解的个数是(A.2B.1C.0D.不确定的x22x2xg(x)=﹣x+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,2xg(x)=﹣x+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,2二、填空题:本题共6小题,每小题4分,共24分.的定义域为(﹣∞,3].tan(π﹣α)=﹣tanα=﹣故答案为:﹣;2.aa2a∴x=故答案为:222所以2;故答案为:﹣∴若存在x,x∈R,x≠x,使f(x)=f(x)121212成立,则实数a的取值范围是(﹣∞,).x若a>0,则f(x)<2﹣3a,若存在x,x∈R,x≠x,使f(x)=f(x)成立,则2﹣3a>0,121212若a>0,则f(x)<2﹣3a,若存在x,x∈R,x≠x,使f(x)=f(x)成立,则2﹣3a>0,121212故答案为:(﹣∞,)三、解答题:本大题共4个小题,40分,解答应写出文字说明,证明过程或演算步骤.19.(10分)已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.(Ⅰ)求A∪B;当C≠∅,可得1≤a≤2,一个横坐标为的交点,的图象上所有点的横坐标变为原来的令2kπ﹣≤2x≤2kπ+,求得kπ﹣≤x≤kπ+,可得h(x)的增区间为[kπ﹣,kπ+],k∈Z.21.(10分)已知函数f(x)=kx+2x为奇函数,函数g(x)=a﹣1(a>0,且a≠1).2【解答】解:(Ⅰ)∵函数f(x)=kx+2x为奇函数,2222x0<a<1,函数g(x)在[﹣1,2]上单调递减,x=2时g(x)在[﹣1,2]上的最小值为a﹣1;4a>1,函数g(x)在[﹣1,2]上单调递增,x=﹣1时g(x)在[﹣1,2]上的最小值为a﹣1.2(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;时,求h(x)=cosx•F(x+sinx)的零点个数和值域.【解答】解:(Ⅰ)定义2222则h(x)的零点个数为2;当x+sinx<x,即π<x≤时,h(x)=﹣cosx∈[,1).一个横坐标为的交点,的图象上所有点的横坐标变为原来的令2kπ﹣≤2x≤2kπ+,求得kπ﹣≤x≤kπ+,可得h(x)的增区间为[kπ﹣,kπ+],k∈Z.21.(10分)已知函数f(x)=kx+2x为奇函数,函数g(x)=a﹣1(a>0,且a≠1).2【解答】解:(Ⅰ)∵函数f(x)=kx+2x为奇函数,2222x0<a<1,函数g(x)在[﹣1,2]上单调递减,x=2时g(x)在[﹣1,2]上的最小值为a﹣1;4a>1,函数g(x)在[﹣1,2]上单调递增,x=﹣1时g(x)在[﹣1,2]上的最小值为a﹣1.2(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;时,求h(x)=cosx•F(x+sinx)的零点个数和值域.【解答】解:(Ⅰ)定义2222则h(x)的零点个数为2;当x+sinx<x,即π<x≤时,h(x)=﹣cosx∈[,1).。
人教版高一数学第一学期期末试卷(1)
(1)根据以上数据,求出函数 y A cos t b 的最小正周期 T 及函数表达式(其中
A>0, >0); (2)根据规定,当海浪高度不低于 0.75 米时,才对冲浪爱好者开放,请根据以上结论,
判断一天内从上午 7 时至晚上 19 时之间,该浴场有多少时间可向冲浪爱好者开放?
21、(本小题满分 10 分)已知函数 f ( x ) sin x , x R .
符合题目要求的.)
1、若 I={1,2,3,4,5},A={1,2},B={1,3,5},则( C I A )∩B=…………………………………(
)
A、{1}
B、{3,4,5}
C、{3,5}
D、
2、已知角 的终边经过点( 3 ,1 ),那么 tan 的值是…………………………………(
)
22
A、 1 2
由于 g ( x ) 为[-1,1]上奇函数,故当 x [1, 0) 时 g ( x ) ( 1 , 3 ] 25
而 g ( x ) 0 ∴ g ( x ) [ 3 , 3 ] ,即 b [ 3 , 3 ]
55
55
12 分
是
.
12、函数 f ( x) cos 4 x sin 4 x 的最小正周期是
.
13、函数 y log 5 (4 x 3) 的定义域是
.
14、在边长为 2 的正三角形 ABC 中,A B B C B C C A C A A B 的值等于
.
15、已知 sin co s = 1 , (0, ) ,则 tan =
20、(本小题满分 10 分)已知某海滨浴场的海浪高度 y(单位:米)与时间 t(0≤t≤24)(单 位:时)的函数关系记作 y f (t ) ,下表是某日各时的浪高数据:
人教版高一上期末数学试卷(有答案)
人教版高一上期末数学试卷(有答案) 无明显问题的段落:一、选择题:1.已知集合M={x∈R|x^2+2x=0},N={2},则M∩N={2}。
2.若一个扇形的弧长是3,半径是2,则该扇形的圆心角为3/4π。
3.设x∈R,向量a=(3,x),b=(-1,1),若a⊥b,则||a||=6.4.二次函数f(x)=ax^2+bx+1的最小值为f(1)=0,则a-b=-2.5.已知点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①,②,③,④。
其中可作为该平面其他向量基底的是①④。
6.已知函数f(x)=|x-1|,则与y=f(x)相等的函数是g(x)=1-x。
7.已知a=log3 2,b=log3 4,c=log3 5,则c>b>a。
8.已知函数f(x)=x^2-4x+5,若g(x)=f(x)-m为奇函数,则实数m的值为2.9.某人欲购买标价为2700元的商品,他可以享受的实际折扣率约为75%。
10.将函数y=f(x)的图象上所有点向左平行移动1个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是y=-1.11.函数y=f(x)的图象可能是D。
12.关于x的方程(a^2-1)x^2+2ax+a=0 (a>1且a≠-1)解的个数是2.二、填空题:13.函数f(x)=sin(x-π/2),则sinα=f(α+π/2),tan(π-α)=tanα。
14.已知角α为第四象限角,且tanα=-3/4,则cosα=4/5,sinα=-3/5.解得m=2c-1=2log3(5)-1。
故选:C.4.(3分)二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a-b=()A.-2 B.-1 C.1 D.3解:由题意可得f(1)=a+b+1=0,即a=-b-1,代入a-b中得a-b=-2b-1.所以选A。
5.(3分)设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①(3,1),②(1,1),③(1,-1),④(-2,-2)与(-1,2);其中可作为该平面其他向量基底的是()A.①② B.①③ C.①④ D.③④解:根据向量组共线或不共线的特性,可以排除②和④。
人教A版新教材高一上学期期末考试数学试卷(共五套)
人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
人教版高一数学必修一期末综合练习题(含答案)
人教版高一数学必修一期末综合练习题(含答案)人教版高一数学必修一期末综合练题(含答案)一、单选题1.已知实数a,b,c满足lga=10=b,则下列关系式中不可能成立的是()A。
a>b>cB。
a>c>bC。
c>a>bD。
c>b>a2.已知函数f(x)=x(e^x+a),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为()A。
0B。
1C。
2D。
-13.命题:“对于任意实数x,x^2+x>0” 的否定是( )A。
存在实数x,使得x^2+x≤0B。
对于任意实数x,x^2+x≤0C。
存在实数x,使得x^2+x<0D。
对于任意实数x,x^2+x≥04.已知sin2α=-1/2,则cos(α+π/3)=()A。
-1/3B。
-2/3C。
1/3D。
2/35.已知ω>0,函数f(x)=cos(ωx+π/2),则ω的取值范围是()A。
(0,π/12]B。
(0,π/6]C。
(0,π/4]D。
(0,π/2]6.为了得到函数y=cos2x的图象,只需将函数y=sin(2x-π/2)的图象上所有点A。
向右平移π个单位B。
向左平移π个单位C。
向右平移π/2个单位D。
向左平移π/2个单位7.下列函数中,与函数y=x相同的是()A。
y=1/xB。
y=x^2C。
y=√xD。
y=|x|8.若2sinx-cos(π/2+x)=1,则cos2x=()A。
-8/9B。
-7/9C。
7/9D。
8/99.设A={x|x^2-4x+3≥0},B={x|x^2-6x+5≤0},则“A包含于B”是“B包含于A”的()A。
充分必要条件B。
必要不充分条件C。
充分不必要条件D。
既不充分也不必要条件10.已知集合A={x|y=ln(x+1)},集合B={x|x≤2},则A∩B等于()A。
(-1,2]B。
[0,2]C。
(0,∞)D。
(5,6]11.已知集合P={x|x-3≤2,x∈R},Q={3,5,6},则P∩Q=()A。
最新人教版高一数学上学期期末考试试题(附答案)
最新人教版高一数学上学期期末考试试题(附答案)最新人教版高一数学上学期期末考试试题(附答案)一、选择题(每题3分,共36分)1.已知集合$A=\{2,4,6\}$。
且当$a\in A$ 时,$6-a\in A$。
则 $a$ 为()A。
2 B。
4 C。
3 D。
12.$\sin(-1050)$ 的值为()A。
$\dfrac{3}{3}$ B。
$\dfrac{3}{2}$ C。
$0$ D。
$2$ 或$4$3.下列函数中,不满足 $f(2x)=2f(x)$ 的是()A。
$f(x)=|x|$ B。
$f(x)=x+1$ C。
$f(x)=-x$ D。
$f(x)=x-|x|$4.函数 $f(x)=|\cos x|$ 的最小正周期为()A。
$2\pi$ B。
$\pi$ C。
$3\pi$ D。
均不对5.函数 $y=2\sin x-2$ 的定义域为()A。
$[2k\pi,2k\pi+\dfrac{\pi}{4}]$,$k\in Z$ B。
$[2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{\pi}{2}]$,$k\in Z$C。
$[2k\pi+\dfrac{3\pi}{4},2k\pi+\pi]$,$k\in Z$ D。
$[2k\pi,2k\pi+3\pi]$,$k\in Z$6.函数 $f(x)=ax^2+bx+c$ 满足 $f(1)>0$,$f(2)<0$,则$f(x)$ 在 $(1,2)$ 上的零点()A。
至多有一个 B。
有1个或2个 C。
有且仅有一个 D。
一个也没有7.已知向量 $\bold{a}=(1,2,3)$,$|\bold{b}|=1$,且两向量夹 $120^\circ$,则 $|\bold{a}-\bold{b}|=$()A。
$\sqrt{3}$ B。
$3$ C。
$5$ D。
$7$8.将函数 $y=\sin(x+\phi)$,$(0<\phi<\pi)$ 的图像所有点的纵坐标不变,横坐标伸长到原来的2倍,再向左平移$\dfrac{1}{2}$ 个单位得到一个奇函数的图像,则$\phi=$()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学第一学期期末测试卷(一)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,1}A =-,{|1}B x mx ==,且AB A =,则m 的值为( )A .1B .1-C .1或1-D .1或1-或0D2.已知集合1{|ln ,1},{|(),1},2x A y y x x B y y x AB ==>==>则=( )A .{|01}y y <<B .1{|0}2y y <<C .1{|1}2y y << D .∅ B3.下列函数中,在R 上单调递增的是( ) ,A .y x =B .2log y x =C .13y x = D .tan y x =C4.如图所示,U 是全集,A 、B 是U 的子集,则阴影部分所表示的集合是( )A .AB B .()U BC A C .A BD .()U AC BB5.已知函数()f x 是R 上的增函数,(0,1)A -、(3,1)B 是图象上两点,那么(1)1f x +<的解集是( ) A .(1,2)- B .(1,4) C .(,1][4,)-∞-+∞ D .(,1][2,)-∞-+∞ A6.下列说法中不正确的是( ) ¥A .正弦函数、余弦函数的定义域是R ,值域是[,]-11B .余弦函数当且仅当2(Z)x k k π=∈时,取得最大值1C .正弦函数在3[2,2](Z)22k k k ππππ++∈上都是减函数 D .余弦函数在[2,2](Z)k k k πππ-∈上都是减函数7.若sin cos αα-=,则1tan tan αα+=( ) A .4- B .4 C .8- D .8 C8.若sin 46,cos 46,cos36a b c ===,则,,a b c 的大小关系是( )A . c a b >>B .a b c >>C .a c b >>D .b c a >> )A9.函数sin(2)(0)y x ϕϕπ=+≤≤的图象关于直线8x π=对称,则ϕ的值是( )A .0B .4πC .2πD .π B10.已知从甲地到乙地通话m 分钟的电话费由)1][5.0(06.1)(+=m m f 元给出,其中0>m ,[m ]表示不超过m 的最大整数,(如[3]=3,[]=3),则从甲地到乙地通话时间为分钟的话费为( )A .B .3.97C .D .A11.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(,2)1 B .(2,3) C .1(1,)e和(3,4) D .(),e +∞ B …12.已知()y f x =是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( )A .5|02x x ⎧⎫<<⎨⎬⎭⎩ B . 3|02x x ⎧⎫-<<⎨⎬⎭⎩C . 35|0,022x x x ⎧⎫-<<<<⎨⎬⎭⎩或 D . 35|,022x x x ⎧⎫<-≤<⎨⎬⎭⎩或D第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分. 13.方程232x x -=的解的个数为 .14.函数sin(2)4y x π=-的单调递增区间为 .()3,88k k k Z ππππ⎛⎫-++∈⎪⎝⎭; <15.函数cos tan y x x =-的定义域是 .()3+2,22k k k Z ππππ⎡⎫+∈⎪⎢⎣⎭16.已知函数22()lg[(1)(1)1]f x a x a x =-+++的值域为R ,则实数a 的范围是 .5[1,]3. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知集合M ={x |x 2-3x +2=0},N ={|112x z x ∈-≤-≤},Q ={1,a 2+1,a +1} (1)求M ⋂N ; (2)若M ⊆Q ,求实数a 的值.。
解:(1) M ={1,2},N ={0,1,2,3}……………………….2 分M ⋂N ={1,2}…………………………………………………. 4分 (2). M ⊆Q当a 2+1=2即a =1或-1时, a =1Q ={1,2,2}(舍)a =1符合题意;……6分 当a +1=2即a =1时, Q ={1,1,1}(舍)……………………………..8分∴ a =-1……………………………………………………………9分~18.(本题满分12分) 已知定义域为R 的函数112()2x x f x a+-=+是奇函数.(1)求a 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.(1)解:∵函数()f x 是定义域为R 的奇函数.∴()()0f x f x +-=对x R ∈恒成立. 为计算方便,取1x =,则112(1)(1)002041f f a a a-+-=⇒+=⇒-=⇒++2a =.(2)解:22(2)(2)0f t t f t k -+-<,22(2)(2)f t t f t k ∴-<--.()f x 为奇函数, 22(2)(2)f t t f t k ∴-<-+.由(1)得 112(21)211()2222(21)21x x x xxf x +--++===-++++,()f x 在定义域内为单调递减函数. 2222t t t k ∴->-+,即:2320t t k --> 恒成立.∵0∆<,∴13k <-.19.(本题满分12分) (Ⅰ)化简:︒--︒︒︒+20sin 1160sin 160cos 20sin 212;(Ⅱ)已知:3tan =α,求)2sin()cos(4)23sin(3)2cos(2απααπαπ-+-+---的值. (Ⅰ)解:原式=︒-︒︒︒-20cos 20sin 20cos 20sin 21……………………………3分=︒-︒︒-︒20cos 20sin 20sin 20cos =1-………………6分(Ⅱ)解:原式=ααααsin cos 4cos 3sin 2-+……………………………9分"ααtan 43tan 2-+=9…………………………12分20.(本题满分12分)设函数()sin()f x A x ωϕ=+(0A >,0ω>,||ϕπ≤)的图象的最高点D 的坐标为,由最高点运动到相邻的最低点F 时,曲线与x 轴相交于点E (6,0). (1)求A 、ω、φ的值;(2)求函数()y g x =,使其图象与()y f x =图象关于直线8x =对称.(1)解:最高点D (2,2), A =2.由题意4T =6-2=4 ,T =16 ,T =ωπ2 ,∴ω=8π.∴f (x ) n (8π+φ),过最高点D (2,2),∴8π×2+φ=2kπ+2π, φ=2kπ+4π.综上,A =2,ω=8π,φ=4π."(2)解:设P (x ,y )为y =g (x )上任一点,Q (x o ,y o )是f (x )上关于x =8对称点. y =y o ,20x x +=8; y =y o ,x o =16-x ,又y o =)48sin(20ππ+x . y =]4)16(8sin[2ππ+-⨯x =)482sin(2πππ+-x =)48sin(2ππ+-x .,21.(本题满分12分)已知函数f (x )=221xx + (1)、求f (2)与f (21),f (3)与f (31); (2)、由(1)中求得结果,你能发现f (x ) 与f (x1)有什么关系 并证明你的结论; …(3)、求f (1)+f (2)+f (3)+)20091()31()21()2009(f f f f +•••++++•••的值.22. (本小题满分12分) 已知定义在区间2[,]3ππ-上的函数()y f x =的图象关于直线6π-=x 对称,当2[,]63x ππ∈-时,函数)22,0,0()sin()(πϕπωϕω<<->>+=A x A x f ,其图象如图所示.(1)求函数)(x f y =在]32,[ππ-的表达式; (2)求方程22)(=x f 的解.-解:(1)2[,]63x ππ∈-,21,,2,1436T A T πππω==-== 且()sin()f x x ϕ=+过2(,0)3π,则2,,()sin()333f x x πππϕπϕ+===+当6x ππ-≤<-时,2,()sin()633333x f x x ππππππ-≤--≤--=--+而函数()y f x =的图象关于直线6π-=x 对称,则()()3f x f x π=--即()sin()sin 33f x x x ππ=--+=-,6x ππ-≤<-2sin(),[,]363()sin ,[,)6x x f x x x πππππ⎧+∈-⎪⎪∴=⎨⎪-∈--⎪⎩(2)当263x ππ-≤≤时,63x πππ≤+≤,()sin()32f x x π=+=35,,,3441212x x πππππ+==-或或当6x ππ-≤<-时,()sin 22f x x x =-==- 3,44x ππ=--或 35,,,441212x ππππ∴=---或为所求.。