实变函数复习题

合集下载

实变函数本科试题及答案

实变函数本科试题及答案

实变函数本科试题及答案一、选择题(每题3分,共30分)1. 实数集R上的开区间(a, b)是一个开集,这是因为它满足:A. 任意点的邻域性质B. 包含所有有理数C. 包含所有整数D. 包含所有实数答案:A2. 下列哪个选项不是实数集R的子集?A. 空集B. (0, 1)C. 整数集ZD. 实数集R本身答案:C3. 一个函数在某点连续的充要条件是:A. 在该点导数存在B. 该点的左极限等于右极限C. 在该点的极限存在且等于函数值D. 在该点的振幅为零答案:C4. Lebesgue可测集的定义是基于:A. 开区间B. 闭区间C. 开集D. 半开半闭区间答案:A5. 如果一个实值函数在区间[a, b]上单调增加且有界,则根据Weierstrass定理,该函数必定:A. 有最大值和最小值B. 仅在有限点处不连续C. 仅在至多可数点处不连续D. 在区间[a, b]上连续答案:A6. 一个函数在某点的导数为0,这意味着该点是函数的:A. 驻点B. 极值点C. 拐点D. 渐近点答案:A7. 集合的外测度是:A. 集合所有开覆盖的体积的上确界B. 集合所有闭覆盖的体积的下确界C. 集合所有开覆盖的体积的下确界D. 集合所有闭覆盖的体积的上确界答案:A8. 如果一个函数在区间[a, b]上可积,则它的积分值:A. 必须为正B. 必须为负C. 可以是任意实数D. 必须为零答案:C9. 一个函数在某区间上一致连续的定义是:A. 该区间内任意两点的函数值之差的绝对值有界B. 该区间内任意两点的函数值之差的绝对值无界C. 函数在该区间的任意子区间上连续D. 函数在该区间的端点处的极限存在答案:A10. 根据Riemann积分的定义,如果一个函数在区间[a, b]上的积分存在,则:A. 该函数在该区间上必定连续B. 该函数在该区间上必定有界C. 该函数在该区间上必定单调增加D. 该函数在该区间上必定一致连续答案:B二、填空题(每题4分,共20分)11. 如果函数f(x)在点x=c处的左极限为L,则记为______。

实变函数期末复习 试卷

实变函数期末复习 试卷

nn
n→∞
An
= _________。
2 、 设 P 为 Cantor 集 , 则 P =
, mP = _____ ,
得分 阅卷人
o
P = ________。
复查人
∑ 3、设 {Si } 是一列可测集,则
m
⎛ ⎜⎝


i=1
S
i
⎞ ⎟⎠
______
∞ i=1
mSi
4、鲁津定理:______________________________________________________
(B) mP = 0
(C) P' = P

(D) P = P
此 3、下列说法不正确的是(

(A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测
(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测
4、设{ fn (x)} 是 E 上的 a.e.有限的可测函数列,则下面不成立的是(
)
线
(第 1页,共 24页)
_________________________________,则称 E 是 L可测的
4、叶果洛夫定理:
_________________________________________________________
5、设 f (x) 在 E 上可测,则 f (x) 在 E 上可积的
条件是| f (x) |在 E 上可
(C) f (x) 在[a, b] 上 L 可积
(D) f (x) 是有界变差函数
得分
二. 填空题(3 分×5=15 分)
1、设集合 N ⊂ M ,则 M − ( M − N) =

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案

《实变函数》试卷及参考答案《实变函数》试卷一一、单项选择题(3分×5=15分)1、1、下列各式正确的是( ),,,,limAA,,,limAA,,,(A); (B); nknk,,,,nnkn11nknn,,,,,,,,limAA,,,limAA,,,(C); (D); nknk,,,,nnkn1,,nkn1,,n2、设P为Cantor集,则下列各式不成立的是( ),'P,mP,0(A) c (B) (C) (D) P,PP,P3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D)波雷耳集都可测fx()E是上的有限的可测函数列,则下面不成立的是( ) 4、设ae..,,n sup()fxfxfx()(),fxfx()(),(A)若, 则 (B) 是可测函数 ,,nnnnfxfx()(), (C)是可测函数;(D)若,则可测 inf()fxfx(),,nnn5、设f(x)是上有界变差函数,则下面不成立的是( ) [a,b](A) 在上有界 (B) 在上几乎处处存在导数 f(x)[a,b]f(x)[a,b]b'f'(x)dx,f(b),f(a)f(x)(C)在上L可积 (D) [a,b],a二. 填空题(3分×5=15分)()(())CACBAAB,,,,,1、_________ sso'E0,12、设是上有理点全体,则=______,=______,=______. EEE,, nET3、设是中点集,如果对任一点集都有R1 (第页,共47页)EL_________________________________,则称是可测的、可测的________条件是它可以表成一列简单函数的极限函数. 4f(x)(填“充分”,“必要”,“充要”)ab,ab,5、设为上的有限函数,如果对于的一切分划,使fx(),,,,ab,______________________,则称为上的有界变差函数。

实变函数复习题

实变函数复习题

复习题1 一、判断1、若N 是自然数集,e N 为正偶数集,则N 与e N 对等。

(对)2、由直线上互不相交的开间隔所成之集是至多可列集。

(对)3、若12,,,n A A A 是1R 上的有限个集,则下式()1212n n A A A A A A ''''+++=+++成立。

(对)4、任意多个开集的交集一定是开集。

(错)5、有限点集和可列点集都可测。

(对)6、可列个零测集之并不是零测集。

(对)7、若开集1G 是开集2G 的真子集,则一定有12mG mG <。

(错) 8、对于有界集1ER ⊆,必有*m E <+∞。

(对)9、任何点集E 上的常数函数()f x =C ,x E ∈是可测函数。

(错)10、由()f x 在()1,2,k E k = 上可测可以推出()f x 在1kk E E ∞==∑上可测。

(对)二、填空1、区间(0,1)和全体实数R 对等,只需对每个()0,1x ∈,令 ()tan()2x x πϕπ=-2、任何无限集合都至少包含一个 可数子集3、设12,S S 都可测,则12S S ⋃也可测,并且当12S S ⋂为空集时,对于任意集合T 总有***1212[()]()()m T S S m T S m T S ⋂⋃=⋂+⋂4、设E 是任一可测集,则一定存在F ∂型集F ,使F E ⊂,且 ()0m E F -=5、可测集n ER ⊂上的 连续函数 是可测函数。

6、设E 是一个有界的无限集合,则E 至少有一 个聚点。

7、设π是一个与集合E 的点x 有关的命题,如果存在E 的子集M ,适合mM=0,使得π在E\M 上恒成立,也就是说,E\E[π成立]= 零测度集 ,则我们称π在E 上几乎处处成立。

8、E 为闭集的充要条件是'(E E)E E ⊂∂⊂或 。

9、设A 、B 是两个非空集合,若,A B B A ≤≤,则有 A =B。

三、证明 1、证明:若A B ⊂,且~A A C ⋃,则有~B B C ⋃。

实变函数复习题.docx

实变函数复习题.docx

《实变函数》 一、单项或多项选择题1、下列正确的是(234(3) (?1UB )\C = ?1U (B C UC )C 2、下列正确的是(24)(1) 无理数集是可数集;(2) 超越数构成的集合是不可数集;(3) 若/?屮两个Lebesgue 可测集A 和B 的基数相等,则它们的测度也相等;(4) 0表示全体有理数集,则Q?。

也是可数集.3、在R 中令A = {1,丄丄…丄,…},则(2 3 n6、设几九 wM(X),则(12 3 4(3) /2 G M(X)7、若/在[0,1]上乙可积,则下列成立的是8、设= 1,2,3,…)是X 上儿乎处处有限的可测函数,则下列结论正确的是(1(1)若人 则£—/,心.;(1) A\(B\C) = (A\B)\C(2) AU(BAC) =(AUB )n (AUC )(4)⑷B)\C = A\(BUC )(1) A 为闭集 (2) A 为开集 (3) 几{0}(4) A 为疏集4、设 AuR 满足 mA = 0 ,贝 ij ( 1 3 (1) A 为Lebesgue 可测集)(2)(3)任意可测函数/在A 上可积(4) 4为疏集5、在/?上定义/(%),当兀为有理数时, f(x) = 1 ,当x 为无理数时,/(x) = 0,贝ij( 3(1) /儿乎处处连续 (2) /不是可测函数(3)/在上处处不连续(4) /在/?上为可测函数⑴\f <+oo 在[0,1 ]上儿乎处处成立 (2) |.f|在[0,1]上厶可积 (3) /在[0,1]±几乎处处连续(4)兀在[of 上非厶可积(2) 若九 T/,d.e.,则九(3) 若 f n —> f ,a.u.,则 f n T f ; (4) 若 f 厶 f,则£->/•,“.・9、若{A“}为降列,且 M = 2,贝(4 )n —>oc、“8 、(1) 0(2) 0(3) “U4(4) “CM1心10、有界实函数/在区间[G , /?]± Riemann 可积的充要条件是/的不连续点集为( 4 )11、设f eBV [a,b ]f 则下列成立的是(1 416、超越数的个数为(3(1) 2 (2) a (3) c (4) 2C(1)空集(2)有限集 (3)可数集 (4)零测度集(1) 于在[a 问上有界; (2) /在[a 问上连续; (3) /在[a 问上可微; (4) /是两个增函数Z 差.12、整数集 的内部和闭包分别为(1)(3) 0,(1) 0, (2) (4)13. 设/(%) =x,xe[0,l]2-x,x w(l ,2]' 令 A = <x\f(x)(1) 0(2) 1(3) 2(4)14、下列哪些集合是测度为零的不可数集(3 )(4)(1) 031O )XEB(2) 1 ,则(1(3) 2 ⑷3100,XG [0,1]\17、f G AC[0,1],/(O) = 2,Kf = 0,a.e , B'J/(x)=_318、 设A ,%是R 的可测集,且A 0A 2,则下列正确的是( 2 4 )(1)< mA.(2) mA l <mA 2(3) mA x -mA 2 =\ A 2)(4) mA x =777(71^X2) + mA 219、 当/在[1,+00)上连续且Lebesgue 可积时,则lim f(x)=1L7X->4<0(1) 0 (2) 1 (3) -1 (4) +0020、 人2”-1=[°」],A” =[°,2],(斤= 1,2,…),则limA “和lim 人分别为" >1(I) [0,1],[0,2] ⑶[0,2],[0,1]21、下列正确的是(1 4 )(1) (4UB )\C =(A\C )U (B\C ) (3) A\(B\C) = (A\B)\C ⑵[0,1],[0,2](4) [0,2],[0,2](2) ACl(BUC) =(4nB )UC (4) (A\B)\C = A\(BUC ))⑵ r 1 2 3(Aus )=r ,(A )ur 1(5) ⑷ /-i (An5)=r i (A )ny 1(B )2 3 )24、 设人是[0,1]上所有有理数构成的集合,则川二(3 )(1) A (2) [0,l]\A (3) El(4)以上都不对25、 下列说法正确的是(12 3)1 A =(3) B = P 7(B )23、下列与 有相同基数的集合是( (1) [0,1] (2)3(4)(1) 0(2) 1 (3) 2 (4) 322、设f:X —X 是一个映射,4,B u X ,下列正确的是(2 4(2)上的开集都可以表示成互不相交的开区间的并(4) 的了集不是开集就是闭集 26、 下列正确的是(1 ) (1) 有理数集是可数集;(2) 代数数构成的集合是不可数集;(3) 若中两个Lebesgue 可测集A 和B 的测度相等,则它们的基数也相等; (4) [0,2]内包含的点比[0,1]内包含的点多。

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2

xn E, f ( xn ) a ………………… .3 分

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

(完整版)实变函数(复习资料_带答案)

(完整版)实变函数(复习资料_带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

实变函数复习题(学生用)

实变函数复习题(学生用)

实变函数复习题一、填空题1. 设10,1i A i ⎡⎫=+⎪⎢⎣⎭,1,2,.i = 则1i i A ∞== . 2. 若A =ℵ, B =ℵ, 则=⋃B A 。

3. 给出(1,1)-与(,)-∞+∞之间的一一对应关系 .4. 设222{(,):1}E x y R x y =∈+<, 则E '= 。

5. 设(1,3)(2,6)E =⋃,写出E 的所有的构成区间 。

6. 设n E R ⊂,若 ,则称E 是开集.7. 设n E R ⊂,若 ,则称E 是闭集.8. 设12,E E 为可测集,且21,E E ⊂2mE <+∞,则12()m E E -= 。

9. 设0x 为E 的内点,则*m E 0。

(填大于、等于或小于)10. 设Q 是有理数集,则mQ = 。

11. 设I 为n R 中的开区间,则*m I = 。

12. 设C 是Cantor 集,则mC = 。

13. 叙述可测函数的四则运算性 。

14. 叙述可测函数与简单函数的关系 。

15. (鲁津定理)设()f x 是E 上..a e 有限的可测函数,则0δ∀>,存在闭子集F E δ⊂,使()f x 在 上是连续函数,且()m E F δδ-<.16. 叙述伯恩斯坦定理 。

17.叙述可测集与开集的关系 。

18. 叙述测度的可数可加性 。

19. 叙述叶果洛夫定理 。

20. 叙述()k f x 在可测集E 上几乎处处收敛于)(x f 的定义 。

21. 叙述中开集的结构定理 。

22. 叙述R n中的集合E 是Lebesgue 可测集的卡氏定义(即 C.Caratheodory 定义) 。

23. 叙述测度的可数可加性 。

24. 叙述可测函数的定义 。

25. 叙述F.Riesz 定理(黎斯定理) 。

二、单选题1. E 是实数全体,则E 是 ( )A. 可数集;B.不可数集;C.有限集;D.不可测集.2. 有限个可数集的并集是 ( )A.可数集;B.不可数集;C.有限集;D.以上都不对.3. 若A 是有限集或可数集,B 是不可数集, 则 ( )A. A B 是可数集;B. A B 是不可数集;C. 0A B =ℵ ;D. A B A = .4. 设{}G λλ∈Λ是一族开集,G G λλ∈Λ= , 则G 一定是 ( ) A. 开集; B. 闭集; C. G δ型集; D. 开集,也是闭集.5. 点集E ⊂R n 的全体边界点所成的集合称为E 的 ( )A. 开核;B. 边界;C. 导集;D. 闭包.6. 设{}F λλ∈Λ是一族闭集,F F λλ∈Λ= ,则F 一定是 ( ) A.开集; B.闭集; C.F σ型集; D. 开集,也是闭集.7. 设{}n F 是一列闭集,1n n F F∞== ,则F 一定是 ( )A.开集;B.闭集;C.F σ型集;D. 开集,也是闭集.8. 设Q 是1中有理数全体,则mQ = ( )A.0;B.+∞;C.1;D.不存在.9. 关于Cantor 集P ,下述说法不成立的是A. P 无内点;B. P 中的点都为孤立点;C. P 中的点都为聚点;D. P 是闭集.10. 设E 是任一可测集, 则 ( )A.E 是开集; B .E 是闭集;C.0ε∀>,存在开集G E ⊃,使得()m G E ε-<; D .E 是F σ型集或G δ型集.11. 设{}n E 是一列可测集合,且12n E E E ⊂⊂⊂⊂ ,则有 ( ) A.1lim n n n n m E mE ∞→∞=⎛⎫> ⎪⎝⎭ ; B. 1lim n n n n m E mE ∞→∞=⎛⎫= ⎪⎝⎭ ;C. 1lim n n n n m E mE ∞→∞=⎛⎫> ⎪⎝⎭ ;D. 1lim n n n n m E mE ∞→∞=⎛⎫= ⎪⎝⎭ . 12. 设{}n E 是一列可测集合,且12n E E E ⊃⊃⊃⊃ ,1mE <+∞,则有 ( )A.1lim n n n n m E mE ∞→∞=⎛⎫> ⎪⎝⎭ ;B. 1lim n n n n m E mE ∞→∞=⎛⎫= ⎪⎝⎭ ; C. 1lim n n n n m E mE ∞→∞=⎛⎫> ⎪⎝⎭ ; D. 1lim n n n n m E mE ∞→∞=⎛⎫= ⎪⎝⎭ . 13. 关于简单函数与可测函数下述结论不正确的是 ( )A. 简单函数一定是可测函数;B. 简单函数列的极限是可测函数;C. 简单函数与可测函数是同一概念;D. 简单函数列的极限与可测函数是同一概念.14. 设{}()n f x 是可测集E 上的几乎处处有限的可测函数列, 则下述命题错误的是( )A .{}sup ()n nf x 是可测函数;B .{}inf ()n nf x 是可测函数; C. 若.()()mes n f x f x −−−→(依测度收敛), 则()f x 是可测的; D .若.()()mes n f x f x −−−→(依测度收敛), 则() ()n f x f x → a .e . 于E . 15. 若)(x f 是连续函数,则它必是. ( )A. 可测函数;B. 单调函数;C.简单函数;D.连续函数列的极限.16. 设⎩⎨⎧-∈-∈=E x x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是 ( ) A.|)(|x f ; B.)(x f ; C.)(x f +; D.)(x f -。

实变函数(复习资料,带答案).doc

实变函数(复习资料,带答案).doc

《实变函数试卷一一、单项选择题(3分X5=15分)1、下列各式正确的是( )_________ oo oo oo oo(A) limA = u n A ; (B) lim A = n u A ;n—H=1k=n,?一z?=l k=n00 00 00 00(C) limA" = n u ; (D) lim= A k ;打一>oo z:=l k=n z?=l k=n2、设P为Cantor集,则下列各式不成立的是( )(A) ~P= c (B) mP = 0 (C) P = P (D) P=P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设以(4是£上的E有限的可测函数列,则下而不成立的是( )(A)若又(x)=>/(x),则又(x) + /(x) (B)sup{/…Cr)}是可测函数(O inf{//%)}是可测函数;(D)若/T H又⑺=>/U),则/(X)可测5、设f(X)是上有界变差函数,则卜*面不成立的是()(A) /(X)在[6Z,/7]上有界(B) /(X)在[6/,刎上儿乎处处存在导数c b(C) / (X)在上L 可积(D) J a f\x)cbc=f(b)-f(a)二.填空题(3分X 5=15分)1、(C s AuC v5)n(A-(A-B))= ________________2、设£是[0,1]上有理点全体,则E - ______ , E- ________ , E- _______ .3、设£是/?。

中点集,如果对任一点集r都,贝1J称£是£可测的4、/⑶可测的________ 条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设/(x)为上的有限函数,如果对于的一切分划,使_____________________________________ ,则称/(x)为[6Z,/7]上的有界变差函数。

(完整版)实变函数期末复习

(完整版)实变函数期末复习

实变函数期末复习选择题1.设,...,],)(,[21121=-+=n nA nn 则 ( ) A.],[lim 10=∞→n n A B.],(lim 10=∞→n n A C.],(lim 30=∞→n n A D.),(lim 30=∞→n n A2.设N i i x i x A i ∈+≤≤=},:{23,则=∞=I 1i i A ( ) A.(-1,1) B.[0,1] C.∅ D.{0}3.集合E 的全体聚点所组成的集合称为E 的 ( )A.开集B.边界C.导集D.闭包4.若}{n A 是一闭集列,则Y ∞=1n n A是 ( )A.开集B.闭集C.既非开集又非闭集D.无法判断5若)(x f 可测,则它必是 ( )A.连续函数B.单调函数C.简单函数D.简单函数列的极限 6关于简单函数与可测函数下述结论不正确的是 ( )A.简单函数一定是可测函数B.简单函数列的极限是可测函数C.简单函数与可测函数是同一概念D.简单函数列的极限与可测函数是同一概念7设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A.必可积B.必几乎处处有限C.必积分确定D.不一定积分确定8设E 是可测集,则下列结论中正确的是 ( )A.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB.若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a.e 收敛于)(x fC.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fD.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n ⇒)(x f9设)(x f 是可测集E 上可积,则在E 上 ( )A.)(x f +与)(x f - 只有一个可积B.)(x f +与)(x f - 皆可积C.)(x f +与)(x f - 一定不可积D.)(x f +与)(x f - 至少有一个可积 10.)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为 ( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数11设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 12设}{nE 是一列可测集,ΛΛ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有 ( )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫ ⎝⎛⋃lim 1 (C )n n n n mE E m ∞→∞=<⎪⎭⎫ ⎝⎛⋂lim 1; (D )以上都不对 13设),0(n A n =, N n ∈, 则=∞→n n A lim( ) A 、Φ B 、[0, n] C 、R D 、(0, ∞)14设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ、 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m _______。

实变函数复习资料,带答案

实变函数复习资料,带答案

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的就是( )(A)1lim n k n n k n A A ∞∞→∞===⋃⋂; (B)1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C)1lim n k n n k nA A ∞∞→∞===⋂⋃; (D)1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的就是( ) (A)=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的就是( )(A) 凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C) 开集与闭集都就是波雷耳集 (D)波雷耳集都可测 4、设{}()n f x 就是E 上的..a e 有限的可测函数列,则下面不成立的就是( )(A)若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 就是可测函数(C){}inf ()n nf x 就是可测函数;(D)若()()n f x f x ⇒,则()f x 可测5、设f(x)就是],[b a 上有界变差函数,则下面不成立的就是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二、 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 就是[]0,1上有理点全体,则'E =______,oE =______,E =______、 3、设E 就是n R 中点集,如果对任一点集T 都_________________________________,则称E 就是L 可测的4、)(x f 可测的________条件就是它可以表成一列简单函数的极限函数、(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

(完整版)实变函数期末复习

(完整版)实变函数期末复习

实变函数期末复习选择题1.设,...,],)(,[21121=-+=n nA nn 则 ( ) A.],[lim 10=∞→n n A B.],(lim 10=∞→n n A C.],(lim 30=∞→n n A D.),(lim 30=∞→n n A2.设N i i x i x A i ∈+≤≤=},:{23,则=∞=I 1i i A ( ) A.(-1,1) B.[0,1] C.∅ D.{0}3.集合E 的全体聚点所组成的集合称为E 的 ( )A.开集B.边界C.导集D.闭包4.若}{n A 是一闭集列,则Y ∞=1n n A是 ( )A.开集B.闭集C.既非开集又非闭集D.无法判断5若)(x f 可测,则它必是 ( )A.连续函数B.单调函数C.简单函数D.简单函数列的极限 6关于简单函数与可测函数下述结论不正确的是 ( )A.简单函数一定是可测函数B.简单函数列的极限是可测函数C.简单函数与可测函数是同一概念D.简单函数列的极限与可测函数是同一概念7设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A.必可积B.必几乎处处有限C.必积分确定D.不一定积分确定8设E 是可测集,则下列结论中正确的是 ( )A.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB.若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a.e 收敛于)(x fC.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fD.若)}({x f n 在E 上a.e 收敛于一个a.e 有限的可测函数)(x f ,则)(x f n ⇒)(x f9设)(x f 是可测集E 上可积,则在E 上 ( )A.)(x f +与)(x f - 只有一个可积B.)(x f +与)(x f - 皆可积C.)(x f +与)(x f - 一定不可积D.)(x f +与)(x f - 至少有一个可积 10.)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为 ( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数11设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 12设}{nE 是一列可测集,ΛΛ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有 ( )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫ ⎝⎛⋃lim 1 (C )n n n n mE E m ∞→∞=<⎪⎭⎫ ⎝⎛⋂lim 1; (D )以上都不对 13设),0(n A n =, N n ∈, 则=∞→n n A lim( ) A 、Φ B 、[0, n] C 、R D 、(0, ∞)14设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ、 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m _______。

实变函数期末考试题库

实变函数期末考试题库

实变函数期末考试题库一、选择题1. 下列函数符合实变函数的定义的是:()A. f(x) = x^2 - 5x + 6, x ∈ [0, ∞)B. f(x) = √(x + 2), x ∈ (-∞, 3]C. f(x) = 1/x, x ∈ (-∞, 0)D. f(x) = |x|, x ∈ R2. 实变函数的定义域是指函数所能取的值的范围。

下列函数的定义域是:()A. f(x) = 2x + 1, x ∈ ZB. f(x) = √(x^2 - 4), x ∈ RC. f(x) = log(x), x ∈ (-∞, ∞)D. f(x) = 1/(x - 2), x ∈ R - {2}3. 下列函数中,连续性具有间断点的是:()A. f(x) = 3x - 2, x ∈ (-∞, 10)B. f(x) = |x|, x ∈ RC. f(x) = {x^2, x < 0; 2x, x ≥ 0}, x ∈ RD. f(x) = 1/x, x ∈ (-∞, 0) U (0, ∞)4. 设f(x)和g(x)为两个实变函数,下列函数中不是实变函数的是:()A. f(x) + g(x)B. f(x)g(x)C. f(x)/g(x), g(x) ≠ 0D. g(f(x))5. 若f(x)为实变函数,则下列函数中一定是实变函数的是:()A. f(x)/xB. √f(x)C. ∣f(x)∣D. f(x + 1)二、填空题1. 若f(x)在x = a处连续,则f(x)在x = a处一定是__________函数。

答:连续2. 设f(x) = 2x^2 + bx +1,若f(x)在x = -1处连续,则b的取值范围是__________。

答:33. 设f(x) = (x - 1)/(x + 3) + e^x,则f(x)的定义域是__________。

答:(-∞, -3) U (-3, ∞)4. 设函数f(x) = |2x - 5|,则f(x)在点x = ________处不连续。

实变函数复习题

实变函数复习题

邢台学院数学系《实变函数》复习手册前言本课程是数学专业的一门重要的基础课程,在数学教学中具有承上启下的作用。

通过本课程的学习,希望学生能够掌握集合之间的一些基本运算,点集的一些性质,测度、可测函数及L积分的定义及性质;熟悉并会运用积分序列的极限定理。

为以后学习其他课程打下良好的基础。

第一章集合本章讨论了集合的基本性质及运算,主要讨论了可数集及不可数集的性质及基数的定义。

为以后引入L积分打下了基础。

§1 集合的概念理解集合的性质、集合与元素的关系、集合与集合的关系。

§2 集合的运算深刻理解并集或合集、交集或积集、差集、余集、集合列的上下极限的定义,并且会求。

§3 对等与基数1、掌握有限集、无限集、一一映射、对等的定义;会建立常见集合间的对等关系;了解对等的性质。

2、了解基数概念,会比较两个集的基数大小。

§4 可数集合与自然数集合N对等的集合称为可数集合。

1、任何无限集包含一个可数子集。

2、若A是一个可数集合,B是一个有限集合,则是可数集合。

3、有限个或可数个可数集合的并集是可数集合。

4、有理数全体是一可数集,代数数全体是一可数集。

§5 不可数集合1、实数集全体R不是可数集。

其基数记为c,称与R对等的集合具有连续基数。

2、任何区间具有连续基数,可数个c集的并是c集,实数列全体的基数是c。

3、不存在基数最大的集合,也不存在最大基数。

练习题一、选择题:1、下列对象不能构成集合的是()A、全体自然数B、0,1之间的实数全体C、上的实函数全体 D、全体大个子2、下列对象不能构成集合的是()A、{全体实数}B、{全体整数}C、{全体小个子}D、3、下列对象不能构成集合的是()A、{全体实数}B、{全体整数}C、D、{全体胖子}4、下列对象不能构成集合的是()A、{全体实数}B、{全体整数}C、D、{全体瘦子}5、下列对象不能构成集合的是()A、{全体小孩子}B、{全体整数}C、D、{全体实数}6、下列对象不能构成集合的是()A、{全体实数}B、{全体大人}C、D、{全体整数}7、设,为全体实数,则()A、B、C、D、8、设,,则()A、B、C、D、9、设,,则()A、B、C、D、10、设,,则()A、B、C、D、11、设,,()A、B、C、D、12、设,,()A、B、C、D、13、设,则()A、B、C、D、14、设,则()A、B、C、D、15、设,则()A、B、C、D、16、设,则()A、B、C、D、17、设,则()A、B、C、D、18、设,则()A、B、C、D、19、设A、B、C是三个集合,则()A、BB、AC、D、20、设A、B、C是三个集合,则()A、B、C、D、21、设A、B、C是三个集合,则()A、B、C、D、22、设A、B、S是三个集合,且,则()A、B、C、D、23、设A、B、S是三个集合,()A、B、C、D、24、设A、B、C是三个集合,则()A、B、C、D、二、选择题1、设A为一集合,B是A的所有子集构成的集合,若,则2、设A为一集合,B是A的所有子集构成的集合,若A是一可数集,则3、若,则4、若,B是一可数集,则5、若,则6、若是一集合列,且,7、若是任意集族,其中I是指标集,则8、若是任意集族,其中I是指标集,则9、若是任意集族,其中I是指标集,S是一集合,则10、若是任意集族,其中I是指标集,S是一集合,则11、若是任意一个集合列,则12、若是任意一个集合列,则三、判断题()1、。

实变函数复习题

实变函数复习题

一、计算或证明下面各题1、设n A 就是如下一点集: ⎥⎦⎤⎢⎣⎡+-=+1212,012m A m ,,,...2,1,0=m ⎥⎦⎤⎢⎣⎡+=m A m 211,02,,,...2,1=m 试确定{}n A 的上极限与下极限。

2、证明:m n m n n A ∞=∞=∞→= 1lim 与m nm n n A ∞=∞=∞→= 1lim 。

3、证明:单调集列就是收敛的,若{}n A 增加,则n n n n A A ∞=∞→=1lim ;若{}n A 减少, 则n n n n A A ∞=∞→=1lim 。

4、设{}n A 就是一列集合,作11B A =,⎪⎭⎫ ⎝⎛-=-ννB A B n n n 1 ,1>n 。

证明:{}n B 就是一 列互不相交的集,而且ννννA B ∞=∞==11 ,∞≤≤n 1。

5、设1F 、2F 就是1R 中两个互不相交的闭集。

证明:存在两个互不相交的开集1G 、2G ,使11F G ⊃、22F G ⊃。

6、证明:设1S 、2S 都可测,则21S S 也可则,并且当∅=j i S S 时,对于任意集合T 总有()[]()()2121S T m S T m S S T m ***+=。

7、证明:设{}i S 就是一列互不相交的可测集,则i i S ∞=1也就是可测集,且 ∑∞=∞==⎪⎭⎫ ⎝⎛11i i i i mS S m 。

8、证明:设E 就是任一可测集,则一定存在δG 型集G ,使E G ⊃,且()0=-E G m 。

9、设n S S S ,...,,21,就是一些互不相交的可测集合,n i S E i i ,...,3,2,1,=⊂。

求证:()n n E m E m E m E E E m ****+++=......2121 。

10、设A,B P R ⊂且+∞<B m *,若A 就是可测集,证明:)(B A m B m mA B A m **)(*-+=。

实变函数习题与解答

实变函数习题与解答

实变函数复习范围1.设1[,2(1)],1,2,n n A n n=+-=,则( B )(A) lim [0,1]n n A →∞= (B )=∞→n n A lim (0,1] (C) lim (0,3]n n A →∞= (D )lim (0,3)n n A →∞=2、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( A )A 、(-1, 1)B 、(-1, 0)C 、[0, 1]D 、[-1, 1]3、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( B )A 、(0, 1)B 、[0, 1]C 、(0, 1]D 、(0, +∞)4、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( C )A 、[1, 2]B 、(1, 2)C 、 (0, 3)D 、(1, 2]5、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( C )A 、(-1, 1)B 、[0, 1]C 、φD 、{0}6、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( D )A 、(-1, 1)B 、[0, 1]C 、ΦD 、{0} 7、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( C )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1) 8、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2)C 、[0, 1]D 、[0, 1] 9、设),0(n A n =, N n ∈, 则=∞→n n A lim ( C )A 、ΦB 、[0, n]C 、RD 、(0, ∞) 10、设)1,0(nA n =, N n ∈, 则=∞→n n A lim (D )A 、(0, 1)B 、(0,n1) C 、{0} D 、Φ11、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( A )A 、ΦB 、(0,n1) C 、(0, n) D 、(0, ∞) 12、集合E 的全体内点所成的集合称为E 的 ( A ) A 、开核 B 、边界 C 、导集 D 、闭包 13、集合E 的全体聚点所成的集合称为E 的 ( C ) A 、开核 B 、边界 C 、导集 D 、闭包14、集合E 的全体边界点和内点所成的集合是E 的 ( D ) A 、开核 B 、边界 C 、导集 D 、闭包 15、E-E '所成的集合是 ( D )A 、开核B 、边界C 、外点D 、{E 的全体孤立点} 16、E 的全体边界点所成的集合称为E 的 ( B ) A 、开核 B 、边界 C 、导集 D 、闭包 17、设点P 是集合E 的边界点, 则 (D )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点18、设E 是[]0,1上有理点全体,则下列各式不成立的是( D ) (A )'[0,1]E = (B) oE =∅ (C) E =[0,1] (D) 1mE =19、若}{n A 是一开集列,则n n A ∞=⋃1是:(A )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 20、若}{n A 是一开集列,则n n A ∞=⋂1是:( D )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 21、若}{n A 是一闭集列,则n n A ∞=⋃1是:( D )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 22、若}{n A 是一闭集列,则n n A ∞=⋂1是:( B )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断 23、下列集合不是可数集的是( C )A. 1R 中的有理数集QB. 自然数集NC. []0,1中的无理数集D. 1R 中互不相交的开区间族24、P 表示康托尔(cantor )集,则mP =( A )A 、0B 、1C 、2D 、325、 集合列1{[0,],1,2,3,}n n=的上限集为 ( C )A [0, 1]B φC {0}D [0, 1) 26、下列集合不是可数集的是( C ) A. 1R 中的整数集Z B. 自然数集N C. []0,1中的Cantor 集 D. 1R 中互不相交的开区间族27、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( B )A 、0B 、1C 、2D 、328、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( C ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -29、若)(x f 可测,则它必是( D ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限 30、若QE -=]1,0[,则=mE ( B ) A 、0 B 、1 C 、2 D 、3 31、下列说法不正确的是( A )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、nR 的测度无限 32、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( A ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -33、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( C ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -34、设E 为可测集,则下列结论中正确的是( D )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f35、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( D )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 36、关于连续函数与可测函数,下列论述中正确的是( C )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数37、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( A )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -38、关于简单函数与可测函数下述结论不正确的是( C )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念39、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( B ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f -40、关于依测度收敛,下列说法中不正确的是( C ) A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上a.e.收敛于a.e.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f41、设)(x f 是可测集E 上的非负可测函数,则)(x f ( C )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 42、设)(x f 在可测集E 上可积,则在E 上( B )A 、)(x f +与)(x f -只有一个可积 B 、)(x f +与)(x f -皆可积 C 、)(x f +与)(x f -不一定可积 D 、)(x f +与)(x f -至少有一个不可积 43、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( C ) A 、)(x f 在E 上不一定可测 B 、)(x f 在E 上可测但不一定可积 C 、)(x f 在E 上可积且积分值为0 D 、)(x f 在E 上不可积 44、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为(D )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数 45、设)(x D 为狄立克雷函数,则⎰=1)()(dx x D L ( A )A 、 0B 、 1C 、1/2D 、不存在46、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( A )A 、 0B 、 1/3C 、2/3D 、 147、 设f(x)是],[b a 上有界变差函数,则下面不成立的是( D )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('48、设}{n E 是一列可测集, ⊃⊃⊃⊃n E E E 21,且+∞<1mE ,则有( A )(A )n n n n mE E m ∞→∞==⎪⎭⎫ ⎝⎛⋂lim 1 (B) n n n n mE E m ∞→∞=≤⎪⎭⎫⎝⎛⋃lim 1(C )n n n n mE E m ∞→∞=<⎪⎭⎫⎝⎛⋂lim 1;(D )以上都不对49、设f(x)是],[b a 上绝对连续函数,则下面不成立的是( B )(A) )(x f 在],[b a 上的一致连续函数 (B) )(x f 在],[b a 上处处可导 (C ))(x f 在],[b a 上L 可积 (D) )(x f 是有界变差函数二 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B = 2n2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B = c3、若c A =, c B =, 则=⋃B A c4、若c A =, B 是一可数集, 则=⋃B A c5、若c A =, n B =, 则=⋃B A c6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 1 c7、设}{i S 是一列递增的可测集合,则=∞→)lim (n n S m __n n mS ∞→lim ______。

实变函数复习题

实变函数复习题

实变函数复习题2013-2014-2实变函数复习题一、选择题1、()()\\\\A B C A B C =成立的充分必要条件是()A 、AB ? B 、B A ?C 、A C ?D 、C A ? 2、设M 是任意一个集合,N 是M 的所有子集构成的集合,则它们的基数之间的关系是( )A 、M <n< p="">B 、M =NC 、M >ND 、不能判定3、设{F n }是一列闭集,1n n F F ∞==,则F 一定是( )A 、开集B 、闭集C 、开集,也是闭集D 、不能确定4、关于Cantor 集P ,下述哪个说法不.成立?() A 、 P 无内点B 、P 的测度为0C 、 P 由可数个闭区间组成D 、P 是完备集5.设P 是Cantor 集,则() A .P 与R n对等,且P 的测度为0 B .P 与R n对等,且P 的测度为1 C .P 与R n 不对等,且P 的测度为0 D .P 与R n 不对等,P 的测度为16.关于Cantor 集P ,下述哪个说法不成立?()A.P 无内点B.P 中的点都为孤立点C.P 中的点都为聚点D.P 是闭集 7.有限个可数集的并集是()A.有限集B.可数集C.不可数集D.无法确定 8. 任意个闭集的交集是( )A. 开集B.C. 既是开集,又是闭集D. 既不是开集,也不是闭集9、设E 是闭区间[0,1]中的无理点集,则()A 、1mE =B 、0mE =C 、E 是不可测集D 、E 是闭集10.设Q 是R 中有理数的全体,则在R 中Q 的闭包Q 是( ) A.Q B.φ C.RD.R \Q11、设E 是R 中无理数全体,则mE ()A.0B.1C.+∞D.-∞12、设f(x)在E 上可测,则[;()]E x f x =-∞是( )A. 可测集B. 不可测集C. 空集D. 无法判定 13、设()f x 与()g x 在E 上可测,则[;()()]E x f x g x >是( )。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

《实变函数》试卷一一、单项选择题(3分X 5=15分)1、下列各式正确的是( )(A)limA n A k;(B) lim 代A;n nlkn n nlkn(C)limA n ik A k;( D) l imA n 人;n nikn n nikn2、设P为Cantor集,则下列各式不成立的是( )(A)P c (B) mP 0 (C) P' P (D) P P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设f n(x)是E上的ae•有限的可测函数列,则下面不成立的是()(A)若f n(x) f(x),则f n(x) f (x) (B)sup f n(x)是可测函数(C) inf f n(x)是可测函数;(D)若nnf n(x) f(x),则f(x)可测5、设f(x)是[a,b]上有界变差函数,则下面不成立的是( )(A) f(x)在[a,b]上有界(B) f(x)在[a,b]上几乎处处存在导数b (C) f'(x)在[a, b]上L 可积(D) f'(x)dx f(b) f(a)a二.填空题(3分X 5=15分)E f(x)1、 ___________________________________ (C s A C s B) (A (A B))2、设E是0,1上有理点全体,则' o—E = _____ , E = _____ , E = _____3、设E是R n中点集,如果对任一点集T都___________________________________ 则称E是L可测的4、f(x)可测的_________ 件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设f (x)为a,b上的有限函数,如果对于a, b的一切分划,使 _______________________________________ 则称f (x)为a,b上的有界变差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若E有界,则m*E<正无穷
2.可数点集的外测度为零
3.设E是直线上一有界集合,m*E>0,则对任意小于m*E的正数c,恒有E的子集E1,使m*E=c
4.设S1,S2,…,Sn是一些互不相交的可测集合,Ei包含于Si,i=1,2,3...n,求证m*(E1并E2并E3...并En)=m*E1+m*E2+…+m*En
5.若m*E=0,则E可测。

6.证明康托尔(Cantor)集合的测度为0
7.设A,B包含于Rp,且m*B<正无穷,若A是可测集,证明m*(A并B)=mA+m*B-m*(A 交B)
8.证明:若E可测,则对于任意e〉0,恒有开集G及闭集F,使F包含于E包含于G,而m (G-E)〈e,m(E-F)〈e
9.设E包含于Rq,存在两列可测集{An},{Bn},使得An包含于E包含于Bn且m(Bn-An)--> 0(n-->无穷),则E可测。

10.设是一列可测集,证明和都是可测集且
11.设{En}是一列可测集,若求和m(En)<正无穷,证明m(En上极限)=0
12.设E是[0,1]中可测集,若m(E)=1,证明对任意可测集A包含于[0,1],m(E交A)=m(A)
13.设{En}是[0,1]中可测集列,若m(En)=1,n=1,2,...,则
定理5.6设E是任一可测集,则一定存在型集G,使G包含E,且m(G-E)=0。

设E是任一可测集,则一定存在型集F,使F包含于E,且m(E-F)=0。

次可数可加性证明
卡拉泰奥多里条件:m*T=m*(T交E)+m*(T交Ec)极限的测度等于测度的极限
1.证明:f(x)在E上为可测函数的充要条件是对任一有理数r,E[f〉r]可测,如果集E[f=r]可测,问f(x)是否可测?
2.设{fn}为E上可测函数列,证明它的收敛点集和发散点集都是可测的。

散点集也是可测的。

3.设E是[0,1]中的不可测集,令问f(x)在[0,1]上是否可测?|f(x)|是否可测?
4.设fn(x)(n=1,2,...)是E上a.e.有限的可测函数列,而{fn}a.e.收敛于有限函数f,则对任意的e>0存在常数c与可测集E0包含于E,m(E\E0)<e,使在E0上对一切n有|fn(x)|<=c.这里mE<无穷。

6.设f(x)是(负无穷,正无穷)上的连续函数,g(x)为[a,b]上的可测函数,则f(g(x))是可测函数。

7.设函数列fn(x)(n=1,2,...)在有界集E上“基本上”一致收敛于f(x),证明{fn}a.e.收敛于f。

,叶果洛夫逆定理
8.试证明鲁津定理的逆定理成立。

鲁津定理
9.设函数列{fn}在E上依测度收敛于f,且fn(x)<=g(x)a.e.于E,n=1,2,...。

试证f(x)<=g(x)在E上几乎处处成立。

10.设在E上fn(x)推出f(x),且fn(x)<=fn+1(x)几乎处处成立,n=1,2,...,则几乎处处有fn(x)收敛于f(x)。

11.设在E上fn(x)推出f(x),而fn(x)=fn(x)a.e.成立,n=1,2,...,则有gn(x)推出f(x)
12.设mE<正无穷,证明:在E上fn(x)推出f(x)的充要条件是,对于{fn}的任何子函数列{fnk},存在{fnk}的子函数列{fnkj},使得 a.e.于E
13.设mE<无穷,几乎处处有限的可测函数列fn(x)和gn(x),分别依测度收敛于f(x)和g(x),证明
叶果洛夫定理
例3:设E包含于R1,f(x)是E上a.e.有限的可测函数。

证明:存在定义在R1上的一列连续函数{gn},使得极限gn(x)=f(x)a.e.与E。

定理3:设fn(x)依测度收敛于f(x),fn(x)依测度收敛于g(x),则f(x)=g(x)在E 上几乎处处成立。

设{fn(x)}是E上一列可测函数,则F(x)=也在E上可测,特别当存在时,它也在E 上可测。

可测函数与简单函数的关系
若f(x)在E上非负可测,则存在可测简单函数列是的对任意
若f(x)在E上可测,则存在可测简单函数列,使得对任意若f(x)还在E上有界,则上述收敛可以是一致的。

勒贝格里斯定理
2.设在康托尔(Cantor)集P0上定义函数f(x)=0,而在P0的余集中长为1/3^n的构成区间上定义为n,试证f(x)可积分,并求出积分值。

3.设E可测,f(x)在E上可积,en=E(|f|>=n)则n*men在n的极限=0
6.设{fn}为E上非负可积函数列,若则f(x)依测度收敛与0.
7.设mE<无穷,{fn}为a.e.有限可测函数列。

证明:的充要条件是fn(x)依测度收敛与0 9.设由[0,1]中取出n个可测子集E1,E2,...,En,假定[0,1]中任一点至少属于这n个集中的q 个,试证必有一集,它的测度大于或等于q/n。

10.设mE不等于0,f(x)在E上可积,如果对于任何有界可测函数,都有则f(x)=0a.e.于E。

11.证明:
12.试从1/1+x=(1-x)+(x^2+x^3)+...,0<x<1求证ln2=1-1/2+1/3-1/4+...
14.求证
17.设f(x),fn(x)都是E上的可积函数,极限fn(x)=f(x)a.e.于E,且试证,在任意可测子集e包含与E上,都有
在一般情况下L积分并不是R反常积分的推广,主要是因为L积分是绝对收敛的积分而收敛的R反常积分并不一定绝对收敛。

设f(x)是[a,b]上的一个有界函数,则f(x)在[a,b]上R可积的充要条件为f(x)在[a,b]上a.e.连续,即f(x)的不连续点全体成一零测度集。

设f(x)是[a,b]上的一个有界函数,若f(x)在[a,b]上R可积,则f(x)在[a,b]上L可积,且
设f属于L[a,b],则对于任意的e>0,存在g属于C[a,b],使得
列维定理levi设为可测集,为E上的一列非负可测函数,当x属于E时对于任一自然数n,有fn(x)<=fn+1(x),令则
法图引理fatou
一般可测函数的勒贝格积分(做题用)
积分的绝对连续性
设为可测集则对于任意的存在使得对于任意的可测集,只要mA<就有
勒贝格控制收敛定理:设为可测集为E上的一列可测函数。

F是E上的非负L可积函数,如果对于任意的自然数n
设为可测集,f和fn都是E上的可测函数,F是E上的非负L可积函数,如果|fn(x)|<=F (x)a.e.与E且
推论:设E mE<正无穷,f和fn都是E上的可测函数,如果存在M>0使得对于任意的自然数
n,|fn(x)|<=Ma.e.于E且。

相关文档
最新文档