二次多项式与线性方程组经典习题
(完整版)二元二次方程解法练习题(四种方法)
(完整版)二元二次方程解法练习题(四种方法)引言二元二次方程是一个常见的数学问题,解决这类问题可以帮助我们进一步理解二次方程的性质和求解方法。
本文将介绍四种不同的方法来解决二元二次方程,并提供相应的练题,以帮助读者巩固所学的知识。
方法一:代入法代入法是一种简单直接的解法,通过将一个方程的解代入到另一个方程中,从而求得未知数的值。
以下是一个代入法的例子:例题:求解方程组\begin{align*}3x^2-4y^2&=5 \\x+y&=3\end{align*}解法:1. 将第二个方程中的 $x$ 替换为 $3-y$,得到新的方程 $3(3-y)^2-4y^2=5$。
2. 将该方程整理并解得 $y=1$。
3. 将 $y=1$ 代入第二个方程,解得 $x=2$。
因此,该方程组的解为 $x=2$,$y=1$。
练题:1. 求解方程组\begin{align*}2x^2-3y^2&=4 \\x+y&=2\end{align*}2. 求解方程组\begin{align*}4x^2-5y^2&=8 \\2x+y&=3\end{align*}方法二:消元法消元法是另一种常用的解法,通过将两个方程相加或相减,并适当选择系数,使得其中一个未知数的系数相同而相消,从而求解另一个未知数。
以下是一个消元法的例子:例题:求解方程组\begin{align*}2x^2-3y^2&=4 \\5x-2y&=1\end{align*}解法:1. 将第二个方程乘以 2,得到 $10x-4y=2$。
2. 将第一个方程乘以 5,得到 $10x^2-15y^2=20$。
3. 将第三步的方程与第二步的方程相减,得到$15y^2-4y=18$。
4. 解方程 $15y^2-4y=18$,得到 $y=2$。
5. 将 $y=2$ 代入第一个方程,解得 $x=1$。
因此,该方程组的解为 $x=1$,$y=2$。
多项式练习题带答案
多项式练习题带答案一、选择题1. 下列哪个表达式不是多项式?A. \( x^2 + 3x + 2 \)B. \( 5x - 3 \)C. \( \frac{x}{2} \)D. \( 2x^3 - 4x^2 + 7 \)答案:C2. 多项式 \( P(x) = ax^3 + bx^2 + cx + d \) 中,如果 \( a = 1 \),\( b = -1 \),\( c = 0 \),\( d = 2 \),则 \( P(x) \) 可以表示为:A. \( x^3 - x^2 + 2 \)B. \( x^3 - x^2 - 2 \)C. \( x^3 + x^2 + 2 \)D. \( x^3 - x^2 + 2x \)答案:A3. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),那么 \( f(1) \) 的值是:A. 0B. 1C. 2D. 3答案:B二、填空题1. 多项式 \( 2x^3 - 5x^2 + 3x - 4 \) 的次数是 ______ 。
答案:32. 如果 \( g(x) = x^4 - 3x^3 + 5x^2 - 2x + 1 \),那么 \( g(0) \) 的值是 ______ 。
答案:13. 多项式 \( h(x) = 4x^2 - 7x + 2 \) 与 \( x - 3 \) 的乘积是\( 4x^3 - \) ______ 。
答案:7x^2 + 10x - 6三、解答题1. 给定多项式 \( f(x) = 3x^3 - 2x^2 + 5x - 1 \),求 \( f(-1) \) 的值。
解:将 \( x = -1 \) 代入 \( f(x) \) 中,得到\( f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) - 1 = -3 - 2 - 5 - 1 = -11 \)。
2. 已知 \( p(x) = 2x^3 + ax^2 + bx + c \),其中 \( p(1) = 5 \),\( p(-1) = -1 \),求 \( a \),\( b \),\( c \) 的值。
(完整版)高等代数(北大版第三版)习题答案II
证 1)作变换 ,即
,
则
。
因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而
,
令
,
则
。
由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设
。
其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换
,
使得
。
下面证明 。采用反证法。设 ,考虑线性方程组
,
该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是
,
上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以
。
同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有
。
即证。
5.设 是反对称矩阵,证明: 合同于矩阵
。
设 的秩为 ,作非退化线性替换 将原二次型化为标准型
,
其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即
,
这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使
,
即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。
线性代数第六章二次型试题及答案
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii iij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i nj j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211n n x d x d x d f +++=称为二次型的标准型。
规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn nn y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
线性代数第 六章二次型试题及答案
特征值相同的实对称矩阵A和B一定相似,因为实对称矩阵 都能相 似对角化,特征值相同的实对称矩阵相似于同一个对角阵,根 据相似的传递性,A和B一定相似。
特征值相同的普通矩阵A和B可能相似,也可能不相似。 若A和B都能相似对角化,一定相似。 若一个能对角化,一个不能对角化,一定不相似。 若都不能对角化,可能相似,也可能相似。 例题:已知矩阵A和B,判断能否相似,
Abj=0, j=1,2,…,s b1,b2,…,bs均为Ax=0的解(r(A)+r(B)≤n) 若bj≠0且A为n阶方阵时,bj为对应特征值λj=0的特征向量 A的列向量组线性相关,B的行向量组线性相关。
AB=CA(b1, b2,…, br)=(C1, C2,…, Cr)
Abj=Cj,j=1,2,…,r bj为Ax=Cj的解. C1, C2,…, Cr可由A的列向量组α1, α2,…, αs线性表示.
因为(2,1,2)T是A的特征向量,所以,
,
二、化二次型为标准型
1.用配方法将下列二次型化为标准形,并判断正、负惯性指数的个数, 然后写出其规范形。
(1)Leabharlann 解:先集中含有x1的项,凑成一个完全平方,再集中含有x2的项,凑 成完全平方
=
设,, 标准型:,正惯性指数:,负惯性指数: 规范性:
(2) f(x1,x2,x3)= x12+2x22+2x1x2-2x1x3+2x2x3. 解:f(x1,x2,x3)= (x12+2x1x2-2x1x3)+2x22+2x2x3= 设 ,,标准型: 正惯性指数:,负惯性指数:,规范性: (3) f(x1,x2,x3)= -2x1x2+2x1x3+2x2x3. 解:像这种不含平方项的二次型,应先做线性变换: ,,, 设: , 标准型:,规范性: 2.设二次型f(x1,x2,x3)=X TAX=ax12+2x22-2x32+2bx1x3,(b>0),其中A的特征 值之和 为1, 特征值之积为-12.(1) 求a,b.(2) 用正交变换化f(x1,x2,x3)为标准型。 解:二次型的矩阵:,因为, (2)
线性方程组练习题及答案
线性方程组 练习题一、选择题.1.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A.1或2B. -1或-2C.1或-2D.-1或2.2. 设A 是s n ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是( ).A.A 的行向量组线性无关B.A 的列向量组线性无关C.A 的行向量组线性相关D.A 的列向量组线性相关3.设12m α,α,,α均为n 维向量,则下列结论中正确的是( ).AA.若对任一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++≠ααα,则12m α,α,,α线性无关 .B.若12m α,α,,α线性相关,则对任意一组不全为零的数m k k k ,,,21 ,都有11220m m k k k +++=ααα . C.若11220m m k k k +++=ααα,则12m α,α,,α线性相关 .D.若向量组12m α,α,,α()3≥m 中任意两个向量都不成比例,则12m α,α,,α线性无关.4.向量[]11,1,1T α=-,[]22,,0T k α=,[]3,2,1Tk α=,k 为( )时,向量组1α,2α,3α线性相关.DA.3k ≠且2k ≠-B. 2k ≠-C.3k ≠D.3k =或2k =-5. 向量组s ααα 21,(2≥s )线性无关的充分必要条件是( ).(D ) A.s ααα 21,均不为零向量 B. s ααα 21,中任意两个不成比例 C.s ααα 21,中任意1-s 个向量线性无关D.s ααα 21,中任意一个向量均不能用其余1-s 个向量线性表示6.齐次线性方程组355⨯⨯1=A x 0解的情况是( ).A.无解B.仅有零解C.必有非零解D.可能有非零解,也可能没有非零解.7.设n 元齐次线性方程组的系数矩阵的秩()3R n =-A ,且123,,ξξξ为此方程组的三个线性无关的解,则此方程组的基础解系是( ). A. 12312,2,32+- -ξξξξξ B. 122331,,+-+ ξξξξξξ C.122132-2,-2,32+-+ ξξξξξξ D. 12231324,2+,++ - ξξξξξξ8.要使T 1(1,0,2)=ξ,T 2(0,1,1)=-ξ都是线性方程组=Ax 0的解,只要A 为( ).A. (211)-;B. 201011⎛⎫ ⎪⎝⎭;C. 102011-⎛⎫ ⎪-⎝⎭;D. 011422011-⎛⎫ ⎪-- ⎪ ⎪⎝⎭. 9.已知12,ββ是=Ax b 的两个不同的解,12,αα是相应的齐次方程组=Ax 0的基础解系,12,k k 为任意常数,则=Ax b 的通解是( ). A. 12()k k 12112-+++2ββααα B. 12()k k 12112++-+2ββαααC.12()k k 12112-+-+2ββαββD. 12()k k 12112++-+2ββαββ10.设n 阶矩阵A 的伴随矩阵*≠A 0 若1234,,,ξξξξ是非齐次线性方程组Ax =b 的互不相等的解,则对应的齐次线性方程组Ax =0的基础解系是( ). A.不存在 B.仅含一个非零解向量 C.含有两个线性无关的解向量; D.含有三个线性无关的解向量11.设有齐次线性方程组Ax =0和Bx =0,其中A ,B 均为m n ⨯矩阵,现有4个命题:① 若Ax =0的解均是Bx =0的解,则()()R R ≥A B ② 若()()R R ≥A B ,则Ax =0的解均是Bx =0的解 ③ 若Ax =0与Bx =0同解,则()()R R =A B ④ 若()()R R =A B ,则Ax =0与Bx =0同解 以上命题正确的是( ).A. ①,②B. ①,③C.②,④D.③,④12.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则线性方程组()=AB x 0( ). A.当n m >时仅有零解 B. 当n m >时必有非零解 C.当m n >时仅有零解 D.当m n >时必有非零解13.设A 是n 阶矩阵,α是n 维列向量. 若秩T0⎛⎫= ⎪⎝⎭αAα秩()A ,则线性方程组( ).A.=αAx 必有无穷多解B.=αAx 必有惟一解C.T0y ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭αAαx 0仅有零解 D.T0y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭αAαx0必有非零解14.已知34⨯矩阵A 的列向量组线性无关,则=)(T A r ( ). A.1 B.2 C.3 D.415.设321,,ααα为齐次线性方程组0=Ax 的一个基础解系,则下列可作为该方程组基础解系的是( ).A.2121,,αααα+B. 133221,,αααααα+++C.2121,,αααα-D. 133221,,αααααα---16.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ). A. 1 B. 2 C. 3 D. 417.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( ). A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs+βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =018..设矩阵A 的秩为r ,则A 中( ). A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为019.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ).A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解20.设n 阶方阵A 不可逆,则必有( ).A.秩(A)<nB.秩(A)=n -1C.A=0D.方程组Ax=0只有零解21.设n 维向量12,αα线性相关,则必定( ).A. 12,αα中有一零向量B. 矩阵12=(,)A αα的秩r A =1C. 12,αα的对应元素成比例D.1α不可由2α线性表示22.设A 为m n ⨯阶矩阵,非齐次线性方程组AX=b 对应的导出组AX=0,如果m n <,则( ).A.AX=b 必有无穷解B.AX=b 必有惟一解C.AX=0必有非零解D.AX=0必有惟一解23.n 元线性方程组AX=0有非零解的充要条件为( ).A.()R A n =B. 0A ≠C.0A =D.以上都不对24.线性方程组AX B =有解的充要条件是( ).A.()r A >0B. ()()r A r A =C. ()()r A r AB ≠D.()r A n =25.n 元线性方程组AX=b 有解的充要条件为( ). A.()(,)R A R A b = B. ()(,)R A R A b n == C.()(,)R A R A b n =< D.()(,)R A R A b n =≤26.向量组T T )0,1,0(,)0,0,1(21==αα,下列向量中可以由21,αα线性表出的是( ).A .T )3,2,1(B .T )3,2,0(C .T )3,0,1(D .T )0,2,1(27.设向量组A 能由向量组B 线性表示,则( ).A .)()(A RB R ≤ B .)()(A R B R <C .)()(A R B R =D .)()(A R B R ≥28.设A 为n m ⨯矩阵,则有( ). A .若n m <,则b Ax =有无穷多解B .若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量C .若A 有n 阶子式不为零,则b Ax =有唯一解D .若A 有n 阶子式不为零,则0=Ax 仅有零解29.设1α、2α是对应非齐次方程组Ax =b 的解,β是对应齐次方程组的解,则b Ax =一定有一个解是( ).A.1α+2αB.1α-2αC.β+1α+2αD.121233+-ααβ30.21γγ,是n 元非齐次方程组b Ax =的两个不同的解,且1)(-=n A r ,则 0=Ax 的通解为( ).A. )(1R k k ∈γB. )(2R k k ∈γC. )()(21R k k ∈+γγD. )()(21R k k ∈-γγ二、填空题.1. 设向量α=(1, 2, 0, 4)T , β=(3,1,-1,7)T ,向量γ满足2α-γ=β, 则γ=____________.2.已知向量α=(1, 2, 4, 0)T , β=(-3,2,6,2)T ,向量γ满足3α+2γ=β, 则γ= .3.向量组α=(1, -2, 3)T , β=(2,-4,a)T 线性相关,则=a .4.向量组()12341,0,1,(2,1,0),(0,1,1),(1,1,1)TT T T αααα====则向量线性 .5.当______=t 时,向量组)2,1,3(),3,2,1(),,3,2(-t 线性相关.6.设向量组T T T a )1,1,2(,),2,1(,)3,1,1(321-==-=ααα线性相关,则=a .7.设向量组T )0,0,1(1=α,T )0,1,0(2=α,则向量组21,αα的秩是 .8.矩阵⎪⎪⎭⎫⎝⎛-----100110111的秩等于__________.9.若R )(1234,,,4αααα=,则向量组123,,ααα是线性________.10.已知矩阵⎪⎪⎪⎭⎫⎝⎛--=a A 00011002011的秩)(A r =2,则=a ______.11.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=a a A 10012002011的秩)(A r =2,则=a ______.12.若齐次线性方程组1212 3 060x x x x λ-=⎧⎨-+=⎩有非零解,则λ= .13.当_________时候,n 元线性方程组0=Ax 有非零解,这里A 是n 阶方阵.14.设21ξξ,是非齐次线性方程组b Ax =的解向量,则21ξξ-是方程组______的解向量.15.方程组⎩⎨⎧=-=-003221x x x x 的基础解系是 .16.设齐次线性方程组⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则=a .17.设向量(2,-3,5)与向量(-4,6,a )线性相关,则a= .18.设A 是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b 的2个不同的解,则它的通解为 .19. 设A 是m ×n 矩阵,A 的秩为r(<n),则齐次线性方程组Ax=0的一个基础解系中含有解的个数为 .20.设齐次线性方程组01443=⨯⨯X A ,其系数矩阵的秩)(A r =2,则方程组的基础解系包含______个线性无关的解向量.21.有三维列向两组1α=()100T,()2110αT=,()3111αT=,()123βT=,且有112233βχαχαχα++=,123χχχ=_____ ,=_____,=_____22.若n 个 n 维列向量线性无关,则由此n 个向量构成的矩阵必是______ 矩阵.23.若向量组)()()()(12341,1,3,2,4,5,1,1,0,2,2,6,αααα===-=则此向量组的秩是______,一个极大无关组是______.24.已知向量组()()()1231,2,1,1,2,0,,0,0,4,5,2t ααα=-==--的秩为2,则t =____.25.当方程的个数等于未知数的个数时,=Ax b 有惟一解的充分必要条件是 .26.线性方程组121232343414,,,x x a x x a x x a x x a +=⎧⎪+=⎪⎨+=⎪⎪+=⎩有解的充分必要条件是 .27.设n 阶方阵A 的各行元素之和均为零,且()1R n =-A ,则线性方程组=Ax 0的通解为 .28.设A 为n 阶方阵,||0=A ,且kj a 的代数余子式0kj A ≠(其中,1k n ≤≤;1,2,,j n =),则=Ax 0的通解 .29.设11222221231111211111,,11n nn n n n n x a a a x a a a x a a a x ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A x b ,其中,(;,1,2,,)i j a a i j i j n ≠≠=,则非齐次线性方程组T =A x b 的解是=x .30.设方程123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .三、判断题.1.零向量一定可以表示成任意一组向量的线性组合. ( )2. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关.( ) 3.若=0时,,则向量组线性无关.( )4.若向量组与均线性无关,则,线性无关.( )5.方程个数小于未知量个数的线性方程组必有无穷解.( )6.同秩的两个向量组未必等价. ( )7.向量组中某向量能被其余向量表示,则去掉它不影响它的秩. ( )8.向量组中某向量不能被其余向量表示,则去掉它后向量组的秩必改变. ( )9.3个未知量,5个方程组成的方程组中,必有一个方程能被其余的方程线性表示. ( )10.不同秩的两个向量组必不等价. ( ) 11.向量组的向量各加一个分量,其秩不变. ( ) 12.方程组中自由未知量是唯一确定的.( ) 13.向量组12121,,,,,,s s a a a a a a -与等价,则向量组12,,,s a a a 线性相关.( ) 14.设12,ηη是齐次线性方程组AX=0的基础解系,则1212,3ηηηη--+也是AX=0的基础解.( )15.用列初等变换可以求解线性方程组,也可以用行初等变换求解线性方程组.( ).16.若A 为6阶方阵,齐次线性方程组AX =0的基础解系中解向量的个数为2,则R(A)=2.( )17.若n 维向量12,αα线性相关,则必定12,αα的对应元素成比例.( ) 18.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m A =.( ) 19.设A 是m n ⨯矩阵,如果A 的m 个行向量线性无关,则()r m <A .( ) 20.设21,αα是齐次线性方程组0=AX 的解,那么12αα+也是该方程组0=AX 的解.( )21.设21,αα是非齐次线性方程组=AX b 的解,那么12αα+也是该方程组=AX b 的解.( )22.对于任意的矩阵A ,一定有T r r =()()A A .( )23.向量组123,,ααα中,任意两个向量均线性无关,则123,,ααα线性无关.( )24.设A 是m n ⨯矩阵,如果A 的n 个列向量线性无关,则()r A n =.( ) 25,设12,αα是n 维向量,且112212312,2,35βααβααβαα=-=+=+,则123,,βββ 必线性相关.( )26.设0Ax =是Ax b =的导出组,其中A 是m n ⨯矩阵,若()r A m =, 则Ax b =有解.( )请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ 同时成立.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.3.利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x ,当λ取何值时有解?并求出它的解.9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .13.求一个齐次线性方程组,使它的基础解系为:T T )0,1,2,3(,)3,2,1,0(11==ξξ.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.4. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .试证明s s k k k x ηηη+++= 2211也是它的解.5.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题24知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n k k ).第三章 线性方程组一、选择题.1.C2.D3.A4.D5.D6.C7.A8.A9.B 10.B 11.B 12.D 13.D 14.C 15.B. 16.C 17.D 18.C 19.A 20.A 21.C 22.C 23.B 24.B 25.A 26.D 27.D 28.D 29.D 30.D二、填空题.1. (-1,3,1,1)T2.(-3,-2,-3,1)T3. 64.相关5. 56.-47.28.39.无关 10.0 11.212.2 13. 0A = 14.0=Ax 15.⎪⎪⎪⎭⎫ ⎝⎛111 16.1 17.-1018.η1+c(η2-η1)(或η2+c(η2-η1)),c 为任意常数 19.n-r 20. 2 21.-1,-1,3 22.可逆 23.1,233;,ααα 24.3 25.||0≠A 26.43210a a a a -+-=.27.T 11(1,1,,1)1k k ⎛⎫⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.T (1,0,0,,0)=x . 30.-2部分题详解:25.解 因为()()R R n ==A A b 是=Ax b 有惟一解的充要条件.故由()R n =A 可得||0≠A .26.解 对方程组的增广矩阵施行初等行变换()12341100011000111001a a a a ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭B A b 12341231100011000110000a a a a a a a ⎛⎫⎪ ⎪→ ⎪ ⎪⎪-+-⎝⎭. 所以方程组有解的充要条件是()()R R =A B ,即43210a a a a -+-=.27.解 令111⎛⎫⎪⎪= ⎪ ⎪⎝⎭x ,显然x 满足方程组,又因为()1R n =-A ,所以()1n R -=A ,即方程组的基础解系中有一个向量,通解为T 11(1,1,,1)1k k ⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭x ,k 为任意常数.28.解 因为0=A ,又0kj A ≠,所以()1R n =-A ,并且有11220, ;||0, i k i k in kn i k a A a A a A i k ≠⎧+++=⎨==⎩.A所以()T12,,,k k kn A A A 是方程组的解,又因为()1R n =-A ,可知方程组的通解为()T12,,,k k kn c A A A =x ,其中c 为任意常数.29.解 T (1,0,0,,0)=x . 30. -2三、判断题.1.√2. √3. √ 4.× 5.×6. ×7.×8. √9.√ 10.× 11.×12.√ 13.√ 14.√ 15.× 16.×17.√ 18.√ 19.× 20.√ 21.×22.√ 23.× 24.√ 25.√26.√请举例说明下面(27-30题)各命题是错误的.27.若向量组m a a a ,,,21 是线性相关的,则1a 可由,,2m a a 线性表示.28.若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立,则m a a ,,1 线性相关, m b b ,,1 亦线性相关.29.若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.30.若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数,m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立. 解 (1) 设)0,,0,0,1(11==e a032====m a a a满足m a a a ,,,21 线性相关,但1a 不能由,,,2m a a 线性表示.(2) 有不全为零的数m λλλ,,,21 使 01111=+++++m m m m b b a a λλλλ 原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111其中m e e ,,1 为单位向量,则上式成立,而 m a a ,,1 ,m b b ,,1 均线性相关.(3) 由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )m m b a b a b a +++⇒,,,2211 线性无关取021====m a a a取m b b ,,1 为线性无关组满足以上条件,但不能说是m a a a ,,,21 线性无关的. (4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2=⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.四、解答题.1.求下列矩阵的秩,并求一个最高阶非零子式.(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2)⎪⎪⎪⎭⎫ ⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r . 二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.2.把下列矩阵化为行最简形矩阵.(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫ ⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解: (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫ ⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202013. 利用初等行变换求下列矩阵的列向量组的一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---14011313021512012211.解 (1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫⎝⎛53105310321043173125 2334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---1401131302151201221114132~r r rr --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.4.求下列向量组的秩,并求一个最大无关组.(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2))3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta .解 (1)3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫ ⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~秩为2,最大线性无关组为T Ta a 21,.5.求解下列齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2)对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x 故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4)对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x6.求解下列非齐次线性方程组.(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1)对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2)对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4)对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x7.λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.8.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x9.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解. 当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解. 当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解. 此时,增广矩阵为⎪⎪⎪⎭⎫⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)10.讨论b a ,取何值时,非齐次线性方程组123123123213322--=⎧⎪--=⎨⎪++=⎩x x x x x x x x ax b(1)有唯一解;(2)有无穷多解;(3)无解.解⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛-+---⎪⎪⎪⎭⎫ ⎝⎛----=---120010501121~225010501121~122313112123131223b a b a b a A r r r r r r(1)当2,02-≠≠+a a 即时,3)()(==A r A r ,方程组解唯一; (2)当12,01,02=-==-=+b a b a ,即时,32)()(<==A r A r ,方程组解有无穷多解; (3)当12,01,02≠-=≠-=+b a b a ,即时,3)(2)(=<=A r A r ,方程组无解.11.求下列齐次线性方程组的基础解系.(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx .解 (1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=000041431004012683154221081~初等行变换A所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x取0,11321=====-n x x x x 得n x n -=取0,114312======-n x x x x x 得1)1(+-=--=n n x n取0,12211=====--n n x x x x 得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-+--=-21100010001),,,(121n n n ξξξ12.设⎪⎪⎭⎫⎝⎛--=82593122A ,求一个24⨯矩阵B ,使0=AB ,且2)(=B R .解:由于2)(=B R ,所以可设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=43211001x x x x B 则由⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--=00001001825931224321x x x xAB 可得 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛592280200802301003014321x x x x ,解此非齐次线性方程组可得唯一解 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2125212114321x x x x ,故所求矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=2125212111001B .13.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解:显然原方程组的通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01233210214321k k x x x x ,(R k k ∈21,)即⎪⎪⎩⎪⎪⎨⎧=+=+==14213212213223k x k k x k k x k x 消去21,k k 得⎩⎨⎧=+-=+-023032431421x x x x x x 此即所求的齐次线性方程组.14.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它 的三个解向量.且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.解:由于矩阵的秩为3,134=-=-r n ,一维.故其对应的齐次线性方程组的基础解系含有一个向量,且由于321,,ηηη均为方程组的解,由 非齐次线性方程组解的结构性质得:齐次解齐次解齐次解=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-+-=+-6543)()()()()(22121321ηηηηηηη为其基础解系向量,故此方程组的通解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54326543k x ,)(R k ∈15.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系.(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解:(1)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη五、证明题.1.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明:设有4321,,,x x x x 使得044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解,则4321,,,b b b b 线性相关. 综合得证. 2.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明: 设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ⇔⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121 r k k k 因为0110011011≠= 故方程组只有零解,则021====r k k k 所以r b b b ,,,21 线性无关.3.设*η是非齐次线性方程组b Ax=的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关.证明: (1)反证法,假设r n -*ξξη,,,1 线性相关,则存在着不全为0的数r n C C C -,,,10 使得下式成立:0110=+++--*r n r n C C C ξξη (1)其中,00≠C 否则,r n -ξξ,,1 线性相关,而与基础解系不是线性相关的产生矛盾。
考研数学二(线性方程组)模拟试卷17(题后含答案及解析)
考研数学二(线性方程组)模拟试卷17(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是m×n矩阵,r(A)=r.则方程组AX=βA.在r=m时有解.B.在m=n时有唯一解.C.在r<n时有无穷多解.D.在r=n时有唯一解.正确答案:A解析:此题的考点是解的情况的判别法则以及矩阵的秩的性质.在判别法则中虽然没有出现方程个数m,但是m是r(A)和r(A|β)的上限.因此,当r(A)=m 时,必有r(A|β)=r(A),从而方程组有解,A正确.C和D的条件下不能确定方程组有解.B的条件下对解的情况不能作任何判断.知识模块:线性方程组2.A=,r(A)=2,则( )是A*X=0的基础解系.A.(1,-1,0)T,(0,0,1)T.B.(1,-1,0)T.C.(1,-1,0)T,(2,-2,a)T.D.(2,-2,a)T,(3,-3,b)T.正确答案:A解析:由A是3阶矩阵,因此未知数个数n为3.r(A)=2,则r(A*)=1.A*X=0的基础解系应该包含n-1=2个解,A满足.(1,-1,0)T,(0,0,1)T显然线性无关,只要再说明它们都是A*X=0的解.A*A=|A|E=0,于是A的3个列向量(1,-1,0)T,(2,-2,a)T,(3,-3,b)T都是A*X=0的解.由于r(A)=2,a和b不会都是0,不妨设a≠0,则(0,0,a)T=(2,-2,a)T=2(1,-1,0)T也是A*X=0的解.于是(0,0,1)T=(0,0,a)T/a也是解.知识模块:线性方程组3.设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )A.k1η1+k2η2+(ξ1-ξ2)/2.B.k1η1+k2(η1-η2)+(ξ1+ξ2)/2.C.k1η1+k2(ξ1-ξ2)+(ξ1-ξ2)/2.D.k1η1+k2(ξ1-ξ2)+(ξ1+ξ2)/2.正确答案:B解析:用排除法.先看特解.(ξ1-ξ2)/2是AX=0的解,不是AX=β的解,从而A,C都不对.(ξ1+ξ2)/2是AX=β的解.在看导出组的基础解系.在B中,η1,η1-η2是AX=0的两个解,并且由η1,η2线性无关容易得出它们也无关,从而可作出AX=0的基础解系,B正确.在D中,虽然η1,ξ1-ξ2都是AX=0的解,但不知道它们是否无关,因此D作为一般性结论是不对的.知识模块:线性方程组4.设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则( )正确.A.对任何数c1,c2,c3,c1γ1+c2γ2+c3γ3都是AX=β的解;B.2γ1-3γ2+γ3是导出组AX=0的解;C.γ1,γ2,γ3线性相关;D.γ1-γ2,γ2-γ3是AX=0的基础解系.正确答案:B解析:Aγi=β,因此A(2γ1-3γ2+γ3)=2β-3β+β=0,即2γ1-3γ2+γ3是AX=0的解,B正确.c1γ1+c2γ2+c3γ3都是AX=β的解c1+c2+c3=1,A缺少此条件.当r(A)=n-2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ1,γ2,γ3线性相关.C不成立.γ1-γ2,γ2-γ3都是AX=0的解,但从条件得不出它们线性无关,因此D不成立.知识模块:线性方程组5.设A是m×n矩阵,则下列命题正确的是A.如m<n,则AX=b有无穷多解.B.如Ax=0只有零解,则Ax=b有唯一解.C.如A有n阶子式不为零,则Ax=0只有零解.D.Ax=b有唯一解的充要条件是r(A)=n.正确答案:B解析:如m<n,齐次方程组Ax=0有无穷多解,而线性方程组可以无解,两者不要混淆,请举简单反例.如Ax=0只有零解,则r(A)=n,但由r(A)=n推断不出r(a|b)=n,因此Ax=b可以无解.例如前者只有零解,而后者无解.故B 不正确.关于D,Ax=b有唯一解r(A)=r(A|b)=n.由于r(A)=n r(A|b)=n,例子同上.可见D只是必要条件,并不充分.C为何正确?除用排除法外,你如何证明.知识模块:线性方程组6.设A是5×4矩阵,A=(η1,η2,η3,η4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是AX=0的基础解系,则A的列向量组的极大线性无关组可以是A.α1,α3.B.α2,α4.C.α2,α3.D.α1,α2,α4.正确答案:C解析:由Aη1=0,知α1+α2-2α3+α4=0.①由Aη2=0,知α2+α4=0.②因为n-r(A)=2,故必有r(A)=2.所以可排除D.由②知,α2,α4线性相关.故应排除B.把②代入①得α1-2α3=0,即α1,α3线性相关,排除A.如果α2,α3线性相关,则r(α1,α2,α3,α4)=r(-2α3,α2,α3,-α2)=r(α2,α3)=1与r(A)=2相矛盾.所以选C.知识模块:线性方程组填空题7.已知方程组总有解,则λ应满足_________.正确答案:λ≠1且λ≠解析:对任意b1,b2,b3,方程组有解铮r(A)=3 |A|≠0.而由可知λ≠1且λ≠知识模块:线性方程组8.四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是_________.正确答案:(1,1,1,1)T+k(0,1,2,3)T解析:由(α2+α3)-2α1=(α2-α1)+(α3-α1)=(2,3,4,5)T-2(1,1,1,1)T=(0,1,2,3)T,知(0,1,2,3)T是Ax=0的解.又秩r(A)=3,n-r(A)=1,所以Ax=b的通解是(1,1,1,1)T+k(0,1,2,3)T.知识模块:线性方程组9.设A=,A*是A的伴随矩阵,则A*x=0的通解是_________.正确答案:k1(1,4,7)T+k2(2,5,8)T解析:因为秩r(A)=2,所以行列式|A|=0,并且r(A*)=1.那么A*A=|A|E=0,所以A的列向量是A*x=0的解.又因r(A*)=1,故A*x=0的通解是k1(1,4,7)T+k2(2,5,8)T.知识模块:线性方程组10.已知方程组的通解是(1,2,-1,0)T+k(-1,2,-1,1)T,则a=________.正确答案:3解析:因(1,2,-1,0)T是Ax=b的解,则将其代入第2个方程可求出b=1.因(-1,2,-1,1)T是Ax=0的解,则将其代入第1个方程可求出a=3.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。
线性代数习题
线性代数习题景德镇陶瓷学院信息工程学院第一章 行列式习题1、若排列x 1 x 2……x n-1 x n 的逆序数为I ,问排列x n x n-1……x 2 x 1的逆序数是多少?2、选择i 与k ,使(1)1274i56k9成偶排列 (2) 1i25k4897成奇排列3、计算排列2K ,1,2K-1,2,2K-2,3……K+1,K 的逆序数,并讨论它的奇偶性。
4、在六阶行列式中,项:a 23a 31a 42a 56a 14a 65,a 32a 43a 14a 51a 66a 25各应带什么符号5、根据行列式定义,计算:()x x x x x x f 111123111212-=中X 4与X 3的系数。
6、计算行列式D=2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a7、计算行列式D=nx x x nx x x nx x x n n n +++++++++ 212121222111注:n 阶行列式计算的常用方法有:(1)按定义展开:直接用定义展开计算;(2)三角化:即利用行列式的基本性质,使行列式主对角线一侧的元素都变为零(如第9题);(3)拆子列:利用行列式的性质50,将行列式化为两个较简单的行列式来计算。
(如第7、8、10题);(4)递推法:设法找出n 阶行列式D n 与低阶行列式的关系(往往要用归纳法验证),再递推求出D n 的值。
(如第8题);(5)降阶法:利用行列式按行(列)展开定理,将行列式降阶后求解; (6)应用范德蒙行列式:将行列式变形,化成范德蒙行列式。
具体计算n 阶行列式时应根据行列式特点单独或综合运用上述方法。
8、证明:6 D n =βαβααββααββα++++10000010001000 =βαβα--++11n n9、计算nD (333)...............3 (33)33...3233 (331)=10、计算行列式yy x x -+-+111111111111111111、求一个二次多项式f(x),使f(1)=0,f(2)=3,f(-3)=28。
线性代数总结汇总+经典例题
线性代数总结汇总+经典例题线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
(5)一行(列)乘k加到另一行(列),行列式的值不变。
(6)两行成比例,行列式的值为0。
(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。
2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。
数值分析典型习题
题型一:有效数字1,的首位数字x 1,x *的相对误差不超过0.5×10-5,至少要保留几位有效数字.(2010-2011)1*1151211||10100.5102226n n r x n e x n ---=≤⨯=⨯≤⨯⨯≥=解答:设至少要保留位有效数字,则有解得, n 5.7取位有效数字.2,0.5×10-4,至少要保留几位有效数字?(2009-2010)3,已知21.787654为有效数,确定其绝对误差界与相对误差界.(2007-2008)*6*118711||102111||1010102224n r e e x ----=⨯=⨯=⨯=⨯⨯解答:4,已知30.49876为有效数,确定其绝对误差界.(2006-2007B) 5,设有效数x=12.4567,确定x 的绝对误差界.(2004-2005)题型二:插值多项式1,已知f(x)的函数值:f(0)=-2, f(1)=1, f(2)=5, 用反插值法求f(x)=0在[0,2]内的近似根x *.(2010-2011)11111202012012010210122021()()()()()()()()()()()()()()()()()(2)(5)(2)(1)012(12)(15)(52)(51)2991422884y y y y y y y y y y y y y L y f y f y f y y y y y y y y y y y y y y y y y y ----------=⋅+⋅+⋅------+-+-=+⨯+⨯+-+-=+-解答:对y=f(x)的反函数x=f 进行二次插值2*229(0)42y x L ≈=故,2,已知f(x)的如下函数值及导数值:f(-1)=1, f(0)=2, f ’(0)=3, f(1)=7; (1),建立不超过3次的埃尔米特插值多项式H 3(x);(2),x ∈[-1,1], 确定用H 3(x)代替f(x)的误差界(已知|f (4)(x)|≤M 4,x ∈[-1,1]).(2010-2011)32001001201232233)),(0,1,2)()()[,]()[,,]()()1(1)2(1)(0)232()()(1)(0)(1)232()'(i i H x f x i N x f x f x x x x f x x x x x x x x x x x x H x N x k x x x x x k x x H ===+-+--=++++-=++=++--=+++-解答:(1),满足插值条件((的二次插值多项式为:也可用拉格朗日插值法满足题设插值条件的插值多项式为:2323(4)23443)43(31)'(0)'(0)3()232()(2),(1)(0)(1),(1,1)4!1||=4!496x x k x H f H x x x f R x x x M M R ζζ=++-===+++--∈-≤⨯由得:k=0故:误差(x)=则误差界(x)3,已知f(x)的函数值:f(0)=2, f(1)=4, f(2)=9, 写出二次拉格朗日插值多项式及余项.(2009-2010)4,已知f(x)的如下函数值及导数值:f(1)=1, f(2)=2, f ’(1)=3, f(3)=9; (1),建立不超过3次的埃尔米特插值多项式;(2)计算f(1.6)的近似值;若M 4=0.5,估计f(1.6)的误差界.(已知|f (4)(x)|≤M 4).(2009-2010)5,写出满足条件H(0)=1, H(1)=0, H ’(1)=1, H(2)=1的三次插值多项式,并给出误差估计式.(2008-2009B)6,已知一组数据,求函数f(x)=0的根.(2008-2009B)7,已知f(x)的如下函数值及导数值:f(0)=1, f(1)=3, f ’(1)=1, f(2)=9, (1),建立不超过3次的埃尔米特插值多项式,写出误差估计式;(2),计算f(1.8)的近似值:若M 4=1,估计f(1.8)的误差界.(已知|f (4)(x)|≤M 4).(2007-2008)8,已知f(x)的如下函数值及导数值:f(1)=2, f(2)=4, f ’(2)=5, f(3)=8, (1),建立不超过3次的埃尔米特插值多项式;(2),计算f(2.5)的近似值:若M 4=0.5,估计f(2.5)的误差界.(已知|f (4)(x)|≤M 4).(2006-2007)9,已知f(x)的如下函数值表选取合适的插值节点,用二次插值多项式计算f(0.35)的近似值.(2005-2006) 10,已知f(x)=sinx 的如下函数值表用插值多项式计算sin1.8, 并估计误差界.(2004-2005)11,用f(x)的关于互异节点集112{}{}n ni i i i x x -==和的插值多项式g(x)和h(x)构造出关于节点集1{}ni i x =的插值多项式.(2005-2006)(课后习题)-11111121111{}(),()(){}(),()()()()))()())]()n n i i i i n n n n n n n n n n n n n n q x q x g x x x x x x x x x g A x x g x ==------=----=-解答:法一:设关于节点集x 的插值多项式为则与有共同插值节点x ,则设:q(x)=g(x)+Aw w f(x (x )由q(x )=f(x 得,w w 故:q(x)=g(x)+[f(x (x )w 法二:设q(x)=g(x)+1-122311111()()(){}()()()()(),01()=()[()()]()[()()]()()()()()()[()()]=-n n i i n n n n n n n n n n x g x h x B g x h x B x x x x x x B x x x g x h x BAx x g x h x Bq x f x h x Ah x g x x x g x h x BA B -=---=---≠----===+--Aw 由于和有共同插值节点x ,则存在常数,使得则,w 故:q(x)=g(x)+由得得1111()[()()]()n n x x x x h x g x x x ----则:q(x)=g(x)+12,(1),已知f(x)的如下函数值:f(0)=1,f(1)=3,f(3)=5,写出二次拉格朗日插值多项式L 2(x);(2),若同时已知:f ’(1)=1,用待定系数法求埃尔米特插值多项式H 3(x);(3),当(3)(4)1|()|2|()|4,[0,3]f x f x x ≤≤≤≤∈及3时,x 不取节点,[0,3]x ∈,求32()()||()()f x H x f x L x --的上界.(2011-2012)题型三:最佳平方逼近多项式及最小二乘法1,已知函数值表:用二次多项式y=C 0+C 1X+C 2X 2按最小二乘法拟合改组数据,并求平方逼近误差.(2010-2011)(2005-2006)()000102030410111213142021222324012()()()()()11111()()()()()21012()()()()()4101401210,5010010010034T T T T x x x x x A x x x x x x x x x x y A AC A y c c c ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭==⎛⎫⎛ ⎪ ⎪ ⎪⎝⎭⎝解答:法一:线性拟合的法方程组为:即()()01222*20000100011402583,0,3575833570581358||||=(y,y)-Y 01210402023531701(,)0,(,)(T c c y x C x xx δϕϕϕαϕαϕϕϕα⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎭⎝⎭===-=-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭====解得:c 则平方逼近误差:法二:构造首项系数为的正交多项式:(x)=1(x)=x-111211021100002*22022220,)0(,)(,)2,()()2(,)(,)46583()()0(2)(,)514357(,)8||||=(y,y)-(,)35i i i i i i i i ix x y x x x x y ϕϕϕϕϕβααϕβϕϕϕϕϕϕϕϕϕδϕϕ======----==++-=-=∑∑(x)(x)=x 则,平方逼近误差:2,求21()1f x x =+在区间[0,1]上的一次最佳平方逼近多项式及平方逼近误差(去权函数ρ(x)=x).(2009-2010) 3,通过实验获得以下数据:请用最小二乘法求形如y=a+bx 2的经验公式.(2008-2009)T T A AC A y =解析:4,利用正交多项式的性质构造首项系数为1的正交多项式1{()}i i g x ∞=,有下列公式:010111()1()()()()(),(1,2,...)k k k k k g x g x x g x x g x g x k ααβ+--==-=--=其中:111(,),(0,1,2...)(,)(,),(1,2...)(,)k k k k k k k k k k xg g k g g g g k g g αβ---==== (1),求[0,1]上首项系数为1的正交多项式(权函数ρ(x)=1),g 0(x),g 1(x),g 2(x) (2),以上述正交多项式为基,求sinx 在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2008-2009B)(2004-2005)010000110001201111211021102110000*010001(1),()1(,)11,()(,)221()(,)121(,)2()2(,)11,()()()()(,)126(,)(,)(2),()(,)(g x xdx xg g g x x x g g dx x x dx xg g g g x dx g g g x x g x g x x x g g g f g f x g g g g αααβαβϕ=====-=--===-===--=-+=+⎰⎰⎰⎰解答:21212211120020111222000222*220(,),)(,)11()sin ()sin sin 11621()()1126()()260.00746 1.09130.23546(,)||||(,)0.000623.(,)i i i ig f g g g g g x x xdx x xdx xdx x x x dx x dx x x dx x x f g f f f g g ϕ=+-+-=⋅+⋅-+⋅-+--+=-+--=-=⎰⎰⎰⎰⎰⎰∑平方逼近误差:5,以正交多项式为基,求函数21()1f x x =+在区间[0,1]上的二次最佳平方逼近多项式,并求平方逼近误差.(2007-2008)(权函数ρ(x)=x,(2011-2012))20120122201201()1,(),(),111()2,()1,()2242211112234211113454111112224561.0656,0.503x x x x x f In f f In C F In c c c In ϕϕϕπϕϕϕπ=====-=-=⎛⎫⎛⎫⎪ ⎪⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⋅=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭==-解答:法一:取解得,,,正规方程组为:H 即:解得:c c 2*222*00001000111110110002,0.07423() 1.06560.503020.07423=(f,f)-F 0.000029041()11(,)223,()1(,)332(,)8(,)1,(,)15(,)T n p x x x C g x xg g g x x x g g xg g g g g g g g δαααβ=-=--======-=-====c 故二次最佳平方逼近多项式:平方逼近误差:法二:构造首项系数为的正交多项式:221100*201220120011222*1882163()()()()()()15318510(,)(,)(,)()()()() 1.06560.503020.07423(,)(,)(,)=(f,f)-F 0.00002904T n g x x g x g x x x x x f g f g f g p x g x g x g x x x g g g g g g C αβδ=--=---=-+=++=--=则:平方逼近误差:6,通过实验获得以下数据:请用最小二乘法求形如v =的经验公式,并求平方误差.(2006-2007)01:c c v=+解答转化题型四:代数精确度1,确定参数α,使求积公式20()[(0)()]['(0)'()]2hhf x dx f f h h f f h α≈++-⎰的代数精确度尽可能高,并求其代数精确度.(2010-2011)23322442320()1,,()1(),=121()()(0)(03)2121()()0+)(04)212()[(0)()]['(0)'()]2h h h f x x f x f x x h f x x f x dx h h h h f x x f x dx h h h hf x dx f f h h f f h αα====++-=≠+-≈++-⎰⎰⎰解答:令显然成立令得又时:时:(故具有三次代数精确度.2,确定参数A 1,A 2,使求积公式12()()(0)()3hh hf x dx A f h A f f h -≈-++⎰的代数精确度尽可能高,并求其代数精确度.(2009-2010)3,建立高斯型求积公式1211221()()()x f x dx A f x A f x -≈+⎰.(2009-2010)23121211311221122411221133511221121200010001,232513()1(,)0,()(,)xA A x dxA x A x x dxA x A x x dxA x A x x dxx A Ag xxg gg x x xg gααα----+==+==+==+===-=======-=⎰⎰⎰⎰解答:法一:已知求积公式有3次代数精确度,令f(x)=1,x,x得解上述方程组得:x法二:构造二次正交多项式1111110022110021211222112111221121(,)(,)30,(,)(,)53()()()()5()0,11,331()[(3xg g g gg g g gg x x g x g x xg x xx x x xA x dx A x dxx x x xx f x dx f fβαβρ---=====--=-==-=--=⋅==⋅=--≈+⎰⎰⎰令得高斯点: x故高斯型求积公式为:方法三:设[-1,1]上权(x)2221221122122121122221122331122212121().223()0,+0,5352()0,0,053().52:325()()(),(g x x ax bbx g x dx bax xg x dx ag x xA AA x A xA x A xA x A xx x x x x x c x c xϕϕ--=++===-⋅====-+=+=+=+==--=++⎰⎰=x,首项系数为1的二次正交多项式为则有:即即所以剩下步骤同法二.法四显然222221122111122212211221112221222332211122211221112221122112)()0()()()()()()()2230,535()()()()()20,053(),5xA x A x A x c x c A x c x c A x A x c A x A x c A AccA x x A x x A x A x c A x A x c A x A xccx xϕϕϕϕϕϕ==+=+++++=+++++=+==-+=+++++====-剩下步骤同法二.4,确定求积公式()()(0)()hh f x dx Af h Bf Cf h -≈-++⎰中的参数A,B,C ,使其代数精度尽量高,并指出其代数精确度.(2008-2009B) 5,确定求积公式10211123()()()()343234f x dx f f f ≈-+⎰的代数精确度.(2006-2007B) 6,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度10120113()()()()424f x dx A f A f A f ≈++⎰.(2005-2006) 7,确定下列求积公式中的参数,使求积公式的代数精确度尽可能高,并求出代数精确度101()()(0)()hh f x dx A f h A f A f h --≈-++⎰.(2004-2005) 8,已知h>0,建立高斯型求积公式:21122()()()hhx f x dx A f x A f x -≈+⎰.(2011-2012)题型五:求积公式的最少节点数1,设定积分320x e dx -⎰,问用复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2010-2011)(4)2244(4)461(),()16301[]||()|101801801696017.0519.x xS f x e f x e b a h f h f h b ahη---==--=-≤⋅=<-=解答:复化辛普森公式截断误差:|R 解得:h<0.176,n>故应取个节点 2,设定积分130x e dx -⎰,问用复化梯形求积公式进行计算,要求误差小于10-6,所需要的最少节点数为多少?(2009-2010)(2)3322(2)261(),()9101[]||()|10121891622.8.x x T f x e fx eb a h f h f h b ahη---==--=-≤⋅=<-=解答:复化梯形公式截断误差:|R 解得:h<0.357,n>故应取4个节点3,给定积分20cos2xdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (注:2(2)4(4)[](),[](),[,]122880T S b a b a R f h f R f h f a b ηηη--=-=-∈)(2008-2009B) 4,给定积分140x e dx -⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少?(2007-2008) 5,给定积分21Inxdx ⎰,问用复化梯形求积公式和复化辛普森(Simpson)求积公式进行计算,要求误差小于10-6,所需要的最少节点数各为多少? (已知:2(2)4(4)1212[](),[](),,(,)12180T S b a b a R f h f R f h f a b ηηηη--=-=-∈)(2006-2007) 6,用积分82122dx In x=⎰计算In2,要使所得近似值具有7位有效数字,问用复化辛普森求积公式至少需要取多少个节点?(2005-2006)4(4)8(4)52(4)-744(4)4-7[](),[2,8]18011122,(),()223|()|,[2,8]817[]102631[]||()|101801808802820.04472,S S S b a R f h f In dx f x f x x x xf x x R f b a h R f h f h h n hηηη-=-∈===≤∈≤⨯-=-≤⋅=≤⨯-≤≥=⎰解答:复化辛普森公式截断误差公式:则使所得的近似值具有位有效数字,即令:|134.2137故至少需要取个节点.7,用积分6213dx In x=⎰计算In3,要使所得近似值具有5位有效数字,问用复化梯形求积公式至少需要取多少个节点?(2004-2005)8,对于定积分10()I f x dx =⎰,当M 2=1/8,M 4=1/32,用11点的复化辛普森(Simpson)求积公式求I 的截断误差为R s [f],用n 个节点的复化梯形求积公式求I 的截断误差为R T [f],要使R T [f]≤R s [f],n 至少是多少?(M 2=max|f ”(x)|,M 4=max|f (4)(x)|,[0,1]x ∈).(2011-2012)题型六:Doolittle 分解及方程组求解1,求矩阵212454635⎛⎫⎪ ⎪⎪-⎝⎭的Doolittle 分解.(2010-2011)212100212454210030635321001LU ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪== ⎪ ⎪⎪ ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭解答:A=2,求矩阵114103241⎛⎫⎪- ⎪⎪⎝⎭的Doolittle 分解.(2009-2010)3,设线性方程组123410135114152410162116x x x x ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪⋅= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2007-2008&2005-2006)12341234101013101311000132114124100013224101119162116210001313191,,,)(5,0,11,)13,,,)(1,1,1,1).T TT T A LU LY b y y y UX Y x x x --⎛⎫⎛⎫--⎛⎫ ⎪⎪- ⎪ ⎪⎪-⎪=== ⎪⎪--- ⎪ ⎪⎪ ⎪ ⎪⎪-- ⎪⎪⎝⎭⎝⎭⎝⎭==---==--解答:由得:(y 由得:(x4,设线性方程组123411415101312410762118x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪⎪ ⎪⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (1),对方程组的系数矩阵A 作Doolittle 分解;(2),用所得的Doolittle 分解求该线性方程组的解.(2006-2007)5,设线性方程组:12312312323153478113x x x x x x x x x ++=+-=-++=-(1),对方程组的系数矩阵A 作Doolittle 分解; (2),利用上述分解结果求解该线性方程组.(2004-2005)6,用高斯顺序消去法求解线性方程组:13241234242532431737x x x x x x x x x x +=+=+++=+=.(2010-2011)4321102051020510205010130101301013=124317022312002160103701037000242,2,1, 1.x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭====解答:增广矩阵回代求解:x7,用高斯顺序消去法求解线性方程组:1231231233472212320x x x x x x x x x -+=-+-=---=.(2009-2010)题型七:条件数及范数1,求线性方程组1212391078981510x x x x x --=+==的系数矩阵A 的条件数cond 1(A),并说明其含义.(2010-2011)1111191008900015910089010015()||||||||19193611A A cond A A A A b ----⎛⎫ ⎪= ⎪⎪⎝⎭⎛⎫ ⎪-- ⎪= ⎪⎪⎪⎝⎭==⨯=解答:系数矩阵条件数远大于,这说明当和有小扰动时会引起解的较大误差,即该方程组是病态的.2,设矩阵15000910089A ⎛⎫ ⎪=-- ⎪⎪⎝⎭,求cond ∞(A).(2009-2010)3,设三阶对称矩阵A 的特征值分别为:-2,1,3,求||A||2及cond 2(A).(2007-2008)2121222||||3||||()|||||||| 3.A A cond A A A --========解答:则:4,若n 元线性方程组Ax=b 为病态的,可以得到关于系数矩阵A 的什么性质.(2006-2007)5,若111123124A ⎛⎫⎪= ⎪⎪⎝⎭,求cond 1(A).(2005-2006)求cond ∞(A).(2004-2005)6,设1231032475A -⎛⎫⎪=-- ⎪⎪-⎝⎭,求1||||||||A A ∞与.(2007-2008)7,若1234A ⎛⎫= ⎪⎝⎭,求谱半径()A ρ.(2005-2006) 52ρ解答:最大特征值:(A)=题型八:雅可比迭代与高斯-赛德尔迭代1,写出求解方程组1231231237321241021534818x x x x x x x x x -+=--=--=的雅可比迭代公式,并说明其收敛性.(2010-2011)(1)()()123(1)()()213(1)()()312(0)1(3212)71(4215)101(3418)87324102348.k k k k k k k k k J x x x x x x x x +++=-+=--++=--++-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭解答:雅可比迭代公式为:x 雅可比迭代法迭代矩阵:B 严格对角占优,故求解该方程组的雅可比迭代法关于任意初始向量x 收敛 2,设有方程组:132********2112212x x x x x x x -=+=-++=,讨论用雅可比迭代法和高斯-赛德尔迭代法解此方程组的收敛性.(2010-2011)112330200030000202100002000121221000200020031()0021102||0,=0=-J J J L D U B D L U E B B λλλλρ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=++=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪- ⎪⎝⎭-=解答:A=雅可比迭代矩阵:得,()<1,故用雅可比迭代法解答此方程组对任意(0)1123(0)20031-()00211001211||0,=012-S S S B D L U E B B λλλλρ-⎛⎫ ⎪ ⎪⎪=-+=- ⎪ ⎪⎪ ⎪⎝⎭-===初始向量x 都收敛.高斯赛德尔迭代矩阵:得,()<1,故用高斯赛格尔迭代法解答此方程组对任意初始向量x 都收敛.3,写出求解方程组:123123123532124721535818x x x x x x x x x -+=--=--=的高斯-赛德尔迭代公式,并说明收敛性.(2009-2010)4,用雅可比迭代法求解以313132323A ⎛⎫⎪= ⎪ ⎪-⎝⎭为系数矩阵的线性方程组时,确定其收敛性.(2009-2010)5,设线性方程组123123123221162222x x x x x x x x x -+=-+-=--+=-,讨论分别用雅可比迭代法和高斯-赛德尔迭代法解此线性方程组的收敛性,若收敛,请给出迭代格式.(2008-2009B)6,设线性方程组:1231231232215202225x x x x x x x x x +-=-++=++=-(1),证明求解该方程组的雅可比迭代法关于任意初始向量收敛;相应的高斯-赛德尔迭代法不是关于任意初始向量收敛; (2),取(0)(0,0,0)T x=,用雅可比迭代法进行求解,要求(1)()5||||10k k x x +--<.(2007-2008)11231123022()101220||0,===0)1022()023002||0,0,2,)1-J J J S S S D L U E B D L U E λλλλρλλλλρ---⎛⎫ ⎪=-+=-- ⎪⎪--⎝⎭-=<-⎛⎫⎪=-+=- ⎪⎪⎝⎭-====>解答:(1):B B 解得:,(B B 解得:(B 所以用雅可比迭代法解此方程组对任意初始向量都收敛,而用高斯赛德尔迭代法解此方程组不是对任意初始向量都收敛.(2):(1)()()123(1)()()213(1)()()312(0)(1)(2)(3)(4)2215202225(0,0,0)(15,20,25)(105,60,35)(205,160,65)(205,160,65)k k k k k k k k k T T T TTx x x xx x x x x x x x x +++=-+-=--+=---==--=--=-=-雅可比迭代公式:x 当时,计算得:(精确解).7,设线性方程组:123123123821027325431111x x x x x x x x x ++=--++=-+=-(1),写出求解该方程组的雅可比迭代法的迭代公式和高斯-赛德尔迭代法的迭代公式,并确定其收敛性; (2),取(0)(0,0,0)T x=,用高斯-赛德尔迭代法计算x (3).(2006-2007)8,设线性方程组Ax=b 的系数矩阵232131t A t t ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,其中t<0,问t 取何值时雅可比迭代法关于任意初始向量都收敛.(2006-2007)12122223021()0310422||()0=0=-,=)12||<1,t<-2,or t>20, 2.J J J t t D L U t t t t E B t t ttt t λλλλλλρ-⎛⎫-- ⎪ ⎪ ⎪=-+=-- ⎪ ⎪ ⎪- ⎪⎝⎭-=-=<<<-解答:雅可比迭代矩阵B 得,,雅可比迭代法对于任意初始向量都收敛,则(B 即:得又故9,1),设线性方程组:121232343243430424x x x x x x x +=+-=-+=-写出求解该方程组的雅可比迭代法的迭代公式,并确定该迭代法的收敛性;2),设线性方程组:123123123104413410811481025x x x x x x x x x ++=++=++=写出求解该方程组的高斯-赛德尔迭代法的迭代公式,并确定该迭代法的收敛性.(2004-2005)10,给定方程组:1231231232251223x x x x x x x x x +-=++=++=(1),用三角分解法解此方程组;(2),写出解此方程组的雅可比迭代公式,说明收敛性;取初始向量x 0=(0,0,0)T,当21||||10k k x x -+-<时,求其解.(2011-2012)11,设()21253sin 3421sincos 43tan 5k k k k k k k Ak k k kk⎛⎫- ⎪+ ⎪ ⎪= ⎪+⎪⎪⎪⎭,求()lim k k A →∞.(2007-2008)()020lim 021205K k A →∞⎛⎫⎪= ⎪ ⎪⎝⎭解答: 12,若()()11,lim 1sin sin k k k k k k AA k k k k →∞⎛⎫⎪+=⎪ ⎪⎪⎝⎭求.(2004-2005) ()01lim 10K k A →∞⎛⎫= ⎪⎝⎭解答: 题型九:非线性迭代1,设计一个算法求.(2008-2009B)101125(),0.2k k kx x x +=+>解答:牛顿迭代公式:x2,给出用牛顿法求围.(2010-2011)661556'5"4"*00001050517001701170[5]66()170,()60,()300()()0,.1170(5)61170()(5)6k k k k k kx x x x x x x x f x x f x x f x x x f x f x x x x x x g x x x +=-=-=-=+=-=>=>>⋅><=+=+解答:的正根.由牛顿迭代法得迭代公式:当故此时收敛到当0<设'611*01850()(5)0,()0,6:0,.0.x g x x g x g xx x x x x ∈=-<∈>=>>∈>故故回到前段.所以当迭代公式也收敛到综上:3,给出用牛顿法求近似值的迭代公式,并给出初值的取值范围.(2009-2010) 解答:方法同上.4,设φ(x)=x+c(x 2-5),当c 为何值时,x k+1=φ(x k ),(k=0,1,2…)产生的序列{x k }收敛于c 为何值时收敛最快?(2010-2011)2''**1**'*5),||<1,||<110,0;.k k cx x c ϕϕϕϕϕ+-=-<<<<解答:(x)=x+c(x (x)=1+2cxx (x )收敛,则有(x )即1+2cx 又当(x )=0,即5,设2()(3)x x c x ϕ=+-,应如何选取常数c 才能使迭代1(),(0,1,2)k k x xk ϕ+==具有局部收敛性?C 取何值时,这个迭代收敛最快?取x 0=2,c =计算()x ϕ的不动点,要求当61||10k k x x -+-<时结束迭代.(2004-2005)****21*2'****'**1(),(3)()(3)()|1|12|1,11,0,,033(2),()0+0,6(3),k kkx x x x c xx x x c x xcx cx x c or cxxϕϕϕϕ++==+-==+-<+<-<<=<<<<==±±解答:(1),令x收敛于则故要局部收敛,即|又得根据收敛阶定理,当时,迭代至少二阶收敛,即12cx得c=故c=.迭代公式为:212346*433)21.7113248651.7319268031.7320508041.732050808|10,: 1.732050808.k kx xxxxxxx x x-=-=====-<=又因为|故6,方程x3-3x-1=0在x=2附近有一根,构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2009-2010)'2(1.5) 1.765174168,(2.5) 2.040827551[1.5,2.5]()[1.5,2.5]()|0.33,xx xxϕϕϕϕϕ===∈∈=≤<解答:取的邻域[1.5,2.5]当时,又因为|故迭代在[1.5,2.5]上整体收敛.7,已知方程42()440f x x x=-+=有一个两重根0x=,请以初值x0=1.5,用m重根的牛顿迭代法计算其近似值,要求51||10k kx x-+-<.(2008-2009B)(P204例7.7)8,(1),已知方程240xe x+-=在0.6附近有一根x,迭代法214,0,1,2kxkx e k+=-=是否局部收敛?如果不收敛,试构造一个局部收敛的不动点迭代法,并说明收敛的理由.(2),取x 0=0.6,用你所构造的不动点迭代法求解该方程,迭代至x 5. (3),给出牛顿法求围.(2007-2008)2'2'**1'''1(1):()4,()2|()|1,(0),1(4)211(4),()22(4)1(0)2,(1)3()[0,1]21()||(1)|161(4)2x xk k k k x e x e x x x In x In x x x In In x x x In x ϕϕϕϕϕϕϕϕϕϕ++=-=->>=---=-==∈≤=<=-解答:故该迭代公式不是局部收敛的.构造:理由:取邻域[0,1](x)=故又|故迭代式在[0,1]上整体收敛11021324354101(2),(4),21(4)0.61188771521(4)0.61013645921(4)0.61039483321(4)0.61035672221(4)0.61036234421120(3),(),0.2k k k k kx In x x In x x In x x In x x In x x In x x x x x ++=-=-==-==-==-==-==+>.则9,给定方程x 2+x-2=0,[0,2]x ∈,采用迭代公式x k+1=x k +c(x k 2+x k -2),(k=0,1,2…)求其根,问当c 为何值时,迭代法收敛?又当c 为何值时,迭代法收敛最快?(2011-2012)*2'''1,()(2)()1(21)2(1)||1(21)|1,-0.31(1)=03x x x c x x x c x c c ϕϕϕϕ==++-=++=++<<<解答:当|即时,线性收敛当,即c=-时收敛最快.10,给定方程230xx e -=,[3,4]x ∈(1),构造一种线性收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因);(2),构造一种二次收敛的不动点迭代公式求该方程的根(含迭代公式,初值取何值或何区间,迭代法收敛的原因).(2011-2012)21111'12102'"0(1),()(3),3.29(3)()(4) 3.8712(),[3,4]23(3),(0,1,2,)[3,4].(2),()3,[3,4](3)0,(4)0()60,()60,[3,4]3k k x x x x In x x x x In x k x f x x e x f f f x x e f x e x x ϕϕϕϕϕ+==≤≤=≤≤∈==∈=-∈><=-<=-<∈=解答:故不动点迭代公式:x 对于任意初值收敛取初值时,牛顿213.6kkx kk k x k x ex x x e +-=--迭代法:收敛,且二次收敛11,方程x 3-x 2-1=0在x=1.5附近有根,建立一个收敛的迭代公式,并证明其收敛性.(2004-2005)122''33312111.51()1(1.3) 1.591715976,(1.6) 1.390625[1.3,1.6]()[1.3,1.6]222(),|()|||0.921.311k k k kx x x x x x x x x x x x x ϕϕϕϕϕϕ++=+==+==∈∈=-=-≤<=+解答:取的邻域[1.3,1.6]故当时,又故迭代公式:在[1.3,1.5]上整体收敛.12,(1),已知方程1020xex +-=在0.09附近有一根x,迭代法1(210),(0,1,2)k k x In x k +=-=是否局部收敛?如果不收敛,请构造一个局部收敛的不动点迭代法,并说明收敛的理由; (2),取x 0=0.09,用局部收敛的迭代法计算x 5;(3),用牛顿法求的近似值,并给出初值的取值.(2006-2007)'''*1''5(1),()(210),()15|()|1,[0,1],|()|>1.11510111(),()51010(0)0.1,(0.12)0.087250323[0,0.12]()[0,0.12]()|kx k x xx In x x xx x x x e x e x e x x x ϕϕϕϕϕϕϕϕϕϕ+-=-=->∈=-=-=-==∈∈≤解答:显然故该迭代公式不是局部收敛的构造:因为取[0,0.12]邻域考察故当时,又|'0.12110.09010.09058257820.09051881530.0905241|(0.12)|||0.1131101151011(2),510110.09,0.090582578510110.090518815510110.09052579651011510k kx k x k e x e x e x x e x e x e x e ϕ++=-<<=-=-==-==-==-==-故迭代公式:在[0,0.12]上整体收敛.57960.09052503151200.090525031110.0905251155102117(3),()30.k k k x e x x x +==-==+>使用迭代公式:进行求解.初值:x13,设方程x 3-3x-1=0在x=2附近有根;1),证明该方程在区间[1.5,2.5]内有唯一根x *;2),确定迭代函数φ(x).当初始值x 0在何区间取值时,迭代公式x k+1=φ(x k ),(k=0,1,2…)收敛到x *,并说明理由.3),写出求解该方程组的牛顿法迭代公式,当初始值x 0在何区间取值时,牛顿法迭代公式收敛到x,并说明理由.取x 0=1.8,用牛顿法迭代公式计算x,要求(1)()4||||10k k x x +--<.4),写出求解该方程的弦截法迭代公式,当初始值在何区间取值时,弦截法迭代公式收敛到x,并说明理由.(2005-2006)3'2'331223(1),()31,()33(1.5) 2.125,(2.5)7.125(1.5)(2.5)0,()0()0,[1.5,2.5][1.5,2.5].(2),3121(3),,3333()3k k k k k k k f x x x f x x f f f f f x f x x x x x x x x x f x x +=--=-=-=⋅<=>∈--+=-=--=-解答:证明:故在[1.5,2.5]内有根.又故方程在区间内有唯一根牛顿法迭代公式:'2"1,()33,()6x f x x f x x-=-=题型十:稳定算法1,对给定的x ,下列两式能否直接计算,说明理由;如果不能,请给出变换算式:(1x ,x 很大;(21,|x|很小.(2010-2011)3(1)x =解答:不能直接计算,因为两个相近的数相减,会产生较大的误差:2,为了提高计算精度,当正数x.(2005-2006)3,给出计算积分10,(0,1,2,10)10nn x I dx n x ==+⎰的递推稳定算法和初值.(2010-2011)1111111000-11110002010101101010101=101011111)11101010(1)11121[].2111)101)220(1)n n n n n n n n n n x x dx x dx x dx I I x x nn n x x x dx dx dx n x n n n n ----+-===-=-++-=<<=+++=+=+++⎰⎰⎰⎰⎰⎰解:I 该算法不稳定,变形得:I 因为(取初值I ((4,设计一种求10x nn I e x dx =⎰(n 为非负整数)稳定的递推算法,包括递推公式,初值的确定;当初值201221e I =⋅时,利用上述稳定的递推公式计算三个连续的积分值.(2011-2012)题型十一:部分证明题1,利用差分的性质证明:12+22+…n 2=n(n+1)(2n+1)/6222()12,g n n n =++证明:设函数对任意的建立差分表:函数g(n)的三阶差分是与n 无关的非零常数,故g(n)是n 的三次多项式:3(1)1,(2)5,(3)14,(4)30111()()14521231(1)(2)(1)(2)(3)(1)(21)14521!2!3!6g g g g n n n g n N n n n n n n n n n n ====---⎛⎫⎛⎫⎛⎫==+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭------++=+⋅+⋅+⋅=按等距节点牛顿向前插值公式建立三次插值多项式,则2,证明:n+1个互异节点的插值型求积公式的代数精确度至少为n.(2010-2011)(1)0()(),.(1)!n nb i ai f x x dx n ζ+=-+∏⎰证明:截断误差R[f]=易证 3,若0{()}ni i l x =是关于互异节点0{}ni i x =的拉格朗日插值基函数组,函数0011()()()(),(1)n n f x x l x x l x x l x n =++≥,证明:f(x)≡x.(2009-2010)00110()()()()()()()()n n i i n n i f x L x f x l x x l x x l x x l x f x x=≈==+++≡∑证明:故:4,证明:0101'()[()()]"()2hf x f x f x f h ζ=--,其中h=x 1-x 0,01(,)x x ζ∈.(2009-2010)"'20000"'211001010'"010())()()()2!(),())()()()2!1()[()()]()2f f x x x x x f x x f x f x x x x x hf x f x f x f h ζζζ+-+-==+-+-=--证明:由泰勒公式得f(x)=f(x 令则f(x 整理得: 5,证明:关于互异节点0{}ni i x =的拉格朗日插值基函数0{()}ni i l x =满足恒等式012()()()()1n l x l x l x l x +++≡.(2008-2009B)(2006-2007B)(2004-2005)120(1)(1)1010()1,(),,1=L ()()()()()()()1,()0,()()0(1)!()()()()1n nn n i n i n n n n ni n i f x f x x x x x R x l x f x R x f f x fx R x W x n l x l x l x l x ζ=+++==+=+=≡==+=+++≡∑∑证明:令对在上进行拉格朗日插值,有因故故:6,证明求积公式()[()()]2ba b af x dx f a f b -≈+⎰的截断误差:3"()[](),12f R f b a ηη=--∈其中:(a,b).(2007-2008) (1)001(2)(2)(2)33()()(1)!1,,()()()1"()()()()()()()2!2!2!612n nb i ai b b aa f x x dx n n x a xb f f f f x a x b dx x a x b dx a b b a ζζηηη+=-+===--=--=⋅-=--∏⎰⎰⎰证明:插值型求积公式截断误差R[f]=R[f]=7,设矩阵A 为可逆上三角阵,证明A -1仍为上三角阵,并导出求逆算法.(2006-2007B)8,设x k =a+kh(k=0,1,2;h>0),f(x)的三阶导数连续,证明:2(3)102021'()[()()](),(,)26h f x f x f x f x x h ζζ=-+-∈其中为中值.(2011-2012)001122120201201201021012202112020101222,),,),,)()()()()()()()()()()()()()()()()()()()()()()()()(22x y x y x y x x x x x x x x x x x x x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x x f x f x f x h h h ------=++------------=-+证明:过(((的拉格朗日插值多项式为:L 12'2102(3)201202(3)'''1210122'(3)10202)1()[()()]2()()()()()(),(,)3!()()()[()()()]3!1()[()()](),(,)26x x L x f x f x hf f x L x x x x x x x x x f f x L x x x x x x x h f x f x f x f x x h ηηηζζ==-+-=---∈-=---=-+-∈又故:。
二次解方程练习题126道
二次解方程练习题126道解题思路:1. 首先,我们需要确定问题的解题模式。
针对二次方程的解题,常见的解题模式有公式法、配方法和因式分解法。
根据题目的要求,我们需要根据题目中给出的方程进行分析,选择合适的解题方法。
2. 在解题过程中,需要注意一些常见的解题技巧。
如,同时出现x 和x^2项时,可以将x项单独提出,再进行配方法等操作。
或者根据系数的正负情况,来判断方程的解的情况。
下面是126道二次解方程的练习题,请根据每道题目进行求解:1. 2x^2 - 3x + 1 = 02. x^2 + 4x + 4 = 03. 3x^2 - 5x - 2 = 04. 4x^2 - 12x + 9 = 05. x^2 - 9 = 06. 5x^2 - 7x + 2 = 07. 2x^2 + 5x - 3 = 08. x^2 - 6x + 9 = 09. 3x^2 - 4x - 3 = 010. 4x^2 + 12x + 9 = 011. x^2 - 16 = 012. 5x^2 + 7x - 2 = 013. 2x^2 + 5x + 3 = 014. x^2 - 8x + 16 = 015. 3x^2 + 4x - 3 = 016. x^2 - 49 = 017. 5x^2 - 8x - 6 = 018. 2x^2 + 3x - 4 = 019. x^2 + 12x + 36 = 020. 3x^2 - 5x + 2 = 021. 4x^2 + 4x - 1 = 022. x^2 + 7x + 10 = 023. 2x^2 - 3x + 2 = 024. x^2 - 10x + 25 = 025. 3x^2 - 4x + 1 = 026. 4x^2 + 2x - 1 = 027. x^2 + 13x + 36 = 028. 2x^2 + 7x + 3 = 029. x^2 - 11x + 30 = 031. 4x^2 + 9x + 4 = 032. x^2 + 14x + 49 = 033. 3x^2 + 2x - 1 = 034. 2x^2 + 9x + 5 = 035. x^2 - 12x + 36 = 036. 4x^2 - 3x - 10 = 037. 2x^2 + 11x + 15 = 038. x^2 - 9x + 20 = 039. 3x^2 + 5x + 2 = 040. 4x^2 + 5x + 1 = 041. x^2 - 15x + 56 = 042. 3x^2 + 6x - 2 = 043. 2x^2 + 13x + 15 = 044. x^2 - 8x + 12 = 045. 4x^2 - 5x - 3 = 046. x^2 + 16x + 64 = 047. 2x^2 + 15x + 14 = 048. 3x^2 - 6x - 1 = 050. 4x^2 + 7x + 3 = 051. 2x^2 + 17x + 26 = 052. 3x^2 + 3x - 2 = 053. x^2 - 3x + 2 = 054. 4x^2 - 6x - 1 = 055. 2x^2 + 19x + 10 = 056. 3x^2 - 7x + 2 = 057. x^2 + 18x + 81 = 058. 4x^2 + 11x + 6 = 059. 3x^2 + 4x - 2 = 060. x^2 - 4x + 4 = 061. 2x^2 + 21x + 20 = 062. 3x^2 - 8x + 4 = 063. x^2 + 20x + 100 = 064. 4x^2 + 13x + 6 = 065. 3x^2 + 7x - 2 = 066. x^2 - 5x + 6 = 067. 2x^2 + 23x + 30 = 069. x^2 + 21x + 144 = 070. 4x^2 + 15x + 6 = 071. 3x^2 + 8x - 1 = 072. x^2 - 6x + 9 = 073. 2x^2 + 25x + 30 = 074. 3x^2 - 10x + 4 = 075. x^2 + 22x + 121 = 076. 4x^2 + 17x + 9 = 077. 3x^2 + 9x - 2 = 078. x^2 - 7x + 12 = 079. 2x^2 + 27x + 40 = 080. 3x^2 - 11x + 6 = 081. x^2 + 23x + 169 = 082. 4x^2 + 19x + 9 = 083. 3x^2 + 10x - 2 = 084. x^2 - 8x + 16 = 085. 2x^2 + 29x + 42 = 086. 3x^2 - 12x + 6 = 088. 4x^2 + 21x + 10 = 089. 3x^2 + 11x - 2 = 090. x^2 - 9x + 18 = 091. 2x^2 + 31x + 50 = 092. 3x^2 - 13x + 6 = 093. x^2 + 25x + 196 = 094. 4x^2 + 23x + 12 = 095. 3x^2 + 12x - 2 = 096. x^2 - 10x + 25 = 097. 2x^2 + 33x + 60 = 098. 3x^2 - 14x + 6 = 099. x^2 + 26x + 169 = 0 100. 4x^2 + 25x + 15 = 0 101. 3x^2 + 13x - 2 = 0 102. x^2 - 11x + 20 = 0 103. 2x^2 + 35x + 70 = 0 104. 3x^2 - 15x + 6 = 0 105. x^2 + 27x + 256 = 0107. 3x^2 + 14x - 2 = 0 108. x^2 - 12x + 36 = 0 109. 2x^2 + 37x + 90 = 0 110. 3x^2 - 16x + 6 = 0 111. x^2 + 28x + 324 = 0 112. 4x^2 + 29x + 21 = 0 113. 3x^2 + 15x - 2 = 0 114. x^2 - 13x + 30 = 0 115. 2x^2 + 39x + 110 = 0 116. 3x^2 - 17x + 6 = 0 117. x^2 + 29x + 324 = 0 118. 4x^2 + 31x + 24 = 0 119. 3x^2 + 16x - 2 = 0 120. x^2 - 14x + 49 = 0 121. 2x^2 + 41x + 130 = 0 122. 3x^2 - 18x + 6 = 0 123. x^2 + 30x + 400 = 0 124. 4x^2 + 33x + 30 = 0126. x^2 - 15x + 60 = 0这是126道关于二次解方程的练习题,根据每道题目,可以采用公式法、配方法或者因式分解法来求解。
二次项系数的题目
二次项系数练习题一、选择题1.(1+x )3+(1+x )4+…+(1+x )n +2的展开式中含x 2项的系数是( ).A .C n−33B .C n+33-1 C .C n−23D .C n−22 2.在(x 2+x -2)4的展开式中,各项系数的和是( ) A . 0 B . 1 C . 16 D . 256 3.已知(5x −√x)n的展开式中二项式系数之和是64,则它的展开式中常数项是( )A . 15B . -15C . -375D . 3754.若(ax 2+x +y )5的展开式的各项系数和为243,则x 5y 2的系数为( ) A . 10 B . 20 C . 30 D . 605.若(3x −1x )n展开式中各项系数之和为32,则该展开式中含x 3的项的系数为( )A . -5B . 5C . -405D . 4056.设(1+x )+(1+x )2+(1+x )3+…+(1+x )n =a 0+a 1x +a 2x 2+…+anxn ,当a 0+a 1+a 2+…+an =254时,n 等于( ) A . 5 B . 6 C . 7 D . 87.已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A . 212B . 211C . 210D . 298.若(√x +3x )n 的展开式中,各项系数的和与各项二项式系数的和之比为64,则n 等于( )A . 4B . 5C . 6D . 79.如果(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,那么a 0+a 1+…+a 7的值等于( ) A . -1 B . -2 C . 0 D . 210.若二项式(3-x )n (n ∈N *)中所有项的系数之和为a ,所有项的系数的绝对值之和为b ,则ba +ab 的最小值为( ) A . 2 B .92C .136 D .52二、填空题11.已知a >0关于x 的二项式(√x +√x3)n展开式的二项式系数之和为32,常数项为80,则展开式的各项系数和为________. 12.已知二项式(√x +√x)n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则展开式中x 的系数等于________.13.在二项式(√x +3x )n的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B =72,则n =________. 14.若(√x −a x 2)n 展开式中二项式系数之和是 1 024,常数项为45,则实数a 的值是________.15.已知(√x +√x 3)n的展开式的二项式系数之和比(a +b )2n 的展开式的系数之和小240,则(√x +√x3)n的展开式中系数最大的项是________.16.在二项式(x 2−2x )n的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为______ .三、解答题17.在(2x-3y)10的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和.18.已知(x23+3x2)n的展开式中,各项系数和与它的二项式系数和的比为32.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项19.设(5x -√x )n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,求展开式中二项式系数最大的项.20.已知二项式(√x 3+1x )n的展开式中各项的系数和为256.(1)求n ;(2)求展开式中的常数项.答案解析1.【答案】B【解析】(1+x )3+(1+x )4+…+(1+x )n+2的展开式中含x 2项的系数是C 32+C 42+…+C n+12+C n+22=C 33+C 32+C 42+…+C n+12+C n+22-1=C 43+C 42+…+C n+12+C n+22-1=C 53+C 52+…+C n+12+C n+22-1=…=C n+33-1.2.【答案】A【解析】在(x 2+x -2)4的展开式中,令x =1,可得各项系数的和为0. 3.【答案】D【解析】由题意可得2n =64,∴n =6. 故(5x −√x)6的展开式的通项公式为Tk +1=C 6k ·(-1)k ·56-k ·x 6−3k 2,令6-3k2=0,得k =4,可得它的展开式中常数项是C 64·52=375. 4.【答案】C【解析】令x =y =1,可得(ax 2+x +y )5的展开式的各项系数和为(a +2)5=243, ∴a =1,∴(ax 2+x +y )5=(x 2+x +y )5.而(ax 2+x +y )5表示5个因式(ax 2+x +y )的积,故有2个因式取y,2个因式取x 2,剩下的一个因式取x ,可得函x 5y 2的项,故x 5y 2的系数为C 52·C 32=30.5.【答案】C 【解析】令x =1,得2n=32,所以n =5,于是(3x −1x)5展开式的通项为Tk +1=(-1)k C 5k (3x)5-k (1x )k =(-1)k C 5k 35-k x 5-2k , 令5-2k =3,得k =1,于是展开式中含x 3的项的系数为(-1)1C 5134=-405,故选C.6.【答案】C【解析】令x =1,则可得2+22+23+ (2)=2(2n −1)2−1=2n +1-2=254⇒n +1=8⇒n =7.7.【答案】D【解析】因为(1+x )n 的展开式中第4项与第8项的二项式系数相等,所以C n 3=C n 7,解得n =10,所以二项式(1+x )10中奇数项的二项式系数和为12×210=29. 8.【答案】C【解析】令(√x +3x )n中x 为1,得各项系数和为4n ,又展开式的各项二项式系数和为2n ,∵各项系数的和与各项二项式系数的和之比为64,∴4n2n =64,解得n =6.9.【答案】A【解析】令x =1,代入二项式(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7, 得(1-2)7=a 0+a 1+a 2+…+a 7=-1. 10.【答案】D【解析】二项式中所有系数和为x =1时二项式的值,而所有系数绝对值的和则为x =-1时二项式的值,故a =2n ,b =4n =22n ,则b a +ab =2n +2-n ,n ∈N *,令y =2x +2-x ,y ′=(2x -2-x )ln 2,由导函数知函数y 在(0,+∞)上为增函数,则2n +2-n 在n =1取得最小值为52. 11.【答案】35 【解析】易知2n =32,∴n =5,所以二项式的通项公式为Tk +1=C 5k (√x )5-k (√x3)k =C 5k ak x15−5k6(k =0,1,5),则当k =3时,第四项为常数项,所以T 4=10a 3=80,解得a =2.令二项式中x =1,即得各项系数和35. 12.【答案】135【解析】根据二项式性质可知,二项式系数和为2n ,令x =1,则各项系数和为4n ,根据题意:4n2n =64,所以2n=64,则n =6,(√x +√x)6展开式的通项为Tk +1=C 6k(√x )6-k(√x )k=C 6k ·3k ·(√x )6-2k,当6-2k =2,即k =2时,T 3=C 62·32·(√x )2=135x . 13.【答案】3【解析】由题意可知,B =2n ,A =4n ,由A +B =72,得4n +2n =72,∴2n =8,∴n =3.14.【答案】±1 【解析】由条件知,2n =1 024,∴n =10,二项展开式的通项Tk +1=C 10k(√x )10-k ·(−a x 2)k=(-a )k ·C 10k ·x10−5k2,令10−5k 2=0,得k =2,∴常数项为T 3=(-a )2·C 102=45a 2=45,∴a =±1. 15.【答案】6√x 3 【解析】由题意得:22n-2n=240⇒2n=16⇒n =4,因此(√x +√x 3n的展开式中系数最大的项是第3项,为C 42(√x )2(√x3)2=6√x 3.16.【答案】-1【解析】易得n =5.所以各项系数之和为(1-2)5=-1. 17.【答案】设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数的和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 100+C 101+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 100+C 102+…+C 1010=29, 偶数项的二项式系数和为C 101+C 103+…+C 109=29.【解析】18.【答案】令x =1,得展开式中的各项系数和为(1+3)n =22n , 又展开式中二项式系数和为2n,所以22n 2n=32,解得n =5.(1)因为n =5,所以展开式共有6项, 所以二项式系数最大的项为第三、四两项,所以T 3=C 52(x 23)3(3x 2)2=90x 6,T 4=C 53(x 23)2(3x 2)3=270x 223. (2)设展开式中第k +1项的系数最大Tk +1=C 5k (x 23)5-k (3x 2)k =3k C 5k x10+4k3,得{3k C 5k ≥3k−1C 5k−1,3k C 5k ≥3k+1C 5k+1,解得72≤k ≤92, 所以k =4,即展开式中系数最大的项为T 5=C 54(x 23)5-4(3x 2)4=405x 263.【解析】19.【答案】依题意得,M =4n =(2n )2,N =2n , 于是有(2n )2-2n =240,(2n +15)(2n -16)=0, ∴2n =16=24,解得n =4.要使二项式系数C 4k 最大,只有k =2,故展开式中二项式系数最大的项为T 3=C 42(5x )2·(-√x )2=150x 3. 【解析】20.【答案】(1)由题意得C n 0+C n 1+C n 2+…+C n n =256,∴2n =256,解得n =8.(2)该二项展开式中的第k +1项为Tk +1=C 8k (√x 3)8-k ·(1x )k=C 8k ·x 8−4k 3,令8−4k 3=0,得k =2,此时,常数项为T 3=C 82=28. 【解析】。
一元二次方程100道计算题练习(附答案)+一元二次方程经典练习题(6套)附带详细答案
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
线性方程组练习题
线性方程组练习题线性方程组是高中数学中的重要概念,掌握解线性方程组的方法对于学习和应用数学都具有重要意义。
下面,我将为大家提供一些线性方程组的练习题,帮助大家巩固和加深对线性方程组的理解和应用。
练习题一:解下列线性方程组:1. 2x + y = 44x - 3y = 72. 3x + 2y = 5x - y = -13. 5x + 3y = 93x - 2y = 4练习题二:求出下列线性方程组的解的个数,并判断是否有解:1. 3x + 5y = 76x + 10y = 142. 2x - 3y = 44x - 6y = 83. x + 2y = 32x + 4y = 6练习题三:判断下列线性方程组是否有无穷多解:1. 2x - 3y = 44x - 6y = 82. 3x + 2y = 66x + 4y = 123. 5x - 6y = 1010x - 12y = 20练习题四:求解以下线性方程组形成的矛盾方程组:1. 2x + 3y = 54x + 6y = 122. 3x - 4y = 96x - 8y = 183. 4x + 7y = 118x + 14y = 22练习题五:解下列线性方程组,并判断是否有解:1. 2x + y = 44x + 2y = 92. 3x + 2y = 5x - 2y = 13. 2x + 3y = 74x + 6y = 14在解这些线性方程组时,我们可以使用消元法、代入法或等量代换法等不同的方法。
根据具体的题目,选择合适的解题方法,并注意进行化简和整理,尽量将方程组化为简单的形式,以便于求解。
线性方程组的解的个数分为无解、唯一解和无穷多解三种情况。
通过判断线性方程组的系数矩阵经过行变换后的简化形式,我们可以确定解的个数。
对于无解的线性方程组,系数矩阵经过行变换后存在形如[0 0 a]的行,其中a为非零数。
对于唯一解的线性方程组,系数矩阵经过行变换后为一个单位矩阵。
数学专业多项式二次型例题
多 项 式例1 设)(x f 和)()()(1x g x p x g m =都是数域P 上的多项式,其中1≥m 且)(x p 不整除)(x f ,1))(),((1=x g x p ,则有数域P 上多项式)(1x f 和)(x r ,使)()()()()(11x r x g x p x f x f +=,其中))(())((x p x r ∂<∂。
证明由1))(),((1=x g x p 知有数域P 上的多项式)(),(x v x u 使1)()()()(1=+x g x v x p x u 。
由带余除法定理有)()()()(01x r x p x q x f +=,而)(x p 不整除)(x f ,所以有))(())((0x p x r ∂<∂,于是由1)()()()(1=+x g x v x p x u 有)()()()()()()()()(1001x g x v x r x p x u x r x p x q x f ++=。
再由带余除法定理有)()()()()(2x r x p x q x v x r +=,同样由)(x p 不整除)(x f 及上式有))(())((x p x r ∂<∂,代入上式,得)()()())()()()()(()(12101x g x r x p x q x g x u x r x q x f +++=,令)()()()()()(21011x q x g x u x r x q x f ++=,则结论成立。
例2 设d n m ,,是正整数,证明 (1) n d x x n d ⇔--11,(2) d n m x x x d n m =⇔-=--),(1)1,1(.证明 (1) 充分性 由n d 设dq n =,∈q Z ,则)1)(1(1)(11)1(+++-=-=-=--d q d d q d dq n x x x x x x , 所以11--nd x x .必要性 设r dq n +=,0≤d r <,则 )1()1(1111-+-=-+-=-=-=-+r dq r r r dq r dq r dq n x x x x x x x x x x , 由充分性的证明知11--dq d x x ,于是由11--n d x x 及整除的组合性质有11--rd x x ,进而由0≤d r <得0=r ,所以n d .(2) 必要性 由条件知11--m d x x 且11--n d x x ,从而由(1)有m d 且n d . 若m h 且n h ,由(1)有11--m h x x 且11--n h x x ,从而由条件有11--d h x x ,再由 (1)得d h .综上得d n m =),(.充分性证法一 由d n m =),(及(1)知 11--m d x x 且11--n d x x .设1)(-m x x h 且1)(-n x x h . 若n m 或m n ,则结论显然成立.否则有非零整数v u ,使d vn um =+,且v u ,的正负性相反,不妨设0,0<>v u ,则n v d um )(-+=,从而1)1(111)()()(-+-=-+-=-=----d n v d d d n v d n v d um x x x x x x x x x x , 于是由1)(-m x x h ,1)(-n x x h 及(1)可得1)(-d x x h .综上有 1)1,1(-=--d n m x x x .证法二 由d n m =),( 及(1)有11--m d x x 且11--n d x x ,设1)(-m x x h 且1)(-n x x h . 若0))((=∂x h ,则1)(-d x x h ,否则由1-m x 无重根知)(x h 也无重根,设)())(()(21k x x x x h ααα---= ,其中k ααα,,,21 是互不相同的复数,则由1)(-m x x h 且1)(-n x x h 知k ααα,,,21 是1-m x 和1-n x 的公共根,即1=m i α,1=n i α.而由d n m =),(有d vn um =+,所以1==vn i um i d i ααα,因此i α是1-d x 的根,故1--d i x x α,k i ,,2,1 =.而k x x x ααα---,,,21 两两互素,所以有1)(-d x x h .综上有1)1,1(-=--d n m x x x .例3 设n k n k n k x x x x x x f )1()2()1(2)1()(1++++++=-++ ,证明11)1()()1(+++++-n k k x x f x x证明 由于n k k k x x x x x x f )1]()2()1(2)1[()(1++++++=-)1(21+-=-x x x所以1)1()()1(++++-n k x x f x11)1()1]()2()1(2)1)][(1(2[++-+++++++++-=n k n k k k x x x x x x x x111)1()1]()1()2[(++++++++-=n k n k k x x x xn k k x x )1(211+=++, 故11)1()()1(+++++-n k k x x f x x 。
考研数学二(线性方程组、矩阵的特征值与特征向量、二次型)历年
考研数学二(线性方程组、矩阵的特征值与特征向量、二次型)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵,若(1,0,1,0)T是线性方程组Ax:O的一个基础解系,则A”x:0的基础解系可为A.α1,α3.B.α1,α2.C.α1,α2,α3.D.α2,α3,α4.正确答案:D解析:[详解] 因为(1,0,1,0)T为方程组Ax=0的一个基础解系,故r(A)=3,r(A*)=1.于是A*x=0的基础解系含线性无关向量个数为3.又(1,0,1,0)T为Ax=0的解,从而α1+α3=0.由A*A=|A|E=0得α1,α2,α3,α4均为A*x=0的解.故α2,α3,α4可作为A*x=0的基础解系.故应选(D).知识模块:线性方程组2.设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Ax=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(A)=r(B),则Ax=0与Bx=0同解.以上命题正确的是A.①②.B.①③.C.②④.D.③④.正确答案:B解析:[分析] 本题也可找反例用排除法进行分析,但①和②两个命题的反例比较复杂一些,关键是抓住③与④,迅速排除不正确的选项.[详解] 若Ax=0与Bx=0同解,则n-r(A)=n-r(B),即r(A)=r(B),命题③成立,可排除(A),(C);但反过来,若r(A)=r(B),则不能推出Ax=0与Ax=0同解,如,则r(A)=r(B)=1,但Ax=0与Bx=0与Bx=0不同解,可见命题④不成立,排除(D),故应选(B).[评注] Ax=0与Bx=0同解的充要条件是A,B的行向量组等价.知识模块:线性方程组3.设A为4阶实对称矩阵,且A2+A=0,若A的秩为3,则A与A相似于B.C.D.正确答案:D解析:[详解]设λ为A的特征值,由A2+A=0,知特征方程为λ2+λ=0,所以λ=-1或0.由于A为实对称矩阵,故A可相似对角化,即A~A,r(A)=r(A)=3,因此,应选(D).[评注1]若A可对角化,则r(A)=矩阵A 的非零特征值的个数.[评注2]本题由A2+A=0即可得到A可对角化,因此题设条件A为实对称矩阵可去掉.知识模块:矩阵的特征值与特征向量4.矩阵相似的充分必要条件为A.a=0,b=2.B.a=0,b为任意常数.C.a=2,b=0.D.a≠0,b为任意常数.正确答案:B解析:[分析]利用结论:两个可对角化的矩阵相似的充:分必要条件是有相同的特征值.[详解]记矩阵.显然,矩阵B的特征值为2,b,0,而矩阵A与B 相似的充分必要条件是有相同的特征值,所以|2E—A|=[2513*]=-4a2=0,得a=0.当a=0时,由|2E—A|=|λE-A|=,得矩阵A的特征值为2,b,0.故当a=0时,对任意常数b,矩阵A与B相似,且反之亦成立.故选(B).[评注]对于不可以对角化的两矩阵,特征值相同不能推出相似.知识模块:矩阵的特征值与特征向量5.设矩阵,则A与BA.合同,且相似.B.合同,但不相似.C.不合同,但相似.D.既不合同,也不相似.正确答案:B解析:[详解] 由|λE-A|=0得A的特征值为0,3,3,而B的特征值为0,1,1,从而A与B不相似.又r(A)=r(B)=2,且A、B有相同的正惯性指数,因此A与B合同.故应选(B).[评注1] 若A与B相似,则|A|=|B|;r(A)=r(B);tr(A)=tr(B);A与B有相同的特征值.[评注2]若A、B为实对称矩阵,则A与B合同r(A)=r(B),且A、B有相同的止惯性指数.[评注3]二次型对数学二来说,2007年是首次要求考查的内容.知识模块:二次型6.设,则在实数域上与A合同的矩阵为A.C.D.正确答案:D解析:[分析]两个实对称矩阵合同的充要条件是其秩相同且有相同的正惯性指数或者说其正、负特征值的个数分别相同.[详解] 记于是A与D为实对称矩阵,且特征多项式相同,故A与D相似,从而A与D合同.[评注](1)若A、B为实对称矩阵,则A与B相似A与B有相同的特征值.(2)若A、B 为实对称矩阵,则A与B相似→与B合同.但反之不一定成立.知识模块:二次型填空题7.设方程有无穷多个解,则a=_______.正确答案:应填-2.解析:[分析] 先化增广矩阵为阶梯形,再由系数矩阵与增广矩阵的秩相等且小于3求a.[详解] 利用初等行变换化增广矩阵为阶梯形,有可见,只有当a=-2时才有,对应方程组有无穷多个解.[评注] 本题也可按下述方式求参数a:当系数矩阵的行列式不为零时,方程组有唯一解,因此满足题设条件的a一定使系数行列式为零,即有解得n=-2或a=1.由于答案有两个,此时应将其代回原方程进行检验.显然,当a=1时,原方程无解,因此只能是a=-2.知识模块:线性方程组8.矩阵的非零特征值是_______.正确答案:应填4.解析:[分析] 本题属基本题,直接按定义求非零特征值即可.[详解] 因为|λE-A|==λ2(λ-4)=0,所以非零特征值为λ=4.知识模块:矩阵的特征值与特征向量9.设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值________.正确答案:应填.解析:[分析] 从特征值、特征向量的定义Ax=λx,x≠0进行推导即可.[详解] 设Ax=λx,x≠0,则A-1x=λ-1x→|A|A-1x=,x≠0.即,从而有E(A*)2+E]x=,x≠0,可见(A*)2+E必有特征值.知识模块:矩阵的特征值与特征向量10.设3阶矩阵A的特征值是2,3,λ.若行列式|2A|=-48,则λ=_______.正确答案:应填-1.解析:[分析] 利用矩阵的行列式的性质和特征值计算对应矩阵的行列式即得.[详解] 因A的特征值的乘积等于|A|,又A为3阶矩阵,所以|2A|=23|A|=23×2×3×λ=-48,故λ=-1.知识模块:矩阵的特征值与特征向量11.若二次型f(x1,x2,x3)=x12+3x22+x32+2x1x2+2x1x3+2x2x3,则f的正惯性指数为_______.正确答案:应填2.解析:[分析]正惯性指数就是二次型的标准形中正项的个数,可用特征值或配方法求解。
二次方程求解方法经典练习题(6套)附带详细答案
二次方程求解方法经典练习题(6套)附带详细答案以下是六套经典的二次方程求解练题,每题附有详细的答案解析。
希望对你的研究和练有所帮助!第一套练题1. 求解方程 $2x^2 + 5x - 3 = 0$ 的根。
解答:首先使用因式分解法将方程进行因式分解得到 $(2x - 1)(x + 3) = 0$,然后令每个因式为零,解得 $x = \frac{1}{2}$ 和 $x = -3$。
2. 求解方程 $3x^2 - 4x + 1 = 0$ 的根。
解答:可以使用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 求解该方程。
代入方程的系数得到 $x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$,计算得到 $x = \frac{1}{3}$ 和 $x = 1$。
...第二套练题1. 求解方程 $x^2 - 7x + 12 = 0$ 的根。
解答:使用因式分解法将方程进行因式分解得到 $(x - 3)(x - 4) = 0$,然后令每个因式为零,解得 $x = 3$ 和 $x = 4$。
2. 求解方程 $2x^2 + 7x - 3 = 0$ 的根。
解答:可以使用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 求解该方程。
代入方程的系数得到 $x = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 2 \cdot -3}}{2 \cdot 2}$,计算得到 $x = -3$ 和 $x = \frac{1}{2}$。
...第三套练题...第四套练题...第五套练题...第六套练题...以上是附带详细答案的二次方程求解经典练习题,希望能够帮助你巩固和提高二次方程的解题能力!。
MBA联考综合能力数学多项式及因式分解解方程(组)历年真题试卷汇编1_真题(含答案与解析)-交互
MBA联考综合能力数学(多项式及因式分解、解方程(组))历年真题试卷汇编1 (总分58, 做题时间90分钟)1. 问题求解问题求解本大题共15小题。
下列每题给出的五个选项中,只有一项是符合试题要求的。
1.[2013年1月]在(x 2 +3x+1) 3的展开式中,x 2的系数为( )。
SSS_SINGLE_SELA 5B 10C 45D 90E 95该问题分值: 2答案:E解析:展开式的一般项为ak =C5k (x 2 +3x) k =C5k (x+3) k x k (k=0,1,…,5),其中只有a1 =5x(x+3)和a2=10x 2 (x+3) 2中含有x 2,故x 2的系数为5+10×3 2 =95,因此选E。
2.[2012年1月]若x 3 +x 2 +ax+b能被x 2—3x+2整除,则( )。
SSS_SINGLE_SELA a=4,b=4B a=一4,b=一4C a=10,b=—8D a=一10,b=8E a=—2,b=0该问题分值: 2答案:D解析:令f(x)=x 3 +x 2 +ax+b,当x 2—3x+2=0时,x=1或2。
由整除的性质知1和2是x 3 +x 2 +ax+b=0的两个跟。
即,解得a=—10,b=8。
3.[2011年1月]已知x 2 +y 2 =9,xy=4,则=( )。
SSS_SINGLE_SELABCD该问题分值: 2答案:C解析:由立方和公式:a 3 +b 3 =(a+b)(a 2一ab+b 2 ),所以原式化简=。
因此选C。
4.[2010年10月]若x+=( )。
SSS_SINGLE_SELABCDE该问题分值: 2答案:E解析:5.[2010年1月]多项式x 3 +ax 2 +bx一6的两个因式是x一1和x一2,则其第三个一次因式为( )。
SSS_SINGLE_SELA x一6B x一3C x+1D x+2E x+3该问题分值: 2答案:B解析:将多项式拆分成三个因式的乘积,故x 3 +ax 2 +bx一6=(x一1)(x一2)(x+P),令x=0,则(一1).(一2)P=一6,P=一3。
二次方程、无理方程练习题(含答案)
一元二次方程1、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是 ;常数项是 .2、已知方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范围是.3、已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,则m= .4、已知关于x的一元二次方程(k-1)x2+2x-k2-2k+3=0的一个根为零,则k= .5、已知关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,若原方程是一元一次方程,则m的取值范围是。
6、已知关于x的方程(m2-1)x2+(m+1)x+m-2=0是一元二次方程,则m的取值范围是;当m= 时,方程是一元二次方程.7、把方程a(x2+x)+b(x2-x)=1-c写成关于x的一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。
8、关于x的方程(m+3)x2-mx+1=0是几元几次方程?9、0.01 y412=10、53x0.22=-11、(x+3)(x-3)=912、(3x+1)2-2=013、(x+2)2=(1+2)214、0.04x2+0.4x+1=015、(2x-2)2=616、(x-5)(x+3)+(x-2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x2+1的一般形式是它的二次项系数是;一次项系数是;常数项是。
18、已知方程:①2x 2-3=0;②1112=-x;③131212=+-yy;④ay2+2y+c=0;⑤(x+1)(x-3)=x2+5;⑥x-x2=0 .其中,是整式方程的有 ,是一元二次方程的有。
(只需填写序号)19、填表:20、分别根据下列条件,写出一元二次方程ax2+bx+c=0(a ≠0)的一般形式:(1)a=2,b=3,c=1;(2)52,43,21==-=c b a ; (3)二次项系数为5,一次项系数为-3,常数项为-1;(4)二次项系数为mn ,一次项系数为3m-,常数项为-n .21、已知关于x 的方程(2k+1)x2-4kx+(k -1)=0,问:(1)k 为何值时,此方程是一元一次方程?求出这个一元一次方程的根;(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系 数、常数项。
多项式习题大全
一.填空.(1)3()105f x x x =-+,则()f x 在有理数域上_______ (可约,不可约),()f x 在实数域上有_________个根.(2)已知320x px qx r +++=的三个根是123,,x x x ,求一个三次方程使其根为222123,,x x x . (3)4322()441,()1f x x x x x g x x x =--++=--,则存在()_______u x =,()_____v x =,d(x)=______,使()()()()()d x f x u x g x v x =+.(3)当整数______a =时,多项式32122x x ax -+-有有理根. (4)多项式43242203x x x x -+++有一根32i +,则其余根__________.(5)________.(6)已知432()410129f x x x x x =++++有重根,则((),())______f x f x '=,()f x 的所有根是________.(7)4()()f x x p x q =++,则()f x 的判别式_________.(8)设323210()f x a x a x a x a =+++,则()f x 被x c -除所得的商式为_________,余式为_______.(9)当l 与m 满足_______时,2321|52x mx x lx x +++++.(10)将5432()252243f x x x x x x =+-+--表示成3x -的方幂的和__________.(11)求一个2次多项式,使它在0,,2x ∏=∏处与函数sin x 有相同的值________. (12)多项式3x px q ++有重根的条件________.(13)5432()252243f x x x x x x =+-+--,在实数域上的标准分解_______;在复数域的标准分解_________.(14)设2()4g x x x a =-+,且存在唯一一个首一的3次多项式()f x ,使得()|()g x f x ,且2()|()f x g x ,则______a =,()_______f x =.(15)若多项式32521x x x +-+三根123,,ααα,则333123________ααα++=.(18)543222x x x x x +-+--的有理根是________,在有理数域上的标准分解式为________.(19)设4322()21,()21f x x x x x g x x x =--+-=-+,则存在()_u x =,()_______v x =,使得()()()()((),())u x f x v x g x f x g x +=.(21)i 为根的次数最小的有理系数多项式是_________.(22)已知实系数多项式3x px q ++有一个虚根32i +,则其余两个根是_________.(23)关于整系数多项式不可约性的Eisenstein 判别法是________.二.选择.(1)下列命题中正确的有_____个.()(),()[],()I p x f x X p x ∈K 是不可约多项式,则()|()()p x f x p x 与()f x 在 上有公共根.()II ((),())1(),()f x g x f x g x = 无公共根.()III ()f x 是三次有理多项式,则()f x 在有理数域上不可约.()IV 如果((),())1f x f x '''=,则()f x 的重因式是2重因式.A.1B.2C.3D.4(2)下列命题中错误的有______个.()I 若12()()(),()()()f x af x bg x f x cf x dg x =+=+,则11((),())((),())f x g x f x g x =. ()II 若()0,()0,()()()()((),())f x g x f x p x g x q x f x g x ≠≠+=,则((),())1p x q x =. ()III 若(()(),())1f x g x h x =,则((),())1,((),())1f x h x g x h x ==.()IV 若()|()()f x g x h x 且()|()f x g x ,则((),())1f x h x =.A.1B.2C.3D.4(3)如果实系数多项式10110()n n n f x a x a x a x a --=++++ 系数满足011210,0,,0n n a a a a a a -<<< ,则()f x 的根______.A.0>B.0>C.0=D.0≤(4)已知α是()f x 与(1)()k f x -的根,但不是()()k f x 的根,则α______.A.是()f x 的k 重根.B.是()f x 的单根.C.不是()f x 根.D.未必是()f x 的k 重根.三.判定题(若命题成立,给出证明;若命题不成立,给出反例)(24分,每题6分).(1)设()|()()f x g x h x ,则或()|(),f x g x 或()|()f x h x .(2)设()f x 和()g x 是实数域上的多项式且()f x 和()g x 在复数域上无公共根,则((),())1f x g x =.(3)设()f x 是有理数域上的多项式,则()f x 在有理数域上无重因式当且仅当9)f x 在复数域上无重根.(4)设不可约多项式()p x 是()f x '的因式,则()p x 是()f x 的重因式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次多项式与线性方程组经典习题
本文档将介绍一些关于二次多项式与线性方程组的经典题,帮助读者加深理解和掌握相关概念和解题技巧。
题一:二次多项式的因式分解
问题描述
已知二次多项式 $f(x) = ax^2 + bx + c$ 的三个根为 $x_1, x_2, x_3$,其中 $x_1 + x_2 + x_3 = 0$,求二次多项式 $f(x)$ 的因式分解式。
解答步骤
根据韦达定理可知,二次多项式 $f(x)$ 的因式分解式可以表示为:$f(x) = a(x - x_1)(x - x_2)(x - x_3)$。
根据已知条件 $x_1 + x_2 + x_3 = 0$,我们可以设 $x_3 = -(x_1 + x_2)$。
代入因式分解式并展开,可得:$f(x) = a(x - x_1)(x - x_2)(x + x_1 + x_2)$。
因此,二次多项式 $f(x)$ 的因式分解式为 $f(x) = a(x - x_1)(x - x_2)(x + x_1 + x_2)$。
题二:线性方程组的解
问题描述
已知线性方程组如下:
$$
\begin{align*}
2x + 3y &= 5 \\
4x + 5y &= 11 \\
\end{align*}
$$
求该线性方程组的解。
解答步骤
我们可以使用消元法或矩阵法来求解该线性方程组。
消元法
通过将第一行乘以2,并减去第二行的2倍,可以得到一个新的方程组:
$$
\begin{align*}
2x + 3y &= 5 \\
-1y &= -1 \\
\end{align*}
$$
解第二个方程得到 $y = 1$,然后将其代入第一个方程,解得$x = 2$。
因此,该线性方程组的解为 $x = 2$,$y = 1$。
矩阵法
将该线性方程组表示为矩阵形式 $AX = B$,其中:
$$
A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix},
X = \begin{bmatrix} x \\ y \end{bmatrix},
B = \begin{bmatrix} 5 \\ 11 \end{bmatrix}
$$
通过计算矩阵 $A$ 的逆矩阵,我们可以得到解向量 $X$:
$$
X = A^{-1}B
$$
求解可得 $X = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$。
因此,该线性方程组的解为 $x = 2$,$y = 1$。
以上就是关于二次多项式与线性方程组的经典习题的详细解答。
希望通过这些习题的练习,读者可以加深对相关概念和解题技巧的
理解与掌握。