2023年新高考数学大一轮复习专题一函数与导数第5讲基本不等式的综合问题(含答案)

合集下载

第5讲 利用导数研究不等式恒成立问题(学生版)2023年高考数学重难突破之导数、数列(全国通用)

第5讲 利用导数研究不等式恒成立问题(学生版)2023年高考数学重难突破之导数、数列(全国通用)

导数专题
引子:
我们总是对现有的东西不忍放弃,包括认知方式、学习模式以及那些习以为常的思维逻辑。

大脑也喜欢偷懒,面对问题的第一反应是搜索曾经的习惯,让你无法自拔。

如果要有所长进,就必须与过去的自己一刀两段。

只有被逼到了悬崖的边缘,才能放弃幻想,去追求另一片蓝天。

道理我都懂,可再多的道理也无济于事。

道理从来就不是拿来懂的,而是拿来悟的。

有人悟成了诗,有人悟成了歌,有人演绎成了故事,也有人活成了无可奈何……
第五讲利用导数研究不等式恒成立问题
脑洞(常见考法):浮光掠影,抑或醍醐灌顶
思维导图-----典型题型讲练
的模型
-
,它们的定义域均为
.若对任意。

基本不等式-2023年高考数学一轮复习(新高考地区专用)

基本不等式-2023年高考数学一轮复习(新高考地区专用)

2.2 基本不等式-2023年高考数学一轮复习(新高考地区专用)一、单选题(共13题;共65分)1.(5分)若a >0,b >0,则“a +b =1”是“1a +1b≥4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.(5分)已知直线ax +by −1=0(ab >0)过圆(x −1)2+(y −2)2=2022的圆心,则1a +1b的最小值为( ) A .3+2√2B .3−2√2C .6D .93.(5分)已知正实数a 、b 满足a +b =2,则4b +1a的最小值是( )A .72B .92C .5D .94.(5分)已知m >0,n >0,命题p :2m +n =mn ,命题q :m +n ≥3+2√2,则p 是q 的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.(5分)小李从甲地到乙地的平均速度为 a ,从乙地到甲地的平均速度为 b(a >b >0) ,他往返甲乙两地的平均速度为 v ,则( ) A .v =a+b 2B .v =√abC .√ab <v <a+b 2D .b <v <√ab6.(5分)设 a >0 , b >0 ,则“ a +b ≤4 ”是“ 1a +1b≥1 ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件7.(5分)已知点E 是△ABC 的中线BD 上的一点(不包括端点).若AE ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,则2x +1y的最小值为( ) A .4B .6C .8D .98.(5分)已知二次函数f(x)=ax 2+2x +c (x ∈R )的值域为[0,+∞),则1c +4a的最小值为( ) A .-4B .4C .8D .-89.(5分)已知直线ax+by+c−1=0(b,c>0)经过圆x2+(y−1)2=6的圆心,则4b+1c的最小值是()A.2B.8C.4D.910.(5分)已知△ABC的三个内角分别为A、B、C.若sin2C=2sin2A−3sin2B,则tanB的最大值为()A.√53B.√52C.11√520D.3√5511.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,若tanA=−√3,△ABC的面积为√3a,则bc的最小值为()A.16B.16√3C.48D.24√312.(5分)若a>0,b>0,且ln(2a)+lnb≥a2+b2−1,则a+b=()A.√2B.√3C.3√22D.5√3213.(5分)已知正实数a,b满足a2+2ab+4b2=6,则a+2b的最大值为()A.2√5B.2√2C.√5D.2二、多选题(共5题;共25分)14.(5分)已知a,b∈R,a>0,b>0,且a+b=2,则下列说法正确的为()A.ab的最小值为1B.log2a+log2b≤0C.2a+2b≥4D.1a+2b≥2+√215.(5分)已知a,b∈R,则使“ a+b>1”成立的一个必要不充分条件是()A.a2+b2>1B.|a|+|b|>1C.2a+2b>1D.4a+b+1b>1016.(5分)若−1<a<b<0,则()A.1a>1bB.a2+b2>2ab C.a+b>2√ab D.a+1a>b+1b17.(5分)已知2a=3b=6,则a,b满足()A.a<b B.1a+1b<1C.ab>4D.a+b>418.(5分)已知正数a,b满足a2+b2=1,则()A.a+b的最大值是√2B.ab的最大值是12C.a-b的最小值是−1D.ab−2的最小值为−√3 3三、填空题(共5题;共30分)19.(10分)如图,在 △ABC 中, ∠BAC =π3 , AD ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗⃗ ,点P 在线段CD 上(P 不与C ,D 点重合),若 △ABC 的面积为 4√3 , AP ⃗⃗⃗⃗⃗ =mAC ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗⃗ ,则实数m = , |AP ⃗⃗⃗⃗⃗ | 的最小值为 .20.(5分)在 △ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若 a +c =4 ,且 sinA ,sinB , sinC 成等差数列,则 △ABC 的面积的最大值为 .21.(5分)如图所示,在平面四边形ABCD 中,若 AD =√2 , CD =2 , ∠D =34π , cosB =34,则 △ABC 的面积的最大值为 .22.(5分)已知a ,b 为正实数,且 a +b =6+1a +9b,则 a +b 的最小值为 . 23.(5分)△ABC 中,∠BAC =120°,AO 为BC 边上的中线,AO =√3,则AB −2AC 的取值范围是 .四、解答题(共3题;共30分)24.(10分)ΔABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若已知 asinA+C2=bsinA . (1)(5分)求角B 的大小;(2)(5分)若 b =2√3 ,求 ΔABC 的面积的最大值.25.(10分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足(tanA −sinC)(tanB −sinC)=sin 2C .(1)(5分)求证:c 2=ab ;(2)(5分)若a +b =3,求CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ 的最小值.26.(10分)在△ABC中,角A,B,C的对边分别为a,b,c,D为AC的中点,若2bcosC=2a+ c.(1)(5分)求∠B;(2)(5分)若a+c=6,求BD的最小值.答案解析部分1.【答案】A【解析】【解答】解:当a+b=1时,1 a+1b=(1a+1b)(a+b)=2+b a+a b≥2+2√b a⋅a b=4,当且仅当ba=ab,即a=b=12时,取等号,所以1a+1b≥4,当a=b=13时,1a+1b=6≥4,此时a+b=23≠1,所以“a+b=1”是“1a+1b≥4”的充分不必要条件.故答案为:A.【分析】由a>0,b>0,a+b=1可得1a+1b=2+b a+a b,根据基本不等式得1a+1b≥4,反之代入特殊值即可得到答案.2.【答案】A【解析】【解答】由圆的方程知:圆心(1,2);∵直线ax+by−1=0(ab>0)过圆的圆心,∴a+2b=1(ab>0);∴1a+1b=(a+2b)(1a+1b)=3+ab+2ba≥3+2√ab⋅2ba=3+2√2(当且仅当ab=2b a,即a=√2b时取等号),∴1a+1b的最小值为3+2√2.故答案为:A.【分析】由圆的方程确定圆心,代入直线方程可得∴a+2b=1(ab>0),由∴1a +1b=(a+2b)(1a+1b),利用基本不等式可求得结果.3.【答案】B【解析】【解答】4b+1a=12(4b+1a)(a+b)=12(4a b+b a+5)≥12(4+5)=92,当且仅当4a b=b a时等号成立.故答案为:B.【分析】根据题意可得4b+1a=12(4b+1a)(a+b)=12(4a b+b a+5),再利用基本不等式求出4b+1a的最小值。

第5节 第1课时利用导数研究恒(能)成立问题--2025高中数学一轮复习课件基础版(新高考新教材)

第5节  第1课时利用导数研究恒(能)成立问题--2025高中数学一轮复习课件基础版(新高考新教材)
1
1
当 0<x<e2 时,g'(x)>0,g(x)单调递增;当e2 <x≤e 时,g'(x)<0,g(x)单调递减,
1
所以 g(x)的极大值亦即最大值为 g(e2 )=e2,
因此 a≤e2,故实数 a 的取值范围是(-∞,e2].
例2(2024·福建泉州模拟)已知函数f(x)=-2x+ln x,g(x)=xex-3x-m.
令 f'(x)>0,解得
1
x>2.所以
1
0<x<2,
1
1
f(x)在(0,2)内单调递减,在(2,+∞)内单调递增.
综上所述,当 a≤0 时,f(x)的单调递减区间为(0,+∞),无单调递增区间;
当 a>0
1
1
时,f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).
1
1
(2)当 a>0 时,由(1)可知 f(x)在(0,2)内单调递减,在(2,+∞)内单调递增,
(2)如果f(x)有最大值g(a),则f(x) <0恒成立⇔g(a)<0,f(x)≤0恒成立⇔g(a)≤0.
[对点训练3](2024·湖北荆门模拟)设函数f(x)=ex-ax,x≥0且a∈R.
(1)求函数f(x)的单调性;
(2)若不等式f(x)≥x2+1恒成立,求实数a的取值范围.
解 (1)f'(x)=ex-a,x≥0.
(1)求函数f(x)的极值点;
(2)若f(x)≤g(x)恒成立,求实数m的取值范围.
解 (1)函数 f(x)的定义域为(0,+∞),且

2023届高考数学一轮复习讲义:第5讲 基本不等式

2023届高考数学一轮复习讲义:第5讲 基本不等式

第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当 时取等号.(3)其中 称为正数a ,b 的算术平均数, 称为正数a ,b 的几何平均数. 2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当 时,x +y 有最小值是 .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当 时,xy 有最大值是 .(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件33ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .22.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3B .2C .1D .03.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为544.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15D .⎝⎛⎦⎤-∞,15 [举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .52.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .63.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40B .1674C .42D .16944.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .65.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C.已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+ D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为7126.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥C D .10b +<7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a ____________. 8.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________.9.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.10.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a ba b +++的最大值为__________.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++.[举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++.2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a x x >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5[举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞2.(2021·浙江·模拟预测)对任意正实数,a b 不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值123.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y xm m k x y+>-++恒成立,则k 的取值可能是( ) A .2-B .1-C .1D .24.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________.5.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________.6.(2022·全国·高三专题练习)若不等式()22x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____.➢考点4 基本不等式与其他专题综合[名师点睛]有关函数最值的实际问题的解题技巧1.根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. 2.解应用题时,一定要注意变量的实际意义及其取值范围.3.在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解. [典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米[举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30B .60C .900D .18002.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为43.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.第5讲 基本不等式1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)常用结论 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号.➢考点1 利用基本不等式求最值[名师点睛]1.通过配凑法利用基本不等式求最值的策略拼凑法的实质在于代数式的灵活变形,拼系数、凑常数是关键,利用拼凑法求解最值应注意以下几个方面的问题:(1)拼凑的技巧,以整式为基础,注意利用系数的变化以及等式中常数的调整,做到等价变形;(2)代数式的变形以配凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提. 2.常数代换法求最值的步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积的形式; (4)利用基本不等式求解最值. 3.消元法求最值的方法消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解.有时会出现多元的问题,解决方法是消元后利用基本不等式求解.但应注意保留元的范围. [典例]1.(2022·河北·高三阶段练习)已知实数a ,b 满足条件336a ba b ++,则22a b +的最小值为( ) A .8B .6C .4D .2【答案】D【解析】因为33ba b ++≥33a b=,即a b =时取等号,所以643a b a b ++≥⋅,所以24a b +≥,2a b +≥,()222122a b a b +≥+=,当且仅当1a b ==时等号成立,所以22a b +的最小值为2 故选:D.2.(2022·湖南湖南·二模)函数()122y x x x =+>-+的最小值为( ) A .3 B .2 C .1 D .0【答案】D【解析】因为2x >-,所以20x +>,102x >+,利用基本不等式可得11222022x x x x +=++-≥=++, 当且仅当122x x +=+即1x =-时等号成立.故选:D.3.(多选)(2022·河北石家庄·二模)设正实数m ,n 满足2m n +=,则下列说法正确的是( ) A .11m n+上的最小值为2 B .mn 的最大值为1C 4D .22m n +的最小值为54【答案】AB【解析】∵0,0,2m n m n >>+=,∴()1111111222222n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当n mm n=,即1m n ==时等号成立,故A 正确;2m n +=≥∴1mn ≤,当且仅当1m n ==时,等号成立,故B 正确;(22224m ⎡⎤+≤+=⎢⎥⎣⎦,2=,当且仅当1m n ==时等号成立,最大值为2,故C 错误;()22222m n m n ++≥=,当且仅当1m n ==时等号成立,故D 错误.故选:AB4.[2021河南平顶山模拟]若对于任意x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为( )A .⎣⎡⎭⎫15,+∞B .⎝⎛⎭⎫15,+∞C .⎝⎛⎭⎫-∞,15 D .⎝⎛⎦⎤-∞,15 [答案] A [解析] 由x >0,x x 2+3x +1=1x +1x +3,令t =x +1x,则t ≥2x ·1x=2, 当且仅当x =1时,t 取得最小值2. x x 2+3x +1取得最大值15,所以对于任意的x >0,不等式x x 2+3x +1≤a 恒成立,则a ≥15.[举一反三]1.(2022·山西·怀仁市第一中学校二模(文))函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( )A .8B .7C .6D .5【答案】D【解析】因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立, 故函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为5. 故选:D .2.(2022·安徽·高三阶段练习(文))已知0x >,0y >,22x y +=,则12x y+的最小值是( )A .1B .2C .4D .6【答案】C【解析】解:因为0x >,0y >,22x y +=,所以()1211214122244222y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4y x x y =,即12x =,1y =时取等号;故选:C3.(2022·全国·模拟预测)已知a ,b 为非负数,且满足26a b +=,则()()2214a b ++的最大值为( ) A .40 B .1674C .42D .1694【答案】D 【解析】()()222222222214444444a b ab a b a b ab ab a b ++=+++=++-++()()()22222362a b ab ab =++-=+-,又2112902()2222a b ab a b +≤=⋅⋅≤=,当且仅当3,32a b ==时取“=”,则22916936(2)36(2)24ab +-≤+-=,所以当3,32a b ==时,()()2214a b ++的最大值为1694. 故选:D4.(2022·重庆巴蜀中学高三阶段练习)已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( )A .2B .2C .2D .6【答案】B【解析】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222,当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.5.(多选)(2022·河北保定·一模)下面描述正确的是( ) A .已知0a >,0b >,且1a b +=,则22log log 2a b +≤-B .函数()lg f x x =,若0a b <<,且()()f a f b =,则2+a b 的最小值是C .已知()1210,012x y x x y+=>>++,则3x y +的最小值为2+D .已知()22200,0x y x y xy x y +---+=>>,则xy 的最小值为712【答案】AC【解析】对于选项A ,∵0a >,0b >,1a b +=,∴1a b =+≥∴14ab ≤,当且仅当12a b ==时取等号,∴22221log log log log 24a b ab +=≤=-,∴A 正确;对于选项B :因为1ab =,所以22a b a a+=+,又01a <<,所以由对勾函数的单调性可知函数()2=+h a a a在()0,1上单调递减,所以()()3,h a ∈+∞,即23+>a b ,故B 不正确; 对于选项C ,根据题意,已知()()3121x y x x y +=+++-,则()()()2112212331212x x y x x y x x y x x y +⎛⎫+++++=++≥+⎡⎤ ⎪⎣⎦++++⎝⎭()21212++=++x x y x x y,即1==x y时,等号成立,所以32x y +≥+C 正确;对于选项D ,()()2222032x y x y xy x y x y xy +---+=⇒+-+=-,令0x y t +=>,所以214t t -≥-,所以1732412xy xy -≥-⇒≥,此时1,2712x y xy ⎧+=⎪⎪⎨⎪=⎪⎩无解,所以选项D 不正确,故选:AC .6.(多选)(2022·重庆八中高三阶段练习)设001a b a b >>+=,,,则下列不等式中一定成立的是( ) A .114a b+≥B .2212a b +≥ CD .10b +<【答案】AB【解析】对于A :因为001a b a b >>+=,,,所以()11111124b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当b a a b =,即12a b ==时取等号,所以114a b+≥成立.故A 正确;对于B :因为001a b a b >>+=,,,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时取等号.所以()22212122a b a b ab ab +=+-=-≥成立.故B 正确; 对于C :因为001a b a b >>+=,,,所以()()113a b +++=,所以()()311a b =+++≥记u =0u >,所以21111336u ab b =+++++≤+=,所以0u <≤故C 错误;对于D :因为0,b >所以10+>b .故D 错误. 故选:AB7.(2022·天津市西青区杨柳青第一中学高三阶段练习)已知a ,b 为正实数,且2a b +=,则2221a b a b +++的最小值为____________,此时=a____________. 【答案】 6-3【解析】a ,b 为正实数, 且2a b +=,222221111a b b a a b a b +-+∴+=++++2111a b a b =++-++2111a b =+++ ()()1211131a b a b ⎛⎫=++++ ⎪+⎝⎭()2111331ba ab ⎛⎫+=+++ ⎪+⎝⎭ (1133≥++=当且仅当()2112b aa b a b ⎧+=⎪⎨+⎪+=⎩即6a =-4b =时取“=”故答案为:6-38.(2022·浙江·镇海中学模拟预测)已知1x y >>,则()41x y x y xy y-+++-的最小值为___________. 【答案】9 【解析】()()()()41414411911x y x y x y x y x y xy yx y x y -+⎡⎤-+⎛⎫⎡⎤⎣⎦++=++=-++++ ⎪⎢⎥---⎣⎦⎝⎭≥, 当且仅当32x y =⎧⎨=⎩时等号成立,取等条件满足1x y >>,所以()41x y x y xy y -+++-的最小值为9.故答案为:99.(2022·天津·大港一中高三阶段练习)设0m n >>,那么()41m m n n+-的最小值是___________.【答案】8【解析】解:0m n >>,所以()()2224m n n m m n n ⎡⎤-+-≤=⎢⎥⎣⎦,当且仅当m n n -=,即2m n =时取等号;所以214()m n n m ≥-,所以()()42422448114m m m m n nm m +≥+-⨯≥+==,当且仅当2244m m =,即1m =时取等号,所以()481m m n n+≥-,当且仅当1m =、12n =时取等号;故答案为:810.(2022·天津河北·一模)已知0a >,0b >,且1a b +=,则11a b a b +++的最大值为__________. 【答案】23【解析】1111111111211111111a b a b a b a b a b a b +-+-⎛⎫+=+=-+-=-+ ⎪++++++++⎝⎭. 因为0a >,0b >,且1a b +=,所以()1111111111311a b a b a b ⎛⎫⎛⎫+⋅=++++ ⎪ ⎪++++⎝⎭⎝⎭()1111142222311333b a a b ⎛++⎛⎫=++≥+=+= ⎪ ++⎝⎭⎝,当且仅当11111b a a b a b ++⎧=⎪++⎨⎪+=⎩即12a b ==时取等.所以114222111133a b a b a b ⎛⎫+=-+≤-= ⎪++++⎝⎭.,即11a b a b +++的最大值为23. 故答案为:23.11.(2022·全国·高三专题练习)已知0,0,0,233x y z x y z >>>++=,求222111()(2)(3)462x y z y z x+++++ 的最小值;【答案】274【解析】由222111[()(2)(3)]462x y z y z x+++++ 222(111)++2111[()1(2)1(3)1]462x y z y z x ≥+⨯++⨯++⨯2111[(23)()]462x y z y z x=+++++21232323[3()]623x y z x y z x y z x y z++++++=+++212332[3(3)]62323y x z x z y x y x z y z =+++++++2381(3)24≥+=.所以222111()(2)(3)462x y z y z x +++++≥274,当且仅当231x y z ===时等号成立,综上,222111()(2)(3)462x y z y z x +++++的最小值为274.➢考点2 利用基本不等式证明不等式[典例](2022·全国·高三专题练习)已知,,a b c 都是正数,求证: (1)()()24a b ab cabc ++≥;(2)若1a b c ++=,则11192a b b c c a ++≥+++. 【解】(1)()()2222244a b ab c abc a b ac ab bc abc ++-=+++-()()()()22222222b a ac c a b bc c b a c a b c =-++-+=-+-,∵,,a b c 都是正数,∴()()220b a c a b c -+-≥, 当且仅当“a b c ==”时等号成立,∴()()24a b ab c abc ++≥.(2)()()()11111112a b b c c a a b b c c a a b b c c a ⎛⎫++=+++++++⎡⎤ ⎪⎣⎦++++++⎝⎭132a b b c b c c a c a a b b c a b c a b c a b c a ⎡++++++⎤⎛⎫⎛⎫⎛⎫=++++++ ⎪ ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎝⎭⎣⎦132⎛≥+ ⎝ ()19322222=+++=, 当且仅当“13a b c ===”时等号成立,∴11192a b b c c a ++≥+++. [举一反三]1.(2022·云南·昆明一中高三阶段练习(文))已知a ,b ,c 为正数. (1)求24a a +的最小值; (2)求证:bc ac ab a b c a b c++≥++. 【解】(1)因为24a a+24=322a a a ++≥,当且仅当“2a =”时等号成立,所以当2a =时,24a a+的最小值为3.(2)因为2bc ac c a b +≥=,同理2ac ab a b c +≥,2bc ab b a c +≥, 所以三式相加得22()bc ac ab a b c a bc ⎛⎫++≥++ ⎪⎝⎭,所以bc ac aba b c a b c++≥++,当且仅当“a b c ==”时等号成立 2.(2022·陕西·西安工业大学附中高三阶段练习(文))已知0,0a b >>. (1)若2a b +=,求1411+++a b的最小值; (2)求证:2222(1)++≥++a b a b ab a b .【解】(1)因为0,0a b >>,所以10,10a b +>+>, 又2a b +=,所以1++14a b +=,所以14114114(1)19()[(1)(1)][5](54)1141141144b a a b a b a b a b +++=++++=++≥+=++++++ 当且仅当14(1)112b a a b a b ++⎧=⎪++⎨⎪+=⎩,即1353a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,所以1411+++a b 的最小值为94.(2)因为22222a b a a b +≥①,222a b ab +≥②,22222a b b ab +≥③,所以,由①②③,同向不等式相加可得:222222222222a b a b a b ab ab ++≥++,当且仅当ab a b ==,即1a b ==时取等号. 即2222(1)++≥++a b a b ab a b 成立.3.(2022·河南开封·二模(文))已知,,R a b c +∈,且abc =1. (1)求证:222111a b c a b c++++≥;(2)若a =b +c ,求a 的最小值. 【解】(1)111abc abc abcbc ac ab a b c a b c++=++=++ 222222222222b c a c a b a b c +++≤++=++,当且仅当1a b c ===时等号成立. (2)依题意,,R a b c +∈,11,abc bc a==,所以a b c =+≥=b c =时等号成立. 所以23322,2a a ≥≥,所以a 的最小值为232,此时23222a b c ===.4.(2022·全国·高三专题练习)已知正数a ,b ,c 满足3a b c ++=. (1)求abc 的最大值;(2)证明:3333a b b c c a abc ++≥.【解】(1)由a b c ++≥,当且仅当a b c ==时,取得等号. 又3a b c ++=,所以3313abc ⎛⎫≤= ⎪⎝⎭.故当且仅当1a b c ===时,abc 取得最大值1.(2)证明:要证3333a b b c c a abc ++≥,需证2223a b c c a b++≥.因为()222222a b c a b c a b c c a b c a b c a b ⎛⎫⎛⎫⎛⎫+++++=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()26a b c ≥=++=,即2223a b c c a b++≥,当且仅当1a b c ===时取得等号.故3333a b b c c a abc ++≥.➢考点3 基本不等式中的恒成立问题[典例]1.(2022·全国·高三专题练习)若对任意220,1xx a xx >≥++恒成立,则实数a 的取值范围是( ) A .[1,)-+∞ B .[3,)+∞C .2,3⎡⎫+∞⎪⎢⎣⎭D .(,1]-∞【答案】C【解析】解:因为0x >,所以22221131x x x x x ==++++,当且仅当1x x =即1x =时取等号,因为221x a x x ≥++恒成立,所以23a ≥,即2,3a ⎡⎫∈+∞⎪⎢⎣⎭; 故选:C2.(2022·全国·高三专题练习)设,a b c >>,n N ∈,且2110n a b b c a c+≥---恒成立,则n 的最大值是( ) A .2 B .3 C .4 D .5【答案】C【解析】解:2110n a b b c a c+≥---等价于2110()a c n a b b c ⎛⎫+-≥⎪--⎝⎭, ()110110()a c a b b c a b b c a b b c ⎛⎫⎛⎫+-=+-+- ⎪ ⎪----⎝⎭⎝⎭10()111111b c a b a b b c --=++≥++--故得到211,n n N +∈则n 的最大值是4.故选:C. [举一反三]1.(2021·重庆梁平·高三阶段练习)已知正实数a ,b 满足191a b +=,若不等式2418a b x x m +≥-++-对任意的实数x 恒成立,则实数m 的取值范围是( )A .[)3,+∞B .(],3-∞C .(],6-∞D .[)6,+∞【答案】D【解析】因为0a >,0b >,191a b+=,所以()199101016a a b a b a b a b b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当9b a a b =,即4a =,12b =时取等号.由题意,得241186x x m ≥-++-,即242x x m --≥-对任意的实数x 恒成立,又()2242266x x x --=--≥-,所以6m -≥-,即6m ≥. 故选:D .2.(2021·浙江·模拟预测)对任意正实数,a b不等式2(1)2a b ab a bλλ+-++则( ) A .实数λ有最小值1 B .实数λ有最大值1 C .实数λ有最小值12D .实数λ有最大值12【答案】C【解析】2(1)2a b ab a b λλ+-++故222a b ab ab a b a b λ+⎛⎫- ⎪++⎝⎭,()()22022a b a b ab a b a b -+-=≥++, 当a b =时,不等式恒成立;当ab时,222aba b a b ab a bλ+≥=+-+12=,a b =时等号成立,a b12=,故12λ≥. 故选:C.3.(多选)(2022·全国·高三专题练习)当0x >,0y >,R m ∈时,2222y x m m k x y+>-++恒成立,则k 的取值可能是( )A .2-B .1-C .1D .2【答案】AB【解析】因为0x >,0y >,所以222y x x y +≥=,当且仅当2x y =时,等号成立. 因为()222111m m k m k k -++=--++≤+.若2222y xm m k x y+>-++恒成立,则12k +<,解得1k <. 故选:AB.4.(2022·全国·高三专题练习)不等式22221122xy yz a a x y z ++-++≤对任意正数x ,y ,z 恒成立,则a 的最大值是__________. 【答案】1 【解析】因为222222212222xy yz xy yz xy yz x y z x y y z xy yz +++==++++++≤,当x y z ==时取等号,所以 2222xy yz x y z +++的最大值是12,即211122a a +-≥, 解得112a -≤≤,所以a 的最大值是1.故答案为:15.(2021·重庆一中高三阶段练习)已知对任意正实数x ,y ,恒有()2222x y a x xy y +-+≤,则实数a 的最小值是___________. 【答案】2【解析】解:因为0,0x y >>,则()2220x xy y x y xy -+=-+>, 则()2222x y a x xy y +-+≤,即2222x y a x xy y+-+≤, 又22222211x y xy x xy y x y +=-+-+, 因为222x y xy +≥,所以22112xy x y -≥+,所以22121xy x y≤-+, 即22222x y x xy y +≤-+,当且仅当x y =时,取等号,所以2222max2x y x xy y ⎛⎫+= ⎪-+⎝⎭, 所以2a ≥,即实数a 的最小值是2. 故答案为:2.6.(2022·全国·高三专题练习)若不等式()2x x y a x y +≤+对一切正实数,x y 恒成立,则实数a 的最小值为_____. 【答案】2【解析】()()22222=22x x y a x y x x y x x y x y +≤+∴+≤+++,当且仅当=2x y 时取等号,0,0x y >>0x y ∴+>()22x x y a x y +≤+max2x ya y ⎫∴≥⎪⎪⎝⎭ 22222x x y x yx y x y ++≤=++max2=2x y a y ⎫∴≥⎪⎪⎝⎭,a ∴的最小值为2 故答案为:2➢考点4 基本不等式与其他专题综合[典例]1.(2022·安徽安庆·二模(文))若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________. 【答案】[ 【解析】因函数()f x 在(),-∞+∞内单调递增,则R x ∀∈,42()cos 2sin 033f x x a x '=--≥,即42sin cos 233a x x ≤-,整理得242sin sin 33a x x ≤+, 当sin 0x =时,则203≤成立,R a ∈, 当sin 0x >时,42sin 33sin a x x ≤+,而42214sin (2sin )233sin 3sin 3x x x x +=+≥, 当且仅当12sin sin x x=,即2sin 2x 时取“=”,则有423a ≤, 当sin 0x <时,42sin 33sin a x x ≥+,而42214sin [(2sin )]233sin 3sin 3x x x x +=--+≤--, 当且仅当12sin sin x x -=-,即2sin 2x =-时取“=”,则有423a ≥-, 综上得,424233a -≤≤所以实数a 的取值范围是4242[,]33-. 故答案为:4242,33⎡⎤-⎢⎥⎣⎦2.[2021湖北鄂东南联考]方程(x 2 018+1)(1+x 2+x 4+…+x 2 016)=2 018x 2 017的实数解的个数为________.[答案] 1 [解析] 由题意知x >0,∴(x 2 018+1)(1+x 2+x 4+…+x 2 016)≥ 2x 2 018·1×12(21·x 2 016+2x 2·x 2 014+…+2x 2 016·1)=2 018x 2 017,当且仅当x =1时等号成立,因此实数解的个数为1.3.(2022·广东·高三阶段练习)在足球比赛中,球员在对方球门前的不同的位置起脚射门对球门的威胁是不同的,出球点对球门的张角越大,射门的命中率就越高.如图为室内5人制足球场示意图,设球场(矩形)长BC 大约为40米,宽AB 大约为20米,球门长PQ 大约为4米.在某场比赛中有一位球员欲在边线BC 上某点M 处射门(假设球贴地直线运行),为使得张角PMQ ∠最大,则BM 大约为( )(精确到1米)A .8米B .9米C .10米D .11米【答案】C【解析】由题意知,8,12PB QB ==,设,,PMB QMB BM x ∠=∠==αβ,则812tan ,tan x x==αβ,所以()212844tan tan 12896961x x x PMQ x x x x x -∠=-===≤=++⋅+βα,当且仅当96x x =,即x =10,所以BM 大约为10米.故选:C. [举一反三]1.(2022·北京·101中学高三阶段练习)已知某产品的总成本C (单位:元)与年产量Q (单位:件)之间的关系为23300010C Q =+.设该产品年产量为Q 时的平均成本为f (Q )(单位:元/件),则f (Q )的最小值是( ) A .30 B .60C .900D .1800【答案】B【解析】23300010()Q C f Q Q Q +==3300010Q Q =+23060≥=⨯=,当且仅当3300010Q Q =,即当100Q =时等号成立. 所以f (Q )的最小值是60. 故选:B.2.(多选)(2022·重庆·模拟预测)已知ABC 为锐角三角形,且sin sin sin A B C =,则下列结论中正确的是( ) A .tan tan tan tan B C B C += B .tan tan tan tan tan tan A B C A B C =++ C .41tan 3A <≤D .tan tan tan A B C 的最小值为4【答案】ABC【解析】解:因为()sin sin sin cos sin cos sin sin A B C B C C B B C =+=+=, 两边同除cos cos B C 得tan tan tan tan B C B C +=,故A 正确;由均值不等式tan tan tan tan B C B C +=≥tan tan 4B C ≥当且仅当tan tan 2B C ==时取等号,()tan tan tan tan 1tan tan B CA B C B C+=-+=--,所以tan tan tan tan tan tan A B C A B C ++=,故B 正确;tan tan 1tan 1tan tan 1tan tan 1B C A B C B C ==+--,由tan tan 4B C ≥,所以110tan tan 13B C <≤-,所以得31tan 1ta 1n tan 14A B C =+≤-<,故C 正确;22tan tan 1tan tan 12tan tan t 1ta t n t 1a n t n a n an a A B C B C B C B B C C ==-++--,由tan tan 13B C -≥且1y x x =+在[)3,+∞上单调递增,所以tan tan tan A B C 的最小值为163,故D 错误. 故选:ABC3.(2021·全国·高三专题练习)如图,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,已知4AB =,3AD =,那么当BM =_______时,矩形花坛的AMPN 面积最小,最小面积为______.【答案】 4 48 【解析】解:设BM x =,则34x x AN =+,则123AN x=+, 则()12484843324232448AMPN S x x x x x x ⎛⎫=++=++⋅= ⎪⎝⎭, 当且仅当483x x=,即4x =时等号成立,故矩形花坛的AMPN 面积最小值为48. 即当4BM =时,矩形花坛的AMPN 面积最小,最小面积为48. 故答案为:4;48.。

2023年高三一轮复习专题一基本不等式及其应用-教师版

2023年高三一轮复习专题一基本不等式及其应用-教师版

高三一轮复习专题一基本不等式及其应用【考点预测】 1.基本不等式如果00>>b a ,,那么2b a ab +≤,当且仅当b a =时,等号成立.其中,2ba +叫作b a ,的算术平均数,ab 叫作b a ,的几何平均数.即正数b a ,的算术平均数不小于它们的几何平均数.基本不等式1:若a b ∈,R ,则ab b a 222≥+,当且仅当b a =时取等号; 基本不等式2:若a b ∈,+R ,则ab ba ≥+2(或ab b a 2≥+),当且仅当b a =时取等号. 注意(1)基本不等式的前提是“一正”“二定”“三相等”;其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)连续使用不等式要注意取得一致. 【方法技巧与总结】 1.几个重要的不等式(1)()()()20,00,0.a a R a a a a R ≥∈≥≥≥∈ (2)基本不等式:如果,a b R +∈,则2a bab +≥(当且仅当“a b =”时取“”). 特例:10,2;2a ba a ab a>+≥+≥(,a b 同号). (3)其他变形:①()2222a b a b ++≥(沟通两和a b +与两平方和22a b +的不等关系式)②222a b ab +≤(沟通两积ab 与两平方和22a b +的不等关系式)③22a b ab +⎛⎫≤ ⎪⎝⎭(沟通两积ab 与两和a b +的不等关系式)④重要不等式串:)222,1122a b a b ab a b R a b+++≤≤≤∈+即 调和平均值≤几何平均值≤算数平均值≤平方平均值(注意等号成立的条件). 2.均值定理 已知,x y R +∈.(1)如果x y S +=(定值),则2224x y S xy +⎛⎫≤=⎪⎝⎭(当且仅当“x y =”时取“=”).即“和为定值,积有最大值”.(2)如果xy P =(定值),则x y +≥=(当且仅当“x y =”时取“=”).即积为定值,和有最小值”. 3.常见求最值模型 模型一:)0,0(2>>≥+n m mn xnmx ,当且仅当m n x =时等号成立; 模型二:)0,0(2)(>>+≥+-+-=-+n m ma mn ma ax na x m a x n mx ,当且仅当m n a x =-时等号成立;模型三:)0,0(2112>>+≤++=++c a bac xc b ax c bx ax x ,当且仅当a cx =时等号成立; 模型四:)0,0,0(4)21)()(22mnx n m m n mx n mx m m mx n mx mx n x <<>>=-+⋅≤-=-(,当且仅当mnx 2=时等号成 立.【题型归纳目录】题型一:基本不等式及其应用 题型二:直接法求最值 题型三:常规凑配法求最值 题型四:消参法求最值 题型五:双换元求最值 题型六:“1”的代换求最值 题型七:齐次化求最值题型八:利用基本不等式解决实际问题【典例例题】题型一:基本不等式及其应用例1.(2022·江苏·高三专题练习)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A .0,0)2a ba b +≥>> B .220,0)a b a b +≥>>C .20,0)aba b a b ≤>>+ D .0,0)2a b a b +>>【答案】D 【解析】 【分析】设,AC a BC b ==,得到2a br OF +==,2a b OC -=,在直角OCF △中,利用勾股定理,求得222=2a b FC +,结合FO FC ≤,即可求解.【详解】设,AC a BC b ==,可得圆O 的半径为122a br OF AB +===, 又由22a b a bOC OB BC b +-=-=-=, 在直角OCF △中,可得2222222()()222a b a b a b FC OC OF -++=+=+=,因为FO FC ≤,所以2a b +≤a b =时取等号. 故选:D.例2.(2022·黑龙江·哈尔滨三中高三阶段练习(文))下列不等式中一定成立的是( ) A .()2111x x >∈+R B .()12,sin sin xx k x k π+>≠∈Z C .21ln ln (0)4x x x ⎛⎫+>> ⎪⎝⎭D .()212x x x +≥∈R【答案】D 【解析】 【分析】 由211x +≥得211x +的范围可判断A ;利用基本不等式求最值注意满足一正二定三相等可判断B ;作差比较214x +与x 的大小可判断C ;作差比较21x +与2x 的大小可判断D.【详解】因为x ∈R ,所以211x +≥,所以21011x <≤+,故A 错误; 1sin 2sin x x+≥只有在sin 0x >时才成立,故B 错误; 因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,所以214x x +≥,所以21ln ln 4x x ⎛⎫+≥ ⎪⎝⎭,故C 错误;因为()221210x x x +-=-≥,所以212x x +≥,故D 正确. 故选:D.(多选题)例3.(2022·全国·高三专题练习)下列函数中最小值为6的是( ) A .9ln ln y x x=+B .36sin 2sin y x x=+C .233xxy -=+ D .2y =【答案】BC 【解析】 【分析】根据基本不等式成立的条件“一正二定三相等”,逐一验证可得选项. 【详解】解:对于A 选项,当()0,1x ∈时,ln 0x <,此时9ln 0ln x x+<,故A 不正确.对于B 选项,36sin 62sin y x x =+≥,当且仅当36sin 2sin x x =,即1sin 2x =时取“=”,故B 正确.对于C 选项,2336x x y -=+≥=,当且仅当233x x -=,即1x =时取“=”,故C 正确.对于D 选项,26y ≥=,=27x =-无解,故D 不正确.故选:BC.(多选题)例4.(2022·江苏·扬州中学高三开学考试)设0a >,0b >,下列结论中正确的是( )A .()1229a b a b ⎛⎫++≥ ⎪⎝⎭B .()2221a b a b +≥++C .22b a a b a b+≥+D .22a b a b+≥+【答案】ACD 【解析】 【分析】利用基本不等式可判断ACD 选项的正误,利用特殊值法可判断B 选项的正误. 【详解】对于A 选项,()12222559b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当a b =时,等号成立,A 对;对于B 选项,取1a b ==,则()2221a b a b +<++,B 错;对于C 选项,22b a b a +≥=,22a b a b +≥=, 所以,2222b a a b a b a b +++≥+,即22b a a b a b+≥+,当且仅当a b =时,等号成立,C 对;对于D 选项,因为222a b ab +≥,则()()2222222a b a b ab a b +≥++=+,所以,()()22222a b a b a ba b a b +++≥=≥++a b =时,两个等号同时成立,D 对.故选:ACD. 【方法技巧与总结】熟记基本不等式成立的条件,合理选择基本不等式的形式解题,要注意对不等式等号是否成立进行验证.题型二:直接法求最值例5.(2022·河南河南·三模(理))已知二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,则14c a+的最小值为( ) A .4- B .4 C .8 D .8-【答案】B 【解析】 【分析】根据()f x 的值域求得1ac =,结合基本不等式求得14c a+的最小值.【详解】由于二次函数()22f x ax x c =++(x ∈R )的值域为[)0,∞+,所以0Δ440a ac >⎧⎨=-=⎩,所以1,0ac c =>,所以144c a +≥=,当且仅当14c a =即12,2a c ==时等号成立.故选:B例6.(2022·湖北十堰·三模)函数()1111642x x x f x -=++的最小值为( ) A .4 B .C .3D .【答案】A 【解析】 【分析】利用不等式性质以及基本不等式求解. 【详解】因为116224xx x +≥⨯,当且仅当1164x x =,即0x =时等号成立,1122222422x x x x -⨯+=⨯+≥=,当且仅当2222xx⨯=,即0x =时等号成立, 所以()f x 的最小值为4. 故选:A(多选题)例7.(2022·广东·汕头市潮阳区河溪中学高三阶段练习)已知a ,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是( ) A .ab 的最小值是1 B .ab 的最大值是1 C .11a b+的最小值是94D .11a b +的最大值是92【答案】BC 【解析】 【分析】根据等比中项整理得44a b +=,直接由基本不等式可得ab 的最大值,可判断AB ;由111()(4)4a b a b +⋅+⋅展开后使用基本不等式可判断CD. 【详解】因为22164a b ⋅=,所以4422a b +=,所以4424a b ab +=,可得1ab ,当且仅当4a b =时等号成立, 所以ab 的最大值为1,故A 错误,B 正确.因为1111419()(4)(14)(524444b a a b a b a b +⋅+⋅=++++=, 故11a b +的最小值为94,无最大值,故C 正确,D 错误. 故选:BC【方法技巧与总结】直接利用基本不等式求解,注意取等条件.题型三:常规凑配法求最值例8.(2022·全国·高三专题练习(理))若11x -<< ,则22222x x y x -+=-有( )A .最大值1-B .最小值1-C .最大值1D .最小值1【答案】A 【解析】将给定函数化简变形,再利用均值不等式求解即得. 【详解】因11x -<<,则012x <-<,于是得21(1)1111[(1)]121212x y x x x -+=-⋅=--+≤-⋅---,当且仅当111x x-=-,即0x =时取“=”, 所以当0x =时,22222x x y x -+=-有最大值1-.故选:A例9.(2022·全国·高三专题练习)函数131y x x =+-(1)x >的最小值是( )A .4B .3C .D .3【答案】D 【解析】 由()13131y x x =-++-,利用基本不等式求最小值即可. 【详解】因为1x >,所以()131331y x x =-++≥-3=,当且仅当()1311x x -=-,即1x =+时等号成立.所以函数131y x x =+-(1)x >的最小值是3. 故选:D. 【点睛】本题考查利用基本不等式求最值,考查学生的计算求解能力,属于基础题. 例10.(2022·全国·高三专题练习)若0x >,0y >且x y xy +=,则211x yx y +--的最小值为( )A .3B .52C .3D .3+【答案】D 【解析】利用给定条件确定1,1x y >>,变形211x y x y +--并借助均值不等式求解即得. 【详解】因0x >,0y >且x y xy +=,则xy x y y =+>,即有1x >,同理1y >, 由x y xy +=得:(1)(1)1x y --=,于是得11222123()33111111x y x y x y x y +=+++=++≥+=+------当且仅当2111x y =--,即11x y =+=“=”,所以211x y x y +--的最小值为3+ 故选:D例11.(2022·上海·高三专题练习)若1x >,则函数211x x y x -+=-的最小值为___________.【答案】3 【解析】 【分析】由2111111x x y x x x -+==-++--,及1x >,利用基本不等式可求出最小值.【详解】由题意,()()()()222211111111111111x x x x x x x y x x x x x -++-+-+-+-+====-++----,因为1x >,所以111131y x x =-++≥=-,当且仅当111x x -=-,即2x =时等号成立.所以函数211x x y x -+=-的最小值为3.故答案为:3.例12.(2021·江苏·常州市北郊高级中学高一阶段练习)已知1xy =,且102y <<,则22416x yx y -+最大值为______.【解析】由1xy =且102y <<,可得1(2)y x x=>,可得40x y ->,再将22416x y x y -+化为18(4)4x y x y-+-后利用基本不等式求解即可. 【详解】解:由1xy =且102y <<,可得1(2)y x x =>,代入440x y x x-=->,又222441816(4)8(4)4x y x y x y x y xy x y x y--==≤=+-+-+-当且仅当844x y x y-=-,即4x y -= 又1xy =,可得x =y =时,不等式取等, 即22416x y x y -+,. 【方法技巧与总结】1.通过添项、拆项、变系数等方法凑成和为定值或积为定值的形式. 2.注意验证取得条件.题型四:消参法求最值例13.(2022·浙江绍兴·模拟预测)若直线30(0,0)ax by a b --=>>过点(1,1)-,则___________.【答案】【解析】 【分析】将点(1,1)-代入直线方程可得3a b +=. 【详解】直线30ax by --=过点(1,1)-,则3a b += 又0,0a b >>,设t =0t >2126t a b =++++=+由()()2121292a b a b +++⎛⎫++≤= ⎪⎝⎭,当且仅当12+=+a b ,即2,1a b ==时等号成立.所以2612t =+≤,即t ≤2,1a b ==时等号成立. 故答案为:例14.(2022·全国·高三专题练习)设正实数x ,y ,z 满足22340x xy y z -+-=,则当xy z取得最大值时,212x y z+-的最大值为( )A .0B .3C .94D .1【答案】D 【解析】 【分析】利用22340x xy y z -+-=可得143xy x y z y x=+-,根据基本不等式最值成立的条件可得22,2x y z y ==,代入212x y z++可得关于y 的二次函数,利用单调性求最值即可.【详解】由正实数x ,y ,z 满足22340x xy y z -+-=, 2234z x xy y ∴=-+.∴22111434432?xy xy x y z x xy y x y y x===-++-, 当且仅当20x y =>时取等号,此时22z y =.∴222122121(1)1122x y z y y y y+-=+-=--+,当且仅当1y =时取等号, 即212xyz+-的最大值是1. 故选:D 【点睛】本题主要考查了基本不等式的性质和二次函数的单调性,考查了最值取得时等号成立的条件,属于中档题.例15.(2022·全国·高三专题练习(理))已知正实数a ,b 满足220ab a +-=,则4a b +的最小值是( ) A .2 B.2 C.2 D .6【答案】B 【解析】 【分析】根据220ab a +-=变形得22a b =+,进而转化为a b b b +=++842, 用凑配方式得出()b b ++-+8222,再利用基本不等式即可求解. 【详解】由220ab a +-=,得22a b =+,所以()a b b b b b b +=+=++-⋅=+++888422222222, 当且仅当,a b b b ==+++28222,即a b ==2取等号. 故选:B.例16.(2022·浙江·高三专题练习)若正实数a ,b 满足32+=b a ab ,则2+a bab 的最大值为______. 【答案】12【解析】 【分析】由已知得a =23b b -,代入2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12,然后结合二次函数的性质可求. 【详解】因为正实数a ,b 满足b +3a =2ab , 所以a =23bb -,则2+a b ab =32323bb b b b +--=222b b -+=﹣2 (112b -)2+12, 当112b =,即b =2 时取得最大值12.故答案为:12. 【点睛】思路点睛:b +3a =2ab ,可解出a ,采用二元化一元的方法减少变量,转化为1b的一元二次函数,利用一元二次函数的性质求最值.例17.(2022·全国·高三专题练习)若,x y R +∈,23()()-=x y xy ,则11x y+的最小值为___________. 【答案】2 【解析】 【分析】根据题中所给等式可化为211()xy y x-=,再通过平方关系将其与11x y +联系起来,运用基本不等式求解最小值即可. 【详解】因为23()()-=x y xy 且,x y R +∈,则两边同除以2()xy ,得211()xy y x-=,又因为224(111111()44)xy y y x xy xy x -+=+=+≥,当且仅当14xy xy =,即22x y ==211x y+.故答案为:2例18.(2022·浙江绍兴·模拟预测)若220,0,422>>+-=a b a b ab ,则12++ab a b的取值范围是_________.【答案】23⎡⎢⎣⎦【解析】 【分析】根据已知可得2(2)206a b ab +-=>,求得2a b +>2(2)26a b ab +=+结合基本不等式可求得02a b <+≤12++ab a b变形为14262a b a b ⎛⎫++ ⎪+⎝⎭,采用换元法,利用导数求得结果. 【详解】由题意220,0,422>>+-=a b a b ab 得:2(2)206a b ab +-=> ,则2a b +>,又222(2)26232+⎛⎫+=+≤+⨯ ⎪⎝⎭a b a b ab ,当且仅当2b a ==时取等号,故02a b <+≤2a b <+≤ 所以1142262ab a b a b a b +⎛⎫=++ ⎪++⎝⎭,令2,t a b t =+∈ ,则14()()6f t t t =+ ,222144()(1)66t f t t t -'=-=,2t << 时,()0f t '<,()f t 递减,当2t <≤时,()0f t '>,()f t 递增,故min 2()(2)3f t f ==,而f = ,f =,故2()[3f t ∈,即2[312ab a b ∈++,故答案为:23⎡⎢⎣⎦【方法技巧与总结】消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!题型五:双换元求最值例19.(2022·浙江省江山中学高三期中)设0a >,0b >,若221a b +=,则2ab -的最大值为( )A .3B .C .1D .2+【答案】D 【解析】【分析】法一:设c b =-,进而将问题转化为已知221a c +=,求ac 的最大值问题,再根据基本不等式求解即可;法二:由题知221()14a b +=进而根据三角换元得5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,再根据三角函数最值求解即可. 【详解】解:法一:(基本不等式)设c b =-2ab -=)a b ac -=,条件222211a b a c +=⇔+=,2212a c ac +=+≥,即2≤ac 故选:D.法二:(三角换元)由条件221()14a b +=,故可设cos sin 2a b θθ⎧=⎪⎪⎨⎪=⎪⎩,即cos ,2sin a b θθθ⎧=⎪⎨=⎪⎩, 由于0a >,0b >,故cos 02sin 0θθθ⎧>⎪⎨>⎪⎩,解得506πθ<<所以,5cos ,(0)62sin a b πθθθθ⎧=⎪<<⎨=⎪⎩,22sin 22ab θ-=≤+当且仅当4πθ=时取等号.故选:D.例20.(2022·天津南开·一模)若0a >,0b >,0c >,2a b c ++=,则4a ba b c+++的最小值为______.【答案】2+ 【解析】 【分析】令2,,(0,0)c m c n m n -==>> ,则2m n +=,由此可将4a b a b c+++变形为421m n +-,结合基本不等式,即可求得答案。

高考数学一轮复习第一章第五讲基本不等式及其应用课件

高考数学一轮复习第一章第五讲基本不等式及其应用课件

(a2+b2) 2
图 1-5-2
解析:∵△ACD∽△CBD,∴CADD=CBDD, 即 CD= AD·BD= ab. ∵OC=A2B=AD+2 BD=a+2 b, ∴ ab≤a+2 b.故选 B.
答案:B
考点二 利用基本不等式求最值 考向 1 通过配凑法求最值
[例 2]设 0<x<23,则函数 y=4x(3-2x)的最大值为________.
2-x x·2-x x+2=2,

当且仅当2-x x=2-x x,即 x=1 时取等号,所以 y 的最小值为
2.故选 B.
答案:B
2.(考向 2)(2023 年罗湖区校级期中)已知 x>0,y>0,且 2x+ y=xy,则 x+2y 的最小值为( )
A.8
B.8 2
C.9
D.9 2
解析:x>0,y>0,且 2x+y=xy,可得:1x+2y=1,则 x+2y
错误. (3)连续使用基本不等式求最值,要求每次等号成立的条件一
致. (4)若 a≥b>0,则 a≥ a2+2 b2≥a+2 b≥ ab≥a2+abb≥b.
考点一 基本不等式的证明 [ 例 1](1)(2023 年广西一模) 《几何原本》中的“几何代数 法”(以几何方法研究代数问题)是西方数学家处理问题的重要依 据,通过这一原理,很多代数的公理或定理都能够通过图形实现
【变式训练】
如图1-5-2所示,线段AB为半圆的直径,O为
圆心,点 C 为半圆弧上不与 A ,B 重合的点. 作 CD⊥AB于点D,设 AD=a,BD=b,则下列不等
式中可以直接表示 CD≤OC 的是( )
A.a2+abb≤ ab
B. ab≤a+2 b
C.a+2 b≤

2023年新高考数学大一轮复习专题一函数与导数第1讲函数的图象与性质(含答案)

2023年新高考数学大一轮复习专题一函数与导数第1讲函数的图象与性质(含答案)

新高考数学大一轮复习专题:第1讲 函数的图象与性质[考情分析] 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等,主要考查求函数的定义域、分段函数的函数值的求解或分段函数中参数的求解及函数图象的识别.难度属中等及以上.2.此部分内容多以选择题、填空题形式出现,有时在压轴题的位置,多与导数、不等式、创新性问题结合命题. 考点一 函数的概念与表示 核心提炼1.复合函数的定义域(1)若f (x )的定义域为[m ,n ],则在f (g (x ))中,m ≤g (x )≤n ,从中解得x 的范围即为f (g (x ))的定义域.(2)若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 确定的g (x )的范围即为f (x )的定义域. 2.分段函数分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数值域的并集. 例1 (1)若函数f (x )=log 2(x -1)+2-x ,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .(1,2]B .(2,4]C .[1,2)D .[2,4) 答案 B解析 由⎩⎪⎨⎪⎧2-x ≥0,x -1>0,得1<x ≤2,故f (x )的定义域为(1,2],由1<x2≤2,得2<x ≤4,故f ⎝ ⎛⎭⎪⎫x 2的定义域为(2,4].(2)设函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x,x >0,则满足f (x )+f (x -1)≥2的x 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫12,+∞解析 ∵函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,4x,x >0,∴当x ≤0时,x -1≤-1,f (x )+f (x -1)=2x +1+2(x -1)+1=4x ≥2,无解; 当⎩⎪⎨⎪⎧x >0,x -1≤0,即0<x ≤1时,f (x )+f (x -1)=4x +2(x -1)+1=4x +2x -1≥2,得12≤x ≤1;当x -1>0,即x >1时,f (x )+f (x -1)=4x +4x -1≥2,得x >1.综上,x 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 规律方法 (1)形如f (g (x ))的函数求值时,应遵循先内后外的原则.(2)对于分段函数的求值(解不等式)问题,必须依据条件准确地找出利用哪一段求解.跟踪演练1 (1)已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 的取值范围是( ) A .(-∞,-2] B .[-2,-1] C .[-1,0) D .(-∞,0)答案 B解析 当a <0时,1-a >1且1+a <1,即f (1-a )=-(1-a )=a -1;f (1+a )=(1+a )2+2a =a 2+4a +1,由f (1-a )≥f (1+a ),得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈[-2,-1].(2)(多选)设函数f (x )的定义域为D ,如果对任意的x ∈D ,存在y ∈D ,使得f (x )=-f (y )成立,则称函数f (x )为“H 函数”.下列为“H 函数”的是( ) A .y =sin x cos x B .y =ln x +e xC .y =2xD .y =x 2-2x答案 AB解析 由题意,得“H 函数”的值域关于原点对称.A 中,y =sin x cos x =12sin2x ∈⎣⎢⎡⎦⎥⎤-12,12,其值域关于原点对称,故A 是“H 函数”;B 中,函数y =ln x +e x的值域为R ,故B 是“H 函数”;C 中,因为y =2x>0,故C 不是“H 函数”;D 中,y =x 2-2x =(x -1)2-1≥-1,其值域不关于原点对称,故D 不是“H 函数”.综上所述,A ,B 是“H 函数”.考点二 函数的性质 核心提炼 1.函数的奇偶性(1)定义:若函数的定义域关于原点对称,则有:f (x )是偶函数⇔f (-x )=f (x )=f (|x |); f (x )是奇函数⇔f (-x )=-f (x ).(2)判断方法:定义法、图象法、奇偶函数性质法(如奇函数×奇函数是偶函数). 2.函数单调性判断方法:定义法、图象法、导数法. 3.函数图象的对称中心或对称轴(1)若函数f (x )满足关系式f (a +x )=2b -f (a -x ),则函数y =f (x )的图象关于点(a ,b )对称.(2)若函数f (x )满足关系式f (a +x )=f (b -x ),则函数y =f (x )的图象关于直线x =a +b2对称.考向1 单调性与奇偶性例2 (1)(2020·新高考全国Ⅰ)若定义在R 上的奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则满足xf (x -1)≥0的x 的取值范围是( ) A .[-1,1]∪[3,+∞) B .[-3,-1]∪[0,1] C .[-1,0]∪[1,+∞) D .[-1,0]∪[1,3]答案 D解析 因为函数f (x )为定义在R 上的奇函数, 则f (0)=0.又f (x )在(-∞,0)上单调递减,且f (2)=0, 画出函数f (x )的大致图象如图(1)所示, 则函数f (x -1)的大致图象如图(2)所示.当x ≤0时,要满足xf (x -1)≥0,则f (x -1)≤0, 得-1≤x ≤0.当x >0时,要满足xf (x -1)≥0,则f (x -1)≥0, 得1≤x ≤3.故满足xf (x -1)≥0的x 的取值范围是[-1,0]∪[1,3].(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e 2的最大值为M ,最小值为N ,则(M +N -1)2021的值为________. 答案 1解析 由已知x ∈R ,f (x )=cos ⎝ ⎛⎭⎪⎫π2-πx +x +e2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e 2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2021=1.考向2 奇偶性与周期性例 3 (1)定义在R 上的奇函数f (x )满足 f ⎝⎛⎭⎪⎫x +32=f (x ),当x ∈⎝⎛⎦⎥⎤0,12时,f (x )=()12log 1x -,则f (x )在区间⎝ ⎛⎭⎪⎫1,32内是( )A .减函数且f (x )>0B .减函数且f (x )<0C .增函数且f (x )>0D .增函数且f (x )<0答案 D解析 当x ∈⎝ ⎛⎦⎥⎤0,12时,由f (x )=()12log 1x -可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以在区间⎣⎢⎡⎭⎪⎫-12,0上函数也单调递增,且f (x )<0.由f ⎝ ⎛⎭⎪⎫x +32=f (x )知,函数的周期为32,所以在区间⎝ ⎛⎭⎪⎫1,32上,函数单调递增且f (x )<0.故选D.(2)已知定义在R 上的函数f (x )满足:函数y =f (x -1)的图象关于点(1,0)对称,且x ≥0时恒有f (x +2)=f (x ),当x ∈[0,1]时,f (x )=e x-1,则f (2020)+f (-2021)=________. 答案 1-e解析 因为函数y =f (x -1)的图象关于点(1,0)对称,所以y =f (x )的图象关于原点对称, 又定义域为R ,所以函数y =f (x )是奇函数, 因为x ≥0时恒有f (x +2)=f (x ),所以x ≥0时,f (x )是周期为2的周期函数. 所以f (2020)+f (-2021)=f (0)-f (2021) =f (0)-f (1)=(e 0-1)-(e 1-1)=1-e.二级结论 (1)若函数f (x )为偶函数,且f (a +x )=f (a -x ),则2a 是函数f (x )的一个周期. (2)若函数f (x )为奇函数,且f (a +x )=f (a -x ),则4a 是函数f (x )的一个周期. (3)若函数f (x )满足f (a +x )=f (a -x ),且f (b +x )=f (b -x ),则2(b -a )是函数f (x )的一个周期.跟踪演练2 (1)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( )A .-50B .0C .2D .50 答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ),∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数且定义域为R 得f (0)=0, 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.(2)(多选)关于函数f (x )=x +sin x ,下列说法正确的是( ) A .f (x )是奇函数 B .f (x )是周期函数 C .f (x )有零点D .f (x )在⎝⎛⎭⎪⎫0,π2上单调递增答案 ACD解析 由题可知函数f (x )的定义域为R ,f (-x )=-x -sin x =-f (x ),则f (x )为奇函数,故A 正确;根据周期函数的定义,可知f (x )一定不是周期函数,故B 错误;因为f (0)=0+sin0=0,所以f (x )有零点,故C 正确;对f (x )求导得f ′(x )=1+cos x ≥0在R 上恒成立,故f (x )在(-∞,+∞)上单调递增,故D 正确. 考点三 函数的图象 核心提炼1.作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点. 考向1 函数图象的识别例4 (1)(2020·衡水模拟)函数f (x )=x ·ln|x |的图象可能是( )答案 D解析 函数f (x )=x ·ln|x |是奇函数,排除选项A ,C ;当x =1e 时,y =-1e ,对应点在x 轴下方,排除B.(2)已知某函数图象如图所示,则此函数的解析式可能是( )A .f (x )=1-ex1+e x ·sin xB .f (x )=e x-1e x +1·sin xC .f (x )=1-ex 1+e x ·cos xD .f (x )=e x-1e x +1·cos x答案 B解析 根据题意,由图象可得,该函数为偶函数,且在y 轴右侧,先为正值,然后为负值.C ,D 选项中的函数均为奇函数,不符合题意;对于A 选项,f (x )为偶函数,当x ∈(0,π)时, sin x >0,1-ex 1+e x <0,则f (x )<0,不符合题意;对于B 选项,f (x )为偶函数,当x ∈(0,π)时,sin x >0,e x-1e x +1>0,则f (x )>0,符合题意.考向2 函数图象的变换及应用例5 (1)若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( )答案 C解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位长度得到y =-f (x +1)的图象,根据上述步骤可知C 正确.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤0,-x 2-3x ,x >0,若不等式|f (x )|≥mx -2恒成立,则实数m 的取值范围为( )A .[3-22,3+22]B .[0,3-22]C .(3-22,3+22)D .[0,3+22]答案 D解析 由函数的解析式易知f (x )≤0恒成立,则|f (x )|=⎩⎪⎨⎪⎧-2x+1,x ≤0,x 2+3x ,x >0,不等式|f (x )|≥mx -2恒成立,等价于函数y =|f (x )|的图象在函数y =mx -2图象的上方恒成立.作出函数y =|f (x )|的图象,如图所示,函数y =mx -2的图象是过定点(0,-2)的直线,由图可知,当m <0时,不满足题意;当m =0时,满足题意;当m >0时,考虑直线y =mx -2与曲线y =x 2+3x (x >0)相切的情况.由⎩⎪⎨⎪⎧y =mx -2,y =x 2+3x ,得x 2+(3-m )x +2=0,令Δ=(3-m )2-8=m 2-6m +1=0, 解得m =3+22或m =3-22, 结合图形可知0<m ≤3+2 2. 综上,m 的取值范围是[0,3+22].规律方法 (1)确定函数图象的主要方法是利用函数的性质,如定义域、奇偶性、单调性等,特别是利用一些特征点排除不符合要求的图象.(2)函数图象的应用主要体现为数形结合思想,借助于函数图象的特点和变化规律,求解有关不等式恒成立、最值、交点、方程的根等问题.求解两个函数图象在给定区间上的交点个数问题时,可以先画出已知函数完整的图象,再观察.跟踪演练3 (1)(2020·天津市大港第一中学模拟)函数y =2|x |sin2x 的图象可能是( )答案 D解析 令f (x )=2|x |sin2x , 因为x ∈R ,f (-x )=2|-x |sin2(-x )=-2|x |sin2x =-f (x ),所以f (x )=2|x |sin2x 为奇函数,排除选项A ,B ; 因为当x ∈⎝⎛⎭⎪⎫π2,π时,f (x )<0,所以排除选项C.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln x +1,x >0,若存在x 0∈R 使得f (x 0)≤ax 0-1,则实数a 的取值范围是( ) A .(0,+∞)B .[-3,0]C .(-∞,-3]∪[3,+∞)D .(-∞,-3]∪(0,+∞)答案 D解析 根据题意,函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤0,ln x +1,x >0的图象如图,直线y =ax -1恒过定点(0,-1), 若存在x 0∈R 使得f (x 0)≤ax 0-1,则函数f (x )的图象在直线y =ax -1下方有图象或与直线有交点, 当a =0时,f (x )的图象恒在y =ax -1图象的上方,不符合题意;当a >0时,直线y =ax -1经过第一、三、四象限,与函数f (x )的图象必有交点,符合题意; 当a <0时,直线y =ax -1经过第二、三、四象限,若直线y =ax -1与f (x )有交点,必然相交于第二象限.由⎩⎪⎨⎪⎧y =x 2-x ,y =ax -1,即ax -1=x 2-x ,变形可得x 2-(a +1)x +1=0, 令Δ=0,解得a =-3或1(舍),则有a ≤-3, 综上可得,a 的取值范围为(-∞,-3]∪(0,+∞).专题强化练一、单项选择题1.函数y =-x 2+2x +3lg x +1的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C .[-1,3]D .[-1,0)∪(0,3]答案 B解析 由已知得⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得x ∈(-1,0)∪(0,3].2.设函数f (x )=⎩⎪⎨⎪⎧log 21-x ,x <0,22x -1,x ≥0,则f (-3)+f (log 23)等于( )A.112B.132C.152D .10 答案 B解析 依题意f (-3)+f (log 23)=log 24+22log 312--1=2+29log 22=2+92=132.3.设函数f (x )=4x23|x |,则函数f (x )的图象大致为( )答案 A解析 观察函数解析式发现,x 是以平方、绝对值的形式出现的,所以f (x )为偶函数,排除B ;当x >0时,f (x )=4x 23x ,当x →+∞时,f (x )→0,排除C.因为f (2)=4×2232=169<2,选项D 中f (2)>2,所以D 不符合题意.4.设函数f (x )=⎩⎪⎨⎪⎧2|x -a |,x ≤1,x +1,x >1,若f (1)是f (x )的最小值,则实数a 的取值范围是( ) A .[-1,2) B .[-1,0] C .[1,2] D .[1,+∞)答案 C解析 f (x )=⎩⎪⎨⎪⎧2|x -a |,x ≤1,x +1,x >1,若x >1,则f (x )=x +1>2, 易知f (x )=2|x -a |在(a ,+∞)上单调递增,在(-∞,a )上单调递减.若a <1,则f (x )在x =a 处取得最小值,不符合题意; 若a ≥1,则要使f (x )在x =1处取得最小值,只需2a -1≤2,解得a ≤2,∴1≤a ≤2,综上所述,a 的取值范围是[1,2].5.(2020·抚顺模拟)定义在R 上的偶函数f (x )满足f (x +2)=f (x ),当x ∈[-1,0]时,f (x )=-x -2,则( ) A .f ⎝ ⎛⎭⎪⎫sin π6>f ⎝ ⎛⎭⎪⎫cos π6 B .f (sin3)<f (cos3) C .f ⎝ ⎛⎭⎪⎫sin 4π3<f ⎝ ⎛⎭⎪⎫cos 4π3 D .f (2020)>f (2019)答案 B解析 由f (x +2)=f (x ),得f (x )是周期函数且周期为2,根据f (x )在x ∈[-1,0]上的图象和f (x )是偶函数可得f (x )在[0,1]上是增函数. 对于A,0<sin π6<cos π6<1,∴f ⎝⎛⎭⎪⎫sin π6<f ⎝⎛⎭⎪⎫cos π6,A 错误;对于B,0<sin3<-cos3<1,∴f (sin3)<f (-cos3)=f (cos3),B 正确; 对于C,0<-cos 4π3<-sin 4π3<1,∴f ⎝ ⎛⎭⎪⎫cos 4π3<f ⎝⎛⎭⎪⎫sin 4π3,C 错误;对于D ,f (2020)=f (0)<f (2019)=f (1),D 错误. 6.定义新运算:当a ≥b 时,a b =a ;当a <b 时,a b =b 2.则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值为( )A .-1B .1C .6D .12 答案 C解析 当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.又∵y =x -2,y =x 3-2在R 上都为增函数,且f (x )在x =1处连续, ∴f (x )的最大值为f (2)=23-2=6.7.(2020·全国Ⅱ)设函数f (x )=ln|2x +1|-ln|2x -1|,则f (x )( )A .是偶函数,且在⎝ ⎛⎭⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎫-12,12单调递减 C .是偶函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递增 D .是奇函数,且在⎝ ⎛⎭⎪⎫-∞,-12单调递减 答案 D解析 f (x )=ln|2x +1|-ln|2x -1|的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠±12. 又f (-x )=ln|-2x +1|-ln|-2x -1| =ln|2x -1|-ln|2x +1| =-f (x ),∴f (x )为奇函数,故排除A ,C. 当x ∈⎝⎛⎭⎪⎫-∞,-12时,f (x )=ln(-2x -1)-ln(1-2x )=ln-2x -11-2x=ln 2x +12x -1=ln ⎝ ⎛⎭⎪⎫1+22x -1,∵y =1+22x -1在⎝⎛⎭⎪⎫-∞,-12上单调递减, ∴由复合函数的单调性可得f (x )在⎝ ⎛⎭⎪⎫-∞,-12上单调递减.8.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i 等于( )A .0B .mC .2mD .4m 答案 B解析 由题意可知f (x )的图象关于直线x =1对称,而y =|x 2-2x -3|=|(x -1)2-4|的图象也关于直线x =1对称,所以两个图象的交点关于直线x =1对称,且每对关于直线x =1对称的交点的横坐标之和为2,所以∑i =1mx i =m .二、多项选择题9.若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x,则( ) A .f (x )=e x +e -x2B .g (x )=e x -e-x2C .f (-2)<g (-1)D .g (-1)<f (-3)答案 AD解析 因为函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x,①所以f (-x )+2g (-x )=e -x, 即f (x )-2g (x )=e -x,②联立①②得⎩⎪⎨⎪⎧fx +2g x =e x ,f x -2g x =e -x ,解得⎩⎪⎨⎪⎧f x =e x+e-x2,gx =e x -e -x4,所以f (-2)=e -2+e 22,f (-3)=e -3+e32,g (-1)=e -1-e4<0,所以g (-1)<f (-2),g (-1)<f (-3).10.(2020·福州质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+32x ,x ≥0,x 2-32x ,x <0,则( )A .f (x )是偶函数B .f (x )在[0,+∞)上单调递增C .f (x )在(-∞,0)上单调递增D .若f ⎝ ⎛⎭⎪⎫1a ≥f (1),则-1≤a ≤1 答案 ABD解析 由题可知f (-x )=f (x ),所以函数f (x )是偶函数,故A 正确;由y =x 2+32x =⎝ ⎛⎭⎪⎫x +342-916,知y =x 2+32x 在[0,+∞)上单调递增,由y =x 2-32x =⎝ ⎛⎭⎪⎫x -342-916,知y =x 2-32x 在(-∞,0)上单调递减,故B 正确,C 错误;若f ⎝ ⎛⎭⎪⎫1a ≥f (1),则有f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1a ≥f (1),结合函数f (x )的单调性可得⎪⎪⎪⎪⎪⎪1a ≥1,所以|a |≤1,解得-1≤a ≤1,故D 正确.11.符号[x ]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数f (x )=x -[x ],则下列命题正确的是( ) A .f (-0.8)=0.2B .当1≤x <2时,f (x )=x -1C .函数f (x )的定义域为R ,值域为[0,1)D .函数f (x )是增函数、奇函数 答案 ABC解析 由f (x )=x -[x ],得f (-0.8)=-0.8+1=0.2,故A 正确;当1≤x <2时,f (x )=x -[x ]=x -1,故B 正确;函数f (x )的定义域为R ,值域为[0,1),故C 正确;当0≤x <1时,f (x )=x -[x ]=x ,当1≤x <2时,f (x )=x -1,当x =0.5时,f (0.5)=0.5,当x =1.5时,f (1.5)=0.5,则f (0.5)=f (1.5),即f (x )不为增函数,由f (-1.5)=0.5,f (1.5)=0.5,可得f (-1.5)=f (1.5),即f (x )不为奇函数,故D 不正确.12.已知函数f (x )的定义域为R ,且f (x +1)是偶函数,f (x -1)是奇函数,则下列说法正确的是( ) A .f (7)=0B .f (x )的一个周期为8C .f (x )图象的一个对称中心为(3,0)D .f (x )图象的一条对称轴为直线x =2019 答案 ABC解析 依题意知,直线x =1是f (x )图象的一条对称轴,(-1,0)是f (x )图象的一个对称点.又因为f (x +1)=f (-x +1),f (x -1)=-f (-x -1),所以f (x -1)=f (-(x -2)+1)=f (-x +3),则f (-x +3)=-f (-x -1),令t =-x ,则f (t +3)=-f (t -1),故f (t +4)=-f (t ),则f (t +8)=-f (t +4)=f (t ),所以f (x )是周期函数,且8为函数f (x )的一个周期,故B正确;f (7)=f (-1)=0,故A 正确;因为f (x )图象上每隔4个单位长度出现一个对称中心,所以点(3,0)是函数f (x )图象的一个对称中心,故C 正确;x =2019=8×252+3,所以直线x =2019不是函数f (x )图象的对称轴,故D 错误. 三、填空题13.(2020·江苏)已知y =f (x )是奇函数,当x ≥0时,f (x )=23x ,则f (-8)的值是________. 答案 -414.已知定义在R 上的函数f (x )满足f (x +2)=-1f x,当x ∈(0,2]时,f (x )=2x +1,则f (2020)+f (2021)的值为________. 答案145解析 ∵f (x +2)=-1f x,∴f (x +4)=-1f x +2=f (x ),∴函数f (x )的周期为T =4. 又当x ∈(0,2]时,f (x )=2x +1, ∴f (1)=3,f (2)=5,f (4)=-1f 2=-15, ∴f (2020)+f (2021)=f (4)+f (1)=-15+3=145.15.对于函数y =f (x ),若存在x 0使f (x 0)+f (-x 0)=0,则称点(x 0,f (x 0))是曲线f (x )的“优美点”.已知f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,kx +2,x ≥0,若曲线f (x )存在“优美点”,则实数k 的取值范围是________________. 答案 (-∞,2-22]解析 当x <0时,f (x )=x 2+2x 关于原点对称的函数是y =-x 2+2x (x >0),由题意得,y =-x 2+2x (x >0)与y =kx +2有交点,即-x 2+2x =kx +2(x >0)有解,∴k =-x -2x+2(x >0)有解,又-x -2x+2≤-22+2,当且仅当x =2时等号成立,∴k ≤2-2 2.16.(2020·全国Ⅲ)关于函数f (x )=sin x +1sin x 有如下四个命题:①f (x )的图象关于y 轴对称; ②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称; ④f (x )的最小值为2.其中所有真命题的序号是________. 答案 ②③解析 ∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin -x =-sin x -1sin x=-f (x ), ∴f (x )为奇函数,关于原点对称,故①错误,②正确. ∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x , ∴f ⎝ ⎛⎭⎪⎫π2-x =f⎝ ⎛⎭⎪⎫π2+x ,∴f (x )的图象关于直线x =π2对称,故③正确. 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,f (x )<0,故④错误.。

高考数学大一轮专题复习 专题一 函数、导数与不等式配套课件 文

高考数学大一轮专题复习 专题一 函数、导数与不等式配套课件 文

【方法与技巧】函数与方程是高考的重要题型之一,一方 面可以数形结合,考查方程根的分布如 2007 年广东试题;另 一方面可以与导数相结合,考查方程解的情况.如本题:若对任 意 x1∈[0,2],总存在x2∈[0,2],使 fx1=gx2的本质就是函 数 fx的值域是函数 gx值域的子集.
②若 1< a<e,即 1<a<e2,在(1, a)上,f′(x)<0,f(x)单 调递减;在( a,e)上,f′(x)>0,f(x)单调递增,因此 f(x)在区 间[1,e]上的最小值为 f( a)=12a(1-lna).
③若 a≥e,即 a≥e2,在(1,e)上,f′(x)<0,f(x)在[1,e] 上单调递减,
∴g(2)=83a-2a2≥23. 解得13≤a≤1. ⅱ)当 x∈(0,2), a≥2 时,即 a≥4,g′(x)<0, ∴函数在(0,2)上单调递减. ∵g(0)=0,g(2)=83a-2a2<0, ∴当 a≥4 时,不满足0,23⊆A. 综上所述,实数 a 的取值范围是13,1.
②当 a>0 时,g′(x)=a(x- a)(x+ a). 令 g′(x)=0,得 x= a或 x=- a(舍去). ⅰ)当 x∈[0,2],0< a<2 时,列表:
x
0 (0, a)
a
( a,2)
2
g′(x)

0

g(x) 0
-23a0, 又∵0,23⊆A,
当 1<a<e2 时,要使 f(x)在区间(1,e)上恰有两个零点,
12a1-lna<0, ∴f1=12>0,
fe=12e2-a>0,
a>e, 即a<12e2,
此时,e<a<12e2.

2023年高考数学(文科)一轮复习——基本不等式及其应用

2023年高考数学(文科)一轮复习——基本不等式及其应用

第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。

2023年高考数学一轮复习课件——等式性质与不等式性质

2023年高考数学一轮复习课件——等式性质与不等式性质

2.等式的性质 性质1 对称性:如果a=b,那么 b=a ; 性质2 传递性:如果a=b,b=c,那么 a=c ; 性质3 可加(减)性:如果a=b,那么a±c=b±c; 性质4 可乘性:如果a=b,那么ac=bc; 性质5 可除性:如果a=b,c≠0,那么 ac=bc .
3.不等式的性质 性质1 对称性:a>b⇔ b<a ; 性质2 传递性:a>b,b>c⇒ a>c ; 性质3 可加性:a>b⇔a+c>b+c; 性质4 可乘性:a>b,c>0⇒ ac>bc ;a>b,c<0⇒ ac<bc ; 性质5 同向可加性:a>b,c>d⇒ a+c>b+d ; 性质6 同向同正可乘性:a>b>0,c>d>0⇒ ac>bd ; 性质7 同正可乘方性:a>b>0⇒an>bn(n∈N,n≥2).
即 a<-c,得ac<-1,所以-3<ac<-1.
(2)已知1<a<b<3,则a-b的取值范围是_(_-__2_,_0_) _,
a b
的取值范围是
___13_,__1_ _.
∵1<b<3,∴-3<-b<-1, 又1<a<3, ∴-2<a-b<2,又a<b, ∴a-b<0, ∴-2<a-b<0, 又13<1b<1a,∴a3<ab<1,又a3>13,∴13<ab<1. 综上所述,a-b 的取值范围为(-2,0);ab的取值范围为13,1.
当 x>e 时,f′(x)<0,f(x)=lnxx单调递减, 当0<x<e时, f′(x)>0,f(x)=lnx x单调递增, 因为a,b,c∈(0,3),f(a)=f(5), f(b)=f(4),f(c)=f(3), 所以a,b,c∈(0,e), 因为f(5)<f(4)<f(3), 所以f(a)<f(b)<f(c),a<b<c.

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

2023年新高考数学大一轮复习专题一函数与导数第4讲不等式(含答案)

新高考数学大一轮复习专题:第4讲 不等式[考情分析] 1.不等式的解法是数学的基本功,在许多题目中起到工具作用.2.求最值和不等式恒成立问题常用到基本不等式.3.题型多以选择题、填空题形式考查,中等难度. 考点一 不等式的性质与解法 核心提炼1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b.(2)a <0<b ⇒1a <1b.(3)a >b >0,0<c <d ⇒a c >b d.2.不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I . (2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方. (3)解决恒成立问题还可以利用分离参数法.例1 (1)若p >1,0<m <n <1,则下列不等式正确的是( ) A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <mnC .m -p<n -pD .log m p >log n p答案 D解析 方法一 设m =14,n =12,p =2,逐个代入可知D 正确.方法二 对于选项A ,因为0<m <n <1,所以0<m n<1,又p >1,所以0<⎝ ⎛⎭⎪⎫m n p <1,故A 不正确;对于选项B ,p -m p -n -m n =p -m n -m p -n n p -n =p n -m n p -n >0,所以p -m p -n >mn,故B 不正确;对于选项C ,由于函数y =x -p在(0,+∞)上为减函数,且0<m <n <1,所以m -p>n -p,故C 不正确;对于选项D ,结合对数函数的图象可得,当p >1,0<m <n <1时,log m p >log n p ,故D 正确. (2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( ) A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)答案 A解析 由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0, 则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0, 即(x +3)(x -2)>0,解得x <-3或x >2, 所以不等式的解集为(-∞,-3)∪(2,+∞).易错提醒 求解含参不等式ax 2+bx +c <0恒成立问题的易错点 (1)对参数进行讨论时分类不完整,易忽略a =0时的情况. (2)不会通过转换把参数作为主元进行求解. (3)不考虑a 的符号.跟踪演练 1 (1)已知函数f (x )=⎩⎪⎨⎪⎧3,x <12,1x ,x ≥12,则不等式x 2f (x )+x -2≤0的解集是________________. 答案 {x |-1≤x ≤1} 解析 由x 2f (x )+x -2≤0,得 ⎩⎪⎨⎪⎧x <12,3x 2+x -2≤0或⎩⎪⎨⎪⎧x ≥12,x 2·1x+x -2≤0,即⎩⎪⎨⎪⎧x <12,-1≤x ≤23或⎩⎪⎨⎪⎧x ≥12,x ≤1,∴-1≤x <12或12≤x ≤1,∴原不等式的解集为{x |-1≤x ≤1}.(2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-2,65 B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2} 答案 B解析 当a 2-4=0时,解得a =2或a =-2,当a =2时,不等式可化为4x -1≥0,解集不是空集,不符合题意;当a =-2时,不等式可化为-1≥0,此式不成立,解集为空集. 当a 2-4≠0时,要使不等式的解集为空集,则有⎩⎪⎨⎪⎧a 2-4<0,Δ=a +22+4a 2-4<0,解得-2<a <65.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫-2,65. 考点二 基本不等式 核心提炼基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag x+Bg (x )(AB >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.例2 (1)下列不等式的证明过程正确的是( ) A .若a ,b ∈R ,则b a +a b ≥2b a ·a b =2 B .若a <0,则a +4a≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b D .若a ∈R ,则2a+2-a≥22a ·2-a=2 答案 D解析 由于b a ,a b的符号不确定,故选项A 错误;∵a <0,∴a +4a=-⎣⎢⎡⎦⎥⎤-a +⎝⎛⎭⎪⎫-4a≤-2-a ·⎝ ⎛⎭⎪⎫-4a=-4(当且仅当a =-2时,等号成立),故B 错误;由于lg a ,lg b 的符号不确定,故选项C 错误;∵2a>0,2-a>0,∴2a +2-a ≥22a ·2-a=2(当且仅当a =0时,等号成立),故选项D 正确.(2)(2019·天津)设x >0,y >0,x +2y =5,则x +12y +1xy的最小值为________.答案 4 3解析x +12y +1xy=2xy +2y +x +1xy=2xy +6xy=2xy +6xy.由x +2y =5得5≥22xy ,即xy ≤524,即xy ≤258,当且仅当x =2y =52时等号成立.所以2xy +6xy≥22xy ·6xy=43,当且仅当2xy =6xy,即xy =3时取等号,结合xy ≤258可知,xy 可以取到3,故x +12y +1xy的最小值为4 3.易错提醒 运用基本不等式时,一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指“正数”;“二定”是指应用基本不等式求最值时,和或积为定值;“三相等”是指满足等号成立的条件.若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.跟踪演练2 (1)(2020·北京市中国人民大学附属中学模拟)已知a >0,b >0,且a -b =1,则2a +1b的最小值为________.答案 22+2解析 ∵a >0,b >0,由a -b =1,得a =1+b ,∴2a +1b =2+2b +1b≥2+22b ·1b=2+22,当且仅当b =22时,等号成立,∴2a +1b的最小值为22+2. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 方法一 由题意知y ≠0.由5x 2y 2+y 4=1, 可得x 2=1-y45y2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.方法二 设x 2+y 2=t >0,则x 2=t -y 2. 因为5x 2y 2+y 4=1,所以5(t -y 2)y 2+y 4=1, 所以4y 4-5ty 2+1=0.由Δ=25t 2-16≥0,解得t ≥45⎝ ⎛⎭⎪⎫t ≤-45舍去.故x 2+y 2的最小值为45.专题强化练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( ) A .{x |-1<x <3} B .{x |1<x <3} C .{x |x <-1或x >3} D .{x |x <1或x >3}答案 D解析 不等式即(x -3)(x -1)>0,由二次不等式的解法大于分两边可得不等式的解集为{x |x <1或x >3}.2.下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a >b ,c <d ,则a c >b dC .若a >b ,c >d ,则a -c >b -dD .若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误. 当a =1,b =0,c =-2,d =-1时,a c <b d,故B 选项错误. 当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误. 由不等式的性质知D 正确.3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f (x )<0的解集为{x |x <-2或x >3},则f (10x)>0的解集为( ) A .{x |x <-2或x >lg3} B .{x |-2<x <lg3} C .{x |x >lg3} D .{x |x <lg3}答案 D解析 一元二次不等式f (x )<0的解集为{x |x <-2或x >3}, 则f (x )>0的解集为{x |-2<x <3},则f (10x)>0可化为-2<10x<3,解得x <lg3, 所以所求不等式的解集为{x |x <lg3}.4.若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1bC .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b 2a答案 B解析 由题意得a >1,0<b <1, ∴b2a <1,log 2(a +b )>log 22ab =1, 12a b+>a +1b >a +b ⇒a +1b>log 2(a +b ).5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<ab D .ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +bab<1,∴ab <a +b <0. 6.已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112答案 B解析 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,所以x +2y 的最小值为4.故选B.7.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4B .5C .6D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2a +1b +2-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.8.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c取得最大值时,3a +1b-12c的最大值为( ) A .3B.94C .1D .0答案 C解析 由正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,得a 2c -2ab c +9b 2c =1≥4ab c, 当且仅当a 2c =9b 2c ,即a =3b 时,ab c 取最大值14,又因为a 2-2ab +9b 2-c =0, 所以此时c =12b 2,所以3a +1b -12c =1b ⎝ ⎛⎭⎪⎫2-1b ≤⎝ ⎛⎭⎪⎫1b +2-1b 24=1,当且仅当b =1时等号成立.故最大值为1. 二、多项选择题9.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f (a )+f (b )],则下列关系式中正确的是( )A .q =rB .p <qC .p =rD .p >q 答案 BC解析 r =12(ln a +ln b )=p =ln ab ,p =ln ab <q =ln a +b 2.10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .6B .7C .8D .9 答案 ABC解析 方法一 设y =x 2-6x +a ,则其图象为开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则⎩⎪⎨⎪⎧22-6×2+a ≤0,12-6×1+a >0,解得5<a ≤8,又a ∈Z ,故a 可以为6,7,8.方法二 分离常数,得a ≤-x 2+6x ,函数y =-x 2+6x 的图象及直线y =a ,如图所示,由图易知5<a ≤8.11.(2020·威海模拟)若a ,b 为正实数,则a >b 的充要条件为( ) A.1a >1bB .ln a >ln bC .a ln a <b ln bD .a -b <e a-e b答案 BD解析 对于A ,因为a >b >0,所以1a <1b,故A 错误;对于B ,因为y =ln x 在(0,+∞)上为增函数,所以a >b >0⇔ln a >ln b ,故B 正确;对于C ,设f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )=0,得x =1e ,当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以a >b >0不能推出a ln a <b ln b ,故C 错误;对于D ,设g (x )=x-e x(x >0),则g ′(x )=1-e x.因为x >0,所以e x>1,所以g ′(x )<0,g (x )在(0,+∞)上单调递减,所以当a >b >0时,g (a )<g (b ),即a -e a<b -e b,即a -b <e a-e b,充分性成立;当a >0,b >0,且a -b <e a -e b 时,易证得a >b ,必要性成立,故D 正确.12.(2020·新高考全国Ⅰ)已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a -b>12C .log 2a +log 2b ≥-2 D.a +b ≤ 2答案 ABD解析 因为a >0,b >0,a +b =1, 所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B,2a -b=22a -1=12×22a, 因为a >0,所以22a>1,即2a -b>12,故B 正确; 对于C ,log 2a +log 2b =log 2ab ≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2, 得a +b ≤2,故D 正确. 三、填空题13.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a ;②log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a ;③a1+a<11aa+;④a1+a>a 1+1a.其中正确的是________.(填序号)答案 ②④解析 由于0<a <1,所以函数f (x )=log a x 和g (x )=a x在定义域上都是单调递减函数,而且1+a <1+1a,所以②④是正确的.14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m >0恒成立,则实数m 的取值范围是________. 答案 (1,+∞)解析 ∵x ∈(0,+∞),mx 2-(m +1)x +m >0恒成立, ∴m (x 2-x +1)>x 恒成立,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,∴m >xx 2-x +1恒成立,当x ∈(0,+∞)时,xx 2-x +1=1x +1x-1≤121-1=1, 当且仅当x =1x,即x =1时取“=”.∴m >1.15.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-1,12解析 由f (x )=x 3-2x +e x-1e x ,得f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1ex =-f (x ),又x ∈R ,所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x·1ex=3x 2≥0,当且仅当x =0时“=”成立, 所以f (x )在R 上单调递增, 因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ). 所以2a 2≤1-a ,即2a 2+a -1≤0,解得-1≤a ≤12.16.已知实数x ,y 满足x >1,y >0且x +4y +1x -1+1y =11,则1x -1+1y的最大值为________. 答案 9 解析 ∵x +4y +1x -1+1y=11, ∴(x -1)+4y =10-⎝ ⎛⎭⎪⎫1x -1+1y ,又⎝⎛⎭⎪⎫1x -1+1y [(x -1)+4y ]=5+x -1y +4y x -1≥5+24=9, 当且仅当x -1y =4y x -1,即2y =x -1>0时等号成立, ∴⎝⎛⎭⎪⎫1x -1+1y ⎣⎢⎡⎦⎥⎤10-⎝ ⎛⎭⎪⎫1x -1+1y ≥9, 令t =1x -1+1y,则t (10-t )≥9,即t2-10t+9≤0,∴1≤t≤9,∴1x-1+1y的最大值为9.11。

基本不等式课件-2025届高三数学一轮复习

基本不等式课件-2025届高三数学一轮复习

2 ab≥1+1(a>0,b>0)的应用
ab
【多选题】若正实数 a,b 满足 a+b=2,则下列结论中正确的有( )
2.(2024•江苏模拟)设 x>0,y>0, + = ,则 + 的最小值为( )
A.
B.
C. +
D.3
解:因为 x>0,y>0, + = , 则 + = (x+ )( + )= (3+ + )≥ (3+2 ), 当且仅当 2xy= ,即 xy= ,此时 x= + ,y=2− 时取等号. 故选:C.
-2≥2
(1-x)×1-4 x-2=2
当且仅当 1-x=1-4 x,即 x=-1 时取等号 ,所以 a≥2.
跟踪训练
(2024•浙江模拟)已知实数 x,y 满足 x>3,且 xy+2x﹣3y=12,则 x+y 的最小值为( )
A. +
B.8
C.
D. +
解:xy+2x﹣3y﹣6=(x﹣3)(y+2), 则(x﹣3)(y+2)=6, 故 x>3,y>﹣2, 故 x+y=x﹣3+y+2+1≥ ( − )( − ) + = 时,等号成立. 故选:A.
模型 2、已知正数 , 满足 + =1,求 mx+ny 的最小值. (a> , > ,m> , > ) (2024•徐汇区模拟)若正数 a、b 满足 + = ,则 2a+b 的最小值为 .
解:因为正数 a、b 满足 + = , 则 2a+b=(2a+b)( + )=3+ + ≥3+2 ⋅ =3+2 , 当且仅当 b= ,即 a=1+ ,b=1+ 时取等号. 故答案为:3+2 .

2025年高考数学一轮复习-微专题(五)-导数与不等式的证明【课件】

2025年高考数学一轮复习-微专题(五)-导数与不等式的证明【课件】
微专题(五) 导数与不等式的证明
命题点(一) 分类讨论解决不等式恒成立问题 近几年高考中利用导数解决不等式恒成立问题是常见的题型,函数中经常 含有参数,对参数进行分类讨论解决问题,主要在解答题中以压轴题的形式出 现,考查学生的逻辑推理能力和计算能力,题目的综合性较强,难度大. [典例] 已知函数 f(x)=ex+ax2-x. (1)当 a=1 时,讨论 f(x)的单调性; (2)当 x≥0 时,f(x)≥12x3+1,求 a 的取值范围.
[关键点拨]
(1)问直接求导判断函数 f(x)的单调区间. 切入点 (2)问看到求整数 a 的最大值,想到分离参数 a,然后构造函数,利用
导数及函数的性质求解
迁移点 把 f(x)>aln x-12x2-2x 转化为 a<xln xx+-21x-1在(1,+∞)上恒成立
(1)想不到分离导数,导致对 a 进行分类讨论. 障碍点 (2)构造函数后,若其导函数无法直接判断单调性,不要忽略零点存在
又 h(3)=3-ln 3-2=1-ln 3<0,h(4)=4-ln 4-2=2-2ln 2>0,根据零点 存在定理,可知 h(x)在(1,+∞)上有唯一零点,
设该零点为 x0,则 x0∈(3,4),且 h(x0)=x0-ln x0-2=0,即 x0-2=ln x0. 当 x∈(1,x0)时,h(x)<0,即 φ′(x)<0,故 φ(x)在(1,x0)上单调递减; 当 x∈(x0,+∞)时,h(x)>0,即 φ′(x)>0,故 φ(x)在(x0,+∞)上单调递增. 所以 φ(x)min=x0ln xx00+-21x0-1=x0+1. 由题意可知 a<x0+1,又 x0∈(3,4),所以 4<x0+1<5,
②若 0<2a+1<2,即-12<a<12, 则当 x∈(0,2a+1)∪(2,+∞)时,g′(x)<0; 当 x∈(2a+1,2)时,g′(x)>0. 所以 g(x)在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增. 由于 g(0)=1, 所以 g(x)≤1 当且仅当 g(2)=(7-4a)·e-2≤1, 即 a≥7-4 e2.所以当7-4 e2≤a<12时,g(x)≤1.

高考数学一轮复习规划第四章第5讲 利用导数解决不等式恒(能)成立问题

高考数学一轮复习规划第四章第5讲 利用导数解决不等式恒(能)成立问题
第四章 导数及其应用 第5讲 利用导数解决不等式恒(能)成立问题
1
PART ONE
核心考向突破
考向一 恒成立问题
例1 (2021·南平模拟)已知函数f(x)=(x-4)ex-3-12x2+3x-72,g(x)= aex+cosx,其中a∈R.
(1)讨论函数f(x)的单调性,并求不等式f(x)>0的解集; (2)若a=1,证明:当x>0时,g(x)>2; (3)用max{m,n}表示m,n中的最大值,设函数h(x)=max{f(x), g(x)},若h(x)≥0在(0,+∞)上恒成立,求实数a的取值范围.

设h(x)=x-x2ln x,则h′(x)=1-2xln x-x, 令φ(x)=1-2xln x-x,φ′(x)=-(2ln x+3),当x∈12,2时,φ′(x)< 0,可知h′(x)在12,2上是减函数,又h′(1)=0,所以当1<x<2时, h′(x)<0;当12<x<1时,h′(x)>0. 即函数h(x)=x-x2ln x在 12,1 上单调递增,在(1,2]上单调递减,所以 h(x)max=h(1)=1,即实数a的取值范围是[1,+∞).

所以g(x)min=g23=-8257,g(x)max=g(2)=1. 故g(x)max-g(x)min=12172≥M, 则满足条件的最大整数M=4.
(2)对于任意的s,t∈ 12,2 ,都有f(s)≥g(t)成立,等价于在 12,2 上, f(x)min≥g(x)max.
由(1)可知在12,2上,g(x)的最大值为g(2)=1. 故在12,2上,f(x)=ax+xln x≥1恒成立,等价于a≥x-x2ln x恒成立.

解法二:(构造函数法) 当x=1时,有f(1)≥a-1,即a-1≤0,得a≤1. 令F(x)=f(x)-(ax-1)=xln x-ax+1, 原命题等价于F(x)≥0在x≥1时恒成立⇔F(x)min≥0,x∈[1,+∞). 由于F′(x)=ln x+1-a≥0在x∈[1,+∞)上恒成立,因此函数f(x)在 [1,+∞)上单调递增, 所以F(x)min=F(1)=1-a≥0,得a≤1. 故实数a的取值范围是(-∞,1].

2025高考数学一轮复习导数与不等式的证明

2025高考数学一轮复习导数与不等式的证明

(2)证明:ln 12+ln 13+…+ln n1<1e12+13+…+n1(n>1).
令 k=1e,则 f(x)≤0, 即lnxx≤1e,则 ln x≤1e·x(当且仅当 x=e 时等号成立), 因为 ln12<1e·21,ln 13<1e·13, …, ln n1<1e·n1, 所以 ln 12+ln 13+…+ln n1<1e12+13+…+n1(n>1).
(2)证明:当 a>0 时,f(x)>2ln a+32.
法一 由(1)得当a>0时,函数f(x)=a(ex+a)-x的最小值为 f(-ln a)=a(e-ln a+a)+ln a=1+a2+ln a. 令 g(a)=1+a2+ln a-2ln a-32=a2-ln a-12,a∈(0,+∞), 所以 g′(a)=2a-1a,令 g′(a)>0,得 a> 22; 令 g′(a)<0,得 0<a< 22,所以函数 g(a)在0, 22上单调递减, 在 22,+∞上单调递增,
训练
已知函数f(x)=ex-a-ln(x+a).当a≤1时,证明:f(x)>0.
先证不等式 ex≥x+1 与 x-1≥ln x, 设g(x)=ex-x-1,则g′(x)=ex-1=0,得x=0, 可得g(x)在(-∞,0)上单调递减, 在(0,+∞)上单调递增, 所以g(x)=ex-x-1≥g(0)=0,即ex≥x+1; 设h(x)=x-1-ln x, 由h′(x)=1-=0,得x=1,
ቤተ መጻሕፍቲ ባይዱ
样题3
(2023·荆州调研改编)已知函数 f(x)=ln xe.若 x∈(0,1),求证:f(x)<1+1x-x2ex.
法一 f(x)=ln xe=1-ln x,欲证 f(x)<1+x1-x2ex, 只需证x(1-ln x)<(1+x-x3)ex, 设g(x)=x(1-ln x),则g′(x)=-ln x, 当x∈(0,1)时,g′(x)>0,g(x)单调递增,所以g(x)<g(1)=1, 设h(x)=(1+x-x3)ex,x∈(0,1), 因为x∈(0,1),所以x>x3,所以1+x-x3>1, 又1<ex<e,所以h(x)>1,所以g(x)<1<h(x),即原不等式成立.

第5节 第2课时 利用导数证明不等式--2025高中数学一轮复习课件基础版(新高考新教材)

第5节  第2课时 利用导数证明不等式--2025高中数学一轮复习课件基础版(新高考新教材)

3
f(-1)=e,f(1)=e,f(2)=0,
∴函数 f(x)在区间[-1,2]的最大值为 e,最小值为 0. ....................................... 5 分
(2)证明 令
1 2
x 1 2
g(x)=f(x)-2x +x-2e=(2-x)e -2x +x-2e,则
3(3 -1)

=
3(-1)(2 ++1)
.

令f'(x)=0可得x=1,当x∈(1,+∞)时,f'(x)>0;当x∈(0,1)时,f'(x)<0,
∴f(x)在(1,+∞)内单调递增,在(0,1)内单调递减.
(2)证明 由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex,则g'(x)=-3x2+6x-ex+(3-x)ex=(2-x)(ex+3x),由g'(x)=0,
3
3
2
2 1
要证 f(x)>2ln a+2,即证 1+a +ln a>2ln a+2,即证 a -2-ln a>0 恒成立. ........ 7 分
2 1
令 g(a)=a -2-ln a(a>0),则
令 g'(a)<0,则
2
0<a< ,令
2
2 2 -1
= , ................................................ 8 分
2
2
2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考数学大一轮复习专题:
第5讲 基本不等式的综合问题
利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.
例1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.
(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x >0,y >0,1x +2y +1
=2,则2x +y 的最小值为________. 答案 (1)233 (2)324
(3)3 解析 (1)由(x +y )2=xy +1,
得(x +y )2≤⎝ ⎛⎭
⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33
时取等号), 故x +y 的最大值为233
. (2)x ·1+y 2=2x ·
1+y 22 ≤2·x 2+1+y 2
22=2·x 2+y 22+122
=324⎝ ⎛⎭
⎪⎫当且仅当x =32,y =22时取等号, 故x ·1+y 2的最大值为324
. (3)∵2x +(y +1)=12⎝ ⎛⎭
⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭
⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.
例2 记max{a ,b }为a ,b 两数的最大值,则当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭
⎬⎫x 2,25y x -y
的最小值为________.
答案 10
解析 方法一 由题意知t ≥x 2,t ≥25y x -y , ∴2t ≥x 2+
25y x -y
, 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦
⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.
∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭
⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥
25y x -y >0, ∴t 2≥x 2·
25y x -y , 又∵x 2·25y
x -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.
∴当正数x ,y (x >y )变化时,t =max ⎩⎨⎧⎭
⎬⎫x 2,25y x -y 的最小值为10. (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.
(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.
1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1
的最小值是( ) A .1B .6C .9D .16
答案 B
解析 ∵正数a ,b 满足1a +1b
=1, ∴b =a
a -1>0,解得a >1.同理可得
b >1,
∴1a -1+9b -1=1a -1+9a a -1
-1 =1a -1+9(a -1)≥21a -1·9a -1=6,
当且仅当1a -1=9(a -1),即a =43
时等号成立, ∴所求最小值为6.
2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭
⎪⎫12<x <52 的最大值是________.
答案 2 2
解析 y 2=(2x -1+5-2x )2
=4+22x -15-2x ≤4+(2x -1)+(5-2x )=8,
又y >0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32
时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a >0,b >0,且ab =1,则12a +12b +8a +b
的最小值为________. 答案 4
解析 因为a >0,b >0,ab =1, 所以原式=ab 2a +ab 2b +8a +b
=a +b
2+8a +b ≥2a +b 2·8a +b
=4, 当且仅当a +b
2=8a +b
, 即a +b =4时,等号成立.
故12a +12b +8a +b
的最小值为4. 4.设a +b =2,b >0,则当a =________时,12|a |+|a |b
取得最小值. 答案 -2
解析
12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥-14+2b 4|a |·|a |b =34,当且仅当b 4|a |=|a |b 且a <0,即a =-2,b =4时取等号.故当a =-2时,12|a |+|a |b
取得最小值.。

相关文档
最新文档