2020-2021西安交通大学附属中学航天学校初三数学上期中模拟试题(含答案)
2020-2021学年陕西省西安市九年级上期中数学试卷及答案解析
第 1 页 共 18 页 2020-2021学年陕西省西安市九年级上期中数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数的个数是( )①0.333;②17;③√5;④π;⑤6.18118111811118…… A .1个 B .2个 C .3个 D .4个2.(3分)下列哪一组数是勾股数( )A .9,12,13B .8,15,17C .√2,3,√12D .12,18,223.(3分)下列运算中正确的是( )A .√2+√3=√5B .(−√5)2=5C .3√2−2√2=1D .√16=±44.(3分)已知点A 在第二象限,到x 轴的距离是5,到y 轴的距离是6,点A 的坐标为( )A .(﹣5,6)B .(﹣6,5)C .(5,﹣6)D .(6,﹣5)5.(3分)在平面直角坐标系中,若一个正比例函数的图象经过A (a ,3),B (4,b )两点,则a ,b 一定满足的关系式为( )A .a ﹣b =1B .a +b =7C .ab =12D .a b =34 6.(3分)如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底BC 的12米处,则大树断裂之前的高度为( )A .9米B .15米C .21米D .24米7.(3分)平面直角坐标系内,将直线y =2x ﹣1沿y 轴向上平移2个单位,所得直线的解析式是( )A .y =2x +3B .y =2x ﹣3C .y =2x ﹣5D .y =2x +18.(3分)若点P (2a ﹣1,3)关于y 轴对称的点为Q (3,b ),则点M (a ,b )关于x 轴对称的点的坐标为( )A .(1,3)B .(﹣1,3)C .(﹣1,﹣3)D .(1,﹣3)9.(3分)若a 、b 为实数,且√1−3a +√3a −1−b =5,则直线y =ax +b 不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限。
2020年陕西省西安市交大附中中考数学模拟试卷(三)
2021年陕西省西安市交大附中中|考数学模拟试卷(三)一、选择题.1.(3分)如图,数轴上A、B两点所表示的数之和为()A.2 B.﹣2 C.4 D.﹣42.(3分)一个正方体的每个面上都标注了一个汉字,如图是它的一种外表展开图,在这个正方体外表上"更〞字对面上标注的汉字是()A.生B.活C.美D.好3.(3分)截止6月10日,上海世博会累计入园人数已达1231.54万.将1231.54万人用科学记数法(四舍五入保存3个有效数字)表示约为()A.12.3×106人B.1.23×107人C.1.23×106人D.0.123×108人4.(3分)正比例函数y =﹣2x的图象过A (x1 ,y1 ) ,B (x2 ,y2 )两点,假设x1﹣x2 =3 ,那么y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣65.(3分)为了解小区居民的月用水量情况,物业办随机抽查了该小区15户家庭的月用水量,结果如下:每户用水量(吨) 4 6 7 8 10户数(户) 2 5 4 3 1那么这组数据的众数和中位数分别为()A.6 ,7 B.6 ,6 C.10 ,7 D.10 ,66.(3分)以下性质正方形具有而矩形不具有的是()A.四角相等 B.对角线互相垂直C.对角线相等D.对角线互相平分7.(3分)分式方程﹣=1的解是()A.x =﹣4 B.0 C.﹣D.8.(3分)在△ABC中,∠B的平分线与∠C的外角平分线相交于点D ,∠D =40° ,那么∠A 等于()A.50°B.60°C.70°D.80°9.(3分)如图,在平面直角坐标系中,⊙P与y轴相切于点C ,与x轴相交于A ,B两点,假设点P的坐标为(5 ,3 ) ,点M是⊙P上的一动点,那么△ABM面积的最|大值为()A.64 B.48 C.32 D.2410.(3分)假设将抛物线C:y =2x2﹣4x+1向右平移3个单位得到抛物线C′那么抛物线C 与C′一定关于某条直线对称,这条直线是()A.x =B.x =2 C.x =D.x =3二、填空题.11.(3分)计算:3﹣1 + (﹣2 )0 =.12.(3分)如图,∠COD =∠AOB =90°.假设∠COA =40° ,那么∠DOB的大小为.13.(3分)假设x =1是x2 +mx﹣3 =0的一个根,那么这个方程的另一个根为.14.(3分)如图,在△ABC中,D是AB边上的点,以点D为顶点作∠ADE ,使∠ADE =∠C ,DE交边A C于点E.假设AB =8 ,AC =6 ,AD =3 ,那么AE =.15.(3分)用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计) ,那么该圆锥的高为.16.(3分)某反比例函数y =的图象上有三点A (1 ,4 ) ,B (2 ,m ) ,C (4 ,n ) ,那么△ABC的面积为.三、解答题.17.先化简,再求值:(x +)•,其中x =﹣3.18.如图,在菱形ABCD中,过点B作BM⊥AD于点M ,BN⊥CD于点N ,BM ,BN分别交AC于点E、F.求证:AE =CF.19.某校为了了解八年级|学生体育水平的达标情况,随机抽取该校八年级|假设干名学生进行了体育测试,将测试成绩按规定由高到底分为A、B、C、D四个等级| ,并绘制了如下统计图:根据以上信息,解答以下问题:(1 )补全条形统计图;(2 )假设该校八年级|共有1000名学生,估计该校八年级|学生体育水平达标(C级|及C级|以上)的人数.20.在一次测量活动中,同学们想测量河岸上的树A与它对岸正北方向的树B之间的距离,如图,他们在河岸边上选择了与树A及树B在同一水平面上的点C的北偏西35°方向,树A 位于点C的北偏西58°方向,又测得A、C间的距离为100m ,请你利用以上测得的数据求出树A 树B之间的距离.(结果精确到1米,参考数据:sin23°≈0.391 ,sin35°≈0.574 ,tan35°≈0.700 ,sin58°≈0.848 ,cos58°≈0.530.)21.某厂准备购置A、B、C三种配件共1000件,要求购置时C配件的件数是A配件件数的4倍,B配件不超过400件,且每种配件必须买,三种配件的价格如下表:配件 A B C价格(元/件) 30 50 80假设购置A配件x (件) ,买全配件所需的总费用为y (元).(1 )求y与x之间的函数关系式;(2 )要使买全配件所需的总费用最|少,三种配件应各买多少件?所需总费用最|少多少元? 22.小颖和小华玩摸球游戏,游戏采用一个不透明的盒子,里面装有3个白色乒乓球和2个黄色乒乓球,这些球除颜色外,其它完全相同,游戏规那么是:将盒子里的五个乒乓球摇匀后,闭上眼睛从中随机地一次摸出两个球,假设两球同色,小颖赢,你认为此游戏对双方公平吗?请借助列表或画树状图说明理由.23.如图,在Rt△ABC中,∠ABC =90° ,AC =10 ,BC =6 ,∠ACB的平分线CO交AB于点O ,以OB为半径作⊙O.(1 )请判断AC与⊙O的位置关系,并说明理由;(2 )求⊙O的半径.2021年陕西省西安市交大附中中|考数学模拟试卷(三)参考答案与试题解析一、选择题.1.(3分) (2021•西安校级|模拟)如图,数轴上A、B两点所表示的数之和为()A.2 B.﹣2 C.4 D.﹣4【分析】根据数轴表示数的方法得A点表示的数为﹣3 ,B点表示的数为1 ,即可得当点A与B点表示的两数之和.【解答】解:∵A点表示的数为﹣3 ,B点表示的数为1 ,∴A、B两点所表示的数之和为﹣3 +1 =﹣2.应选:B.【点评】此题考查了有理数的加法,数轴:数轴的三要素(正方向、原点和单位长度);原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.2.(3分) (2021•西安校级|模拟)一个正方体的每个面上都标注了一个汉字,如图是它的一种外表展开图,在这个正方体外表上"更〞字对面上标注的汉字是()A.生B.活C.美D.好【分析】正方体的外表展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,"让〞与"活〞是相对面,"生〞与"美〞是相对面,"更〞与"好〞是相对面.应选D.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.(3分) (2021•西安校级|模拟)截止6月10日,上海世博会累计入园人数已达1231.54万.将1231.54万人用科学记数法(四舍五入保存3个有效数字)表示约为() A.12.3×106人B.1.23×107人C.1.23×106人D.0.123×108人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10 ,n为整数.确定n的值是易错点,由于1231.54万有8位,所以可以确定n =8﹣1 =7.有效数字的计算方法是:从左边第|一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无【解答】解:1231.54万=1.23×107 ,应选:B.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字确实定方法.4.(3分) (2021•西安校级|模拟)正比例函数y =﹣2x的图象过A (x1 ,y1 ) ,B (x2 ,y2 )两点,假设x1﹣x2 =3 ,那么y1﹣y2的值为()A.3 B.﹣3 C.6 D.﹣6【分析】将A、B两点的坐标分别代入正比例函数的解析式,分别求得y1、y2的值;然后再来求y1﹣y2的值并作出选择即可.【解答】解:∵正比例函数y =﹣2x的图象过A (x1 ,y1 ) ,B (x2 ,y2 )两点,∴y1 =﹣2x1 ,y2 =﹣2x2 ,x1﹣x2 =3 ,∴y1﹣y2 =﹣2x1 +2x2 =﹣2 (x1﹣x2 ) =﹣6.应选D.【点评】此题考查了一次函数图象上点的坐标特征.一次函数图象上的所有点的坐标均满足该函数的解析式.5.(3分) (2021•西安校级|模拟)为了解小区居民的月用水量情况,物业办随机抽查了该小区15户家庭的月用水量,结果如下:每户用水量(吨) 4 6 7 8 10户数(户) 2 5 4 3 1那么这组数据的众数和中位数分别为()A.6 ,7 B.6 ,6 C.10 ,7 D.10 ,6【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:∵在这组数据中,6出现的次数最|多,出现了5次,∴众数是6;把这组数据从小到大排列,最|中间的数是7 ,那么中位数是7;应选A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最|多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最|中间的那个数(最|中间两个数的平均数) ,叫做这组数据的中位数.6.(3分) (2021•西安校级|模拟)以下性质正方形具有而矩形不具有的是()A.四角相等 B.对角线互相垂直C.对角线相等D.对角线互相平分【分析】根据正方形的性质、矩形的性质,可得答案.【解答】解:A、正方形、矩形的性质:四角相等,故A错误;B、正方形对角线互相垂直,矩形的对角线不互相垂直,故B正确;C、正方形、矩形的性质:对角线相等,故C正确;D、正方形、矩形的性质:对角线互相平分,故D错误;应选:B.【点评】此题考查了多边形,正方形的对角线互相垂直且相等平分,矩形的对角线相等且互相平分.7.(3分) (2021•西安校级|模拟)分式方程﹣=1的解是()A.x =﹣4 B.0 C.﹣D.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1 +2x =x﹣3 ,解得:x =﹣4 ,经检验x =﹣4是分式方程的解.应选A.【点评】此题考查了解分式方程,解分式方程的根本思想是"转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分) (2021•西安校级|模拟)在△ABC中,∠B的平分线与∠C的外角平分线相交于点D ,∠D =40° ,那么∠A等于()A.50°B.60°C.70°D.80°【分析】根据角平分线的性质及三角形内角与外角的关系解答.【解答】解:∵△ABC中,∠B的平分线与∠C的外角平分线,∴2∠ACD =2∠DBC +∠A ,又∵∠ACD =∠DBC +∠D ,∴2 (∠DBC +∠D ) =2∠DBC +∠A ,∵∠D =40° ,∴∠A =80°.应选D.【点评】此题主要考查了三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.9.(3分) (2021•西安校级|模拟)如图,在平面直角坐标系中,⊙P与y轴相切于点C ,与x 轴相交于A ,B两点,假设点P的坐标为(5 ,3 ) ,点M是⊙P上的一动点,那么△ABM面积的最|大值为()A.64 B.48 C.32 D.24【分析】首|先过点P作PD⊥x轴于点D ,连接PC ,PA ,易得PC =PA =5 ,PD =3 ,然后由垂径定理,即可求得AD的长,继而求得AB的长,继而求得答案.【解答】解:过点P作PD⊥x轴于点D ,连接PC ,PA ,∵点P的坐标为(5 ,3 ) ,∵⊙P与y轴相切于点C ,∴PC =5 ,PD =3 ,∴PA =PC =5 ,在Rt△PAD中,AD ==4 ,∵PD⊥AB ,∴AB =2AD =8 ,当点M (3 ,8 )时,△ABM面积最|大,最|大值为:AB•MD =×8×8 =32.应选C.【点评】此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分) (2021•西安校级|模拟)假设将抛物线C:y =2x2﹣4x+1向右平移3个单位得到抛物线C′那么抛物线C与C′一定关于某条直线对称,这条直线是()A.x =B.x =2 C.x =D.x =3【分析】先把y =2x2﹣4x+1配成顶点式,得到抛物线y =2x2﹣4x+1的顶点坐标为(1 ,﹣1 ) ,再根据点平移的规律得到点(1 ,﹣1 )向右平移3个单位的对应点的坐标为(4 ,﹣1 ) ,然后通过确定两顶点关于直线x =对称得到两抛物线关于此直线对称.【解答】解:∵y =2x2﹣4x +1 =2 (x﹣1 )2﹣1 ,∴抛物线y =2x2﹣4x +1的顶点坐标为(1 ,﹣1 ) ,∵点(1 ,﹣1 )向右平移3个单位得到对应点的坐标为(4 ,﹣1 ) ,∴抛物线C′的解析式为y =2 (x﹣4 )2﹣1 ,∵点(1 ,﹣1 )与点(4 ,﹣1 )关于直线x =对称,∴抛物线C与C′一定关于直线x =对称.应选C.【点评】此题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二、填空题.11.(3分) (2021•西安校级|模拟)计算:3﹣1 + (﹣2 )0 =1.【分析】分别根据零指数幂,负指数幂的运算法那么计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式= +1 =1,故答案为:1.【点评】此题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.12.(3分) (2021•西安校级|模拟)如图,∠COD =∠AOB =90°.假设∠COA =40° ,那么∠DOB的大小为40°.【分析】根据∠COD =∠AOB =90°可以推理得出∠COA =∠BOD ,从而得出答案.【解答】解:∵∠COD =∠AOB =90° ,∴∠COA +∠AOD =∠BOD +∠AOD ,∴∠COA =∠BOD =40°.故答案为:40°.【点评】此题主要考查了角的计算方法,比拟简单.13.(3分) (2021•西安校级|模拟)假设x =1是x2 +mx﹣3 =0的一个根,那么这个方程的另一个根为x =﹣3.【分析】设方程的另一根为x1 ,根据根与系数的关系得到1•x1 =﹣3 ,然后解一次方程即可.【解答】解:设另一根为x1 ,由根与系数关系:1•x1 =﹣3 ,解得x1 =﹣3.故答案为:x =﹣3.【点评】此题考查了一元二次方程ax2 +bx +c =0 (a≠0 )的根与系数的关系:假设方程的两根为x1 ,x2 ,那么x1 +x2 =﹣,x1•x2 =.14.(3分) (2021•西安校级|模拟)如图,在△ABC中,D是AB边上的点,以点D为顶点作∠ADE ,使∠ADE =∠C ,DE交边A C于点E.假设AB =8 ,AC =6 ,AD =3 ,那么AE =4.【分析】由条件可证明△ADE∽△ACB ,再利用相似三角形的性质可得到对应边成比例,代入可求得AE.【解答】解:∵∠ADE =∠C ,∠A =∠A ,∴△ADE∽△ACB ,∴=,∴=,∴AE =4 ,故答案为:4.【点评】此题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.15.(3分) (2021•武汉校级|模拟)用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计) ,那么该圆锥的高为5.【分析】易得圆锥的母线长为10cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径,进而利用勾股定理即可求得圆锥的高.【解答】解:圆锥的侧面展开图的弧长为2π×10÷2 =10π (cm ) ,∴圆锥的底面半径为10π÷2π =5 (cm ) ,∴圆锥的高为:=5(cm ).故答案是:5.【点评】此题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长;圆锥的高,母线长,底面半径组成直角三角形.16.(3分) (2021•西安校级|模拟)某反比例函数y =的图象上有三点A (1 ,4 ) ,B (2 ,m ) ,C (4 ,n ) ,那么△ABC的面积为.【分析】首|先根据反比例函数图象上点的坐标特点求出B、C两点坐标,然后再过A、C作AM⊥CM ,再过B作BN⊥CM ,△ABC的面积=△AMC的面积﹣梯形AMNB的面积﹣△BNC的面积即可.【解答】解:∵y =的图象上有三点A (1 ,4 ) ,∴k =1×4 =4 ,∵反比例函数y =的图象上有三点B (2 ,m ) ,C (4 ,n ) ,∴2m =4 ,4n =1 ,解得:m =2 ,n =1.过A、C作AM⊥CM ,再过B作BN⊥CM ,△ABC的面积为:×AM×CM﹣(AM+BN )×NM﹣BN×CN =×3×3﹣(1+3 )×1﹣×1×2 =.故答案为:.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例图象上横纵坐标的积是定值k.三、解答题.17.(2021•西安校级|模拟)先化简,再求值:(x +)•,其中x =﹣3.【分析】先根据分式混合运算的法那么把原式进行化简,再把x =3代入进行计算即可.【解答】解:原式=•=•=,当x =3时,原式==2.【点评】此题考查的是分式的化简求值,熟知分式混合运算的法那么是解答此题的关键.18.(2021•西安校级|模拟)如图,在菱形ABCD中,过点B作BM⊥AD于点M ,BN⊥CD 于点N ,BM ,BN分别交AC于点E、F.求证:AE =CF.【分析】根据菱形的四条边都相等可得AB =BC ,对角相等可得∠BAM =∠BCN ,对角线平分一组对角线可得∠BAE =∠DAE =∠DCA =∠BCF ,再根据等角的余角相等求出∠ABE =∠CBF ,然后利用"角边角〞证明△ABE和△CBF全等,然后利用全等三角形对应边相等证明即可.【解答】证明:∵四边形ABCD为菱形,∴AB =BC ,∠BAM =∠BCN ,∠BAE =∠DAE =∠DCA =∠BCF ,又∵∠AMB =∠CNB =90° ,∴∠ABE =∠CBF ,在△ABE和△CBF中,,∴△ABE≌△CBF (ASA ) ,∴AE =CF.【点评】此题考查了菱形的性质,全等三角形的判定与性质,等角的余角相等的性质,熟记各性质并确定出全等三角形是解题的关键.19.(2021•西安校级|模拟)某校为了了解八年级|学生体育水平的达标情况,随机抽取该校八年级|假设干名学生进行了体育测试,将测试成绩按规定由高到底分为A、B、C、D四个等级| ,并绘制了如下统计图:根据以上信息,解答以下问题:(1 )补全条形统计图;(2 )假设该校八年级|共有1000名学生,估计该校八年级|学生体育水平达标(C级|及C级|以上)的人数.【分析】(1 )根据B级|的人数和所占的百分比求出总人数,再乘以C级|所占的百分比,求出C级|的人数,再用总人数减去A、B、C级|的人数,求出D级|的人数,从而补全统计图;(2 )用总人数乘以C级|及C级|以上的人数所占的百分比即可.【解答】解:(1 )抽查人数:19÷38% =50 (人) ,到达C级|的人数:50×26% =13 (人) ,到达D级|的人数:50﹣(8 +19 +13 ) =10 (人) ,补图如下:(2 )根据题意得:1000×(1﹣) =800 (人) ,答:该校半年及学生达标人数约为800人.【点评】此题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映局部占总体的百分比大小.20.(2021•西安校级|模拟)在一次测量活动中,同学们想测量河岸上的树A与它对岸正北方向的树B之间的距离,如图,他们在河岸边上选择了与树A及树B在同一水平面上的点C 的北偏西35°方向,树A位于点C的北偏西58°方向,又测得A、C间的距离为100m ,请你利用以上测得的数据求出树A 树B之间的距离.(结果精确到1米,参考数据:sin23°≈0.391 ,sin35°≈0.574 ,tan35°≈0.700 ,sin58°≈0.848 ,cos58°≈0.530.)【分析】过点A作AH垂直BC ,垂足为点H ,在Rt△ACH中求出AH的长,再在Rt△ABH 中,求出AB的长.【解答】解:过点A作AH垂直BC ,垂足为点H ,由题意,得∠B =35° ,∠C =58°﹣35° =23° ,在Rt△ACH中,AH =AC•sinC =100×sin23°≈39.1 ,在Rt△ABH中,AB =≈≈68米.答:树A与树B之间的距离约为68米.【点评】此题考查了解直角三角形的应用﹣﹣方向角问题,结合测量问题,将解直角三角形的相关知识有机结合,表达了数学应用于实际生活的思想.21.(2021•西安校级|模拟)某厂准备购置A、B、C三种配件共1000件,要求购置时C配件的件数是A配件件数的4倍,B配件不超过400件,且每种配件必须买,三种配件的价格如下表:配件 A B C价格(元/件) 30 50 80假设购置A配件x (件) ,买全配件所需的总费用为y (元).(1 )求y与x之间的函数关系式;(2 )要使买全配件所需的总费用最|少,三种配件应各买多少件?所需总费用最|少多少元? 【分析】(1 )设购置A配件x (件) ,那么C配件购置4x件,B配件购置(1000﹣5x )件,由总费用=三种配件的费用之和就可以求出结论;(2 )由条件求出自变量的取值范围,由一次函数的性质就可以求出结论.【解答】解:(1 )设购置A配件x (件) ,那么C配件购置4x件,B配件购置(1000﹣5x )件,由题意,得y =30x +80×4x +50 (1000﹣5x ) ,y =100x +50000.答:y与x之间的函数关系式为y =100x +50000;(2 )∵B配件不超过400件,∴1000﹣5x≤400 ,∴x≥120.∵y =100x +50000 ,∴k =100>0 ,∴x =120时,y最|大=62000.∴B配件为:1000﹣120×5 =400 ,C配件为:120×4 =480.答:购置A配件120件,B配件400件,C配件480件时,总费用最|少为62000元.【点评】此题考查了单价×数量=总价的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.22.(2021•西安校级|模拟)小颖和小华玩摸球游戏,游戏采用一个不透明的盒子,里面装有3个白色乒乓球和2个黄色乒乓球,这些球除颜色外,其它完全相同,游戏规那么是:将盒子里的五个乒乓球摇匀后,闭上眼睛从中随机地一次摸出两个球,假设两球同色,小颖赢,你认为此游戏对双方公平吗?请借助列表或画树状图说明理由.【分析】先列表展示所有10种等可能的结果数,再找出两球同色的结果数,接着根据概率公式分别计算出小颖和小华赢的概率,然后通过比拟概率的大小判断游戏的公平性.【解答】解:这个游戏对双方不公平.理由如下:列表为:共有10种等可能的结果数,其中两球同色占4种,所以P (小颖赢) ==,P (小华赢) ==,所以P (小颖赢)≠P (小华赢) ,所以这个游戏对双方不公平.【点评】此题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比拟概率的大小,概率相等就公平,否那么就不公平.23.(2021•西安校级|模拟)如图,在Rt△ABC中,∠ABC =90° ,AC =10 ,BC =6 ,∠ACB的平分线CO交AB于点O ,以OB为半径作⊙O.(1 )请判断AC与⊙O的位置关系,并说明理由;(2 )求⊙O的半径.【分析】(1 )过点O作OD⊥AC于点D ,根据角平分线性质得出OD =OB ,根据切线的判定推出即可;(2 )根据勾股定理求出AB ,证△AOD∽△ACB ,得出比例式,代入求出即可.【解答】解:(1 )AC =⊙O相切,理由如下:过点O作OD⊥AC于点D ,∵∠ABC =90° ,∴OB⊥CB ,又∵OC平分∠ACB ,∴OD =OB ,∴AC与⊙O相切;(2 )∵在Rt△ABC中,AC =10 ,BC =6 ,∴AB ==8 ,∵OD⊥AC ,∴∠ODA =∠B =90°又∵∠A =∠A ,∴△AOD∽△ACB ,∴=,设⊙O的半径为x ,∴=,解得:x =3 ,即⊙O的半径为3.【点评】此题考查了切线的判定和勾股定理,也考查了相似三角形的性质和判定,还考查了角平分线性质,综合运用性质进行推理和计算是解此题的关键.参与本试卷答题和审题的老师有:HLing;星期八;2300680618;nhx600;lantin;sks;CJX;开心;zcx;gsls;sd2021;冯延鹏;Ldt;dbz1018;ZJX;hdq123;zjx111 (排名不分先后) 菁优网2021年11月24日。
2020-2021学年陕西省西安交大附中航天学校九年级(上)第一次月考数学试卷-解析版
2020-2021学年陕西省西安交大附中航天学校九年级(上)第一次月考数学试卷-解析版2020-2021学年陕西省西安交大附中航天学校九年级(上)第一次月考数学试卷1.下列是一元一次方程的是()A. x2?2x?3=0B. 2x+y=5C. x2+1x=1 D. x+1=02.已知2x=3y(y≠0),则下面结论成立的是()A. xy =32B. x3=2yC. xy=23D. x2=y33.在一个不透明的盒子里装有若干个白球和15个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过多次重复试验,发现摸到红球的频率稳定在0.6左右,则袋中白球约有()A. 5个B. 10个C. 15个D. 25个4.如图,l1//l2//l3,AB=2,BC=4,DB=3,则DE的长为()A. 4B. 5C. 6D. 95.如图,在矩形ABCD中,对角线AC、BD交于点O,∠AOD=120°,对角线AC=4,则BC的长为()A. 1B. 2√3C. √3D. 26.某果园2018年砂糖橘产量为80吨,2020年要达到100吨,设砂糖橘产量的年平均增长率为x,则依据题意所列方程为()A. 80(1+x)2=100B. 80(1+x)3=100C. 80(1+2x)=100D. 100(1?x)2=807.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5cm,则EF为()A. 5B. 10C. 15D. 208.关于x的一元二次方程kx2?4x+1=0有实数根,则k的取值范围是()A. k≥?4B. k≥?4且k≠0C. k≤4D. k≤4且k≠09.如图所示,不能判定△ABC∽△DAC的条件是()A. ∠B=∠DACB. ∠BAC=∠ADCC. AD2=BD?BCD. AC2=DC?BC10.正方形ABCD的边长是4,P为BC上的动点,连接PA,作PQ⊥PA,PQ交CD于Q,连接AQ,则AQ的最小值是()A. 5B. 2√5C. √17D. 411.已知xy =23,那么x+yx=______.12.如图,△ABC中,点D、E分別在AB、AC上,DE//BC,AD:DB=1:2,则△ADE与△ABC的面积的比为______.13.如图,在平面直角坐标系中,△ABC与△DEF关于原点O成位似关系,且相似比k=13.若B(2,1),则点E的坐标是______.14.已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=______.15.设x1,x2是方程x2+2x?2020=0的两个实数根,则1x1+1x2=______.16.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是______.17.用适当的方法解下列方程(1)x2?4x=5;(2)(x+1)(x+8)=?12.18.解分式方程:3x+2+2=2xx?2.19.在△ABC中,∠ABC=80°,∠ACB=60°,利用尺规作图在AC边上求作一点D,使得△ABC∽△BDC.(不写作法,保留作图痕迹)20.如图,AD是△ABC的角平分线,过点D分别作AC、AB的平行线,交AB于点E,交AC于点F.(1)求证:四边形AEDF是菱形.(2)若AF=13,AD=24.求四边形AEDF的面积.21.随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为______;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.22.如图,在矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)求证:△ABE∽△DFA;(2)若AB=6,AD=12,BE=8,求DF的长.23.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.24.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,每月可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每月减少20盒.(1)若将这种口罩每盒的售价上涨x元,则每月销售量是多少盒?(用含x的代数式表示)(2)维康药店要保证每月销售此种口罩盈利6000元,且使该口罩的月销量不低于200盒,则每盒口罩的售价应为多少元?25.如图,在正方形ABCD中,点O是对角线AC的中点,点P为线段AO上一个动点(不包括两个端点),Q为CD边上一点,且∠BPQ=90°.(1)如图1,直接写出线段PB与线段PQ的数量关系为______.(2)若BC+CQ=6,求四边形BCQP的面积;(3)如图2,连接BQ交AC于点E,若正方形ABCD的边长为6√2,AP=2,求PE的长.答案和解析1.【答案】D【解析】【分析】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.【解答】解:A.不是一元一次方程,故此选项错误;B.不是一元一次方程,故此选项错误;C.不是一元一次方程,故此选项错误;D.是一元一次方程,故此选项正确;故选D.2.【答案】A【解析】【分析】本题考查了等式的性质,利用等式的性质是解题关键.根据等式的性质2,可得答案.【解答】解:A.两边都除以2y,得xy =32,故A符合题意;B.两边除以不同的整式,故B不符合题意;C.两边都除以2y,得xy =32,故C不符合题意;D.两边除以不同的整式,故D不符合题意.故选A.3.【答案】B【解析】解:设袋中白球有x个,根据题意得:1515+x=0.6,解得:x=10,经检验:x=10是分式方程的解,答:袋中白球约有10个.故选:B.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn是解题关键.4.【答案】D【解析】解:∵l1//l2//l3,∴ABBC =DBBE,即24=3BE,解得BE=6,∴DE=DB+BE=3+6=9,故选:D.由平行线分线段成比例定理得出比例式,即可得出结果.本题考查了平行线分线段成比例定理;熟记平行线分线段成比例定理是解决问题的关键.5.【答案】B【解析】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=12AC,OB=12BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB,∴AC=2OA=4,∴AB=2∴BC=√AC2?AB2=√42?22=2√3,故选:B.由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AB,然后根据勾股定理即可求出BC.本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.【答案】A【解析】解:由题知:80(1+x)2=100故选:A.根据一元二次方程的实际应用的平均增长率的公式列式即可.本题考查了一元二次方程的实际应用问题的平均增长率问题,熟知其应用是解题的关键.7.【答案】A【解析】解:∵∠ACB=90°,D是AB的中点,∴AB=2CD=2×5=10cm,∴E,F分别是BC,CA的中点,∴EF是△ABC的中位线,∴EF=12AB=12×10=5cm.故选:A.根据直角三角形斜边上的中线等于斜边的一半求出AB,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.【答案】D【解析】解:∵关于x的一元二次方程kx2?4x+1=0有实数根,∴k≠0且Δ=(?4)2?4k≥0,解得:k≤4且k≠0.故选:D.根据二次项系数非零结合根的判别式Δ≥0,即可得出关于k的一元一次不等式组,解之即可得出结论.本题考查了根的判别式以及一元二次方程的定义,牢记“当Δ≥0时,方程有实数根”是解题的关键.9.【答案】C【解析】解:已知△ABC 和△DCA 中,∠ACD =∠BAC ;如果△ABC∽△DAC ,需满足的条件有:①∠DAC =∠B 或∠ADC =∠BAC ;②AC 2=DC ?BC ;故选:C .已知有公共角∠C ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;D 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;C 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.10.【答案】A【解析】解:设BP 的长为x ,CQ 的长为y .∵四边形ABCD 是正方形,∴∠B =∠C =90°,∵PQ ⊥PA ,∴∠APB +∠QPC =90°,∠APB +∠BAP =90°,∴∠BAP =∠QPC ,∴△ABP∽△PCQ ,∴BP CQ=ABPC,即x y =44?x ,∴y =?14x 2+x =?12(x ?2)2+1(0<="" ,="">∴AQ =√AD 2+DQ 2=√42+32=5,故选:A .由题意知:PQ ⊥PA ,即:∠APB +∠QPC =90°,∠BAP +∠APB =180°?∠B =90°,所以∠QPC =∠BAP ,又∠B =∠C ,即:△ABP∽△PCQ ,由相似三角形的性质可得:BPCQ =ABPC ,又BP =x ,PC =BC ?BP =4?x ,AB =4,将其代入该式求出CQ 的值即可,利用“配方法”求该函数的最大值,则可求出AQ 的最小值.本题主要考查正方形的性质、二次函数的应用、勾股定理等知识,解题的关键在于理解题意运用三角形的相似性质求出CQ的最大值.11.【答案】52【解析】解:∵x y=23,∴x=23y,∴x+yx =23y+y23y=52.故答案为:52.直接利用已知得出x=23y,进而得出答案.此题主要考查了比例的性质,正确运用已知变形是解题关键.12.【答案】1:9【解析】解:∵DE//BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:9.故答案为:1:9.根据DE//BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9,问题得解.本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.13.【答案】(6,3)【解析】解:△ABC与△DEF关于原点O成位似关系,相似比k=1 3,∵点E是点B的对应点,点B的坐标为(2,1),∴点E的坐标为(2×3,1×3),即(6,3),故答案为:(6,3).根据位似变换的性质计算即可.本题考查的是位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或?k.14.【答案】√5?1【解析】解:由于P为线段AB=2的黄金分割点,且AP是较长线段;则AP=2×√5?12=√5?1.根据黄金分割点的定义,知AP是较长线段;则AP=√5?12AB,代入数据即可得出AP 的长.理解黄金分割点的概念.应该识记黄金分割的公式:较短的线段=原线段的3?√52,较长的线段=原线段的√5?12.15.【答案】11010【解析】解:∵x1、x2是方程x2+2x?2020=0的两个实数根,∴x1+x2=?2,x1x2=?2020,∴1x1+1x2=x1+x2x1x2=?22020=11010.故答案为11010.根据根与系数的关系可得出x1+x2=?2、x1x2=?2020,将其代入1x1+1x2=x1+x2x1x2中即可求出结论.本题考查了根与系数的关系,牢记两根之和等于?ba 、两根之积等于ca是解题的关键.16.【答案】2√2【解析】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2//CE且P1P2=12CE.当点F在EC上除点C、E的位置处时,有DP=FP.CF.由中位线定理可知:P1P//CE且P1P=12∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值.∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2.∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.∴∠DP2P1=90°.∴∠DP1P2=45°.∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长.在等腰直角BCP1中,CP1=BC=2,∴BP1=2√2∴PB的最小值是2√2.故答案是:2√2.根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.17.【答案】解:(1)x2?4x=5,x2?4x+4=9,(x?2)2=9,x?2=±3,解得x1=?1,x2=5;(2)(x+1)(x+8)=?12,整理得x2+9x+20=0,(x+4)(x+5)=0,x+4=0或x+5=0,解得x1=?4,x2=?5.【解析】(1)利用配方法得到(x+2)2=6,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了因式分解法解方程.18.【答案】解:去分母得:3x?6+2x2?8=2x2+4x,解得:x=?14,经检验x=?14是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【答案】解:∵∠ABC=80°,∠ACB=60°,∴∠A=40°,∵∠C是公共角,∴只要作∠DBC=∠A即可,恰好∠ABC=2∠DBC,∴作∠ABC的角平分线即可.如图所示:△ABC∽△BDC.【解析】此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.根据计算直接利用角平分线的作法得出∠ABC的平分线进而得出答案.20.【答案】(1)证明:∵AB//DF,AC//DE,∴四边形AEDF是平行四边形.∵AD是△ABC的角平分线,∴∠BAD=∠DAC.又∵AC//DE,∴∠ADE=∠DAC.∴∠ADE=∠BAD.∴EA=ED.∴四边形AEDF是菱形.(2)解:连接EF交AD于点O.∵四边形AEDF是菱形,∴EF=2FO.∴AO=12AD=12.∵AD⊥EF.在Rt△AOF中,由勾股定理得OF=√AF2?AO2=√132?122=5.∴OE=OF=5.∴四边形AEDF的面积=12AD×OF+12AD×OE=12×24×5+1×24×5=120.【解析】(1)先证明四边形AEDF是平行四边形.再证明∠ADE=∠BAD.可得EA=ED.则结论得证;(2)连接EF交AD于点O.求出OE=OF=5,则四边形AEDF的面积可求出.本题考查了菱形的判定与性质,勾股定理等知识点,熟练掌握菱形的判定与性质是解题的关键.21.【答案】(1)14;(2)画树状图为:共有16种等可能的结果,其中李老师和王老师被分配到同一个监督岗的结果数为4,所以李老师和王老师被分配到同一个监督岗的概率=416=14.【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,找出李老师和王老师被分配到同一个监督岗的结果数,然后根据概率公式计算.【解答】解:(1)李老师被分配到“洗手监督岗”的概率=14故答案为:14;(2)见答案.22.【答案】(1)证明:在矩形ABCD中,∠B=90°,AD//BC,∵DF⊥AE,∴∠AFD=90°,∴∠B=∠AFD=90°,又∵AD//BC,∴∠DAE=∠AEB,∴△ABE∽△DFA.(2)解:∵AB=6,BE=8,∠B=90°,∴AE=√AB2+BE2=10,∵△ABE∽△DFA,∴ABDF =AEAD,即6DF =1012,∴DF=7.2.【解析】此题考查了相似三角形的判定和性质,以及矩形的性质、勾股定理等知识点,难度中等.(1)△ABE和△DFA都是直角三角形,还需一对角对应相等即可.根据AD//BC可得∠DAF=∠AEB,问题得证;(2)运用相似三角形的性质求解.23.【答案】解:设NB的长为x米,则MB=x+1.1+2.8?1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴CDAB =DNBN.同理,△EMF∽△AMB,∴EFAB =FMBM.∵EF=CD,∴DNBN =FMBM,即1.1x= 1.5x+2.4.解得x=6.6,∵CDAB =DNBN,∴1.6AB =1.16.6.解得AB=9.6.答:大树AB的高度为9.6米.【解析】设NB的长为x米,则MB=x+1.1+2.8?1.5=(x+2.4)米.通过△CND∽△ANB和△EMF∽△AMB的性质求得x的值,然后结合CDAB =DNBN求得大树的高.本题考查相似三角形的应用,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.24.【答案】解:(1)设每盒口罩可涨价x元,由题意,得:(x+50?40)(500?20x),(2)由题意,得:(x+50?40)(500?20x)=6000,解得x1=5,x2=10.设每盒口罩的售价为m元,则500?20(m?50)≥200,解得,m≤65.即:每盒口罩的售价应不高于65元.所以x1=5,x2=10均符合题意.答:每盒口罩的售价应为55元或60元.【解析】(1)设每盒口罩需涨价x元,根据“每盒口罩涨价1元,则口罩的销量每月减少20盒”表示出销售量;(2)设每盒口罩的售价为m元,由关键描述语“该口罩的月销量不低于200盒”列出不等式求解即可.此题考查了一元二次方程的应用,弄清“每盒口罩涨价1元,则口罩的销量每月减少20盒”是解本题的关键.25.【答案】PB=PQ【解析】解:(1)过点P作PE⊥BC于E,PF⊥CD于F.∵四边形ABCD是正方形,∴∠ACD=∠ACB,又∵PE⊥BC于E,PF⊥CD于F,∴PE=PF,∵∠PEC=∠PFC=∠ECF=90°,∴四边形PECF是矩形,又∵PE=PF,∴四边形PECF是正方形,∴∠EPF=∠BPQ=90°,∴∠BPE=∠QPF,又∵∠PEB=∠PFQ=90°,PE=PF,∴△PEB≌△PFQ(ASA),∴PB=PQ,故答案为:PB=PQ;(2)由(1)可知△PBE≌△PQF,四边形PECF是正方形,∴BE=FQ,CE=CF,S△BPE=S△PQF,∵BC+CQ=6,∴EC+FC=BC+CQ=6,∴CE=CF=3,又∵S△BPE=S△PQF,∴S四边形BCQP =S四边形CEPF=9;(3)如图2,将△BEC绕点B逆时针旋转90°,得到△BHA,∴△BEC≌△BHA,∴AH=CE,BH=BE,∠ABH=∠CBE,∠BAH=∠BCE=45°,∴∠HAP=90°,∵正方形ABCD的边长为6√2,∴AC=12,∵AP=2,∴PE+EC=10,∵PB=PQ,∠BPQ=90°,∴∠PBQ=45°,∴∠ABP+∠CBE=45°,∴∠ABP+∠ABH=45°,∴∠PBH=∠PBE,又∵BH=BE,BP=BP,∴△PBE≌△PBH(SAS),∴PE=PH,∵HA2+AP2=HP2,∴(10?PE)2+4=PE2,∴PE=5.2.(1)过点P作PE⊥BC于E,PF⊥CD于F,由“ASA”可证△PEB≌△PFQ,可得PB=PQ;(2)由全等三角形的性质可得BE=FQ,CE=CF,S△BPE=S△PQ F,可得CE=CF=3,可得S四边形BCQP=S四边形CEPF=9;(3)将△BEC绕点B逆时针旋转90°,得到△BHA,由“SAS”可证△PBE≌△PBH,可得PE=PH,由勾股定理可求解.本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质和判定,旋转的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
2020-2021西安交通大学附属中学航天学校初三数学下期中模拟试题(含答案)
2020-2021西安交通大学附属中学航天学校初三数学下期中模拟试题(含答案)一、选择题1.如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 2.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍; 3.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .14.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似5.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2)6.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .22C .823D .327.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .1658.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1210.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .1311.在反比例函数4y x=的图象中,阴影部分的面积不等于4的是( ) A . B . C . D .12.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( )A .①③B .③④C .②④D .②③ 二、填空题13.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x=(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .14.如图,在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆2AB m =,它的影子 1.6BC m =,木杆PQ 的影子有一部分落在了墙上, 1.2PM m =,0.8MN m =,则木杆PQ 的长度为______m .15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.17.如图,直立在点B处的标杆AB=2.5m,站立在点F处的观测者从点E看到标杆顶A,树顶C在同一直线上(点F,B,D也在同一直线上).已知BD=10m,FB=3m,人的高度EF =1.7 m,则树高DC是________.(精确到0.1 m)18.如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,0x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.19.如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m,则玲玲的身高约为________m.(精确到0. 01m)(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).20.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.三、解答题21.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22.如图,在Rt ABC V 中,90BAC ∠=o ,AD BC ⊥于点D ,求证:2AD CD BD =⋅.23.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).24.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;25.如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D 处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C 处,然后向楼房方向继续行走10米到达E 处,测得楼房顶部A 的仰角为60︒.已知坡面10CD =米,山坡的坡度1:3i =(坡度i 是指坡面的铅直高度与水平宽度的比),求楼房AB 高度.(结果精确到0.1米)(参考数据:3 1.73≈,2 1.41≈)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】 分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=k x(k≠0)的图象经过点(−3,2), ∴k=−3×2=−6, ∵−12×8=−4≠−6, −3×(−2)=6≠−6, 12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.D解析:D【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 4.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意; 故选B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.5.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l )向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l )向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.6.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴DE=BD•tan30°=33=3,∴AE=AD-DE== 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.8.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x =1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy ,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x =2xy ,其值为定值.【详解】解:因为等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,所以△BEC 和△DCF 都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.9.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a ,k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.10.D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.11.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.14.3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长再根据此影长列出比例式即可【详解】解:过N 点作ND ⊥PQ 于D 又∵AB=2BC=16PM=12NM=08∴PQ=QD+DP=QD+NM=1解析:3【解析】【分析】先根据同一时刻物高与影长成正比求出QD 的影长,再根据此影长列出比例式即可.【详解】解:过N 点作ND ⊥PQ 于D ,BC DN AB QD∴= 又∵AB=2,BC=1.6,PM=1.2,NM=0.8, 1.5AB DN QD BC ⋅∴== ∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m ).故答案为:2.3.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.15.3:2【解析】因为DE∥BC 所以因为EF∥AB 所以所以故答案为:3:2 解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 16.1或4或25【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC 根据该相似三角形的对应边成比例求得DP 的长度【详解】设DP=x 则CP=5-x 本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【详解】设DP=x ,则CP=5-x ,本题需要分两种情况情况进行讨论,①、当△PAD ∽△PBC 时,AD BC =DP CP ∴225x x=-,解得:x=2.5; ②、当△APD ∽△PBC 时,AD CP =DP BC,即25x -=2x , 解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位. 17.2m 【解析】【详解】解:过点E 作EM ⊥CD 交AB 与点N ∴故答案为52m 【点睛】本题是考查相似三角形的判定和性质关键是做出辅助线构造相似三角形利用相似三角形的性质得出结论即可这类题型可以作垂直也可以作解析:2m【解析】【详解】解:过点E 作EM ⊥CD,交AB 与点N.∴,EN AN EAN ECM EM CMV V ~∴= 30.82.5, 1.7,0.8,10,313AB m EF m AN m BD m FB m CM==∴===∴=Q Q ,()3.47CM m ∴≈ ()1.7 3.47 5.2.CD m ∴=+≈故答案为5.2m .【点睛】本题是考查相似三角形的判定和性质.关键是做出辅助线,构造相似三角形,利用相似三角形的性质得出结论即可.这类题型可以作垂直也可以作平行线,构造相似三角形.18.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.79【解析】【分析】身高影长和光线构成直角三角形根据tan55°=身高:影长即可解答【详解】解:玲玲的身高=影长×tan55°=125×1428≈179(m )故答案为179【点睛】本题考查了解直角三解析:79【解析】【分析】身高、影长和光线构成直角三角形,根据tan55°=身高:影长即可解答. 【详解】解:玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m ).故答案为1.79.【点睛】本题考查了解直角三角形的应用、正切的概念、计算器的使用.20.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD∥BC 判定△ADF∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积.三、解答题21.观景亭D 到南滨河路AC 的距离约为248米.【解析】【分析】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,根据AE=DE ,列出方程即可解决问题.【详解】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,在Rt △DEB 中,tan ∠DBE=DE BE, ∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE .∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D 到南滨河路AC 的距离约为248米.22.见解析【解析】【分析】根据相似三角形的判定方法证明Rt △ABD ∽Rt △ADC ,即可得到BD :AD=AD :CD ,再利用比例性质可得.【详解】∵BD AC ⊥,∴ADB CDB 90∠∠==o ,∴BAD 90∠∠+=o B∵90BAC ∠=o∴90B C ∠+∠=o∴BAD ∠∠=C∴Rt ABD Rt CAD ∽V V ,∴BD :AD=AD :CD ,∴2AD CD BD =⋅.【点睛】考查了直角三角形性质的应用,判定三角形相似是解题的关键.23.CE 的长为(4+)米【解析】【分析】由题意可先过点A 作AH ⊥CD 于H .在Rt △ACH 中,可求出CH ,进而CD=CH+HD=CH+AB ,再在Rt △CED 中,求出CE 的长.【详解】过点A 作AH ⊥CD ,垂足为H ,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33=23(米),∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题24.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°, ∴∠D=∠CBD=36°, ∴∠BAD=180°﹣∠D ﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF ﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB ﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD ,∴∠FAC=36°=∠D , ∵∠AED=∠AEF ,∴△AEF ∽△DEA ,∴AE ED EF AE=, ∴AE 2=EF×ED. 【点睛】 本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.25.楼房AB 高度约为23.7米【解析】【分析】过D 作DG BC ⊥于G ,DH AB ⊥于H ,交AE 于F ,作FP BC ⊥于P ,则DG FP BH ==,DF GP =,求出30DCG ∠=︒,得出152FP DG CD ===,353CG DG ==,求出203103DF GP ==+,证出30DAF ADF ∠=︒=∠,得出20310AF DF ==+,得出1103523FH AF ==+,因此31053AH FH ==+,即可得出答案.【详解】解:过D 作DG BC ⊥于G ,DH AB ⊥于H ,交AE 于F ,作FP BC ⊥于P ,如图所示:则,DG FP BH DF GP ===,∵坡面10CD =米,山坡的坡度3i =∴30DCG ∠=︒, ∴152FP DG CD ===,∴CG ==∵60FEP ∠=︒,∴5FP ==,∴EP =∴101033DF GP ==+=+, ∵60AEB ∠=︒,∴30EAB ∠=︒,∵30ADH ∠=︒,∴60DAH ∠=︒,∴30DAF ADF ∠=︒=∠,∴10AF DF ==+,∴152FH AF ==,∴10AH ==+∴10515155 1.7323.7AB AH BH =+=+=+≈+⨯≈(米), 答:楼房AB 高度约为23.7米.【点睛】此题是解直角三角形的应用--仰角,俯角问题,主要考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.。
2020-2021学年陕西省西安市交大附中九年级上学期期中考试数学模拟试卷及答案解析
2020-2021学年陕西省西安市交大附中九年级上学期期中考试
数学模拟试卷
一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(3分)抛物线y=x2﹣1的顶点坐标是()
A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(3分)如图所示的几何体的左视图()
A .
B .
C .
D .
3.(3分)小明沿着坡度为1:的坡面向下走了2米,那么他下降高度为()A.1米B .米C.2米D .米
4.(3分)在反比例函数y =图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是()
A.m >B.m <C.m ≥D.m ≤
5.(3分)如图,在平面直角坐标系中,以原点为位似中心,将线段CD放大得到线段AB,若点B、C、D的坐标分别为B(5,0)、C(1,2)、D(2,0),则点A的坐标是()
A.(2.5,5)B.(2.5,3)C.(3,5)D.(2.5,4)6.(3分)向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c (a≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()
A.第8秒B.第10秒C.第12秒D.第15秒
第1页(共20页)。
2020-2021西安交通大学附属中学初三数学上期中第一次模拟试题(带答案)
2020-2021西安交通大学附属中学初三数学上期中第一次模拟试题(带答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .3.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .344.如图,AB 为⊙O 的直径,点C 为⊙O 上的一点,过点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠A =25°,则∠D 的度数是( )A .25°B .40°C .50°D .65° 5.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<6.如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( )A .1B .22C .2D .2 7.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1C .3D .18.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( ) A .1B .1或4C .4D .09.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( ) A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 10.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .1912.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 2二、填空题13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为__________.15.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么根据题意列出的方程为_____.16.若圆锥的底面周长为4π,母线长为6,则圆锥的侧面积等于________.(结果保留π)17.母线长为2cm ,底面圆的半径为1cm 的圆锥的侧面积为__________ cm². 18.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,23A CD ︒∠==,则⊙O 的半径是_______.19.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .20.如图,在△ABC 中,AB =6,将△ABC 绕点B 按逆时针方向旋转30°后得到△A 1BC 1,则阴影部分的面积为________.三、解答题21.在硬地上抛掷一枚图钉,通常会出现两种情况:下面是小明和同学做“抛掷图钉实验”获得的数据: 抛掷次数n 100 200 300 400 500 600 700 800 900 1000 针尖不着地的频数m63120186252310 360434488549610针尖不着地的频率mn0.630.600.630.600.620.610.61(1)填写表中的空格;(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为.22.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?24.已知关于x的方程x2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a的取值范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3.D解析:D【解析】过B 作⊙O 的直径BM ,连接AM , 则有:∠MAB=∠CDB=90°,∠M=∠C , ∴∠MBA=∠CBD , 过O 作OE ⊥AB 于E ,Rt △OEB 中,BE=12AB=4,OB=5, 由勾股定理,得:OE=3,∴tan ∠MBA=OE BE =34, 因此tan ∠CBD=tan ∠MBA=34,故选D .4.B解析:B 【解析】连接OC ,∵CD 是切线,∴∠OCD=90°,∵OA=OC ,∴∠ACO=∠BAC=25°,∴∠COD=∠ACO+∠BAC=50°, ∴∠D=90°-∠COD=40°, 故选B.5.B解析:B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.D解析:D 【解析】 【分析】 【详解】解:连接AO ,并延长交⊙O 于点D ,连接BD ,∵∠C=45°,∴∠D=45°,∵AD 为⊙O 的直径,∴∠ABD=90°, ∴∠DAB=∠D=45°, ∵AB=2, ∴BD=2, ∴22222222AB BD +=+=∴⊙O 的半径AO=22AD=. 故选D . 【点睛】本题考查圆周角定理;勾股定理.7.D解析:D 【解析】 【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可. 【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3,即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.8.C解析:C 【解析】 【分析】先把x =0代入方程求出m 的值,然后根据一元二次方程的定义确定满足条件的m 的值. 【详解】解:把x =0代入方程得m²−5m +4=0,解得m ₁=4,m ₂=1, 而a−1≠0, 所以m =4. 故选C . 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.9.B解析:B 【解析】 【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决. 【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯,解得:116k,此时116k 且0k ≠; 综上,116k .故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.10.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.11.A解析:A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 【详解】 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49, 故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.二、填空题13.20【解析】【分析】本题可设这两年平均每年的增长率为x因为经过两年时间让市区绿地面积增加44则有(1+x)2=1+44解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x根据题意得(1解析:20%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.2【解析】【分析】把x=1代入已知方程列出关于k的新方程通过解新方程来求k的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k的新方程,通过解新方程来求k的值.【详解】∵方程x2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 15.x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步那么宽就应该是(x﹣12)步根据面积为864即可得出方程【详解】解:设矩形田地的长为x步那么宽就应该是(x﹣12)步根据矩形面积=长×宽解析:x(x﹣12)=864【解析】【分析】如果设矩形田地的长为x步,那么宽就应该是(x﹣12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的长为x步,那么宽就应该是(x﹣12)步.根据矩形面积=长×宽,得:x(x﹣12)=864.故答案为:x(x﹣12)=864.【点睛】本题考查一元二次方程的实际应用,读懂题意根据面积公式列出方程是解题的关键.16.【解析】【分析】底面周长即为侧面展开图扇形的弧长然后根据圆锥的侧面积列式进行计算即可得解【详解】解:圆锥的侧面积故答案为:【点睛】本题考查了圆锥的计算熟练掌握圆锥的侧面积公式是解题的关键解析:12π【解析】【分析】底面周长即为侧面展开图扇形的弧长,然后根据圆锥的侧面积12lr=列式进行计算即可得解.【详解】解:圆锥的侧面积11641222==⨯⨯=lrππ.故答案为:12π. 【点睛】本题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解题的关键.17.2π【解析】【分析】【详解】解:∵圆锥的底面圆的半径为1∴圆锥的底面圆的周长=2π×1=2π∴圆锥的侧面积=×2π×2=2π故答案为2π【点睛】本题考查了圆锥的侧面积公式:S=l•R 圆锥侧面展开图为解析:2π 【解析】 【分析】 【详解】解:∵圆锥的底面圆的半径为1,∴圆锥的底面圆的周长=2π×1=2π, ∴圆锥的侧面积=12×2π×2=2π. 故答案为2π. 【点睛】本题考查了圆锥的侧面积公式:S =12l •R .圆锥侧面展开图为扇形,底面圆的周长等于扇形的弧长,母线长为扇形的半径.18.2【解析】【分析】连接BC 由圆周角定理和垂径定理得出由直角三角形的性质得出得出求出即可【详解】解:连接BC 如图所示:∵AB 是⊙O 的直径弦于H 在中即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理解析:2 【解析】 【分析】连接BC ,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====角三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,1902ACB CH DH CD ∴∠︒=,==30A ∠︒=,2AC CH ∴==在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA∴=,即⊙O的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.19.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 12π+20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S阴影=S△A1BA+S△A1BC1﹣S△解析:9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣S△ABC=S△A1BA,最终得到阴影部分的面积.【详解】解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=6,∴△A1BA 是等腰三角形,∠A1BA=30°,∴S△A1BA= 12×6×3=9,又∵S 阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=9.故答案为9.【点睛】本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.三、解答题21.(1)见表格解析;(2)见解析;(3)0.39.【解析】【分析】(1)先由频率=频数÷试验次数算出频率;(2)根据表格作出折线统计图即可;(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.【详解】解:(1)抛掷次数n1002003004005006007008009001000针尖不着地的频数m63120186252310360434488549610针尖不着地的频率0.630.600.620.630.620.600.620.610.610.61(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.【点睛】考核知识点:用频率表示概率.求出频率是关键.22.(1)1440人;(2)20%【解析】【分析】(1)5月份借阅了名著类书籍的人数是1000(1+10%),则6月份借阅了名著类书籍的人数为:5月份借阅了名著类书籍的人数+340人;(2)根据增长后的量=增长前的量×(1+增长率).设平均每年的增长率是x,列出方程求解即可.【详解】解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x.1000(1+x)2=1440,解得:x=0.2.答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.【点睛】本题是一道数学应用题中的增长率问题的实际问题,考查了列一元二次方程解实际问题的运用及一元二次方程的解法的运用,解答中对结果验根是否符合题意是解答的关键.23.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】()1∵摸到白球的频率为()++++++÷≈,0.650.620.5930.6040.6010.5990.60170.6∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P (白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等). 【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.24.(1)a >-1;(2) x 1=-3,x 2=-1. 【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a 的取值范围;(2)把a 代入后解方程即可. 试题解析:(1)∵方程有两个不相等的实数根 ∴16-4(3-a )>0, ∴a >-1 .(2)由题意得:a =0 , 方程为x 2+4x +3=0 , 解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根. 25.(1)证明见解析;(2)6πcm 2. 【解析】 【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC . 【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M . (1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°, ∵AC ∥BD , ∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC , ∵OC 为半径, ∴AC 是⊙O 的切线;(2)由(1)知,AC 为⊙O 的切线, ∴OC ⊥AC .∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.。
2020-2021西安交通大学第二附属中学南校区初三数学上期中试卷(含答案)
2020-2021西安交通大学第二附属中学南校区初三数学上期中试卷(含答案)一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ). A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.方程x 2+x-12=0的两个根为( ) A .x 1=-2,x 2=6B .x 1=-6,x 2=2C .x 1=-3,x 2=4D .x 1=-4,x 2=33.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .45.下列交通标志是中心对称图形的为( ) A .B .C .D .6.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )A .55°B .110°C .120°D .125° 7.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=8.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣5m+4=0有一个根为0,则m 的值等于( ) A .1B .1或4C .4D .09.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )A .B .C .D .10.下列事件中,属于必然事件的是( ) A .任意数的绝对值都是正数B .两直线被第三条直线所截,同位角相等C .如果a 、b 都是实数,那么a +b =b +aD .抛掷1个均匀的骰子,出现6点朝上11.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .212.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根二、填空题13.如图,将Rt ABC V 绕直角顶点C 顺时针旋转90o ,得到DEC V ,连接AD ,若25BAC ∠=o ,则BAD ∠=______.14.圆锥的底面半径为14cm ,母线长为21cm ,则该圆锥的侧面展开图的圆心角为_____ 度.15.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C = __.16.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M ,则线段ME 的长度可取的整数值为___________________.17.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.18.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .19.如图,AD 为ABC V 的外接圆O e 的直径,如果50BAD ∠=︒,那么ACB =∠__________.20.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.三、解答题21.为提升学生的艺术素养,学校计划开设四门艺术选修课:A .书法;B .绘画;C .乐器;D .舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少? (2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A .书法;B .绘画;C .乐器;D .舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.22.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A .“解密世园会”、B .“爱我家,爱园艺”、C .“园艺小清新之旅”和D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C .“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率. 23.关于x 的一元二次方程2210x x k ++-=有两个不相等的实数根. (1)求k 的取值范围;(2)当k 为正整数时,求此时方程的根.24.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?25.如图,在ABC ∆中,67 30AB cm BC cm ABC ==∠=o ,,, 点P 从A 点出发,以1/cm s 的速度向B 点移动,点Q 从B 点出发,以2/cm s 的速度向C 点移动.如果P Q ,两点同时出发,经过几秒后PBQ ∆的面积等于24cm ?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线, ∴抛物线的对称轴为直线x=2,则−2b a =−2b=2, 解得:b=−4,∴x 2+bx=5即为x 2−4x−5=0, 则(x−5)(x+1)=0, 解得:x 1=5,x 2=−1. 故选D. 【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.D解析:D 【解析】试题分析:将x 2+x ﹣12分解因式成(x+4)(x ﹣3),解x+4=0或x ﹣3=0即可得出结论. x 2+x ﹣12=(x+4)(x ﹣3)=0, 则x+4=0,或x ﹣3=0, 解得:x 1=﹣4,x 2=3. 考点:解一元二次方程-因式分解法3.D解析:D 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC =90°,求出∠DCE =20°,再由直角三角形两锐角互余求解即可, 【详解】解:连接CD ,如图,∵BC 是半圆O 的直径,∴∠BDC =90°, ∴∠ADC =90°, ∵∠DOE =40°, ∴∠DCE =20°,∴∠A =90°−∠DCE =70°, 故选:D . 【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.4.C解析:C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确; ∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误; ∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.5.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.6.D解析:D【解析】分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.详解:根据圆周角定理,得∠ACB=12(360°-∠AOB)=12×250°=125°.故选D.点睛:此题考查了圆周角定理.注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.7.D解析:D【解析】【分析】根据移项,配方,即可得出选项.【详解】解:x2-4x-1=0,x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.8.C解析:C【解析】【分析】先把x=0代入方程求出m的值,然后根据一元二次方程的定义确定满足条件的m的值.【详解】解:把x=0代入方程得m²−5m+4=0,解得m₁=4,m₂=1,而a−1≠0,所以m=4.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.注意一元二次方程的定义.9.B解析:B【解析】【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项不符合题意;D、不是中心对称图形,故本选项不符合题意.故选B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C解析:C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 任意数的绝对值都是正数是随机事件,错误;B. 两直线被第三条直线所截,内错角相等是随机事件,错误;C. 如果a、b都是实数,那么a+b=b+a是必然事件,正确;D. 抛掷1个均匀的骰子,出现6点朝上是随机事件,错误;故选D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确.所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.12.D解析:D 【解析】 【分析】求出b 2-4ac 的值,根据b 2-4ac 的正负即可得出答案. 【详解】 x 2+2x+2=0, 这里a=1,b=2,c=2, ∵b 2−4ac=22−4×1×2=−4<0, ∴方程无实数根, 故选D. 【点睛】此题考查根的判别式,掌握运算法则是解题关键二、填空题13.【解析】【分析】根据旋转的性质可得AC=CD 再判断出△ACD 是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD 可得答案【详解】∵Rt△ABC 绕其直角顶点C 解析:70o【解析】 【分析】根据旋转的性质可得AC=CD ,再判断出△ACD 是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,由∠BAD=∠BAC+∠CAD 可得答案. 【详解】∵Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC , ∴AC=CD ,∴△ACD 是等腰直角三角形, ∴∠CAD=45°,则∠BAD=∠BAC+∠CAD=25°+45°=70°, 故答案为:70°∘. 【点睛】本题考查了旋转的性质、等腰直角三角形的判定与性质,熟练掌握相关性质并准确识图是解题的关键.14.240【解析】【分析】根据弧长=圆锥底面周长=28πcm圆心角=弧长180母线长π计算【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm扇形的圆心角=弧长×180÷母线长÷π=28π×解析:240【解析】【分析】根据弧长=圆锥底面周长=28πcm,圆心角=弧长⨯180÷母线长÷π计算.【详解】解:由题意知:弧长=圆锥底面周长=2×14π=28πcm,扇形的圆心角=弧长×180÷母线长÷π=28π×180÷21π=240°.故答案为:240.【点睛】此题主要考查弧长=圆锥底面周长及弧长与圆心角的关系,熟练掌握公式及关系是解题关键.15.【解析】【分析】先根据∠AOC的度数和∠BOC的度数可得∠AOB的度数再根据△AOD中AO=DO可得∠A的度数进而得出△ABO中∠B的度数可得∠C的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16.345【解析】【分析】连接OE交CD与点M根据矩形与菱形的性质由勾股定理求出OE的长在旋转过程中求出OM的取值范围进而得出ME的取值范围进而求解【详解】如图连接OE 交CD 与点M∵矩形ABCD 对角线A解析:3,4,5【解析】【分析】连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解.【详解】如图,连接OE 交CD 与点M ,∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,∴90BAD ︒∠=,OA OB OC OD ===,∴由勾股定理知,10BD =,∴5OA OB OC OD ====,∵四边形OCED 为菱形,∴OE CD ⊥,132DM CD ==, ∴由勾股定理知,4OM =,即8OE =,∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3,当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5,∴35OM ≤≤,∵8OE =,∴35ME ≤≤,∴线段ME 的长度可取的整数值为3,4,5,故答案为:3,4,5.【点睛】本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.17.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π. 故答案为15π.考点:圆锥的计算. 18.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键解析:533【解析】 【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.19.40°【解析】【分析】连接BD 如图根据圆周角定理得到∠ABD=90°则利用互余计算出∠D=40°然后再利用圆周角定理得到∠ACB 的度数【详解】连接BD 如图∵AD 为△ABC 的外接圆⊙O 的直径∴∠ABD解析:40°.【解析】【分析】连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=40°,然后再利用圆周角定理得到∠ACB的度数.【详解】连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-50°=40°,∴∠ACB=∠D=40°.故答案为40°.【点睛】本题考查了圆周角定理.熟练掌握并运用圆周角定理是解决本题的关键.20.-2【解析】已知3是关于x的方程x2-5x+c=0的一个根代入可得9-3+c=0解得c=-6;所以由原方程为x2-5x-6=0即(x+2)(x-3)=0解得x=-2或x=3即可得方程的另一个根是x=解析:-2【解析】已知3是关于x的方程x2-5x+c=0的一个根,代入可得9-3+c=0,解得,c=-6;所以由原方程为x2-5x-6=0,即(x+2)(x-3)=0,解得,x=-2或x=3,即可得方程的另一个根是x=-2.三、解答题21.(1)本次调查的学生总人数为40人,∠α=108°;(2)补图见解析;(3)书法与乐器组合在一起的概率为16.【解析】【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【详解】(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为21 126=.【点睛】本题考查了条形统计图、扇形统计图、列表法与树状图法求概率,读懂统计图、熟练掌握列表法或树状图法求概率是解题的关键.22.(1) 14;(2)14【解析】【分析】(1)由概率公式即可得出结果;(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】解:(1)在这四条线路任选一条,每条被选中的可能性相同,∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是14;(2)画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为41 164=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)k <2(2)120,2x x ==-【解析】【分析】(1)根据一元二次方程根的判别式与根的关系列出不等式即可求出k 的取值范围; (2)根据(1)中的k 的取值范围和k 为正整数得出k 的值,再解方程即可,【详解】(1)∵关于x 的一元二次方程有两个不相等的实数根,∴()22410k ∆=-->, =8-4k >0.,∴2k <;(2)∵k 为正整数,∴k =1,解方程220x x +=得,120,2x x ==-.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程.利用一元二次方程根的判别式与根的关系列出不等式是解题的关键.24.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.【解析】试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即()()()2020280w x y x x =-=--+,然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()2230200y x =--+,然后根据二次函数的最值问题求解;(3)求函数值为150所对应的自变量的值,即解方程()2230200150x --+=,然后利用销售价不高于每件28元确定x 的值.试题解析:(1)根据题意可得:()20w x y =-⋅, ()()20280x x =--+,221201600x x =-+-,w 与x 之间的函数关系为:221201600w x x =-+-;(2)根据题意可得:()2221201*********w x x x =-+-=--+,∵20-<,∴当30x =时,w 有最大值,w 最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当150w =时,可得方程()2230200150x --+=.解得1225,35x x ==,∵3528>,∴235x =不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.25.经过2秒后PBQ ∆的面积等于24cm【解析】【分析】首先构建直角三角形,求出各边长,然后利用面积构建一元二次方程,求解即可.【详解】过点Q 作QE PB ⊥于E ,则90QEB ∠=︒,如图所示:30ABC ∠=︒Q ,2QE QB ∴=12PQB S PB QE ∆∴=g g 设经过t 秒后PBQ ∆的面积等于2 4cm ,则62PB t QB t QE t =-==,,. 根据题意,16 4.2t t -=g g () 212 680,24t t t t -+===,.当4t =时,28,87t =>,不合题意舍去,取2t =.答:经过2秒后PBQ ∆的面积等于24cm .【点睛】此题主要考查三角形中的动点问题,解题关键是利用面积构建一元二次方程.。
2020-2021西安交通大学附属中学分校初三数学上期中试题(含答案)
一、选择题
1.方程x2+x-12=0的两个根为( )
A.x1=-2,x2=6B.x1=-6,x2=2C.x1=-3,x2=4D.x1=-4,x2=3
2.﹣3的绝对值是( )
A.﹣3B.3C.- D.
3.下列图形是我国国产品牌汽车的标识,在这些汽白球的概率 (摸到白球) ________;
如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为 ?
25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
A. B. C. D.
4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()
A.25°B.40°C.50°D.65°
5.下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
6.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪.若草坪的面积为570m2,道路的宽为xm,则可列方程为( )
19.若抛物线的顶点坐标为 ,且它在 轴截得的线段长为 ,则该抛物线的表达式为________.
20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为 ,则图中阴影部分的面积为_____.
三、解答题
21.如图, 是边长为 的等边三角形,边 在射线 上,且 ,点 从点 出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将 绕点C逆时针方向旋转60°得到 ,连接DE.
陕西省西安XX学校2020届九年级上期中数学试卷含答案解析(全套样卷)
2020-2021学年陕西省西安XX学校九年级(上)期中数学试卷一、选择题1.菱形具有而一般平行四边形不具有的性质是( )A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( )A.18 B.16 C.15 D.143.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.1 B.2 C.3 D.44.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )A.6cm2B.8cm2C.16cm2D.不能确定5.下列条件之一能使菱形ABCD是正方形的为( )①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BD.A.①③ B.②③ C.②④ D.①②③6.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>57.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是( )A.﹣ B.C.﹣或D.18.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( ) A.B.C.D.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是( )A.B.C.D.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣5=0.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M的横坐标与纵坐标之和是偶数的概率.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.19.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.2020知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.2020-2021学年陕西省西安XX学校九年级(上)期中数学试卷参考答案与试题解析一、选择题1.菱形具有而一般平行四边形不具有的性质是( )A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.2.如图,在菱形ABCD中,AC=8,BD=6,则△ABD的周长等于( )A.18 B.16 C.15 D.14【考点】菱形的性质;勾股定理.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,进而△ABD的周长.【解答】解:菱形对角线互相垂直平分,∴BO=OD=3,AO=OC=4,∴AB=5,∴△ABD的周长等于5+5+6=16,故选B.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.3.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.1 B.2 C.3 D.4【考点】矩形的性质.【分析】首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选C.【点评】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质.注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.4.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )A.6cm2B.8cm2C.16cm2D.不能确定【考点】正方形的性质.【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【解答】解:S阴影=×4×4=8cm2.故选B.【点评】本题考查了正方形的性质以及轴对称的性质.注意利用轴对称的性质,将阴影面积转化为三角形面积求解是解题的关键.5.下列条件之一能使菱形ABCD是正方形的为( )①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BD.A.①③ B.②③ C.②④ D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABCD是菱形,∴当∠BAD=90°时,菱形ABCD是正方形,故②正确;∵四边形ABCD是菱形,∴当AC=BD时,菱形ABCD是正方形,故④正确;故选:C.【点评】此题主要考查了正方形的判定,正确掌握正方形的判定方法是解题关键.6.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.7.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是( )A.﹣ B.C.﹣或D.1【考点】一元二次方程的解.【分析】由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2=,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,然后把±1分别代入两根之和的形式中就可以求出m的值.【解答】解:由根与系数的关系可得:x1+x2=﹣(m+1),x1•x2=,又知一个实数根的倒数恰是它本身,则该实根为1或﹣1,若是1时,即1+x2=﹣(m+1),而x2=,解得m=﹣;若是﹣1时,则m=.故选:C.【点评】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系.解此类题目要会把代数式变形为两根之积或两根之和的形式,代入数值计算即可.8.在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是( ) A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和等于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和等于5的有4种情况,∴两次摸出的小球的标号之和等于5的概率是:.故选C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.掷一枚普通的硬币三次,落地后出现两个正面一个反面朝上的概率是( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图得出所有等可能的情况数,找出落地后出现两个正面一个反面朝上的情况数,即可求出所求的概率.【解答】解:画树状图得:所有等可能的情况有8种,其中两个正面一个反面的情况有3种,则P=.故选B.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为( )A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3 .【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有 6 条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=DC.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题16.解方程:(1)x2﹣1=2(x+1)(2)2x2﹣4x﹣5=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)移项后分解因式得出(x+1)(x﹣1﹣2)=0,再解两个一元一次方程即可;(2)用一元二次方程的求根公式x=可求出方程的两根.【解答】解:(1)∵x2﹣1=2(x+1),∴(x+1)(x﹣1)﹣2(x+1)=0,∴(x+1)(x﹣1﹣2)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3;(2)∵2x2﹣4x﹣5=0,∴a=2,b=﹣4,c=﹣5,∴b2﹣4ac=16+40=56,∴x==,∴x1=1+,x2=1﹣.【点评】本题主要考查了解一元二次方程的知识,根据方程的特点选择合适的方法解一元二次方程是解决此类问题的关键.一般解一元二次方程的方法有直接开平方法、因式分解法、公式法、配方法.17.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M的横坐标与纵坐标之和是偶数的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)列表得出所有等可能的情况结果即可;(2)列表得出点M的横坐标与纵坐标之和是偶数的情况数,即可求出所求的概率.【解答】解:(1)列表如下:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)则点M坐标的所有可能的结果有9个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)求出横纵坐标之和,如图所示:1 2 31 2 3 42 3 4 53 4 5 6得到之和为偶数的情况有5种,故P(点M的横坐标与纵坐标之和是偶数)=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.18.已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;(2)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根.【解答】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,解得x1=﹣.【点评】本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.19.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE⊥AB.(1)求∠ABC的度数;(2)如果,求DE的长.【考点】菱形的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据菱形的四条边都相等可得AB=AD,然后求出AB=AD=BD,从而得到△ABD是等边三角形,再根据等边三角形的性质求出△DAB=60°,然后根据两直线平行,同旁内角互补求解即可;(2)根据菱形的对角线互相平分求出AO,再根据等边三角形的性质可得DE=AO.【解答】解:(1)∵E为AB的中点,DE⊥AB,∴AD=DB,∵四边形ABCD是菱形,∴AB=AD,∴AD=DB=AB,∴△ABD为等边三角形.∴∠DAB=60°.∵菱形ABCD的边AD∥BC,∴∠ABC=180°﹣∠DAB=180°﹣60°=12020即∠ABC=12020(2)∵四边形ABCD是菱形,∴BD⊥AC于O,AO=AC=×4=2,由(1)可知DE和AO都是等边△ABD的高,∴DE=AO=2.【点评】本题考查了菱形的性质,等边三角形的判定与性质,熟记各性质是解题的关键.20202020春•仙游县校级期末)已知:如图,在▱ABCD中,点E是BC的中点,连接AE并延长交DC 的延长线于点F,连接BF.(1)求证:△ABE≌△FCE;(2)若AF=AD,求证:四边形ABFC是矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)根据平行四边形性质得出AB∥DC,推出∠1=∠2,根据AAS证两三角形全等即可;(2)根据全等得出AB=CF,根据AB∥CF得出平行四边形ABFC,推出BC=AF,根据矩形的判定推出即可.【解答】证明:(1)如图.∵四边形ABCD是平行四边形,∴AB∥DC 即 AB∥DF,∴∠1=∠2,∵点E是BC的中点,∴BE=CE.在△ABE和△FCE中,,∴△ABE≌△FCE(AAS).(2)∵△ABE≌△FCE,∴AB=FC,∵AB∥FC,∴四边形ABFC是平行四边形,∴AD=BC,∵AF=AD,∴AF=BC,∴四边形ABFC是矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定等知识点的应用,本题主要考查学生运用定理进行推理的能力.。
2020-2021西安市九年级数学上期中第一次模拟试题(附答案)
2020-2021西安市九年级数学上期中第一次模拟试题(附答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.下列事件中,属于必然事件的是( )A .随时打开电视机,正在播新闻B .优秀射击运动员射击一次,命中靶心C .抛掷一枚质地均匀的骰子,出现4点朝上D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形3.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 4.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c >0;②若点B (32-,1y )、C (52-,2y )为函数图象上的两点,则12y y <; ③2a ﹣b=0; ④244ac b a-<0,其中,正确结论的个数是( )A .1B .2C .3D .45.如图,抛物线y =ax 2+bx +c 经过点(-1,0),对称轴为直线l.则下列结论:①abc >0;②a-b+c=0;③2a+c<0;④a+b<0.其中所有正确的结论是()A.①③B.②③C.②④D.②③④6.下列交通标志是中心对称图形的为()A.B.C.D.7.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 9.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.100个大小相同的球,用1至100编号,任意摸出一个球,则摸出的编号是质数的概率是()A.120B.19100C.14D.以上都不对11.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm212.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.若12 11+x x=﹣1,则k的值为_____.15.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为__________.16.写出一个二次函数的解析式,且它的图像开口向下,顶点在y轴上______________ 17.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C= __.18.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为_____.19.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.20.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为¼BB',则图中阴影部分的面积为_____.三、解答题21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式;(2)求△MCB 的面积MCB S V .(3)在坐标轴上,是否存在点N ,满足△BCN 为直角三角形?如存在,请直接写出所有满足条件的点N .22.如图,已知抛物线y=﹣x 2+bx +c 与x 轴交于点A (﹣1,0)和点B (3,0),与y 轴交于点C ,连接BC 交抛物线的对称轴于点E ,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)求点C 和点D 的坐标;(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.23.已知关于x 的方程x 2+4x +3-a =0.(1)若此方程有两个不相等的实数根,求a 的取值范围;(2)在(1)的条件下,当a 取满足条件的最小整数,求此时方程的解.24.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?25.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.D解析:D【解析】分析:根据事件发生的可能性大小判断相应事件的类型即可.详解:A.是随机事件,故A不符合题意;B.是随机事件,故B不符合题意;C.是随机事件,故C不符合题意;D.是必然事件,故D符合题意.故选D.点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.D解析:D【解析】【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2018的坐标.【详解】∵A(32,0),B(0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.4.B解析:B【解析】【分析】【详解】∵抛物线与y轴交于正半轴,∴c>0,①正确;∵对称轴为直线x=﹣1,∴x<﹣1时,y随x的增大而增大,∴y1>y2②错误;∵对称轴为直线x=﹣1,∴﹣2b a=﹣1, 则2a ﹣b=0,③正确;∵抛物线的顶点在x 轴的上方,∴244ac b a>0,④错误; 故选B.5.D解析:D【解析】【分析】【详解】试题分析:①∵二次函数图象的开口向下,∴a <0,∵二次函数图象的对称轴在y 轴右侧,∴﹣2b a>0, ∴b >0, ∵二次函数的图象与y 轴的交点在y 轴的正半轴上,∴c >0,∴abc <0,故①错误;②∵抛物线y=ax 2+bx+c 经过点(﹣1,0),∴a ﹣b+c=0,故②正确;③∵a ﹣b+c=0,∴b=a+c .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2(a+c )+c <0,∴6a+3c <0,∴2a+c <0,故③正确;④∵a ﹣b+c=0,∴c=b ﹣a .由图可知,x=2时,y <0,即4a+2b+c <0,∴4a+2b+b ﹣a <0,∴3a+3b <0,∴a+b <0,故④正确.故选D .考点:二次函数图象与系数的关系.6.C解析:C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.B解析:B【解析】【分析】根据“关于y轴对称的点,横坐标互为相反数,纵坐标相同”解答.【详解】∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.C解析:C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、既是轴对称图形,也是中心对称图形,故本选项符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.C解析:C【解析】解答:在1到100这100个数中,是质数的是:2,3 ,5,7,11,13,17,19,23,29,31 ,37,41,43,47,53,59,61,67,71,73,79,83,89,97,共25个,所以摸出的编号是质数的概率是2511004=,故选C.点睛: 本题关键是清楚1到100这一范围内有几个质数,特别注意的是1既不是质数,又不是合数.11.C解析:C【解析】【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【详解】∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧=12×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.D解析:D【解析】【分析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【详解】添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.14.【解析】【分析】利用根与系数的关系结合=﹣1可得出关于k 的方程解之可得出k 的值由方程的系数结合根的判别式△>0可得出关于k 的不等式解之即可得出k 的取值范围进而可确定k 的值此题得解【详解】∵关于x 的一解析:【解析】【分析】 利用根与系数的关系结合1211+x x =﹣1可得出关于k 的方程,解之可得出k 的值,由方程的系数结合根的判别式△>0可得出关于k 的不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0的两根为x 1,x 2,∴x 1+x 2=﹣(2k +3),x 1x 2=k 2, ∴1211+x x =1212x x x x +=﹣223k k+=﹣1, 解得:k 1=﹣1,k 2=3.∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根,∴△=(2k +3)2﹣4k 2>0,解得:k >﹣34, ∴k 1=﹣1舍去.∴k =3.故答案为:3.【点睛】 本题考查了一元二次方程根与系数的关系及根的判别式,熟练运用根与系数的关系及根的判别式是解决问题的关键.15.2【解析】【分析】把x=1代入已知方程列出关于k 的新方程通过解新方程来求k 的值【详解】∵方程x2+kx−3=0的一个根为1∴把x=1代入得12+k×1−3=0解得k=2故答案是:2【点睛】本题考查了解析:2【解析】【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】∵方程x 2+kx−3=0的一个根为1,∴把x=1代入,得12+k×1−3=0,解得,k=2.故答案是:2.【点睛】本题考查了一元二次方程的知识点,解题的关键是熟练的掌握一元二次方程解的应用. 16.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b aa ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .17.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD 中AO=DO 可得∠A 的度数进而得出△ABO 中∠B 的度数可得∠C 的度数【详解】解:∵∠AOC的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=12(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.18.【解析】【分析】由圆内接四边形的性质先求得∠D的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD是⊙O的内接四边形∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°-135°=45°,∴∠AOC=90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.19.3【解析】连接OB∵六边形ABCDEF是⊙O内接正六边形∴∠BOM==30°∴OM =OB•cos∠BOM=6×=3故答案为:3解析:【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM=36062︒⨯=30°,∴OM=OB•cos∠BOM=6×32=33,故答案为:33.20.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形BDB′-S△DBC-S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边解析:3 2π【解析】分析:连接DB、DB′,先利用勾股定理求出DB′=2212=5+,A′B′=2222=22+,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,连接DB、DB′,则2212=5+,2222=22+∴S阴=905253 1222222=36042()ππ⨯-⨯÷-÷-.故答案为53 42π-.点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)y=﹣x2+4x+5(2)15(3)存在,(0,0)或(0,﹣5)或(﹣5,0)【解析】【分析】(1)把A (﹣1,0),C (0,5),(1,8)三点代入二次函数解析式,解方程组即可.(2)先求出M 、B 、C 的坐标,根据MCB MCE OBC MEOBS S S S =V V V 梯形﹣﹣即可解决问题. (3)分三种情①C 为直角顶点;②B 为直角顶点;③N 为直角顶点;分别求解即可.【详解】(1)∵二次函数y=ax 2+bx+c 的图象经过A (﹣1,0),C (0,5),(1,8),则有:085a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得145a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为y=﹣x 2+4x+5.(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得顶点M (2,9)如图1中,作ME ⊥y 轴于点E ,可得MCB MCE OBC MEOBS S S S =V V V 梯形﹣﹣=12(2+5)×9﹣12×4×2﹣12×5×5=15. (3)存在.如图2中,∵OC=OB=5,∴△BOC 是等腰直角三角形,①当C为直角顶点时,N1(﹣5,0).②当B为直角顶点时,N2(0,﹣5).③当N为直角顶点时,N3(0,0).综上所述,满足条件的点N坐标为(0,0)或(0,﹣5)或(﹣5,0).考点:1、二次函数,2、三角形的面积,3、直角三角形的判定和性质22.(1)y=﹣x2+2x+3;(2)C(0,3),D(1,4);(3)P(2,3).【解析】【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【详解】(1)由点A(﹣1,0)和点B(3,0)得10 930b cb c--+=⎧⎨-++=⎩,解得:23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=12×1×3=32,S△ABP=12×4y=2y,∵S△ABP=4S△COE,∴2y=4×32,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点睛】本题考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.23.(1)a>-1;(2) x1=-3,x2=-1.【解析】试题分析:(1)方程有两个不相等的实数根,可得△>0,代入后解不等式即可得a的取值范围;(2)把a代入后解方程即可.试题解析:(1)∵方程有两个不相等的实数根∴16-4(3-a)>0,∴a>-1 .(2)由题意得:a =0 ,方程为x 2+4x +3=0 ,解得12-3,-1x x == .点睛:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400. 答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.25.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos3032MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.。
2020-2021学年陕西西安交大附中九上数学期中试卷(原卷版)
2020-2021学年陕西省西安交大附中九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)若关于x的一元二次方程x2+2x+m﹣1=0有一个根是0,则m的值为()A.1B.﹣1C.2D.02.(3分)如图,该几何体的左视图是()A.B.C.D.3.(3分)已知4a=5b(ab≠0),下列变形错误的是()A.B.C.D.4.(3分)一元二次方程x2﹣5x+6=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法判断5.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于()A.B.C.D.6.(3分)如图,∠1=∠2,则下列各式不能说明△ABC∽△ADE的是()A.∠D=∠B B.=C.=D.∠E=∠C 7.(3分)如图,在Rt△ABC中,∠ABC=90°,BD⊥AC于点D,AB=2BC,则tan∠ABD 的值为()A.2B.C.D.8.(3分)已知函数y=(m<0),以下结论中正确的有()个.①图象位于一,三象限;②若点A(﹣1,a),点B(1,b)在图象上,则a<b;③对于不同的m值,反比例函数的图象可能会相交;④若点P(x,y)在图象上,则点P1(﹣y,﹣x)也在图象上.A.4B.3C.2D.19.(3分)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m10.(3分)如图,已知正比例函数y1=4x的图象与反比例函数y=的图象相交于A,B两点,正比例函数y2=kx(k≠0)的图象与反比例函数y=的图象相交于C,D两点.连接AD,BD,BC,AC,若四边形ADBC是矩形,则k的值是()A.B.C.D.1二、填空题(共6小题,每小题3分,共18分)11.(3分)方程x2﹣x=0的解是.12.(3分)已知点P是线段AB的黄金分割点,且AP<PB,若AB=2,则BP=(结果保留根号).13.(3分)如图,平面直角坐标系中,O为坐标原点,正方形ABCO的两边OA、OC分别与x轴、y轴重合,点E,F分别是BC,AB边上的中点,过点E,F在反比例函数y=(k ≠0)的图象交上,△OEF的面积为3,求k的值.14.(3分)在“红旗Ma11”举行的促销活动中,某商品经连续两次降价后,售价变为原来的81%,若两次降价的百分率相同,则该商品每次降价的百分率为.15.(3分)如图,在等腰△ABC中,AB=AC=6,BC=3,将△ABC的一角沿着MN折叠,点B'落在AC上,若B'M∥AB,则BM的长度为.16.(3分)如图,在等边△ABC中,AB=4,P为AC的中点,M,N分别为AB,BC边上的一点,当△PMN周长取最小值时,MN长度为.三、解答题(共7小题,共72分,解答应写出过程)17.(5分)画出如图所示立体图的主视图与俯视图.18.(10分)已知关于x的方程x2﹣6x+k+1=0有两个实数根x1,x2.(1)求实数k的取值范围:(2)若方程的两个实数根x1,x2,=x1x2﹣2,求k的值.19.(12分)如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=(x>0)的图象交于A(m,m+1),B(2,6)两点.(1)求m的值;(2)求一次函数的表达式;(3)当一次函数y=k1x+b的值小于反比例函数y=(x>0)的值时,求出自变量x的取值范围.20.(12分)如图,在正方形ABCD中,点E为BC中点,连接DE,过点E做EF⊥ED交AB于点G.交AD延长线于点F.(1)求证:△ECD∽△GAF;(2)若AB=4,求EF的长.21.(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).22.(10分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.23.(13分)实践探究:如图①,在△ABC中,点D为AB上一点,DE∥BC交AC于点E,连接BE,CD交于点O.(1)当AD=DB时,S△ADE:S△ABC=;S△DOE:S△COE=.(2)当AD:DB=m时,用含m的代数式表示S△BOC:S△ABC.问题解决:(3)如图②,公园内有一块梯田ABCD,AD∥BC,CD⊥BC,BC=60米,AD=20米,tan B =2.园林设计者想在这块田地中划出一块三角形形状的地△EFG来种植草皮,其他区域种植花卉,已知种植花卉每平方米200元,种植草皮每平方米100元.要求E,F,G分别位于AB,CD,BC边上,且EF∥BC,要使得种植费用的造价最低,种植草皮的△EFG面积应该满足什么条件?并求出费用的最小值.。
2020-2021西安交通大学附属中学航天学校初三数学上期末模拟试题(含答案)
16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
17.在平面直角坐标系中,已知点P0的坐标为(2,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是_____.
解析:8
【解析】
【分析】
首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.
【详解】
解:∵y=x2﹣2x﹣3,设y=0,
∴0=x2﹣2x﹣3,
解得:x1=3,x2=﹣1,
即A点的坐标是(﹣1,0),B点的坐标是(3,0),
∵y=x2﹣2x﹣3,
=(x﹣1)2﹣4,
∴顶点C的坐标是(1,﹣4),
7.D
解析:D
【解析】
【分析】
利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.
【详解】
∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;
∴直线与抛物线的交点为(-1,0)和(4,5),
而-1<x<4时,y1>y2,
18.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时
公交车用时的频数
线路
合计
A
59
151
166
124
500
2020-2021西安市初三数学上期中试卷附答案
2020-2021西安市初三数学上期中试卷附答案一、选择题1.若二次函数2y x bx =+的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程25x bx +=的解为( ).A .10x =,24x =B .11x =,25x =C .11x =,25x =-D .11x =-,25x = 2.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上.若∠ACD=25°,则∠BOD 的度数为( )A .100°B .120°C .130°D .150° 3.函数y =﹣x 2﹣4x ﹣3图象顶点坐标是( ) A .(2,﹣1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,1) 4.方程2(2)9x -=的解是( )A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=, 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.已知实数0a <,则下列事件是随机事件的是( )A .0a ≥B .10a +>C .10a -<D .210a +<7.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=21 8.设a b ,是方程220190x x +-=的两个实数根,则22a a b ++的值为( ) A .2017 B .2018 C .2019D .2020 9.如图,在Rt ABC V 中,90ACB ∠=o ,60B ∠=o ,1BC =,''A B C V 由ABC V 绕点C 顺时针旋转得到,其中点'A 与点A 、点'B 与点B 是对应点,连接'AB ,且A 、'B 、'A 在同一条直线上,则'AA 的长为( )A .3B .23C .4D . 4310.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是( )A .(1,1)B .(0,1)C .(﹣1,1)D .(2,0) 11.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .12.有两个一元二次方程2:0M ax bx c ++=,2:0N cx bx a ++=,其中,0ac ≠,a c ≠,下列四个结论中错误的是( )A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数B .如果4是方程M 的一个根,那么14是方程N 的另一个根 C .如果方程M 有两根符号相同,那么方程N 的两符号也相同D .如果方程M 和方程N 有一个相同的根,那么这个根必是1x =二、填空题13.写出一个二次函数的解析式,且它的图像开口向下,顶点在y 轴上______________14.如图,五边形ABCD 内接于⊙O ,若AC=AD ,∠B+∠E=230°,则∠ACD 的度数是__________.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C= __.16.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.17.如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为_____.18.将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab=__.19.已知x1,x2是方程x2﹣x﹣3=0的两根,则1211+x x=_____.20.如图,Oe的半径为2,切线AB的长为23,点P是Oe上的动点,则AP的长的取值范围是_________.三、解答题21.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 22.已知关于x 的方程2(31)30mx m x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.23.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:y=﹣2x+80(20≤x≤40),设这种健身球每天的销售利润为w 元.(1)求w 与x 之间的函数关系式;(2)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种健身球的销售单价不高于28元,该商店销售这种健身球每天要获得150元的销售利润,销售单价应定为多少元?24.为满足市场需求,新生活超市在端午节前夕购进价格为 3 元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价 4 元时,每天能出售 500 个,并且售价每上涨 0.1 元,其销售量将减少 10 个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价 的 200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为 800 元.25.如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【详解】∵二次函数y=x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴抛物线的对称轴为直线x=2,则−2b a =−2b =2, 解得:b=−4, ∴x 2+bx=5即为x 2−4x−5=0,则(x−5)(x+1)=0,解得:x 1=5,x 2=−1.故选D.【点睛】本题考查了抛物线与x 轴的交点:把二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与x 轴的交点坐标问题转化为关于x 的一元二次方程的问题.2.C解析:C【解析】【分析】根据圆周角定理求出∠AOD 即可解决问题.【详解】解:∵∠AOD=2∠ACD ,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C .【点睛】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,3.B解析:B【解析】【分析】将函数解析式化为顶点式,即可得到顶点坐标.【详解】解:∵y =﹣x 2﹣4x ﹣3=﹣(x 2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B .【点睛】本题考查了二次函数,解题关键是能将一般式化为顶点式.4.A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x -=,故x -2=3或x -2=-3,解得:x 1=5,x 2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.5.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选B .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意; B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;故选:B .【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解析:D【解析】【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21,故选D .【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.8.B解析:B【解析】【分析】根据题意,把x a =代入方程,得22019a a +=,再由根与系数的关系,得到1a b +=-,即可得到答案.【详解】解:∵设a b ,是方程220190x x +-=的两个实数根,∴把x a =代入方程,得:22019a a +=,由根与系数的关系,得:1a b +=-,∴222()201912018a a b a a a b ++=+++=-=;故选:B .【点睛】本题考查了一元二次方程的解,以及根与系数的关系,解题的关键是熟练掌握根与系数的关系,正确求出代数式的值. 9.A解析:A【解析】【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A′B′=AB=2,B′C=BC=1,A′C=AC ,∠A ′=∠BAC=30°,∠A ′B ′C=∠B=60°,于是可判断△CAA ′为等腰三角形,所以∠CAA′=∠A ′=30°,再利用三角形外角性质计算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B ′进行计算.【详解】∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵△ABC绕点C顺时针旋转得到△A′B′C′,∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,∴△CAA′为等腰三角形,∴∠CAA′=∠A′=30°,∵A、B′、A′在同一条直线上,∴∠A′B′C=∠B′AC+∠B′CA,∴∠B′CA=60°-30°=30°,∴B′A=B′C=1,∴AA′=AB′+A′B′=2+1=3.故选:A.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.10.B解析:B【解析】根据旋转的性质:对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.解:如图,连接AD、BE,作线段AD、BE的垂直平分线,两线的交点即为旋转中心O′.其坐标是(0,1).故选B..11.B解析:B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.12.D解析:D【解析】【分析】分别根据判别式的意义、方程根的意义、根与系数的关系进行分析判断即可.【详解】解:A、∵方程M有两个不相等的实数根,∴△=b2−4ac>0,∵方程N的△=b2−4ac>0,∴方程N也有两个不相等的实数根,故不符合题意;B、把x=4代入ax2+bx+c=0得:16a+4b+c=0,∴110 164c b a++=,∴即14是方程N的一个根,故不符合题意;C、∵方程M有两根符号相同,∴两根之积ca>0,∴ac>0,即方程N的两根之积>0,∴方程N的两根符号也相同,故本选项不符合题意;D、如果方程M和方程N有一个相同的根,那么这个根也可以是x=-1,故本选项符合题意;故选:D.【点睛】本题考查了根的判别式、根与系数的关系以及一元二次方程的解,逐一分析四个选项的正误是解题的关键.二、填空题13.【解析】【分析】由题意可知:写出的函数解析式满足由此举例得出答案即可【详解】解:设所求二次函数解析式为:∵图象开口向下∴∴可取∵顶点在轴上∴对称轴为∴∵顶点的纵坐标可取任意实数∴取任意实数∴可取∴二 解析:2y x =-【解析】【分析】由题意可知:写出的函数解析式满足0a <、02b a -=,由此举例得出答案即可. 【详解】解:设所求二次函数解析式为:2y ax bx c =++∵图象开口向下∴0a <∴可取1a =-∵顶点在y 轴上 ∴对称轴为02b x a =-= ∴0b =∵顶点的纵坐标可取任意实数∴c 取任意实数∴c 可取0∴二次函数解析式可以为:2y x =-.故答案是:2y x =-【点睛】本题考查了二次函数图象的性质,涉及到的知识点有:二次函数2y ax bx c =++的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭;对称轴为2b x a =-;当0a >时,抛物线开口向上、当0a <时,抛物线开口向下;二次函数的图象与y 轴交于()0,c .14.65°【解析】【分析】连接OAOCOD 利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可【详解】解:如图解:连接OAOCOD 在圆的内接五边形ABCDE 中∠B+∠E=230°∠B=(∠AOD+∠CO解析:65°【解析】【分析】连接OA,OC,OD,利用同弧所对的圆心角等于圆周角得2倍求出所求的角即可.【详解】 解:如图解:连接OA,OC,OD,Q 在圆的内接五边形ABCDE 中, ∠B+∠E=230°,Q ∠B=12(∠AOD+∠COD), ∠E=12(∠AOC+∠COD),(圆周角定理) ∴12(∠AOD+∠COD)+ 12(∠AOC+∠COD)= 230°, 即:12(∠AOD+∠COD+∠AOC+∠COD )= 230°, 可得:∠C0D=o o 2230360⨯-=0100,可得:∠CAD=050,在△ACD 中,AC=AD ,∠CAD=050,可得∠ACD=065,故答案:065.【点睛】此题考查了圆心角、弧、弦的关系,以及圆周角定理,熟练掌握定 理及法则是解本题的关键.15.【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数可得∠AOB 的度数再根据△AOD 中AO=DO 可得∠A 的度数进而得出△ABO 中∠B 的度数可得∠C 的度数【详解】解:∵∠AOC 的度数为105°由旋转可解析:45︒【解析】【分析】先根据∠AOC 的度数和∠BOC 的度数,可得∠AOB 的度数,再根据△AOD 中,AO=DO ,可得∠A 的度数,进而得出△ABO 中∠B 的度数,可得∠C 的度数.【详解】解:∵∠AOC 的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD 中,AO=DO ,∴∠A=12(180°-40°)=70°, ∴△ABO 中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16.15【解析】试题分析:利用圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=•2π•3•5=15π故答案为15π考点:圆锥的计算解析:15π【解析】试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=12•2π•3•5=15π.故答案为15π.考点:圆锥的计算.17.【解析】【分析】由圆内接四边形的性质先求得∠D的度数然后依据圆周角定理求解即可【详解】∵四边形ABCD是⊙O的内接四边形∴∠B+∠D=180°∴∠D=180°-135°=45°∴∠AOC=90°故答解析:90o【解析】【分析】由圆内接四边形的性质先求得∠D的度数,然后依据圆周角定理求解即可.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠B+∠D=180°,∴∠D=180°-135°=45°,∴∠AOC=90°,故答案为90°.【点睛】本题主要考查了圆内接四边形的基本性质以及圆周角定理.18.12【解析】x2−6x+5=0x2−6x=−5x2−6x+9=−5+9(x−3)2=4所以a=3b=4ab=12故答案为:12解析:12【解析】x2−6x+5=0,x2−6x=−5,x2−6x+9=−5+9,(x−3)2=4,所以a=3,b=4,ab=12,故答案为:12.19.-【解析】【分析】利用根与系数的关系可得出x1+x2=1x1•x2=-3将其代入=中即可得出结论【详解】∵x1x2是方程x2﹣x﹣3=0的两根∴x1+x2=1x1•x2=﹣3∴===﹣故答案为:﹣【 解析:-13 【解析】 【分析】 利用根与系数的关系可得出x1+x 2=1,x 1•x 2=-3,将其代入1211+x x =1212x x x x +⋅中即可得出结论.【详解】∵x 1,x 2是方程x 2﹣x ﹣3=0的两根,∴x 1+x 2=1,x 1•x 2=﹣3,∴1211+x x =1212x x x x +⋅=13-=﹣13. 故答案为:﹣13. 【点睛】 本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a ”是解题的关键. 20.【解析】【分析】连接OB 根据切线的性质得到∠OBA=90°根据勾股定理求出OA 根据题意计算即可【详解】连接OB∵AB 是⊙O 的切线∴∠OBA=90°∴OA==4当点P 在线段AO 上时AP 最小为2当点P 在解析:26AP ≤≤【解析】【分析】连接OB ,根据切线的性质得到∠OBA=90°,根据勾股定理求出OA ,根据题意计算即可.【详解】连接OB ,∵AB 是⊙O 的切线,∴∠OBA=90°,∴22AB OB +=4,当点P 在线段AO 上时,AP 最小为2,当点P 在线段AO 的延长线上时,AP 最大为6,∴AP 的长的取值范围是2≤AP≤6,故答案为:2≤AP≤6.【点睛】本题考查的是切线的性质、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.三、解答题21.(1)PC是⊙O的切线;(2)9 2【解析】试题分析:(1)结论:PC是⊙O的切线.只要证明OC∥AD,推出∠OCP=∠D=90°,即可.(2)由OC∥AD,推出OC OPAD AP=,即10610r r-=,解得r=154,由BE∥PD,AE=AB•sin∠ABE=AB•sin∠P,由此计算即可.试题解析:解:(1)结论:PC是⊙O的切线.理由如下:连接OC.∵AC平分∠EAB,∴∠EAC=∠CAB.又∵∠CAB=∠ACO,∴∠EAC=∠OCA,∴OC∥AD.∵AD⊥PD,∴∠OCP=∠D=90°,∴PC是⊙O的切线.(2)连接BE.在Rt△ADP中,∠ADP=90°,AD=6,tan∠P=34,∴PD=8,AP=10,设半径为r.∵OC∥AD,∴OC OPAD AP=,即10610r r-=,解得r=154.∵AB是直径,∴∠AEB=∠D=90°,∴BE∥PD,∴AE=AB•sin∠ABE=AB•sin∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.22.(1)证明见解析;(2)y=x2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx2+(3m+1)x+3与x轴交于两个不同的整数点,且m为正整数,求出m的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m 2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m 为任何实数时,方程mx 2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx 2+(3m+1)x+3=0解得x 1=-3,x 2=-1m. ∵抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数, ∴m=1.∴抛物线的解析式为y=x 2+4x+3.考点:二次函数综合题.23.(1)w 与x 的函数关系式为w=-2x 2+120x-1600.(2)销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.【解析】试题分析:(1)用每件的利润()20x -乘以销售量即可得到每天的销售利润,即()()()2020280w x y x x =-=--+,然后化为一般式即可;(2)把(1)中的解析式进行配方得到顶点式()2230200y x =--+,然后根据二次函数的最值问题求解;(3)求函数值为150所对应的自变量的值,即解方程()2230200150x --+=,然后利用销售价不高于每件28元确定x 的值.试题解析:(1)根据题意可得:()20w x y =-⋅, ()()20280x x =--+,221201600x x =-+-,w 与x 之间的函数关系为:221201600w x x =-+-;(2)根据题意可得:()2221201*********w x x x =-+-=--+,∵20-<,∴当30x =时,w 有最大值,w 最大值为200.答:销售单价定为30元时,每天销售利润最大,最大销售利润200元.(3)当150w =时,可得方程()2230200150x --+=.解得1225,35x x ==,∵3528>,∴235x =不符合题意,应舍去.答:该商店销售这种健身球每天想要获得150元的销售利润,销售单价定为25元.24.每个粽子的定价为5元时,每天的利润为800元.【解析】试题分析:首先设每个粽子的定价为x 元,然后根据题意得出方程,从而求出x 的值,然后根据售价不能超过进价的200%,从而得出x 的取值范围,从而得出答案.试题解析:设每个粽子的定价为x 元时,每天的利润为800元.根据题意,得(x ﹣3)(500﹣10×)=800, 解得x 1=7,x 2=5.∵售价不能超过进价的200%, ∴x ≤3×200%.即x≤6. ∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.考点:一元二次方程的应用25.(1)()()2060A B -,,,,26x -剟;(2)m n ,的值分别为72,1. 【解析】【分析】 (1)把y =0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 2,B 3的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.【详解】解:(1)令0y =,则212602x x -++=, ∴1226x x =-=,, ∴()()2060A B -,,,. 由函数图象得,当0y …时,26x -剟. (2)由题意得()()236B n m B n m --,,,, 函数图象的对称轴为直线2622x -+==. ∵点23B B ,在二次函数图象上且纵坐标相同,∴()622n n -+-=,∴1n =, ∴()()217121622m =-⨯-+⨯-+=, ∴m n ,的值分别为712,. 【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.。
2020-2021西安市初三数学上期中模拟试题(及答案)
A.55°
B.110°
C.120°
D.125°
9.已知函数 y (k 3)x2 2x 1的图象与 x 轴有交点.则 k 的取值范围是( )
A.k<4
B.k≤4
C.k<4 且 k≠3
D.k≤4 且 k≠3
10.若关于 x 的一元二次方程(m﹣1)x2+5x+m2﹣5m+4=0 有一个根为 0,则 m 的值等于
学生共有______名;
3 已知“非常了解”的是 3 名男生和 1 名女生,从中随机抽取 2 名向全校做垃圾分类的
知识交流,请画树状图或列表的方法,求恰好抽到 1 男 1 女的概率.
24.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
且∠CDB=∠OBD=30°,DB= 6 3 cm.
2020-2021 西安市初三数学上期中模拟试题(及答案)
一、选择题
1.如图 A,B,C 是
上的三个点,若
,则
等于( )
A.50°
B.80°
C.100°
D.130°
2.下列事件中,属于必然事件的是( )
A.随时打开电视机,正在播新闻
B.优秀射击运动员射击一次,命中靶心
C.抛掷一枚质地均匀的骰子,出现 4 点朝上
D.没有实数根
二、填空题
13.关于 x 的一元二次方程 ax2 3x 1 0 的两个不相等的实数根都在-1 和 0 之间(不包
括-1 和 0),则 a 的取值范围是___________
14.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加 44%, 则这两年平均绿地面积的增长率为______. 15.新园小区计划在一块长为 20 米,宽 12 米的矩形场地上修建三条互相垂直的长方形甬 路(一条橫向、两条纵向,且横向、纵向的宽度比为 3:2),其余部分种花草.若要使种 花草的面积达到 144 米 2.则横向的甬路宽为_____米.
2020-2021西安市初三数学上期中试卷带答案
2020-2021西安市初三数学上期中试卷带答案一、选择题1.﹣3的绝对值是( ) A .﹣3B .3C .-13D .132.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .4.方程2(2)9x -=的解是( ) A .1251x x ==-,B .1251x x =-=,C .12117x x ==-, D .12117x x =-=,5.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是( )A .(﹣5,﹣3)B .(﹣2,0)C .(﹣1,﹣3)D .(1,﹣3) 6.用配方法解方程210x x +-=,配方后所得方程是( ) A .213()24x -=B .213()24x +=C .215()24x +=D .215()24x -=7.抛物线y =2(x -3)2+4的顶点坐标是( ) A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)8.如图,图案由三个叶片组成,且其绕点O 旋转120°后可以和自身重合,若三个叶片的总面积为12平方厘米,∠AOB=120°,则图中阴影部分的面积之和为()平方厘米.A .2B .4C .6D .89.如图,直线y=kx+c 与抛物线y=ax 2+bx+c 的图象都经过y 轴上的D 点,抛物线与x 轴交于A 、B 两点,其对称轴为直线x=1,且OA=OD .直线y=kx+c 与x 轴交于点C (点C 在点B 的右侧).则下列命题中正确命题的是( )①abc>0; ②3a+b>0; ③﹣1<k <0; ④4a+2b+c<0; ⑤a+b<k .A .①②③B .②③⑤C .②④⑤D .②③④⑤10.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .1911.如图,△ABC 绕点A 旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )A .DE=3B .AE=4C .∠ACB 是旋转角D .∠CAE 是旋转角12.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.关于x 的一元二次方程kx 2﹣4x+3=0有实数根,则k 应满足的条件是_____. 15.如图,矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,四边形OCED 为菱形,若将菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M ,则线段ME 的长度可取的整数值为___________________.16.已知1x =是关于x 的方程2230ax x -+=的一个根,则a =__________. 17.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .18.若关于 x 的一元二次方程2x 2-x+m=0 有两个相等的实数根,则 m 的值为__________. 19.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是_____°.20.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.22.“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.23.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?25.已知抛物线y=-x2-2x+c与x轴的一个交点是(1,0).(1)C的值为_______;(2)选取适当的数据补填下表,并在平面直角坐标系内描点画出该抛物线的图像;x•••1-1•••y•••0•••(3)根据所画图像,写出y>0时x的取值范围是_____.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 2.D解析:D【解析】过B作⊙O的直径BM,连接AM,则有:∠MAB=∠CDB=90°,∠M=∠C,∴∠MBA=∠CBD,过O作OE⊥AB于E,Rt△OEB中,BE=12AB=4,OB=5,由勾股定理,得:OE=3,∴tan∠MBA=OEBE=34,因此tan∠CBD=tan∠MBA=34,故选D.3.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.4.A解析:A【解析】【分析】此方程已经配方,根据解一元二次方程的步骤解方程即可.【详解】()229x-=,故x-2=3或x-2=-3,解得:x1=5,x2=-1,故答案选A.【点睛】本题主要考查了解一元二次方程的基本解法,这是很简单的解方程,难度不大.5.D解析:D【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
21.一个不透明的布袋里装有 16 个只有颜色不同的球,其中红球有 x 个,白球有 2x 个,其他 均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并 搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜. (1)当 x=3 时,谁获胜的可能性大? (2)当 x 为何值时,游戏对双方是公平的? 22.商场某种商品平均每天可销售 30 件,每件盈利 50 元. 为了尽快减少库存,商场 决定采取适当的降价措施. 经调查发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.设每件商品降价 x 元. 据此规律,请回答: (1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含 x 的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到 2100 元?
B.两直线被第三条直线所截,同位角相等
C.如果 a、b 都是实数,那么 a+b=b+a D.抛掷 1 个均匀的骰子,出现 6 点朝上
12.四边形 ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( )
A.AB=CD
B.AB=BC
C.AC⊥BD
D.AC=BD
二、填空题
13.已知关于 x 的一元二次方程 x2+(2k+3)x+k2=0 有两个不相等的实数根 x1,x2.若
23.如图, ABO 与 CDO 关于 O 点中心对称,点 E、F 在线段 AC 上,且 AF=CE.
求证:FD=BE.
24.如图,D 为⊙O 上一点,点 C 在直径 BA 的延长线上,且∠CDA=∠CBD, (1)求证:CD 是⊙O 的切线;
(2)若 BC=6,tan∠CDA= 2 ,求 CD 的长. 3
2020-2021 西安交通大学附属中学航天学校初三数学上期中模拟试题(含答案)
一、选择题 1.若二次函数 y x2 bx 的图象的对称轴是经过点 (2, 0) 且平行于 y 轴的直线,则关于 x 的方程 x2 bx 5的解为( ). A. x1 0 , x2 4 B. x1 1 , x2 5 C. x1 1 , x2 5 D. x1 1 , x2 5 2.如图,BC 是半圆 O 的直径,D,E 是 BC 上两点,连接 BD,CE 并延长交于点 A,连接 OD,OE,如果 DOE 40 ,那么 A 的度数为( )
关系是解决本题的关键.
4.D
解析:D 【解析】 试题分析:抛物线 y=x2+2x﹣3 与 x 轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是 (﹣1,﹣4),对称轴为 x=﹣1.选项 A,无法确定点 A、B 离对称轴 x=﹣1 的远近,无法 判断 y1 与 y2 的大小,该选项错误;选项 B,无法确定点 A、B 离对称轴 x=﹣1 的远近,无 法判断 y1 与 y2 的大小,该选项错误;选项 C,y 的最小值是﹣4,该选项错误;选项 D,y 的最小值是﹣4,该选项正确.故答案选 D. 考点:二次函数图象上点的坐标特征;二次函数的最值.
1 x1
1 x2
=﹣1,则
k
的值为_____.
14.如图,将 Rt ABC 绕直角顶点 C 顺时针旋转 90 ,得到 DEC ,连接 AD,若
BAC 25 ,则 BAD ______.
15.若关于 x 的方程 x2+2x+m=0 没有实数根,则 m 的取值范围是_______. 16.如图,在扇形 CAB 中,CD⊥AB,垂足为 D,⊙E 是△ACD 的内切圆,连接 AE, BE,则∠AEB 的度数为__.
D. a2 1 0
7.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( )
A.55°
B.110°
C.120°
D.125°
8.已知实数 x 满足(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,那么 x2﹣2x+1 的值为( )
A.﹣1 或 3
B.﹣3 或 1
C.3
D.1
9.若关于 x 的一元二次方程 ax2+bx﹣1=0(a≠0)有一根为 x=2019,则一元二次方程 a
10.D
解析:D 【解析】 【分析】 移项后两边配上一次项系数一半的平方即可得. 【详解】 解:∵x2-8x=5, ∴x2-8x+16=5+16,即(x-4)2=21, 故选 D. 【点睛】 本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种 常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简 便的方法.
行下去…若点 A( 3 ,0),B(0,2),则点 B2018 的坐标为( ) 2
A.(6048,0)
B.(6054,0)
C.(6048,2)
D.(6054,2)
4.在平面直角坐标系中,二次函数 y=x2+2x﹣3 的图象如图所示,点 A(x1,y1),B
(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
17.若关于 x 的一元二次方程 x2+2x﹣m=0 有两个相等的实数根,则 m 的值为______. 18.a、b、c 是实数,点 A(a+1、b)、B(a+2,c)在二次函数 y=x2﹣2ax+3 的图象上, 则 b、c 的大小关系是 b____c(用“>”或“<”号填空)
19.若抛物线的顶点坐标为 (2, 9) ,且它在 x 轴截得的线段长为 6 ,则该抛物线的表达式为
5.A
解析:A 【解析】 【分析】 根据根的判别式的意义得到 16﹣4m>0,然后解不等式得到 m<4,然后对各选项进行判 断. 【详解】 根据题意得:△=16﹣4m>0,解得:m<4,所以 m 可以取 3,不能取 5、6、8. 故选 A. 【点睛】 本题考查了一元二次方程 ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0 时,方程 有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程没有实 数根.
25.如图,Rt△ABC 中,∠C=90o,BE 是它的角平分线,D 在 AB 边上,以 DB 为直径的 半圆 O 经过点 E.
(1)试说明:AC 是圆 O 的切线; (2)若∠A=30o,圆 O 的半径为 4,求图中阴影部分的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D 解析:D 【解析】 【详解】 ∵二次函数 y=x2+bx 的图象的对称轴是经过点(2,0)且平行于 y 轴的直线, ∴抛物线的对称轴为直线 x=2,
3.D
解析:D 【解析】 【分析】 首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的 B 相 差 6 个单位长度,根据这个规律可以求得 B2018 的坐标. 【详解】
∵A( 3 ,0),B(0,2), 2
∴OA= 3 ,OB=2, 2
∴Rt△AOB 中,AB= 22 ( 3 )2 5 , 22
(x﹣1)2+b(x﹣1)=1 必有一根为( )
A. 1 2019
B.2020
C.2019
D.2018
10.解一元二次方程 x2﹣8x﹣5=0,用配方法可变形为( )
A.(x+4)2=11
B.(x﹣4)2=11 C.(x+4)2=21
D.(x﹣4)2=21
11.下列事件中,属于必然事件的是( )
A.任意数的绝对值都是正数
解,再判断即可.
【详解】
解:设 x2﹣2x+1=a, ∵(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,
∴a2+2a﹣3=0, 解得:a=﹣3 或 1,
当 a=﹣3 时,x2﹣2x+1=﹣3,
即(x﹣1)2=﹣3,此方程无实数解;
当 a=1 时,x2﹣2x+1=1,此时方程有解,
故选:D.
【点睛】
故选:B. 【点睛】 本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必 然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的
事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.D
解析:D
【解析】
分析:根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.
详解:根据圆周角定理,得
∠ACB= 1 (360°-∠AOB)= 1 ×250°=125°.
2
2
故选 D.
点睛:此题考查了圆周角定理.
注意:必须是一条弧所对的圆周角和圆心角之间才有一半的关系.
8.D
解析:D 【解析】
【分析】
设 x2﹣2x+1=a,则(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0 化为 a2+2a﹣3=0,求出方程的
∴OA+AB1+B1C2= 3 +2+ 5 =6, 22
∴B2 的横坐标为:6,且 B2C2=2,即 B2(6,2), ∴B4 的横坐标为:2×6=12, ∴点 B2018 的横坐标为:2018÷2×6=6054,点 B2018 的纵坐标为:2, 即 B2018 的坐标是(6054,2). 故选 D. 【点睛】 此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有 B 点之间的
为 x=2020. 【详解】
对于一元二次方程 a(x-1)2+b(x-1)-1=0,
设 t=x-1,
所以 at2+bt-1=0, 而关于 x 的一元二次方程 ax2+bx-1=0(a≠0)有一根为 x=2019, 所以 at2+bt-1=0 有一个根为 t=2019, 则 x-1=2019, 解得 x=2020, 所以一元二次方程 a(x-1)2+b(x-1)=1 必有一根为 x=2020. 故选 B. 【点睛】 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次 方程的解.