判定二次函数中的a,b,c的符号

合集下载

二次函数a.b.c等的符号的确定

二次函数a.b.c等的符号的确定
y
-1 o 1 x
(5)△=b2-4ac决定抛物线与x轴交点情况:
① △>0 ② △=0
抛物线与x轴有两个交点; 抛物线与x轴有唯一的公共点;
③ △<0 抛物线与x轴无交点。
y ox
y ox
y ox
勇攀高峰
1. 二次函数y=ax2+bx+c的图象如图所示,下列结论中:
①abc>0;② a+b+c<0 ③ a-b+c>0 ;
o1 特殊值法
x
y aabb cc 0 0
y=ax2+bx+c 当x 1时 y=a-b+c
y aabbcc0 0 y
y aabbcc00
-1 o
x
y aabbcc00
x=-1
比拼速度
二次函数y ax2 bx c的图象如图,用(< , >或 =)填空: a< 0,b < 0,c > 0,a+b+c< 0,a-b+c> 0, Nhomakorabeay
开口向下
a<0
数形结合法
x
⑵c决定抛物线与y轴交点(0,c)的位置:
① 图象与y轴交点在y轴正半轴;
c>0
② 图象过原点
c=0
③ 图象与y轴交点在y轴负半轴
c<0
y
指出下列二次函数与y轴交点的坐标.
(1) y=x2-8x+7 (2) y=-2x2+9x-17
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
转化 + 特殊值
根据抛物线y=ax2+bx+c图象位置,你 会判断那些字母或代数式的符号?

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

二次函数:图象位置与a, b, c,(1)a决定抛物线的开口方向:•| .(2)C决定抛物线与尸轴交点的位置,心aDq抛物线交尸轴于;=抛物线交轴于;—0Q.(3)ab决定抛物线对称轴的位置,当儿"同号时Q对称轴在F轴;对称轴为;以片异号匕对称轴在〉轴,简称为•一、通过抛物线的位置判断a, b, c, △的符号.y例1 .根据二次函数y=ax2+bx+c的图象,判断a、b、c、b 2 -4ac的符号2.看图填空(1) a+ b+ c _____ 0 (2) a—b+ c ______ 0(3) 2a— b ______ 0 (4) 4a+ 2b+ c _______ 0二、通过a, b, c, △的符号判断抛物线的位置:例1 .若,则抛物线y=ax 2 +bx+c的大致图象为()例2.若a>0, b>0, C>0,A> 0,那么抛物线y=ax2+bx+c经过象限.例 3.已知二次函数y=ax2+bx+c 且a v 0, a-b+c >0;则一定有b2-4ac 0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()BDCA1.若抛物线y=ax2+bx+c开口向上,则直线尸血山经过象限.y2 .二次函数y=ax 2 +bx+c的图象如图所示,则下列条件不正确的是(A、甬* “ > 山匕v 0B、tr - 4ac< 0C、山十&十°D、y(b ac3 .二次函数y=ax 2 +bx+c的图象如图,则点心〃丿在.()A、第一象限B、第二象限C、第三象限D、第四象限y4 .二次函数y=ax2 +bx+c与一次函数一在同一坐标系中的图象大致是(5 .二次函数y=ax2+bx+c ''的图象,如图,下列结论①②丄沁③扁十2b十“0④(八其中正确的有()A 1个B、2个C、3个D、4个16 .已知函数y=ax 2 +bx+c的图象如图所示,关于系数■ ■'有下列不等式①②I、';:③④⑤r .:■ .■-:■<:其中正确个数为./ O第\ *r67.已知直线y=ax2+bx+c不经过第一象限,则抛物线F皿人肛一定经过()A.第一、二、四象限B .第一、二、三象限C•第一、二象限D.第三、四象限8. _如图所示的抛物线是二次函数y = ax2-3x + a2-1的图象,那么a的值是9. _若抛物线y = x2 —bx+ 9的顶点在<轴上,贝U b的值为____若抛物线y = x2 —bx+ 9的顶点在y轴上,贝U b的值为_____y= ax2+ bx+ c(a工0的图象如图所示,有③占n —F列结论:①abc>0;②a+ b+ c=2;':④bv1.其中正确的结论是(A.①②B .②③C .②④D .③④11. 二次函数y = ax2+ bx+ c(a工0的图象开口向上,图象经过点(-1,2 )和(1,0 ),且与y轴负半轴交于一点,给出以下结论① abcv0;②2a+ b>0;③a + c= 1;④a> 1.其中正确的结论是(A 1个B、2个C、3个D、4个12. 二次函数y = ax2 —2x —1与x轴有交点,贝U k的取值范围______ 。

二次函数知识点总结1

二次函数知识点总结1

九年级数学学案一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x22y=3(x+4)22y=3x2y=-2(x-3)2二次函数考查重点与常见题型2-32例1.已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 例2.如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )例3.已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结

二次函数知识点总结

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k =-+的性质:a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()0h , X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a < 向下 ()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 220∆> 抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根∆<抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

二次函数abc判定

二次函数abc判定

合用标准文案3. 〔 2021? 山东威海,第 11 题 3 分〕二次函数y=ax2+bx+c〔a≠0〕的图象如图,那么以下说法:2①c=0;②该抛物线的对称轴是直线x=﹣1;③当 x=1时, y=2a;④ am+bm+a>0〔 m≠﹣1〕.其中正确的个数是〔〕A.1B.2C.3D.4考点:二次函数图象与系数的关系.解析:由抛物线与y 轴的交点判断 c 与0的关系,尔后依照对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y 轴交于原点, c=0,故①正确;该抛物线的对称轴是:,直线 x=﹣1,故②正确;当 x=1时, y=2a+b+c,∵对称轴是直线 x=﹣1,∴, b=2a,又∵ c=0,∴y=4a,故③错误;2x=m对应的函数值为y=am+bm+c,∵b=2a,2∴am+bm+a>0〔 m≠﹣1〕.故④正确.应选: C.谈论:此题观察了二次函数图象与系数的关系.二次函数y=ax2+bx+c〔a≠0〕系数符号由抛物线张口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.5. 〔 2021? 山东烟台,第 11 题 3 分〕二次函数y=ax2+bx+c〔a≠ 0〕的局部图象如图,图象过点〔﹣ 1, 0〕,对称轴为直线x=2,以下结论:①4a+b=0;② 9a+c>3b;③ 8a+7b+2c> 0;④当x>﹣ 1 时,y的值随x值的增大而增大.其中正确的结论有〔〕A.1 个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:依照抛物线的对称轴为直线x=﹣=2,那么有 4a+b=0;观察函数图象获适合x=﹣3时,函数值小于0,那么 9a﹣ 3b+c< 0,即 9a+c< 3b;由于x=﹣ 1 时,y=0,那么a﹣b+c=0,易得c=﹣5a ,所以 8 +7 +2 =8 ﹣28 ﹣10a=﹣30,再依照抛物线张口向下得< 0,于是有 8 +7 +2a b c a a a a a b c>0;由于对称轴为直线x=2,依照二次函数的性质获适合x>2时, y 随 x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴ b=﹣4a,即4a+b=0,所以①正确;∵当 x=﹣3时, y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x 轴的一个交点为〔﹣1, 0〕,∴a﹣b+c=0,而 b=﹣4a,∴ a+4a+c=0,即 c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线张口向下,∴ a<0,∴8a+7b+2c>0,所以③正确;∵对称轴为直线x=2,∴当﹣ 1<x< 2 时,y的值随x值的增大而增大,当x>2时, y 随 x 的增大而减小,所以④错误.应选B.谈论:此题观察了二次函数图象与系数的关系:二次函数y=ax2+bx+c〔 a≠0〕,二次项系数a 决定抛物线的张口方向和大小,当a>0时,抛物线向上张口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数 a 共同决定对称轴的地址,当 a 与 b 同号时〔即ab>0〕,对称轴在 y 轴左;当 a 与 b 异号时〔即 ab<0〕,对称轴在 y 轴右;常数项c 决定抛物线与 y 轴交点.抛物线与 y 轴交于〔0,c〕;抛物线与 x 轴交点个数由△决定,△=b2﹣4ac>0 时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与 x 轴有1个交点;△=b2﹣4ac <0 时,抛物线与x 轴没有交点.27. 〔2021? 山东聊城,第 12 题,3 分〕如图是二次函数y=ax +bx+c〔 a≠ 0〕图象的一局部,x=﹣ 1 是对称轴,有以下判断:①b﹣ 2a=0;② 4a﹣ 2b+c< 0;③ a﹣ b+c=﹣ 9a;④假设〔﹣ 3, y1〕,〔, y2〕是抛物线上两点,那么 y1>y2,其中正确的选项是〔〕A.①②③B.①③④C.①②④D.②③④考点:二次函数图象与系数的关系.解析:利用二次函数图象的相关知识与函数系数的联系,需要依照图形,逐一判断.解答:解:∵抛物线的对称轴是直线x=﹣ 1,∴﹣=﹣ 1,b=2a,∴b﹣ 2a=0,∴①正确;∵抛物线的对称轴是直线x=﹣1,和 x 轴的一个交点是〔2, 0〕,∴抛物线和x 轴的另一个交点是〔﹣4, 0〕,∴把 x=﹣ 2 代入得: y=4a﹣ 2b+c> 0,∴②错误;∵图象过点〔 2, 0〕,代入抛物线的解析式得:4a+2b+c=0,又∵ b=2a,∴c= ﹣ 4a﹣2b=﹣ 8a,∴a﹣ b+c=a﹣ 2a﹣ 8a=﹣ 9a,∴③正确;∵抛物线和x 轴的交点坐标是〔2, 0〕和〔﹣ 4, 0〕,抛物线的对称轴是直线x=﹣ 1,∴点〔﹣ 3, y1〕关于对称轴的对称点的坐标是〔〔1,y1〕,∵〔, y2〕, 1<,∴y1> y2,∴④正确;即正确的有①③④,应选 B.谈论:此题主要观察了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特别点的关系,也要掌握在图象上表示一元二次方程2的ax +bx+c=09. (2021年贵州黔东南9.〔 4 分〕 ) 如图,二次函数y=ax2+bx+c〔 a≠ 0〕的图象如图所示,以下 4 个结论:①a bc < 0;② b< a+c;③ 4a+2b+c> 0;④ b2﹣ 4ac > 0其中正确结论的有〔〕A.①②③ B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.解析:由抛物线的张口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点得出 c 的值,尔后依照抛物线与 x 轴交点的个数及x=﹣ 1 时,x=2 时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象张口向上可得a>0,依照二次函数的图象与y 轴交于正半轴知: c> 0,由对称轴直线 x=2,可得出 b 与 a 异号,即 b<0,那么 abc< 0,故①正确;把 x=﹣ 1代入 y=ax 2+bx+c 得: y=a﹣ b+c,由函数图象可以看出当x=﹣ 1 时,二次函数的值为正,即 a+b+c> 0,那么 b< a+c,故②选项正确;把 x=2 代入 y=ax 2+bx+c 得:y=4a+2b+c,由函数图象可以看出当x=2 时,二次函数的值为负,即 4a+2b+c< 0,故③选项错误;由抛物线与 x 轴有两个交点可以看出方程ax2+bx+c=0 的根的鉴识式 b2﹣ 4ac >0,故④ D选项正确;应选 B.谈论:此题观察二次函数图象与二次函数系数之间的关系,二次函数与方程之间的变换,根的鉴识式的熟练运用.会利用特别值代入法求得特其他式子,如:y=a+b+c, y=4a+2b+c,尔后依照图象判断其值.16.〔 2021? 四川南充,第10 题, 3 分〕二次函数y=ax2+bx+c〔 a≠0〕图象如图,以下结论:①abc >0;② 2 +=0;③当≠1 时,+ >2+ ;④﹣ + >0;⑤假设ax12+bx1=ax22+2,a b m a b am bm a b c bx且 x1≠ x2, x1+x2=2.其中正确的有〔〕A.①②③B.②④C.②⑤D.②③⑤解析:依照抛物线张口方向得a<0,由抛物线对称轴为直线x=﹣=1,获取b=﹣ 2a> 0,即 2a+b=0,由抛物线与y 轴的交点地址获取c>0,所以 abc<0;依照二次函数的性质适合x=1时,函数有最大值22a+b+c,那么当 m≠1时, a+b+c> am+bm+c,即 a+b> am+bm;依照抛物线的对称性获取抛物线与x 轴的另一个交点在〔﹣1,0〕的右侧,那么当 x=﹣1时, y<0,所以 a﹣ b+c<0;把 ax122+bx1=ax2 +bx2先移项,再分解因式获取〔x1﹣x2〕 [ a〔x1+x2〕 +b]=0 ,而 x≠ x ,那么 a〔 x +x 〕+b]=0,即x+x =﹣,尔后把b=﹣ 2a代入计算获取x+x =2.12121212解:∵抛物线张口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y 轴的交点在x 轴上方,∴c>0,∴ abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,22∴当 m≠1时, a+b+c> am+bm+c,即 a+b> am+bm,所以③正确;∵抛物线与x 轴的一个交点在〔3, 0〕的左侧,而对称轴为性质x=1,∴抛物线与x 轴的另一个交点在〔﹣1, 0〕的右侧∴当 x=﹣1时, y<0,∴ a﹣b+c<0,所以④错误;2222﹣ bx2=0,∵ax1+bx1=ax2+bx2,∴ax1+bx1﹣ax2∴a〔 x1+x2〕〔 x1﹣ x2〕+b〔 x1﹣ x2〕=0,优秀文档谈论:此题观察了二次函数图象与系数的关系:二次函数y=ax2+bx+c〔a≠0〕,二次项系数a 决定抛物线的张口方向和大小,当> 0 时,抛物线向上张口;当a< 0 时,抛物线向下开a口;一次项系数b 和二次项系数a共同决定对称轴的地址,当a与b同号时〔即> 0〕,ab对称轴在y 轴左;当a与b异号时〔即< 0〕,对称轴在y轴右;常数项c决定抛物线与aby 轴交点.抛物线与 y 轴交于〔0, c〕;抛物线与 x 轴交点个数由△决定,△=b2﹣ 4ac> 0时,抛物线与 x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x 轴有1个交点;△=b2﹣4ac<0 时,抛物线与x 轴没有交点.11.〔 2021?莱芜,第212 题 3 分〕二次函数 y=ax +bx+c 的图象以以下图.以下结论:①a bc > 0;② 2a﹣ b< 0;③ 4a﹣2b+c < 0;④〔 a+c〕2<b2其中正确的个数有〔〕A. 1 B. 2 C.3D.4考点:二次函数图象与系数的关系.专题:数形结合.解析:由抛物线张口方向得 a< 0,由抛物线对称轴在y 轴的左侧得 a、 b 同号,即 b< 0,由抛物线与 y 轴的交点在 x 轴上方得 c> 0,所以 abc> 0;依照抛物线对称轴的地址获取﹣1<﹣< 0,那么依照不等式性质即可获取2a﹣ b< 0;由于 x=﹣ 2 时,对应的函数值小于0,那么 4a﹣ 2b+c< 0;同样当 x=﹣1 时, a﹣b+c> 0,x=1 时, a+b+c< 0,那么〔 a﹣b+c〕〔 a+b+c〕<0,利用平方差公式张开获取〔2222.a+c〕﹣ b < 0,即〔 a+c〕< b解答:解:∵抛物线张口向下,∴a< 0,∵抛物线的对称轴在y 轴的左侧,∴x= ﹣< 0,∴b< 0,∵抛物线与y 轴的交点在x 轴上方,∴c> 0,∴a bc > 0,所以①正确;∵﹣ 1<﹣<0,∴2a﹣b<0,所以②正确;∵当 x=﹣ 2 时, y< 0,∴4a﹣2b+c<0,所以③正确;∵当 x=﹣ 1 时, y> 0,∴a﹣ b+c>0,∵当 x=1 时, y< 0,∴a+b+c< 0,∴〔 a﹣ b+c〕〔 a+b+c〕< 0,即〔 a+c﹣b〕〔 a+c+b〕< 0,22应选 D.谈论:此题观察了二次函数的图象与系数的关系:二次函数 y=ax 2+bx+c〔 a≠ 0〕的图象为抛物线,当 a> 0,抛物线张口向上;对称轴为直线x=﹣;抛物线与 y 轴的交点坐标为〔 0,c〕;当 b2﹣ 4ac> 0,抛物线与 x 轴有两个交点;当b2﹣ 4ac=0,抛物线与 x 轴有一个交点;当 b2﹣4ac< 0,抛物线与 x 轴没有交点.3. (2021 年四川资阳,第 10 题 3 分 ) 二次函数=ax 2++ 〔≠ 0〕的图象如图,给出以下y bx c a四个结论:①4ac﹣b2< 0;② 4a+c< 2b;③ 3b+2c< 0;④m〔am+b〕 +b<a〔m≠﹣ 1〕,其中正确结论的个数是〔〕A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.解析:利用二次函数图象的相关知识与函数系数的联系,需要依照图形,逐一判断.解答:解:∵抛物线和x 轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2< 0,∴①正确;∵对称轴是直线x﹣1,和 x 轴的一个交点在点〔0, 0〕和点〔 1,0〕之间,∴抛物线和x 轴的另一个交点在〔﹣3, 0〕和〔﹣ 2, 0〕之间,∴把〔﹣ 2, 0〕代入抛物线得:y=4a﹣2b+c>0,∴4a+c> 2b,∴②错误;∵把〔 1, 0〕代入抛物线得:y=a+b+c<0,∴2a+2b+2c< 0,∵b=2a,∴3b, 2c<0,∴③正确;∵抛物线的对称轴是直线 x=﹣1,∴y=a﹣ b+c 的值最大,2即把〔 m,0〕〔 m≠0〕代入得: y=am+bm+c< a﹣ b+c,2∴am+bm+b<a,即 m〔 am+b〕+b< a,∴④正确;即正确的有 3 个,应选 B.谈论:此题主要观察了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特别点的关系,也要掌握在图象上表示一元二次方程2的ax +bx+c=0解的方法.同时注意特别点的运用.4. (2021 年天津市,第 12 题 3 分 ) 二次函数y=ax2+bx+c〔a≠ 0〕的图象如图,且关于x 的一元二次方程 ax2+bx+c﹣ m=0没有实数根,有以下结论:①b2﹣4ac>0;② abc<0;③ m>2.其中,正确结论的个数是〔〕A.0B.1C.2D.3考点:二次函数图象与系数的关系.解析:由图象可知二次函数y=ax2+bx+c 与 x 轴有两个交点,进而判断①;先依照抛物线的张口向下可知a<0,由抛物线与y 轴的交点判断 c 与0的关系,依照对称轴在 y 轴右侧得出 b 与0的关系,尔后依据有理数乘法法那么判断②;222一元二次方程ax +bx+c﹣m=0没有实数根,那么可转变成ax +bx+c=m,即可以理解为y=ax +bx+c 和 y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数=2++ 与x 轴有两个交点,y ax bx c ∴b2﹣4ac>0,故①正确;②∵抛物线的张口向下,∴a<0,∵抛物线与y 轴交于正半轴,∴c>0,∵对称轴 x=﹣>0,∴a b<0,∵a<0,∴b>0,∴a bc<0,故②正确;③∵一元二次方程ax2+bx+c﹣ m=0没有实数根,∴y=ax2+bx+c 和y=m没有交点,由图可得, m>2,故③正确.应选 D.谈论:此题主要观察图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的变换,根的鉴识式的熟练运用.8.〔 2021? 孝感,第 12 题 3 分〕抛物线y=ax2+bx+c的极点为D〔﹣ 1,2〕,与x轴的一个交点 A 在点〔﹣3,0〕和〔﹣2,0〕之间,其局部图象如图,那么以下结论:①b2﹣4ac<0;② a+b+c<0;③ c﹣ a=2;④方程 ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为〔〕A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系;抛物线与x 轴的交点专题:数形结合.解析:由抛物线与x 轴有两个交点获取b2﹣4ac>0;有抛物线极点坐标获取抛物线的对称轴为直线 x=﹣1,那么依照抛物线的对称性得抛物线与x 轴的另一个交点在点〔0, 0〕和〔 1,0〕之间,所以当x=1时, y<0,那么 a+b+c<0;由抛物线的极点为D〔﹣1,2〕得 a﹣b+c=2,由抛物线的对称轴为直线x =﹣=1得 =2,所以﹣ =2;依照二次函数的最大值问题,b ac a当 x=﹣1时,二次函数有最大值为2,即只有x=1 时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0 有两个相等的实数根.解答:解:∵抛物线与x 轴有两个交点,∴b2﹣4ac>0,所以①错误;∵极点为 D〔﹣1,2〕,∴抛物线的对称轴为直线x=﹣1,∵抛物线与x 轴的一个交点 A 在点〔﹣3,0〕和〔﹣2,0〕之间,∴抛物线与x 轴的另一个交点在点〔0, 0〕和〔 1, 0〕之间,∴当 x=1时, y<0,∴a+b+c<0,所以②正确;∵抛物线的极点为 D〔﹣1,2〕,∴a﹣ b+c=2,∵抛物线的对称轴为直线 x=﹣=1,∴b=2a,∴a﹣2a+c=2,即 c﹣ a=2,所以③正确;∵当 x=﹣1时,二次函数有最大值为2,即只有 x=1时, ax2+bx+c=2,∴方程 ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.应选 C.谈论:此题观察了二次函数的图象与系数的关系:二次函数 y=ax2+bx+c〔 a≠0〕的图象为抛物线,当 a>0,抛物线张口向上;对称轴为直线x=﹣;抛物线与 y 轴的交点坐标为〔0,c〕;当 b2﹣4ac>0,抛物线与 x 轴有两个交点;当b2﹣4ac=0,抛物线与 x 轴有一个交点;当 b2﹣4ac<0,抛物线与 x 轴没有交点.12.〔 2021? 菏泽第 8 题 3 分〕如图,Rt△ABC中,AC=BC=2,正方形CDEF的极点D、F分别在 AC、 BC边上, C、D两点不重合,设 CD的长度为 x,△ ABC与正方形 CDEF重叠局部的面积为 y,那么以以下图象中能表示y 与 x 之间的函数关系的是〔〕优秀文档A.B.C.D.考点:动点问题的函数图象.专题:数形结合.解析:分类谈论:当0<x≤ 1 时,依照正方形的面积公式获取y=x2;当1< x≤2时, ED交 AB于 M, EF交 AB于 N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积获取 y=x2﹣2〔 x﹣1〕2,配方获取 y=﹣〔 x﹣2〕2+2,尔后依照二次函数的性质对各选项进行判断.解答:解:当0<x≤ 1时, y=x2,当 1<x ≤2 时,交于,交于,如图,ED AB M EF AB NCD=x,那么 AD=2﹣ x,∵R t △ ABC中, AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣ x,∴EM=x﹣〔2﹣ x〕=2x﹣2,∴S△ ENM=〔2x﹣2〕2=2〔 x﹣1〕2,∴y=x2﹣2〔 x﹣1〕2=﹣ x2+4x﹣2=﹣〔 x﹣2〕2+2,∴y=,应选 A.15. 〔 2021 年山东泰安,第20 题 3 分〕二次函数y=ax2+bx+c〔 a, b,c 为常数,且a≠0〕中的 x 与 y 的局部对应值以下表:X﹣1013y﹣1353以下结论:(1〕ac< 0;(2〕当x> 1 时,y的值随x值的增大而减小.(3〕 3 是方程ax2+〔b﹣ 1〕x+c=0 的一个根;(4〕当﹣ 1<x< 3 时,ax2+〔b﹣1〕x+c> 0.其中正确的个数为〔〕A.4个B.3个C.2个D.1个解析:依照表格数据求出二次函数的对称轴为直线x ,尔后依照二次函数的性质对各小题解析判断即可得解.解:由图表中数据可得出: x=1时,y=5值最大,所以二次函数2y=ax +bx+c 张口向下, a<0;又 x=0时, y=3,所以 c=3>0,所以 ac<0,故〔1〕正确;∵二次函数y=ax2+bx+c 张口向下,且对称轴为x==1.5 ,∴当x>1.5 时,y的值随x值的增大而减小,故〔2〕错误;2∵x=3时, y=3,∴9a+3b+c=3,∵ c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程 ax +〔b﹣1〕x+c=0的一个根,故〔3〕正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+〔 b﹣1〕x+c=0,∵x=3时,ax2+〔 b﹣1〕x+c=0,且函数有最大值,∴当﹣ 1<x< 3 时,ax2=〔b﹣ 1〕x+c> 0,故〔 4〕正确.应选 B .谈论: 此题观察了二次函数的性质, 二次函数图象与系数的关系,抛物线与 x 轴的交点,二次函数与不等式,有必然难度.熟练掌握二次函数图象的性质是解题的要点.5. 〔 2021? 贵港,第 12 题 3 分〕二次函数 y =ax 2+bx +c 〔 a ≠ 0〕的图象如图,解析以下四个结论:① a bc < 0;② b 2﹣ 4ac >0;③ 3a +c > 0;④〔 a +c 〕 2< b 2,其中正确的结论有〔〕A . 1个B .2个C .3个D .4个考点 : 二次函数图象与系数的关系.解析:①由抛物线的张口方向, 抛物线与 y 轴交点的地址、对称轴即可确定 a 、b 、c 的符号,即得 abc 的符号;②由抛物线与 x 轴有两个交点判断即可;③ 〔﹣ 2〕+2 〔 1〕=6 +3 <0,即 2 + < 0;又由于a <0,所以 3 + < 0.故错误;ff a ca ca c④将 x =1 代入抛物线解析式获取+ + <0,再将x =﹣ 1 代入抛物线解析式获取﹣ +>0,a b ca b c 两个不等式相乘,依照两数相乘异号得负的取符号法那么及平方差公式变形后,获取〔 a +c 〕2<b 2,解答:解:①由张口向下,可得 a <0,又由抛物线与 y 轴交于正半轴,可得 c > 0,尔后由对称轴在 y 轴左侧,获取 b 与 a 同号,那么可得 b < 0, abc >0,故①错误;②由抛物线与 x 轴有两个交点,可得b 2﹣4ac > 0,故②正确;③当 x =﹣ 2 时, y < 0,即 4a ﹣2b +c < 0 〔 1〕当 x =1 时, y < 0,即 a +b +c <0 〔 2〕( 1〕 +〔 2〕× 2 得: 6a +3c <0,即 2a +c < 0又∵ a < 0,∴ a +〔 2a +c 〕 =3a +c < 0.故③错误;④∵ x=1时, y=a+b+c<0, x=﹣1时, y=a﹣ b+c>0,∴〔 a+b+c〕〔 a﹣ b+c〕<0,即[ 〔a+c〕+b][ 〔a+c〕﹣b]= 〔a+c〕2﹣b2< 0,∴〔 a+c〕2<b2,故④正确.综上所述,正确的结论有 2 个.应选: B.谈论:此题观察了二次函数图象与系数的关系.二次函数y=ax2+bx+c〔 a≠0〕系数符号由抛物线张口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.11. 〔 2021? 广东深圳,第11 题23 分〕二次函数y=ax +bx+c图象如图,以下正确的个数为〔〕①b c>0;②2a﹣ 3c<0;③2a+b> 0;④a x2+bx+c=0有两个解 x1, x2, x1>0, x2<0;⑤a+b+c>0;⑥当 x>1时, y 随 x 增大而减小.A.2B.3C.4D.5考点:二次函数图象与系数的关系.解析:依照抛物线张口向上可得a>0,结合对称轴在y 轴右侧得出b<0,依照抛物线与y 轴的交点在负半轴可得c<0,再依据有理数乘法法那么判断①;再由不等式的性质判断②;依照对称轴为直线x=1判断③;依照图象与x 轴的两个交点分别在原点的左右两侧判断④;解答:解:①∵抛物线张口向上,∴a>0,∵对称轴在y 轴右侧,∴a, b 异号即 b<0,∵抛物线与y 轴的交点在负半轴,∴c<0,∴b c>0,故①正确;②∵ a>0,c<0,∴2a﹣ 3c>0,故②错误;③∵对称轴 x=﹣<1,a>0,∴﹣ b<2a,∴2a+b> 0,故③正确;④由图形可知二次函数 y=ax2+bx+c 与 x 轴的两个交点分别在原点的左右两侧,即方程 ax2+bx+c=0有两个解 x1,x2,当 x1> x2时, x1>0, x2<0,故④正确;⑤由图形可知x=1时, y=a+b+c<0,故⑤错误;⑥∵ a>0,对称轴 x=1,∴当 x>1时, y 随 x 增大而增大,故⑥错误.综上所述,正确的结论是①③④,共 3 个.应选 B.谈论:主要观察图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求 2a与b的关系,以及二次函数与方程之间的变换.14.〔 2021? 齐齐哈尔, 9 题 3 分〕如图,二次函y=ax2+bx+c〔 a≠0〕图象的一局部,对称轴为直线 x=,且经过点〔2,0〕,以下说法:① abc<0;② a+b=0;③4a+2b+c<0;④假设〔﹣2,y1〕,〔,y2〕是抛物线上的两点,那么y1< y2,其中说法正确的选项是〔〕A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.解析:①依照抛物线张口方向、对称轴地址、抛物线与y 轴交点地址求得、、的符号;a b c②依照对称轴求出b=﹣ a;③把 x=2代入函数关系式,结合图象判断符号;④求出点〔﹣ 2,y1〕关于直线x=的对称点的坐标,依照对称轴即可判断y1和 y2的大小.解答:解:①∵二次函数的图象张口向下,∴a<0,∵二次函数的图象交y 轴的正半轴于一点,∴c>0,∵对称轴是直线 x=,∴﹣ =,∴b=﹣ a>0,∴a bc<0.故①正确;②∵ b=﹣ a∴a+b=0.故②正确;③把 x=2代入 y=ax2+bx+c 得: y=4a+2b+c,∵抛物线经过点〔2, 0〕,∴当 x=2时, y=0,即4a+2b+c=0.故③错误;④∵〔﹣ 2,y1〕关于直线x=的对称点的坐标是〔3,y1〕,又∵当 x>时, y 随 x 的增大而减小,<3,∴y1< y2.故④错误;综上所述,正确的结论是①②④.应选: A.谈论:此题观察了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象张口向上,当a<0时,二次函数的图象张口向下.6.〔 2021? 扬州,第 16 题, 3 分〕如图,抛物线y=ax2+bx+c〔a> 0〕的对称轴是过点〔 1,0〕且平行于y 轴的直线,假设点P〔4,0〕在该抛物线上,那么4a﹣ 2b+c的值为0.〔第 3 题图〕考点:抛物线与 x 轴的交点解析:依照抛物线的对称性求得与x 轴的另一个交点,代入解析式即可.解答:解:设抛物线与x 轴的另一个交点是,Q∵抛物线的对称轴是过点〔1, 0〕,与x轴的一个交点是P〔4,0〕,∴与 x 轴的另一个交点Q〔﹣2,0〕,把〔﹣ 2, 0〕代入解析式得:0=4a﹣ 2b+c,∴4a﹣ 2b+c=0,故答案为: 0.谈论:此题观察了抛物线的对称性,知道与x 轴的一个交点和对称轴,可以表示出与x 轴的另一个交点,求得另一个交点坐标是此题的要点.2.〔 2021? 四川省德阳,第24 题 14 分〕如图,抛物线经过点A〔﹣2,0〕、 B〔4,0〕、C〔0,﹣8〕.〔1〕求抛物线的解析式及其极点D的坐标;〔2〕直线CD交x轴于点E,过抛物线上在对称轴的右侧的点P,作 y 轴的平行线交x 轴于点 F,交直线 CD于 M,使 PM=EF,央求出点P 的坐标;(3〕将抛物线沿对称轴平移,要使抛物线与〔 2〕中的线段EM总有交点,那么抛物线向上最多考点:二次函数综合题;解一元二次方程- 因式分解法;根的鉴识式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.解析:〔1〕由于抛物线与x 轴的两个交点,抛物线的解析式可设成交点式:y=a〔 x+2〕(x﹣4〕,尔后将点 C的坐标代入即可求出抛物线的解析式,再将该解析式配成极点式,即可获取极点坐标.(2〕先求出直线CD的解析式,再求出点E的坐标,尔后设点P的坐标为〔m,n〕,进而可以用m的代数式表示出 PM、EF,尔后依照 PM=EF建立方程,即可求出 m,进而求出点 P 的坐标.〔3〕先求出点的坐标,尔后设平移后的抛物线的解析式为=x 2﹣ 2 ﹣8+ ,尔后只要考虑M y xc三个临界地址〔①向上平移到与直线EM相切的地址,②向下平移到经过点M的地址,③向下平移到经过点 E 的地址〕所对应的 c 的值,就可以解决问题.解答:解:〔 1〕依照题意可设抛物线的解析式为y=a〔 x+2〕〔 x﹣4〕.∵点 C〔0,﹣8〕在抛物线y=a〔 x+2〕〔x﹣4〕上,∴﹣ 8a=﹣ 8.∴a=1.∴y=〔 x+2〕〔 x﹣4〕=x2﹣2x﹣ 8=〔x﹣ 1〕2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,极点 D的坐标为〔1,﹣9〕.〔2〕如图,设直线 CD的解析式为y=kx+B.∴解得:.∴直线 CD的解析式为y=﹣ x﹣8.当 y=0时,﹣ x﹣8=0,那么有 x=﹣8.∴点 E 的坐标为〔﹣8,0〕.设点 P 的坐标为〔 m, n〕,22那么 PM=〔 m﹣2m﹣8〕﹣〔﹣ m﹣8〕=m﹣ m,EF=m﹣〔﹣8〕=m+8.∵PM=EF,2∴m﹣ m=〔 m+8〕.2整理得: 5m﹣6m﹣ 8=0.∴〔 5m+4〕〔m﹣ 2〕 =0解得: m1=﹣, m2=2.∵点 P 在对称轴 x=1的右侧,∴m=2.此时, n=22﹣2×2﹣8=﹣8.∴点 P 的坐标为〔2,﹣8〕.(3〕当m=2 时,y=﹣ 2﹣ 8=﹣10.∴点 M的坐标为〔2,﹣10〕.设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①假设抛物线y=x2﹣2x﹣8+c 与直线 y=﹣ x﹣8相切,那么方程 x2﹣2x﹣8+c=﹣x﹣8即 x2﹣ x+c=0有两个相等的实数根.∴〔﹣ 1〕2﹣4× 1×c=0.∴c=.②假设抛物线y=x2﹣2x﹣8+c 经过点 M,那么有 22﹣ 2× 2﹣ 8+c=﹣10.∴c=﹣2.③假设抛物线y=x2﹣2x﹣8+c 经过点 E,那么有〔﹣ 8〕2﹣ 2×〔﹣ 8〕﹣ 8+c=0.综上所述:要使抛物线与〔 2〕中的线段 EM 总有交点,抛物线向上最多平移个单位长度,向下最多平移 72 个单位长度.谈论: 此题观察了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的鉴识式、 抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转变成一元二次方程有两个相等的实数根的问题是解决第三小题的要点,有必然的综合性.8、〔 2021 年内蒙古包头〕 二次函数y ax2bx c的图象与 x 轴交于点 ( 2,0) ( x 1,0),、且 1x 1 2 ,与 y 轴的正半轴的交点在(0,2) 的下方.以下结论:① 4a 2b c 0 ;②a b 0 ;③ 2a c0 ;④ 2a b 10 .其中正确结论的个数是个.【答案】 4【解析】 此题观察二次函数图象的画法、鉴识理解, 方程根与系数的关系筀等知识和数形结合能力。

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a,b,c符号的确定

九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。

一、a ,b ,c 符号的确定(1)a 符号的确定。

抛物线的开口向上,a >0,抛物线的开口向下,a <0。

(2)c 符号的确定。

因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。

(3)b 符号的确定。

b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。

二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。

分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。

对称轴ab x 2-=>0,而a >0,故b <0。

(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。

对称轴ab x 2-=<0,而a <0,故b <0。

(C )图中(过程略),a >0,c >0 ,b >0。

(D )图中(过程略),a <0, c <0 ,b >0。

2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。

对称轴ab x 2-=>0,而a <0,故b >0。

因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。

3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。

二次函数系数a、b、c与图像的关系

二次函数系数a、b、c与图像的关系

二次函数系数a 、b 、c 与图像的关系知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式abx 2-=判断符号. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0. (4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b2-4ac=0;没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.一.选择题(共9小题) 1.(2014•威海)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm+a >0(m ≠﹣1). 其中正确的个数是( )A . 1B . 2C . 3D . 4 2.(2014•仙游县二模)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( ) A . ③④ B . ②③ C . ①④ D . ①②③ 3.(2014•南阳二模)二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c >0;③b 2﹣4ac >0;④<0中,正确的结论有( )A . 1个B . 2个C . 3个D . 4个4.(2014•襄城区模拟)函数y=x 2+bx+c 与y=x 的图象如图,有以下结论:①b 2﹣4c <0;②c ﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确结论的个数为( )A . 1B . 2C . 3D . 4 5.(2014•宜城市模拟)如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(2,y 2)是抛物线上的两点,则y 1>y 2. 其中说法正确的是( )A.①②B.②③C.②③④D.①②④6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤11、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案:CBDCD DCDDD 11、C一.选择题(共9小题)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a >0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0 ∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解解:①∵图象开口向下,∴a<0;故本选项正确;答:②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a ﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c <0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a ≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。

二次函数知识点汇总(全)

二次函数知识点汇总(全)

二次函数知识点 (第一讲 )一、二次函数概念:1.二次函数的概念:一般地,形如y2ax bx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数 a 0 ,而 b ,c 可以为零.二次函数的定义域是全体实数.22. 二次函数y ax bx c的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是 2.⑵ a ,b ,c 是常数,a是二次项系数, b 是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a的绝对值越大,抛物线的开口越小。

a 的符号开口方向顶点坐对称标性质轴x 0 时,y随x的增大而增大; x0 时,y随a 0向上0,0y 轴x 的增大而减小;x 0 时,y有最小值 0 .x 0 时,y随x的增大而减小; x0 时,y随a 0向下0,0y 轴x 的增大而增大;x 0 时,y有最大值 0 .2.2c 的性质:(上加下减)y axa 的符号开口方向顶点坐对称性质标轴x0 时,y随x的增大而增大; x0 时,y随a0向上0,c y 轴x 的增大而减小;x 0 时,y有最小值c.x0 时,y随x的增大而减小; x0 时,y随a0向下0,c y 轴x 的增大而增大;x 0 时,y有最大值c.3. y a x h 2 的性质:(左加右减)a 的符号开口方向顶点坐对称 性质标轴x h 时, y 随 x 的增大而增大; xh 时, y 随a 0向上h ,0 X=hx 的增大而减小; x h 时, y 有最小值 0 .x h 时, y 随 x 的增大而减小; xh 时, y 随a 0向下h ,0X=hx 的增大而增大; x h 时, y 有最大值 0 .4. y a x2k 的性质:ha 的符号开口方向顶点坐对称 性质标轴x h 时, y 随 x 的增大而增大; xh 时, y 随a 0向上h ,k X=hx 的增大而减小; x h 时, y 有最小值 k .x h 时, y 随 x 的增大而减小; xh 时, y 随a 0向下 h ,kX=hx 的增大而增大; x h 时, y 有最大值 k .三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式y a x h 2h ,k ;k ,确定其顶点坐标 ⑵ 保持抛物线 yax 2 的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:向上 ( k>0)【或向下 ( k<0) 】平移 |k|个单位y=ax2y=ax 2+k向右 ( h>0) 【或左 (h<0) 】 向右 (h>0)【或左 (h<0)】 向右 (h>0) 【或左 ( h<0) 】 平移 |k| 个单位平移 |k|个单位平移 |k|个单位向上 (k>0)【或下 (k<0)】平移 |k|个单位y=a (x-h)2向上 (k>0)【或下 (k<0)】平移 |k|个单位y=a( x-h)2+k2. 平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移 ”.概括成八个字“左加右减,上加下减”.方法二:⑴ y ax 2bx c 沿y轴平移:向上(下)平移m 个单位, y ax2bx c 变成y ax2bx c m (或 y ax 2bx c m )⑵ y ax 2bx c 沿轴平移:向左(右)平移m 个单位, y ax2bx c 变成y a(x m) 2b( x m) c (或 y a( x m) 2b(x m) c )四、二次函数y a x h2k 与 y ax2bxc 的比较从解析式上看, y a x h 2k 与 y ax2bx c 是两种不同的表达形式,后者通过配方可以得到2b2b,k4ac b2前者,即 y a x b4ac,其中 h.2a4a2a4a五、二次函数 y ax 2bx c 图象的画法五点绘图法:利用配方法将二次函数y ax2bx c 化为顶点式 y a( x h)2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. 一般我们选取的五点为:顶点、与 y 轴的交点0,c、以及 0,c关于对称轴对称的点2h ,c 、与x轴的交点x1,0 ,x2,0(若与 x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与 y 轴的交点.六、二次函数 y ax2bx c 的性质1.当 a0 时,抛物线开口向上,对称轴为x b,顶点坐标为 b ,4ac b 2.2a2a4a当 x b时, y 随 x 的增大而减小;当xb时, y 随 x 的增大而增大;当xb时, y 有2a2a2a最小值4acb2.4a2.当 a0 时,抛物线开口向下,对称轴为 x b,顶点坐标为 b ,4ac b2.当 x b时, y2a2a4a2a随 x 的增大而增大;当x b时, y 随 x 的增大而减小;当x b时, y 有最大值4acb2.2a2a4a 七、二次函数解析式的表示方法1.一般式: y2 ax2.顶点式: y a( x3.两根式: y a(x bx c (a, b ,c为常数, a0 );h) 2k (a, h , k 为常数, a0 );x1 )( x x2 ) ( a 0 , x1, x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式, 但并非所有的二次函数都可以写成交点式,只有抛物线与 x 轴有交点,即 b 2 4ac 0 时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化 .八、二次函数的图象与各项系数之间的关系1. 二次项系数 a二次函数 y ax 2 bx c 中, a 作为二次项系数,显然 a 0 .⑴ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当 a0 时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来, a 决定了抛物线开口的大小和方向,a 的正负决定开口方向, a 的大小决定开口的大小.2. 一次项系数 b在二次项系数 a 确定的前提下, b 决定了抛物线的对称轴. ⑴ 在 a0 的前提下,当 b0 时,b 0 ,即抛物线的对称轴在y 轴左侧;2a当 b0 时,b 0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b 0 ,即抛物线对称轴在 y 轴的右侧.2a⑵ 在 a0 的前提下,结论刚好与上述相反,即当 b0 时,b 0 ,即抛物线的对称轴在y 轴右侧;2a当 b 0 时,b 0 ,即抛物线的对称轴就是y 轴;2a当 b 0 时,b 0 ,即抛物线对称轴在 y 轴的左侧.2a总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.ab 的符号的判定: 对称轴 xb在 y 轴左边则 ab 0 ,在 y 轴的右侧则 ab0 ,概括的说就2a是“左同右异” 总结:3. 常数项 c⑴ 当 c 0 时,抛物线与 y 轴的交点在 x 轴上方,即抛物线与 y 轴交点的纵坐标为正; ⑵ 当 c 0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴交点的纵坐标为 0 ; ⑶ 当 c0 时,抛物线与 y 轴的交点在 x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来, c 决定了抛物线与 y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3.已知抛物线与 x 轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于 x 轴对称2关于轴对称后,得到的解析式是y ax 2bx c;y a x b x c xy a x2y a2 hk 关于x轴对称后,得到的解析式是x hk ;2.关于 y 轴对称y2b x 关c于y轴对称后,得到的解析式是y ax2bx c ;a xy a x2y a x h2hk 关于y轴对称后,得到的解析式是k ;3.关于原点对称y ax2bx c关于原点对称后,得到的解析式是y ax2bx c ;2关于原点对称后,得到的解析式是2;y a x h y a x h kk4. 关于顶点对称(即:抛物线绕顶点旋转180°)y2 b x 关c于顶点对称后,得到的解析式是y ax2bx b2a x c;2ay a x2k 关于顶点对称后,得到的解析式是y a x h2.h k5. 关于点m,n 对称22k y a x hk 关于点 m,n 对称后,得到的解析式是 y a x h 2m2n根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程 ax2bx c 0 是二次函数 y ax2bx c 当函数值 y0时的特殊情况 .图象与 x 轴的交点个数:① 当b24ac0 时,图象与x轴交于两点 A x1,0,B x2,0( x1x2 ) ,其中的 x1,x2是一元二次方程 ax2bx c 0 a 0 的两根.这两点间的距离 AB x2x1b24ac .a② 当0 时,图象与x轴只有一个交点;③ 当0 时,图象与x轴没有交点.1'当 a0 时,图象落在x轴的上方,无论x 为任何实数,都有y 0 ;2'当 a0 时,图象落在x轴的下方,无论x 为任何实数,都有y0 .2. 抛物线y ax2bx c 的图象与y轴一定相交,交点坐标为(0 , c) ;3.二次函数常用解题方法总结:⑴求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数y ax2bx c 中a, b ,c的符号,或由二次函数中 a ,b, c 的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式ax2bx c(a 0) 本身就是所含字母x 的二次函数;下面以 a0 时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物线与 x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与 x 轴只二次三项式的值为非一元二次方程有两个相等的实数根有一个交点负0抛物线与 x 轴无二次三项式的值恒为一元二次方程无实数根 .交点正二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以 x 为自变量的二次函数y ( m 2)x 2m2m 2 的图像经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数y kx b 的图像在第一、二、三象限内,那么函数y kx2bx 1 的图像大致是()y y y y110 x o-1 x0 x0 -1 xA B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3) , (4,6) 两点,对称轴为x 5,求这条抛物线的解析式。

判定二次函数中的a,b,c的符号

判定二次函数中的a,b,c的符号

二次函数:图象位置与a,b,c,(1)a决定抛物线的开口方向:;.(2)C决定抛物线与轴交点的位置,抛物线交轴于;抛物线交轴于;.(3)ab决定抛物线对称轴的位置,当同号时对称轴在轴;对称轴为;异号对称轴在轴,简称为.一、通过抛物线的位置判断a,b,c,△的符号.例1.根据二次函数y=ax2+bx+c的图象,判断a、b、c、b2-4ac的符号2.看图填空(1)a+b+c_______0(2)a-b+c_______0(3)2a-b _______0(4)4a+2b+c_______0二、通过a,b,c,△的符号判断抛物线的位置:D例1.若,则抛物线y=ax2+bx+c的大致图象为()例2.若a>0,b>0,c>0,△>0,那么抛物线y=ax2+bx+c经过象限.例3.已知二次函数y=ax2+bx+c且a<0,a-b+c>0;则一定有b2-4ac 0例4.如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的大致图象是()BDCA1.若抛物线y=ax2+bx+c开口向上,则直线经过象限.2.二次函数y=ax2+bx+c的图象如图所示,则下列条件不正确的是(A、 B、C、 D、3.二次函数y=ax2+bx+c的图象如图,则点在.()A、第一象限B、第二象限C、第三象限D、第四象限4.二次函数y=ax2+bx+c与一次函数在同一坐标系中的图象大致是( O5.二次函数y=ax2+bx+c的图象,如图,下列结论①②③④其中正确的有()A、1个B、2个C、3个D、4个16.已知函数y=ax2+bx+c的图象如图所示,关于系数有下列不等式①②③④⑤其中正确个数为.7.已知直线y=ax2+bx+c不经过第一象限,则抛物线一定经过()A.第一、二、四象限 B.第一、二、三象限C.第一、二象限 D.第三、四象限8. 如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__.9. 若抛物线y=x2-bx+9的顶点在x轴上,则b的值为______若抛物线y=x2-bx+9的顶点在y轴上,则b的值为______10.已知二次函数y=ax2+bx+c(a≠0的图象如图所示,有下列结论:①abc>0;②a+b+c=2;;④b<1.其中正确的结论是(A.①② B.②③ C.②④ D.③④11.二次函数y=ax2+bx+c(a≠0的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴负半轴交于一点,给出以下结论①abc<0;②2a+b>0;③a +c=1;④a>1.其中正确的结论是(A、1个B、2个C、3个D、4个12. 二次函数y=ax2 -2x-1与x轴有交点,则k的取值范围________。

二次函数中a、b、c的符号

二次函数中a、b、c的符号
20

二次函数中的符号问题
y ax bx c(a 0)
2
1
二次函数中的符号问题
(a、b、c、△等符号)
2
回味知识点:
1、抛物线y=ax2+bx+c的开口方向与什么有关? 2、抛物线y=ax2+bx+c与y轴的交点是 (0,c) .
开口方向与a有关
3、抛物线y=ax2+bx+c的对称轴是
a、b异号 b=0 简记为:左同右异
对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴 (4)b2-4ac的符号:
由抛物线与x轴的交点个数确定:
与x轴有两个交点
b2-4ac>0 b2-4ac=0
b2-4ac<0
5
与x轴有一个交点
与x轴无交点
归纳知识点:
6
7
8
9
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
X= - b/2a .
3
归纳知识点:
抛物线y=ax2+bx+c的符号问题: (1)a的符号: 由抛物线的开口方向确定 开口向上 开口向下 a>0 a<0
(2)C的符号: 由抛物线与y轴的交点位置确定:
交点在x轴上方 交点在x轴下方 经过坐标原点
c>0
c<0
c=0
4
归纳知识点:
(3)b的符号:
由对称轴的位置确定: a、b同号
18
数学因规律而不再枯燥, 数学因思维而耐人寻味。
让我们热爱数学吧!
19
课外作业:
1.如图是二次函数y1=ax2+bx+c和 一次函数y2=mx+n的图象,观察 图象写出y2 ≥y1时,x的取值范围 是________;

2.4二次函数a.b.c的符号的确定

2.4二次函数a.b.c的符号的确定


y o
图2
x
o
图1
x
y
C、4个
D、5个
-1 o
1
x
8、已知:二次函数y=ax2+bx+c的图象如图所示, 下列结论中:①b>0;②c<0;③4a+2b+c > 0; ④(a+c)2<b2,其中正确的个数是 ( B ) A、4个 C、2个 B、3个 D、1个 y
o x=1
x
9.如图,在同一坐标系中,函数y=ax+b与 y=ax2+bx(ab≠0)的图象只可能是( )
2
已知 : y ( m 1) x 2 x m , 当m _____ 1 时,图象为直线;
2
当m _____ 1时,图象为抛物线; 当m _____ 1时,抛物线开口向下;
当m _____ 时,抛物线经过原点。 0
1、二次函数y ax 2 bx c(a 0)的图象如图所示, 下列结论①c<0,②b>0③4a+2b+c>0,④(a+c)2 b2 其中正确的是 (填序号,并说明理由)
1.已知抛物线y x 2 ( 2 m 1 )x ( 2 m 1 ),求证:
2.已知抛物线y (m+6)x 2 ( 2 m 1 )x m 1的图象 与x轴总有两个交点,求m的取值范围。
3.已知抛物线y 2x 3x m与x轴交于A, B两点,且
2
1 线段AB的长为 ,()求 1 m的值;(2)若抛物线顶 2 点为p,求ABP的面积。
2
(2) y 1 2 x x (3) y x(5 x) (4) y ( x 1)( x 2)

二次函数(基础知识)

二次函数(基础知识)

二次函数一、知识网络⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧++=⇒⎭⎬⎫⎪⎩⎪⎨⎧++=⇒+=+=⇒=⎪⎪⎩⎪⎪⎨⎧⇒程的关系二次函数与一元一次方图像平移变换轴的位置关系的判定图像与顶点与对称轴开口方向及单调性抛物线形状二次函数的性质二次函数概念c bx ax y k h x a y h x a y b ax y ax :y x :22222)()( 二、知识点与典型例题知识点1:二次函数的概念:形如++=bx ax y 2c(a ≠0)的函数叫二次函数,其中ax 2叫做二次项,a 叫二次项系数;bx 叫一次项,b 叫一次系数;c 叫常数项。

特别注意:a ≠0例1:下列函数中,哪些是二次函数(1)y=3x-1;(2)y=3x 2-1;(3)y=3x 3+2x 2;(4)y=(x+2)2-x 2;(5)y=x 2+21x;(6)y=2x 2+x-21>(2)①若y=)2()1()3(72-++---m x m x m m是二次函数,则m 的值是 。

②函数y=(m +2)x22-m +2x -1是二次函数,则m= .知识点2:二次函数图像的画法:列表→描点→连线。

特强强调:因为二次函数的图像是抛物线,是轴对称图形,所以列表时一定要把顶点写在中间。

例2:作出y=x 2+2x+2的图像 知识点3:a 、b 、c 符号的确定(1)a 的符号由抛物线的开口方向决定:a >0时,函数开口向上;a <0时开口向下; -(2)b 的符号由对称轴和a 的符号共同决定:①⎪⎩⎪⎨⎧>>-002a a b 时,b <0;②⎪⎩⎪⎨⎧<>-002a a b 时 b >0;③⎪⎩⎪⎨⎧><-002a a b 时 b >0;④二次函数⎪⎩⎪⎨⎧<<-2aab时,b<0;⑤02=-ab时,b=0。

(3)c的符号由图像与y轴的交点决定,当c>0时,图像与y轴的交点在y的正半轴;当c=0时,图像与y轴的交点坐标原点;当c<0时,图像与y轴的交点在y的负半轴;例3:(1)(2008龙岩)已知函数cbxaxy++=2的图象如图所示,则下列结论正确的是()A.a>0,c>0 B.a<0,c<0 C.a<0,c>0 D.a>0,c<0(2)函数2y ax b y ax bx c=+=++和在同一直角坐标系内的图象大致是( ))知识点4:会用配方法把++=bxaxy2 c (一般式)转化为khxay++=2)((顶点式),并且说出二次函数的开口方向、单调性、对称轴、顶点和最大(小)值。

二次函数中a,b,c符号确定

二次函数中a,b,c符号确定
已知二次函数 y ax2 bx c 的图像如图所示
对称轴是x=1,下列结论
①abc﹥0
y
②2a+b=0
③b2-4ac﹤0
④4a+2b+c﹥0
⑤ 若 2, y1 ,5, y2
x
是抛物线上两点,
0
则y1﹥y2
正确的有——————(填序号) X=1
• 如图是二次函数y=ax2+bx+c图象的一部分, 图象过点A(-3,0),对称轴为x=-1.给出 四个结论:①b2>4ac;②2a+b=0;
5个结论
①4ac-b2≥0, ②-3a+c﹤0
X=2
③abc﹤0
④将该函数图像向左平移2个单位后,
所得抛物线解析式是 y ax2 c
⑤m﹤2
正确的有——————(填序号)
象如图所示,有下列5个结论:① abc﹤o
② b ﹤ a+c;③ 4a+2b+c﹥0;④ 2c ﹤ 3b;⑤ a+b ﹤ m(am+b),(m≠1的实数)其中正确的 结论有( )
(m﹥2)无实数根
正确的有——————(填序号)
抛物线 y x 2 ax a 1
(1)无论a取何值,抛物线与x轴有交点
(2)无论a取何值,抛物线过一个定点
如图,在平面直角坐标系中,抛物线
y 1 x2
2
y 1 x2
y
2
y 3x
O
x
⊙O半径为2
阴影部分的面积=
一次函数 y1 x y
• ③a-b+c=0;④3a﹥b.
⑤其图像与x轴另一个交点坐标是(1,0)
⑥若点(-4,y1)点(3,y2) 在该函数图像上,则y1 ﹤ y2

二次函数知识点

二次函数知识点

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-. 七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九.二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:。

二次函数a,b,c,有关符号问题

二次函数a,b,c,有关符号问题

《二次函数y=ax2 +bx+c中有关符号的判断》教学设计
课程名称:二次函数y=ax2 +bx+c中有关符号的判断
授课教师:郑慧
知识点:二次函数y=ax2+bx+c中a、b、c等符号归纳及简单的知识应用
预备知识:听本课之前需了解的知识:二次函数的一般式的概念及图像
教学类型:讲授型,练习型
适用对象:九年级学生
设计思路:九年级学生对二次函数的一般式y=ax2 +bx+c及其图像已经有所了解,本节课基于学生在已有知识的基础之上,对y=ax2+bx+c中a、b、c的作用进行归纳与总结,知道a可以决定开口方向及开口大小,a、b共同决定对称轴的位置(左同右异),c 决定抛物线与y轴的交点坐标的位置,以及b2 -4ac、a+b+c、a-b+c的符号等,让学生能够轻松掌握该知识点并加以应用。

教学过程
正文讲解
第一部分内容:
通过数形结合思想,给出y=ax2 +bx+c中a、b、c的具体作用,制作相应PPT进行简单描述;第二部分内容:
结合第一部分的内容,在归纳总结的已有知识的基础之上,对知识进行简单的迁移与应用。

第三部分内容:结束语
自我教学反思
本节课只是对于已有知识的一个归纳与简单的应用,所以听课的受众群体必须具备一定的基础知识,不太适合新学二次函数的学生,没有预留太多的思考时间给学生,同时本节课设计的知识点比较简单,没有做过多的拓展与延伸。

二次函数的性质a,b,c符号问题

二次函数的性质a,b,c符号问题

二次函数的图像与性质知识点:二次函数抛物线,图像对称是关键,开口、顶点和交点,它们确定图像现。

a 的正负开口判(开口大小由a 断),c 与y 轴来相见,b 的符号较特别,符号与a 相关联,顶点位置先找见,y 轴作为参考线,左同右异中为0,牢记心中莫混乱。

△的符号最简便,x 轴上数交点,顶点坐标最重要,一般配方它就现,横标即为对称轴,纵标函数最值现,若求对称轴位置,括中符号正相反,一般、顶点、交点式,不同表达能互换。

二次函数a ,b ,c 及相关问题的解决:1、 a 正负性:由开口方向决定,开口向上,a >0;开口向下,a <02、 b 的正负性:由于抛物线对称轴为ab x 2-=,所以b 的正负性与对称轴的位置和a 的正负性相关联。

对称轴在y 轴的左边时,a 、b 符号相同,对称轴在y 轴的右边时,a 、b 符号相反,对称轴为y 轴时,b=0(左同右异中为0)3、 c 的正负性:c 表示抛物线与y 轴交点的纵坐标,即当x=0时,y=c ,所以当抛物线与y 轴的交点在x 轴的上方时,c >0,当抛物线与y 轴的交点在x 轴的下方时,c <0。

(c 与y 轴来相见)4、 abc 的正负性:a ,b ,c 确定,则随之确定5、 ac b 42-=∆的正负性:△是根的判别式,由于一元二次方程是二次函数y=0的特殊情况,所以可以从抛物线与x 轴的交点个数来判断△的正负性,与x 轴有两个交点时,042>-ac b ,与x 轴的交点有一个时,042=-ac b ,与x 轴没有交点时,042<-ac b6、 利用x 的特殊值判断一些代数式的正负性:当x=1时,y=a+b+c ,当x=-1时,y=a-b+c ,当x=2时,y=4a+2b+c ,当x=-2时,y=4a-2b+c ,当x=3时,y=9a+3b+c ,当x=-3时,y=9a-3b+c ,对于取x 的特殊值得到代数式的正负性,重点看此时图像在x 轴的上方还是下方。

初中二次函数知识点总结

初中二次函数知识点总结

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:a 的符号 开口方向 顶点坐标对称轴性质0a > 向上()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a <向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c .0a <向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号 开口方向 顶点坐标 对称轴 性质0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0.0a <向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a > 向上 ()h k , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k .0a <向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴2y ax bx c =++沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a =-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点 即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba ->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结: 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b acAB x x a-=-=. ② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=x 22y=2x 2y=x 2y=-2x 2y= -x 2y= -x 220∆> 抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根∆<抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2x 2-4y=2x 2+2y=2x 2y=3(x+4)2y=3(x-2)2y=3x 2y=-2(x+3)2y=-2(x-3)2y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点,则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x,求这条抛物线的解析式。

讲义二次函数的解析式求法及a,b,c符号判断方法

讲义二次函数的解析式求法及a,b,c符号判断方法
典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式.
例3已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式.
典型例题二:如果a>0,那么当x= - 时,y有最小值且y最小= ;如果a<0,那么,当x=- 时,y有最大值,且y最大= .告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式.
典型例题:已知二次函数的图像过点(0,2)(1,1)(3,5),求此二次函数解析式。
二.交点式
知识归纳:二次函数交点式:y=a(x- )(x- )(a≠0), , 分别是抛物线与x轴两个交点的横坐标.已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便.
典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式.
利用翻折型(对称性)来求函数解析式
已知一个二次函数 ,要求其图象关于 轴对称(也可以说沿 轴翻折); 轴对称及经过其顶点且平行于 轴的直线对称,(也可以说抛物线图象绕顶点旋转180°)的图象的函数解析式,先把原函数的解析式化成y=a(x–h)2+k的形式.
(1)关于 轴对称的两个图象的顶点关于 轴对称,两个图象的开口方向相反,即 互为相反数.
二次函数y=a +bx+c中a,b,c的符号判断方法
例1已知抛物线 的图象如图所示,则a、b、c的符号为( )
A. B.
C. D.
例2抛物线 中,b=4a,它的图象如图,有以下结论:① ;② ③ ④ ⑤ ;⑥ ;其中正确的为()
A.①②B.①④C.①②⑥D.①③⑤
例3下列图象中,当 时,函数 与 的图象是()
例3.(江西省)一条抛物线 经过点 与 。求这条抛物线的解析式。

二次函数的图像与字母a、b、c的关系

二次函数的图像与字母a、b、c的关系

课次教学计划教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. (6)由对称轴公式x=,可确定2a+b 的符号.二、基础练习1、已知抛物线y=ax 2+bx+c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( D ) A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出下列结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,则正确的结论是( D ) A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是( C )1\2\3A 、1B 、2C 、3D 、4任课教师学科 版本 年段 辅导类型 上课时间 学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号的确定方法课次教学目标 掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。

教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。

4、已知二次函数y=ax 2+bx+c 的图象如图所示,对称轴为直线x=1,则下列结论正确的是(B )A 、ac >0B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a ≠0)的图象如图所示,有下列结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是(A4 ) A 、1 B 、2 C 、3 D 、46、(如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有(D2) A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c (a ≠0)的图象如图所示,则下列说法正确的是(C ) A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,现有下列结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是(B )1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、已知二次函数y=ax 2的图象开口向上,则直线y=ax-1经过的象限是(D ) A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是(B ) A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、已知二次函数y=ax 2+bx+c 的图象如图所示,则a ,b ,c 满足(A )A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0C 、a <0,b >0,c >0,2b -4ac <0D 、a >0,b <0,c >0,2b -4ac >013、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,有下列4个结论,其中正确的结论是(B ) A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、已知二次函数y=2ax +bx+c (a ≠0)的图象如图所示,则下列结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0(a ≠0)有两个大于-1的实数根.其中错误的结论有(C ) A 、②③ B 、②④ C 、①③ D 、①④15、如图所示为二次函数y=ax 2+bx+c (a ≠0)的图象,在下列选项中错误的是(C ) A 、ac <0 B 、x >1时,y 随x 的增大而增大C 、a+b+c >0D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如图所示,下列结论错误的是(B ) A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是(D )A 、a >0B 、c <0C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有( C )个.1/2/3A 、1B 、2C 、3D 、4三、能力练习1.已知二次函数c bx ax y ++=2的图象如图 l -2-2所示,则a 、b 、c 满足( ) A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >0 2.已知二次函数c bx ax y ++=2(a ≠0)且a <0,a -b+c >0,则一定有( )A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac ≤03.二次函数c bx ax y ++=2的图象如图1-2-10,则点(b ,ca)在( )A .第一象限B .第二象限C .第三象限D .第四象限4.若二次函数c bx ax y ++=2的图象如图,则ac_____0(“<”“>”或“=”)第4题图 5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断正确的是( ) A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<a b2-时,y 随x 的增大而减小;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增; (4)抛物线有最低点,当x=ab2-时,y 有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2-,顶点坐标是 (a b 2-,ab ac 442-);(3)在对称轴的左侧,即当x<ab2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x的增大而减小,简记左增右减; (4)抛物线有最高点,当x=ab2-时,y 有最大值,例题.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ). (1)求抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?五、中考真题回顾: (09佛山)19.(1)请在坐标系中画出二次函数22y x x =-+的大致图象;(2)在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; (3)直接写出平移后的图象的解析式.注:图中小正方形网格的边长为1.(1)画图(略)注:基本反映图形的特征(如顶点、对称性、变化趋势、平滑)给2分, 满足其中的两至三项给1分,满足一项以下给0分; (2)画图、写解析式(略)注:画图满分2分,同(1)的标准;写解析式2分(无过程不扣分).(11·佛山)21.如图,已知二次函数y =ax 2+bx +c 的图像经过A (-1,-1)、B (0,2)、C (1,3); (1)求二次函数的解析式; (2)画出二次函数的图像;【答案】解:(1)根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3 ………………2分解得a =-1,b =2,c =2………………4分ab ac y 442-=最小值ab ac y 442-=最大值xy O第19题图xyoABC1所以二次函数的解析式为y =-x 2+2x +2………………5分(2)二次函数的图象如图………………8分 给分要点:顶点、对称、光滑(各1分)(12佛山)22.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的部分数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③已知函数c bx ax y ++=2的图象的一部分(如图). (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:(1)方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a , 解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y (三种选其一即可)(2)1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点x -1 0 1 2 3 y343xyoABC14、交y轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像(2013•佛山)24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).分析:(1)把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;(2)把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;(3)根据顶点坐标求出向上平移的距离,再根据阴影部分的面积等于平行四边形的面积,列式进行计算即可得解.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.点评:本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,(3)根据平移的性质,把阴影部分的面积转化为平行四边形的面积是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档