2018年四川省初中数学竞赛一试
2018年全国初中数学联合竞赛试题(含解答)
2018年全国初中数学联合竞赛试题(含解答)2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题(本题满分42分,每小题7分)1.已知$x,y,z$满足$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,则$\frac{y+2z}{3x-y-z}$的值为()A) 1.(B) $\frac{5}{3}$。
(C) $-\frac{1}{3}$。
(D) $-\frac{3}{5}$.答】B.解:由$\frac{2355x-y}{y+2z}=\frac{x}{z-z^2}$,得$5x-3y=3xz-3xz^2$,即$y=\frac{5}{3}x-\frac{3}{3}z+\frac{3}{3}xz^2$,所以$\frac{y+2z}{3x-y-z}=\frac{\frac{5}{3}x+\frac{1}{3}z}{\frac{4}{3}x-\frac{2}{3}z}=\frac{5}{3}$,故选(B)。
注:本题也可用特殊值法来判断。
2.当$x$分别取值$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{2006}, \frac{1}{2007}$时,计算$\frac{1}{2007}+\frac{x}{21+x^2}$代数式的值,将所得的结果相加,其和等于()A) $-1$。
(B) $1$。
(C) $0$。
(D) $2007$.答】C.解:$\frac{1}{2007}+\frac{x}{21+x^2}=\frac{1}{21}\left(\frac{21}{ 2007}+\frac{21x}{21+x^2}\right)=\frac{1}{21}\left(\frac{1}{1+x ^{-2}}\right)$,所以当$x=1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{2005},\frac{1}{200 6},\frac{1}{2007}$时,计算所得的代数式的值之和为$0$,故选(C)。
四川省初中数学竞赛
初中数学竞赛一试一、选择题(每小题6分:共36分)1、若x<1:则|+|等于()(A)1 (B)3-2x (C) 2x-3 (D) -22、如图:一个长为10米的梯子斜靠在墙上:梯子的顶端距地面的垂直距离为8米:如果梯子的顶端下滑1米:那么梯子的底端的滑动距离()(A)等于1米(B)大于1米(C)小于1米(D)不能确定8m 10m 3、设a;b 都是正实数且:那么的值为()(A )(B )(C )(D )4、若x1;x2是方程x2+2x-k=0的两个不相等的实数根:则x +x-2是()(A)正数(B)零(C)负数(D)不大于零的数5、如果等腰梯形的下底与对角线长都是10厘米:上底与梯形的高相等:则上底的长是()厘米。
(A)5(B)6(C)5 (D)66、关于的两个方程x2+4mx+4m2+2m+3=0;x2+(2m+1)x+m2=0中至少有一个方程有实根:则m的取值范围是()(A ) -<m<-(B )m ≤-或m ≥- (C ) -<m< (D )m ≤-或m ≥二、 填空题(每小题9分:共54分) 1、 如果y=++2:则2x+y= .2、设a 是一个无理数:且a ;b 满足ab+a-b=0:则b= .3、在一长8米宽6米的花园中欲挖一面积为24米2的矩形水池:且使四边所留走道的宽度相同:则该矩形水池的周长应为 米。
4、如图:D 、E 分别是ABC 的AC 、AB 边上的点:BD 、CE 相交于点O :若S △OCD =2: S △OBE =3:S △OBC =4:那么S ADOE = 。
5、如图:立方体的每个面上都写有一个自然数:并且相对两个面所写出二数之和相等:若10的对面写的是质数a :12的对面写的是质数b :15的对面写的是质数c :则a 2+b 2+c 2-ab-ac-bc= .6、△ABC 的一边为5:另外两边的长恰好是方程2x 2-12x+m=0的两个根:则m 的取值范围 .三、(20分)某公司生产电脑:1997年平均每台生产成本为5000元:并以纯利润20%标定出厂价:1998年开始:公司国强管理和技术改造:从而生产成本逐年降低:2001年每台电脑出厂价仅为1997年出厂价的80%:但公司却得到50%的利润:求以1997年生产成本为基数:19971015122ABCD E 34O年2001年生产成本平均每年降低的百分数(精确到0.01).(计算时:=1.414; =1.732; =2.236)四、(20分)如图:P 是⊙O 外一点:PA 与⊙O 切于A :PBC 是⊙O 的割线:AD ⊥PO 于D :求证:PB :BD=PC :CD.POCBAD五、(20分)将最小的31个自然数分成A、B两组:10在A组中:如果把10从A 组移到B组:则A组中各数的算术平均数增加:B组的各数的算术平均数也增加:问A 组中原有多少个数?。
2018全国初中数学竞赛试题及参考答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题<共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)qfRgF4dw271.设1a =,则代数式32312612a a a +--的值为( >.<A )24 <B )25 <C )10 <D )122.对于任意实数a b c d ,,,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:<a b ,)△<c d ,)=<ac bd ad bc ++,).如果对于任意实数u v ,, 都有<u v ,)△<x y ,)=<u v ,),那么<x y ,)为( >.qfRgF4dw27<A )<0,1) <B )<1,0) <C )<﹣1,0) <D )<0,-1)3.若1x >,0y >,且满足3y y x xy x x y==,,则x y +的值为( >.<A )1 <B )2 <C )92<D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( >.<A )1324S S S S < <B )1324S S S S = <C )1324S S S S > <D )不能确定5.设3333111112399S =++++,则4S 的整数部分等于( >. <A )4 <B )5 <C )6 <D )7 二、填空题<共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m --+=有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .NW2GT2oy018.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=<x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .NW2GT2oy019.若112y x x =-+-的最大值为a ,最小值为b ,则22a b +的值为 .10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .NW2GT2oy01三、解答题<共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线<第8题)<第10题)<第12题)223y x =于P ,Q 两点. <1)求证:∠ABP =∠ABQ ;<2)若点A 的坐标为<0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解读式.14.如图,△ABC 中,60BAC ∠=︒,2AB AC =.点P 在△ABC 内,且352PA PB PC ===,,,求△ABC 的面积.中国教育学会中学数学教学专业委员会“《数学周报》杯”2018年全国初中数学竞赛试题参考答案 一、选择题1.A解:因为71a =-, 17a +=, 262a a =-, 所以322312612362126261261260662126024.a a a a a a a a a a a +--=-+---=--+=---+=()()()2.B解:依定义的运算法则,有ux vy u vx uy v +=⎧⎨+=⎩,,即(1)0(1)0u x vy v x uy -+=⎧⎨-+=⎩,对任何实数u v ,都成立. 由于实数u v ,的任意性,得<x y ,)=<1,0).3.C<第13题)<第14题)解:由题设可知1y y x -=,于是341y y x yx x -==,所以 411y -=, 故12y =,从而4x =.于是92x y +=.4.C解:如图,连接DE ,设1DEF S S ∆'=,则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S S S S >.5.A解:当2 3 99k =,,,时,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以 3331111115111239922991004S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.二、填空题 6.3<m ≤4解:易知2x =是方程的一个根,设方程的另外两个根为12 x x ,,则124x x +=,12x x m =.显然1242x x +=>,所以122x x -<, 164m ∆=-≥0,即 ()2121242x x x x +-<,164m ∆=-≥0,所以1642m -<, 164m ∆=-≥0,<第4题)解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:<1,4),<2,3),<2,3),<4,1)的和为5,所以朝上的面两数字之和为5的概率是41369=.NW2GT2oy01 8.6解:如图,设点C 的坐标为a b (,),点D 的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x=上,所以11ab cd ==,.由于AC a b =-,BD c d =-, 又因为2BD AC =,于是 22222242c d a b c cd d a ab b -=--+=-+,(),所以 22224826a b c d ab cd +-+=-=()(),即224OC OD -=6.9.32解:由1x -≥0,且12x -≥0,得12≤x ≤1.22213113122()2222416y x x x =+-+-=+--+. 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =. 当12x =或1时,2y 取到最小值12,故22b =. 所以,2232a b +=. 10.84解:如图,设BC =a ,AC =b ,则<第8题)22235a b +==1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AF CB AC =,即1212b a b-=,故 12()a b ab +=. ② 由①②得2222122524a b a b ab a b +=++=++()(), 解得a +b =49<另一个解-25舍去),所以493584a b c ++=+=.三、解答题11.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,,两式相加得 2210αβαβ+++=, 即 (2)(2)3αβ++=,所以 2123αβ+=⎧⎨+=⎩,; 或232 1.αβ+=-⎧⎨+=-⎩,解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(),所以 012a b c ==-=-,,;或者8156a b c ===,,,故3a b c ++=-,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QC QH ,,,,. <第10题)因为AB 为⊙1O 的直径, 所以∠ADB =∠BDQ =90°, 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:<1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为<0,t ),则点B 的坐标为<0,-t ).设直线PQ 的函数解读式为y kx t =+,并设P Q,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得 2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是 222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P QQ P Q Q Q P x x x x x x x x x x x x x x --===--- 又因为PQx PCQD x =-,所以BC PC BDQD=.因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .<第12题)<第13题)<2)解法一 设PC a =,DQ b =,不妨设a ≥b >0,由<1)可知∠ABP =∠30ABQ =︒,BC ,BD ,所以AC 2-,AD =2.因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PCACDQAD =,即a b =,所以a b +=.由<1)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=, 于是可求得2a b =将2b =代入223y x =,得到点Q 的坐标,12).再将点Q 的坐标代入1y kx =+,求得3k =-所以直线PQ 的函数解读式为1y x =+.根据对称性知,所求直线PQ 的函数解读式为1y x =+,或1y +. 解法二 设直线PQ 的函数解读式为y kx t =+,其中1t =. 由<1)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x = 将223Q Q y x =代入上式,平方并整理得4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =又由 (1>得3322P Q x x t =-=-,32P Q x x k +=.若32Q x =,代入上式得 3P x =-, 从而 23()33P Q k x x =+=-.同理,若3Q x =, 可得32P x =-, 从而 23()33P Q k x x =+=.所以,直线PQ 的函数解读式为313y x =-+,或313y x =+. 14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ∠=∠∠=∠,,则△ABQ ∽△ACP . 由于2AB AC =,所以相似比为2. 于是22324AQ AP BQ CP ====,.60QAP QAB BAP PAC BAP BAC ∠=∠+∠=∠+∠=∠=︒.由:2:1AQ AP =知,90APQ ∠=︒,于是33PQ AP ==.所以 22225BP BQ PQ ==+,从而90BQP ∠=︒. 于是222()2883AB PQ AP BQ =++=+ .故 213673sin 60282ABC S AB AC AB ∆+=⋅︒==. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年初中数学联赛试题及参考答案_一_
则使得(x@y)@z+(y@z)@x+(z@x)@y=0 的 整
数 组 )(x,y,z)的 个 数 为 ( ).
(A)1 (B)2 (C)3 (D)4
答 (D).
(x@y)@z= (x+y-xy)@z= (x+y-xy)+z
- (x+y-xy)z=x+y+z-xy-yz-zx+xyz,
由 对 称 性 ,同 样 可 得
+3ab]=0,
又a-b=2,所 以 2-2[4+4ab]+2[4+3ab]=
0,解得ab=1.所 以a2+b2= (a-b)2 +2ab=6,a3 -
b3=(a-b)[(a-b)2+3ab]=14,a5 -b5 = (a2 +b2)
(a3-b3)-a2b2(a-b)=82.
5.对任意的 整 数 x,y,定 义 x@y=x+y-xy,
(y@z)@x=x+y+z-xy-yz-zx+xyz,(z
@x)@y=x+y+z-xy-yz-zx+xyz.
所以,由已知可得 x+y+z-xy-yz-zx+xyz
=0,即 (x-1)(y-1)(z-1)= -1.
所以,x,y,z 为整数时,只能有以下几种情况:
烄x-1=1, 烄x-1=1, 烅y-1=1, 或烅y-1=-1, 烆z-1=-1, 烆z-1=1,
2018 5 > 33 =6133.
又 M = (20118+20119+ … +20130)+ (20131+
1 2032+
…
+20150)>20130×13+20150×20=813324350,
所以
1 M
<813324350=6111138455,故
1 M
的填空题 (本题满分28分,每小题7分)
4.若实数a,b 满 足a-b=2,(1-a)2 - (1+b)2
四川省中学生数学竞赛真题
四川省中学生数学竞赛真题题目一:某班级有80名学生参加了数学竞赛,男生占总人数的60%,女生占总人数的40%。
其中有30%的男生和20%的女生取得了优异成绩,请问参赛学生中取得优异成绩的男学生和女学生各有多少人?解析:首先,我们可以计算出班级中男生和女生的人数:男生人数 = 总人数 ×男生比例 = 80 × 60/100 = 48人女生人数 = 总人数 ×女生比例 = 80 × 40/100 = 32人然后,我们计算取得优异成绩的男生和女生人数:优异成绩的男生人数 = 男生人数 ×男生优异成绩比例 = 48 × 30/100 = 14.4 ≈ 14人优异成绩的女生人数 = 女生人数 ×女生优异成绩比例 = 32 × 20/100 = 6.4 ≈ 6人所以,参赛学生中取得优异成绩的男学生有14人,取得优异成绩的女学生有6人。
题目二:某商店购进了某种商品,购入价为500元。
商店将商品标价上涨了30%,并在折扣促销时又打了20%的折扣,最终以什么价格卖出去?解析:首先,我们计算商品的标价:标价 = 购入价 × (1 + 上涨率) = 500 × (1 + 30/100) = 500 × 1.3 = 650元然后,我们计算打折后的价格:打折后价格 = 标价 × (1 - 折扣率) = 650 × (1 - 20/100) = 650 × 0.8 = 520元所以,商店最终以520元的价格卖出了该商品。
题目三:某城市的公交车站点每隔10分钟发一班公交车,一共有8个站点。
假设每个站点上下乘客的时间都是相同的,乘客全部下车需要2分钟,乘客全部上车需要4分钟。
如果一班车开往终点站一共需要多长时间?解析:首先,我们计算每个站点的时间:上下乘客的时间 = 上车时间 + 下车时间 = 4 + 2 = 6分钟然后,我们计算开往终点站的时间:开往终点站时间 = 每个站点的时间 ×站点数 = 6 × 8 = 48分钟所以,一班车开往终点站一共需要48分钟。
2018年四川德阳市中考数学试卷(含解析)
2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简 5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π.【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3,解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF , ∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4. 解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c,可得c=3,同理可得a=-1,b=2.格子中的数每3个数字形成一个循环,易得2018÷3=672……2,得第2018个格子的数为-1.【知识点】探究规律16.(2018四川省德阳市,题号16,分值:3)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,为正三角形,给出下列结论,①CB=2CE,②tan∠B=34点P到AC,BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,CB=2CE.②∵∠B=30°,.∴tan∠B=√33③在正△ACD中,CE是△ACD的中线,∠ACD=30°,∴∠ECD=12∴∠ECD=∠DCB.④如图,PM=d1,PN=d2.在Rt△MPN中,d12+d22=MN2,∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使d12+d22最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,d12+d22最小,,在Rt△ACE中,cos∠ACE=CEAC∵AC=2,∠ACE=30°,∴CE=AC·cos30°=√3,则CE2=3,∴d12+d22的最小值为3.所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____. 【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2=3,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可.【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF≌△BHF,可知AE,进而得出AB=BH,再根据AH2=AB2+BH2得出答案.【解题过程】证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分 补全频数分布直方图如上……………………………………………………………………5分 (2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x……………………………………………4分(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x)=1,……………………………………………………………………..2分解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分即n=120-23m ……………………………………………………………………………………..6分 又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D作BC的平行线交AC,AB的延长线分别于点E,F,已知CE=1,圆O的直径为5,①求证:EF为圆O的切线;②求DF的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DF DF+DE=OD AE ,即DF DF+2=524, ∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32,解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分 化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK …………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32, 解得m 1=-3,m 2=-72…………………………………………………………………………….8分 而AB=AC=2+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。
2018年初中数学联赛试题及答案
2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。
2018-2019初中数学竞赛专题复习 极限几何100题 无答案
EDFEG1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3若 tan ∠CAD= 4,AB =20,则线段 EF 的长为GEDC2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1∠BAC ,∠ACB =∠DAE +∠B ,点2F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1交于点 G 。
若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为D4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为EB5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为A B7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若3CE =5,△ACD 的面积为35 43 ,则线段 DB 的长为B8. 如图,在Rt △ABC 中,∠BAC =90°,AC =6,点 D 是 AB 的中点,DE//BC , 点 F 为 BC 上一动点,连接 AF 交 DG 于 E ,∠AEC 恰好为 90°,连接 CE ,当 DE =2 时,线段AB 的长为BFC9. 如图,在Rt △ADB 中,∠ADB =90°,点C 为∠ADB 的角平分线上一点,连接 AC 、DC ,过点 A 作DB 的 平行线,分别交 DC 、BC 于点E 、F ,若 BE =BF ,AC = 2 5 ,则 AE 的长为N10. 已知:在△ABC 中,∠ACB =2∠ABC ,AD 为∠BAC 的平分线,E 为线段 AC 上一点,DE =DB ,过E 作 AD 的垂线交直线AB 于 F ,取BF 的中点 M ,连接 DM 。
2018年初中数学联赛试题(含答案)
12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。
2018年民办初中初一招生面试测试数学题附答案
2018年民办初中初⼀招⽣⾯试测试数学题附答案2018年民办初中初⼀招⽣⾯试测试数学试卷(时间 90分钟满分 150分) 2018.2⼀、填空。
(每填空1分,共22分)1.明明1992年2⽉29⽇⽣,到()年()⽉()⽇正好是12周岁,他的下⼀次⽣⽇要再过()年才能过上。
2.有⼀⾓、两⾓、五⾓、⼗元纸币各⼀张,⼀共可以组成()种不同的币值。
3.在+10,-6,+2,0,-400,-203这些数中,正数有()个,负数有()个,既不是正数,也不是负数。
4.从0,3,4,8,9中选出3个数字组成的能被2,3,5同时整除的最⼤三位数是()。
5.我们⼀本数学书厚约7(),⼀头⼤象约重4(),⼩明⼀⼝⽓喝了200()⽔,⼩娟家的房⼦有118()。
6.⼩明期中考试成绩语⽂⽐语、数、英三科平均分低7.5分,数学⽐语、数、英三科平均成绩⾼9分,英语成绩⽐数学低()分。
7.中秋节时,铁观⾳茶叶促销酬宾,原500克售价98元,现在买500克送50克,爸爸买了2.2千克铁观⾳叶,他应付款()元。
8.A ,B 为⾃然数,⽽且182111 B A -,A :B=7:13,A+B=()。
9. 图中⼤正⽅形边长为a,⼩正⽅形的⾯积是()。
10.⼀杯40克⽩开⽔加⼊半杯40%的糖⽔,这杯⽔的含糖率约是()%. 11.在()⾥填上“>”“<”或“=”。
5.5吨()5吨50千克6.05⽶()6⽶5厘⽶3050⽴⽅厘⽶()3.05升 5平⽅⽶50平⽅分⽶()5.05平⽅⽶⼆、选择。
(每题2分,共10分)1.把7.08的⼩数点向右移动109位⼜向左移动110位,所得的数是原数()。
A 、101 B 、51C 、10倍2.循环⼩数3...41和3.1.4相⽐较的结果是()。
A 、3...41< 3.1.4 B 、3...41 =3.1.4 C 、3...41> 3.1.4 3.⽣产⼀零件,现在需要43⼩时,⽐原来缩短了21⼩时,缩短了()。
2018年四川省绵阳市中考数学试卷(含答案与解析)
数学试卷 第1页(共36页)数学试卷 第2页(共36页)绝密★启用前四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数 学(本试卷满分140分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.0(2018)-的值是( ) A .2018-B .2018C .0D .12.四川省公布了2017年经济数据GDP 排行榜,绵阳市排名全省第二,GDP 总量为2 075亿元.将2 075亿元用科学计数法表示为 ( ) A .120.207510⨯ B .112.07510⨯ C .1020.7510⨯ D .122.07510⨯3.如图,有一块含有30角的直角三角板的两个顶点放在直尺的对边上.如果244∠=,那么1∠的度数是 ( )A .14B .15C .16D .17 4.下列运算正确的是( )A .236a a a =B .325a a a +=C .248()a a =D .32a a a -= 5.下列图形是中心对称图形的是( )ABCD 6.等式3311x x x x --=++成立的x 的取值范围在数轴上可表示为( )AB C D 7.在平面直角坐标系中,以原点为对称中心,把点(3,4)A 逆时针旋转90,得到点B ,则点B 的坐标为 ( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-- 8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人9.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π m 2,圆柱高为3 m ,圆锥高为2 m 的蒙古包,则需要毛毡的面积是( )A .2(30529)πm +B .240πmC .2(30521)πm +D .255πm10.一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:3 1.732≈,2 1.414≈) ( ) A .4.64海里 B .5.49海里 C .6.12海里 D .6.21海里11.如图,ACB △和ECD △都是等腰直角三角形,CA CB =,CE CD =,ACB △的顶点A 在ECD △的斜边DE 上,若2AE =,6AD =,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-12.将全体正奇数排成一个三角形数阵: 1 3 57 9 11 13 15 17 19 21 23 25 27 29 ……按照以上排列规律,第25行第20个数是( )A .639B .637C .635D .633毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共104分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 13.因式分解:234x y y -= .14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,)1-和(3,1)-,那么“卒”的坐标为 .15.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是 .16.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m ,水面下降2 m ,水面宽度增加 m .17.已知0a b >>,且2130a b b a ++=-,则b a= . 18.如图,在ABC △中,3AC =,4BC =,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB = .三、解答题(本大题共7小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分16分,每题8分) (1)4sin60|23+(2)解分式方程:13222x x x-+=--.20.(本小题满分11分)绵阳某公司销售部统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元).销售部规定:当16x <时为“不称职”,当1620x ≤<时为“基本称职”,当2025x ≤<时为“称职”,当25x ≥时为“优秀”.根据以上信息,解答下列问题: (1)补全折线统计图和扇形统计图;(2)求所有“称职”和“优秀”的销售员月销售额的中位数和众数;(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励.如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果取整数)?并简述其理由.21.(本小题满分11分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?数学试卷 第5页(共36页) 数学试卷 第6页(共36页)22.(本小题满分11分)如图,一次函数1522y x =-+的图象与反比例函数()k y k x =>0的图象交于A ,B 两点,过A 点做x 轴的垂线,垂足为M ,AOM △面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的值最小,并求出其最小值和P 点坐标.23.(本小题满分11分)如图,AB 是O 的直径,点D 在O 上(点D 不与A ,B 重合),直线AD 交过点B 的切线于点C ,过点D 作O 的切线DE 交BC 于点E . (1)求证:BE CE =;(2)若DE AB ∥,求sin ACO ∠的值.24.(本小题满分12分)如图,已知ABC △的顶点坐标分别为(3,0)A ,(0,4)B ,(3,0)C -.动点M ,N 同时从A 点出发,M 沿A C →,N 沿折线A B C →→,均以每秒1个单位长度的速度移动,当一个动点到达终点C 时,另一个动点也随之停止移动,移动时间记为t 秒.连接MN . (1)求直线BC 的解析式;(2)移动过程中,将AMN △沿直线MN 翻折,点A 恰好落在BC 边上点D 处,求此时t 值及点D 的坐标;(3)当点M ,N 移动时,记ABC △在直线MN 右侧部分的面积为S ,求S 关于时间t 的函数关系式.备用图25.(本小题满分14分)如图,已知抛物线2(0)y ax bx a =+≠过点3)A -和B .过点A 作直线AC x ∥轴,交y 轴与点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与AOC △相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S =△△?若存在,求出点Q 的坐标;若不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第7页(共36页)数学试卷第8页(共36页)数学试卷 第9页(共36页) 数学试卷 第10页(共36页)四川省绵阳市2018年高中阶段学校招生暨初中学业水平考试数学答案解析一、选择题 1.【答案】D【解析】解:∵020181=,故答案为:D . 【考点】零次幂的运算 2.【答案】B【解析】解:∵112075 2.07510=⨯亿,故答案为:B . 【考点】科学记数法 3.【答案】C 【解析】解:如图:依题可得:244∠=,60ABC ∠=,BE CD ∥,∴1CBE ∠=∠,又∵60ABC ∠=,∴2CBE ABC ∠=∠-∠604416=-=,即116∠=.故答案为:C .【考点】平行线的性质 4.【答案】C【解析】解:A .∵235a a a =,故错误,A 不符合题意;B .a 3与a 2不是同类项,故不能合并,B 不符合题意;C .∵248()a a =,故正确,C 符合题意;D .a 3与a 2不是同类项,故不能合并,D 不符合题意;故答案为:C . 【考点】整式的运算 5.【答案】D【解析】解:A .不是中心对称图形,A 不符合题意;B .是轴对称图形,B 不符合题意;C .不是中心对称图形,C 不符合题意;D .是中心对称图形,D 符合题意;故答案为:D .【考点】中心对称图形的概念 6.【答案】B【解析】解:依题可得:30x -≥且10x +>,∴3x ≥,故答案为:B . 【考点】分式和根式有意义的条件,不等式在数轴上的表示 7.【答案】B 【解析】解:如图:由旋转的性质可得:AOC BOD △≌△, ∴OD OC =,BD AC =, 又∵(3,4)A ,∴3OD OC ==,4BD AC ==,∵B 点在第二象限, ∴B (4,3)-. 故答案为:B . 【考点】旋转的性质 8.【答案】C【解析】解:设参加酒会的人数为x 人,依题可得:1(1)552x x -=, 化简得:21100x x --=, 解得:111x =,210x =-(舍去), 故答案为:C . 【考点】一元二次方程数学试卷 第11页(共36页) 数学试卷 第12页(共36页)9.【答案】A【解析】解:设底面圆的半径为r ,圆锥母线长为l ,依题可得: 2π25πr =,∴5r =,∴圆锥的母线l ==∴圆锥侧面积2112ππ(m )2S r l rl ===,圆柱的侧面积222π2π5330π(m )S r h ==⨯⨯⨯=,∴需要毛毡的面积230π(m )=+,故答案为:A .【考点】圆柱和圆锥的侧面积 10.【答案】B【解析】解:根据题意画出图如图所示:作BD AC ⊥,取BE CE =,∵30AC =,30CAB ︒∠=,15ACB ︒∠=,∴135ABC ∠=, 又∵BE CE =, ∴15ACB EBC ∠=∠=, ∴120ABE ∠=, 又∵30CAB ∠=, ∴BA BE =,AD DE =, 设BD x =,在Rt ABD △中,∴AD DE ==,2AB BE CE x ===,∴230AC AD DE EC x =++=+=,∴1)5.492x =≈,故答案为:B .【考点】解直角三角形的应用 11.【答案】D【解析】解:连接BD ,作CH DE ⊥,∵ACB △和ECD △都是等腰直角三角形, ∴90ACB ECD ∠=∠=,45ADC CAB ∠=∠=, 即90ACD DCB ACD ACE ∠+∠=∠+∠=, ∴DCB ACE ∠=∠, 在DCB △和ECA △中,DC EC DCB ACE AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴DCB ECA △≌△,∴DB EA =45CDB E ∠=∠=, ∴90CDB ADC ADB ∠+∠=∠=, 在Rt ABD △中,∴AB ==,在Rt ABC △中, ∴2228AC AB ==, ∴2AC BC ==, 在Rt ECD △中,数学试卷 第13页(共36页) 数学试卷 第14页(共36页)∴2222CDDE ==,∴1CD CE =,∵ACO DCA ∠=∠,CAO CDA ∠=∠, ∴CAO CDA △∽△,∴221)4CAO ACD S S ===-=-△△ 又∵11222ECD S CE DE CH ==△,∴22CH ==∴1122ACD A C S DH =⨯==△, ∴(43CAOACD S S =-⨯=-△△即两个三角形重叠部分的面积为3 故答案为:D .【考点】等腰直角三角形的性质,勾股定理,相似三角形的判定和性质 12.【答案】A【解析】解:依题可得:第25行的第一个数为:(124)24124682*********+⨯+++++⋯⋯+⨯=+⨯=,∴第25行的第第20个数为:601219639+⨯=. 故答案为:A . 【考点】规律的探究13.【答案】(2)(2)y x y x y +-【解析】解:原式(2)(2)y x y x y =++-, 故答案为:(2)(2)y x y x y +-. 【考点】因式分解 14.【答案】(2,2)--【解析】解:建立平面直角坐标系(如图),∵相(3,1)-,兵(3,1)-, ∴卒(2,2)--, 故答案为:(2,2)--. 【考点】平面直角坐标系15.【答案】310【解析】解:从5根木条中任取3根的所有情况为:1、2、3;1、2、4;1、2、5;1、3、4;1、3、5;1、4、5;2、3、4;2、3、5;2、4、5;3、4、5;共10种情况; ∵能够构成三角形的情况有:2、3、4;2、4、5;3、4、5;共3种情况;∴能够构成三角形的概率为:310.故答案为:310.【考点】概率的计算 16.【答案】4【解析】解:根据题意以AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系(如图),依题可得:(2,0)A -,(2,0)B ,(0,2)C ,设经过A、B 、C 三点的抛物线解析式为:(2)(2)y a x x =-+, ∵(0,2)C 在此抛物线上,数学试卷 第15页(共36页) 数学试卷 第16页(共36页)∴12a =-, ∴此抛物线解析式为:1(2)(2)2y x x =--+,∵水面下降2 m ,∴1(2)(2)22x x --+=-,∴1x =2x =-,∴下降之后的水面宽为:∴水面宽度增加了:4.故答案为:4.【考点】二次函数的图象与性质17.【解析】解:∵2130a b b a ++=-,两边同时乘以()ab b a -得: 22220a ab b --=,两边同时除以a 2得:22()210b ba a +-=, 令(0)bt t a =>,∴22210t t +-=,∴t =,∴b t a ==.【考点】解分式方程,换元法 18.【解析】解:连接DE ,∵AD 、BE 为三角形中线,∴DE AB ∥,12DE AB =,∴DOE AOB △∽△, ∴12DO OE DE OA OB AB ===, 设OD x =,OE y =, ∴2OA x =,2OB y =, 在Rt BOD △中,2244x y += ①,在Rt AOE △中,22944x y += ②,∴+①②得:2225554x y +=, ∴2254x y +=,在Rt AOB △中,∴222225444()44AB xy x y =+=+=⨯,即AB =.【考点】勾股定理,三角形中位线的性质,三角形相似的判定与性质 三、解答题19.【答案】(1)1423=⨯原式,2=+,数学试卷 第17页(共36页) 数学试卷 第18页(共36页)2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =,系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【解析】(1)1423=⨯原式, 2=+, 2=.(2)方程两边同时乘以2x -得:12(2)3x x -+-=-, 去括号得:1243x x -+-=-, 移项得:2314x x +=-++,合并同类项得:32x =, 系数化为1得:23x =.检验:将23x =代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:23x =.【考点】实数的运算,解分式方程 20.【答案】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=,“基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人, ∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【解析】(1)解:依题可得: “不称职”人数为:224()+=人,“基本称职”人数为:233210()+++=人, “称职”人数为:4543420()++++=人, ∴总人数为:2050%40()÷=人, ∴不称职”百分比:44010%a =÷=, “基本称职”百分比:104025%b =÷=,“优秀”百分比:110%25%50%15%d =---=, ∴“优秀”人数为:4015%6()⨯=人,数学试卷 第19页(共36页) 数学试卷 第20页(共36页)∴得26分的人数为:62112()---=人, 补全统计图如图所示:(2)由折线统计图可知:“称职”20万4人,21万5人,22万4人,23万3人,24万4人, “优秀”25万2人,26万2人,27万1人,28万1人; “称职”的销售员月销售额的中位数为:22万,众数:21万; “优秀”的销售员月销售额的中位数为:26万,众数:25万和26万; (3)由(2)知月销售额奖励标准应定为22万.∵“称职”和“优秀”的销售员月销售额的中位数为:22万,∴要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为22万元.【考点】扇形统计图,折线统计图,中位数,众数,数据分析21.【答案】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m =+-=+,∵300k =>,∴W 随x 的增大而增大, ∴当8m =时,运费最少, ∴30810001240()W =⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:3418217x y x y +=⎧⎨+=⎩,, 解得:43.2x y =⎧⎪⎨=⎪⎩,答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10m -辆,依题可得: 34(10)332m m +-≥,0m ≥,10m -≥0,解得:36105m ≤≤,∴8,9,10m =;∴当大货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为13010010)30100(0W m m m=+-=+,∵300k=>,∴W随x的增大而增大,∴当8m=时,运费最少,∴30810001240()W=⨯+=元,答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【考点】二元一次方程组解决实际问题,一次函数的应用22.【答案】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111 222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2 yx =.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2) A'-,∴PA PB A B'+==.设A B'直线解析式为:y ax b=+,∴2142a ba b-+=⎧⎪⎨+=⎪⎩,∴3101710ab⎧=-⎪⎪⎨⎪=⎪⎩,∴A B'直线解析式为:3171010y x=-+,∴17(0,)10P.【解析】(1)解:设(,)A x y,∵A点在反比例函数上,∴k xy=,又∵1111222AOMS OM AM x y k====,∴2k=.∴反比例函数解析式为:2yx=.(2)解:作A关于y轴的对称点A',连接A B'交y轴于点P,PA PB+的最小值即为A B'.∴21522yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,,∴12xy=⎧⎨=⎩,或41.2xy=⎧⎪⎨=⎪⎩,∴(1,2)A,1 (4,)2 B,∴(1,2)A '-,∴PA PB A B '+==.设A B '直线解析式为:y ax b =+,∴2142a b a b -+=⎧⎪⎨+=⎪⎩,∴3101710a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴A B '直线解析式为:3171010y x =-+, ∴17(0,)10P .【考点】一次函数和反比例函数的图象与性质,待勾股定理 23.【答案】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠, ∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形,∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r r OH⨯=⨯, ∴OH =,在Rt COH△中,∴sin OH ACO OC ∠===. 【解析】(1)证明:连接OD 、BD , ∵EB 、ED 分别为圆O 的切线, ∴ED EB =, ∴EDB EBD ∠=∠, 又∵AB 为圆O 的直径, ∴BD AC ⊥,∴BDE CDE EBD DCE ∠+∠=∠+∠, ∴CDE DCE ∠=∠,∴ED EC =, ∴EB EC =.(2)解:过O 作OH AC ⊥,设圆O 半径为r ,∵DE AB ∥,DE 、EB 分别为圆O 的切线, ∴四边形ODEB 为正方形, ∵O 为AB 中点,∴D 、E 分别为AC 、BC 的中点, ∴2BC r =,AC =, 在Rt COB △中,∴OC =,又∵1122ACO S AO BC ACOH ==,∴2r rOH ⨯=⨯, ∴OH =,在RtCOH △中,∴sin OH ACO OC ∠=. 【考点】圆的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理 24.【答案】(1)解:设直线BC 解析式为:y kx b =+, ∵(0,4)B ,(3,0)C -,∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合, ∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ′,∵(3,0)A ,(0,4)B , ∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y ,∴34325x t +=-,0225y t +=, ∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△,∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【解析】(1)解:设直线BC 解析式为:y kx b =+,∵(0,4)B ,(3,0)C -, ∴430b k b =⎧⎨-+=⎩,解得:434k b ⎧=⎪⎨⎪=⎩, ∴直线BC 解析式为:443y x =+. (2)解:依题可得:AM AN t ==,∵AMN △沿直线MN 翻折,点A 与点点D 重合,∴四边形AMDN 为菱形,作NF x ⊥轴,连接AD 交MN 于O ',∵(3,0)A ,(0,4)B ,∴3OA =,4OB =, ∴5AB =, ∴(3,0)M t -, 又∵ANF ABO △∽△,∴AN AF NF AB AO OB ==, ∴534t AF NF ==, ∴35AF t =,45NF t =,∴34(3,)55N t t -,∴32(3,)55O t t '-,设(,)D x y , ∴34325x t +=-,0225y t +=,∴835x t =-,45y t =,∴4(3)8,55t D t -,又∵D 在直线BC 上, ∴484(3)4355t t ⨯-+=, ∴3011t =,∴1524(,)1111D -.(3)①当05t <≤时(如图),ABC △在直线MN 右侧部分为AMN △,∴211422255AMN S S AM DF t t t ===⨯⨯=△,②当56t <≤时,ABC △在直线MN 右侧部分为四边形ABNM ,如图∵AM AN t ==,5AB BC ==,∴5BN t =-,5(5)10CN t t =---=-, 又∵CNF CBO △∽△, ∴CN NF CB OB =, ∴1054t NF -=, ∴4(10)5NF t =-,∴1122ABC CNM S S S AC OB CM NF =-=-△,11464(6)(10)225t t =⨯⨯-⨯-⨯⨯-, 22321255t t =-+-.【考点】直线的解析式,全等三角形的判定和性质,相似三角形的判定和性质,三角形和四边形的面积,动点问题25.【答案】(1)解:∵点A 、B 在抛物线上, ∴33270aa ⎧+=-⎪⎨+=⎪⎩, 解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:212y x=. (2)解:设(,)P x y , ∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y=+,3CO =,AD x =AC =, ①当ADP ACO Rt △∽△时,∴AD DP =,33y +=,∴6y=-,又∵P 在抛物线上, ∴2126yx y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0xx --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC=,=∴4y=-, 又∵P 在抛物线上, ∴2124y x y ⎧=⎪⎪⎨⎪=-⎪⎩,,, 2110x -+=, ∴8)(0x -=,∴1x =2x =解得:43x y⎧=⎪⎪⎨⎪=-⎪⎩或3xy ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P 点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =, 又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==, 过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,,∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN解析式为:9y =+,∴2912y x y ⎧=⎪⎨⎪=⎩+,,∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOCAOQ S S =△△. 【解析】(1)解:∵点A 、B 在抛物线上,∴33270a a ⎧+=-⎪⎨+=⎪⎩,解得:12a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为:212y x =. (2)解:设(,)P x y ,∵3)A -,(0,3)C -,∴(,3)D x -,∴3PD y =+,3CO =,AD x =AC = ①当ADP ACO Rt △∽△时, ∴AD DP AC CO =,33y +=,∴6y =-,又∵P 在抛物线上,∴2126y x y ⎧=-⎪⎨⎪=-⎩,,∴2120x -+=, ∴((0x x --=,∴1x =,2x =,∴6x y ⎧=⎪⎨=⎪⎩3x y ⎧=⎪⎨=-⎪⎩,,∵3)A -,∴P .②当PDA ACO △∽△时, ∴PD DA AC CO =,3x -=∴4y =-, 又∵P 在抛物线上,∴2124y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,,,2110x -+=,∴8)(0x -=,∴1x =2x =,解得:433x y ⎧=⎪⎪⎨⎪=-⎪⎩或3x y ⎧=⎪⎨=-⎪⎩,∵3)A -,∴4)3P -.综上,P点坐标为或4)3-. (3)解:∵3)A -,∴AC =,3OC =,∴OA =,∴1133222AOC S OC AC OA h ===△, ∴32h =,又∵13AOC AOQ S S =△△,∴AOQ △边OA 上的高932h ==,过O 作OM OA ⊥,截取92OM =,过点M 作MN OA ∥交y 轴于点N ,过M 作HM x⊥轴,(如图),∵3AC =,23OA =, ∴30AOC ∠=, 又∵MN OA ∥,∴30MNO AOC ∠=∠=,OM MN ⊥, ∴29ON OM ==,60NOM ∠=, 即(0,9)N ,∴30MOB ∠=,∴1924MH OM ==,∴OH ==, ∴9)4M , 设直线MN 解析式为:y kx b =+,∴949b b ⎪=⎩+=,, ∴9k b ==⎪⎩⎧⎪⎨,, ∴直线MN 解析式为:9y =+,∴2912y x y ⎧=-⎪⎨⎪=⎩+,, ∴2180x --=,()()0x x -+=,∴1x =2x =-∴0x y ⎧=⎪⎨=⎪⎩或15x y ⎧=-⎪⎨=⎪⎩,∴Q 点坐标)或()-,∴抛物线上是否存在点Q ,使得13AOC AOQ S S =△△.【考点】二次函数的图象与性质,三角形相似的判定与性质。
数学初中竞赛整数专题训练(含答案)
数学初中竞赛整数专题训练一.选择题1.下列说法正确的是()A.所有合数都是偶数B.两个相邻的正整数互素C.所有的素数是奇数D.因为10÷0.5=20,所以10能被0.5整除2.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计了一种新的加减记数法.比如:9写成,;198写成,;7683写成,.总之,数字上画一杠表示减去它,按这个方法请计算=()A.1990 B.2134 C.2068 D.30243.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数,那么刻的数是36的钥匙所对应的原来房间应该是()号.A.28 B.23 C.20 D.134.若x1,x2,x3,x4,x5为互不相等的正奇数,满足(2005﹣x1)(2005﹣x2)(2005﹣x3)(2005﹣x4)(2005﹣x5)=242,则x12+x22+x32+x42+x52的未位数字是()A.1 B.3 C.5 D.75.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…根据上述算式中的规律,你认为22130的个位数字是()A.2 B.4 C.6 D.86.将1,2,3,4,5,6,7,8这八个数分别填写于一个圆周八等分点上,使得圆周上任两个相邻位置的数之和为质数,如果圆周旋转后能重合的算作相同填法,那么不同的填法有( ) A .4种B .8种C .12种D .16种7.23,33和43分别可以按如下方式分裂成2个、3个和4个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,63也能按此规律进行分裂,则63分裂出的奇数中最大的是( ) A .41B .39C .31D .298.在不大于100的自然数中,既不是完全平方数(平方根是整数)也不是完全立方数(立方根是整数)的数的概率有( ) A .B .C .D .9.若自然数n 使得作竖式加法n +(n +1)+(n +2)时均不产生进位现象,便称n 为“连绵数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象,所以13不是“连绵数”,则小于100的“连绵数”共有( )个. A .9B .11C .12D .1510.已知一列数a 1,a 2,a 3,…,a n ,…中,a 1=0,a 2=2a 1+1,a 3=2a 2+1,…,a n +1=2a n +1,….则a 2004﹣a 2003的个位数字是( )A .2B .4C .6D .811.设完全平方数M 的个位与十位数码交换后得到另一个完全平方数N (M >N ).则符合条件的M 的个数为( ) A .1B .2C .3D .多于312.若b 是无理数,且ab +9=3a +3b ,则a 2012的个位上的数字是( ) A .9 B .7C .3D .1二.填空题13.使得5×2m +1是完全平方数的整数m 的个数为 . 14.设四位数满足a 3+b 3+c 3+d 3+1=10c +d ,则这样的四位数的个数为 .15.有两个三位数相乘所得得乘法算式:×=,其中A ≠B ,并且B ,C ,D ,E ,F ,G 这六个字母恰好代表化成小数后循环节中的六个数字(顺序不一定相同),则A +B = .16.将小王与小孙现在的年龄按从左至右的顺序排列得到一个四位数,这个数为完全平方数,再过31年,将他们的年龄按同样方式排列,又得到一个四位数,这个数仍然为完全平方数,则小王现在的年龄是 岁.17.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 .18.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5,计算n 12+1,将所得结果记为a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22+1,结果为a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 32+1,结果为a 3;…依此类推,则a 10= .19.已知55=3125,56=15625,57=78125,58=390625,…,则52013的末4位数是 . 20.是一个三位的自然数,已知,这个三位数是218;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果是一个四位的自然数,且,那么,这个四位数是 .三.解答题 21.是不符合多项顶式运算法则的,因此这个等式是错误的.但当x 、y 取某些特殊数值时,这个等式可以成立,例如:x =y =0时,等式成立;x =5,y =9的,等式成立;我们称使得,成立的一对有理数x 、y 为“巧合数对”,记作(x ,y ).(1)若(x ,1)是“巧合数对”,则有理数x = .(2)若(x,y)是“巧合数对”,试归纳、猜想有理数x、y应满足的关系式是.(3)求6a﹣13b﹣3(5a﹣6b+2)的值,其中(a,b)是“巧合数对”.22.一个三位自然数(百位上的数字为a,十位上的数字为b,个位上的数字为c).若满足a+c=b,则称这个三位数为“和悦数”,并规定.如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3.所以231是“和悦数”,所以.(1)请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;(2)已知有两个十位上的数字相同的“和悦数”m,n(m>n),若F(m)﹣F(n)=5,求m﹣n的值.23.阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到:因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010﹣22010﹣32010的个位数字.24.三位数可表示为100x+10y+z,若三位数能被n整除,将其首位数字放到末尾,得到新数能被n+1整除,再次将其首位数字放到末尾,得到新数能被n+2整除,则称这个三位数是n的一个“行进数“(n≠1).规定F()=.例如,402能被3整除,024能被4整除,240能被5整除,则三位数402是3的一个“行进数”;再如324能被2整除,243能被3整除,432能被4整除,则三位数324是2的一个“行进数”,且F(324)==9(1)F(542)=,282是的一个“行进数”.(2)若三位数是3的一个“行进数”,且x≠0,请求出满足条件的所有,并求出F()的最大值.25.在求两位数乘两位数时,可以用“列竖式”的方法进行速算,如图给出了部分速算过程.(1)根据前3个“列竖式”的速算方法,可得a=,b=,c=,d=,e=,f=;(2)根据前3个“列竖式”的速算方法,在速算“31×”时,给出了部分过程如图所示.则这个两位数可能为.26.阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快乐方程”,我们发现任何一个“快乐方程”的判别式△=b2﹣4ac 一定为完全平方数规定F(a,b,c)=为该“快乐方程”的“快乐数”,若有另一个“快乐方程”px2+qx+r=0(p≠0,(p、q、r为常数)的“快乐数”为F(p,q,r)且满足|rF(a,b,c)﹣cF(p,q,r)|=0,则称F(a,b,c)与F(p,q,r)互为“乐呵数”例如“快乐方程”x2﹣2x﹣3=0的两根均为整数,其判别式△=(﹣2)2﹣4×1×(﹣3)=16=42其“快乐数”F(1,﹣2,﹣3)=(1)“快乐方程”x2﹣4x+3=0的“快乐数”为,若关于x的一元二次方程x2﹣(2m﹣3)x+m2﹣4m﹣5=0(m为整数,且5<m<22)是“快乐方程”,求其“快乐数”(2)若关于x的一元二次方程x2﹣(m﹣1)x+m+1=0与x2﹣(n+2)x+2n=0(m,n均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.27.对于一个四位自然数n,如果n满足各个数位上的数字互不相同且均不为0,它的千位数字与个位数字之和等于百位数字与十位数字之和,那么称这个数n为“平衡数”.对于一个“平衡数”,从千位数字开始顺次取出三个数字构成四个三位数,把这四个三位数的和与222的商记为F(n).例如:n=1526,因为1+6=2+5,所以1526是一个“平衡数”,从千位数字开始顺次取出三个数字构成的四个三位数分别为152、526、261、615,这四个三位数的和为:152+526+261+615=1554,1154÷222=7,所以F(1526)=7.(1)写出最小和最大的“平衡数”n,并求出对应的F(n)的值;(2)若s,t都是“平衡数”,其中s=10x+y+3201,t=1000m+10n+126(0≤x≤9,0≤y ≤8,1≤m≤9,0≤n≤7,x,y,m,n都是整数),规定:k=,当F(s)+F (t)是一个完全平方数时,求k的最大值.参考答案一.选择题1.解:∵9是合数,但是9不是偶数, ∴选项A 不符合题意;∵两个相邻的正整数的公约数只有1, ∴两个相邻的正整数互素, ∴选项B 符合题意;∵2是素数,但是2不是奇数,2是偶数, ∴选项C 不符合题意;∵0.5不是整数,∴不能说10能被0.5整除, ∴选项D 不符合题意. 故选:B . 2.解:由题意知=5000﹣201+30=4829,=3000﹣240+1=2761, ∴=4829﹣2761=2068,故选:C .3.解:∵1~30中,除以5余3的有:8,13,18,23,28, 1~30中,除以7余6的有:13,20,27, ∴刻的数是36的钥匙所对应的原来房间应该是13. 故选:D .4.解:(2005﹣x 1)(2005﹣x 2)(2005﹣x 3)(2005﹣x 4)(2005﹣x 5)=242, 而242=2×(﹣2)×4×6×(﹣6), (2005﹣x 1)2+(2005﹣x 2)2+…(2005﹣x 5)2 =22+(﹣2)2+42+62+(﹣6)2=96,即5×20052+2005×2×(x1+x2+x3+x4+x5)+(x12+x22+x32+x42+x52)的末位数为96,由上式可知:5×20052的末位数为5,2005×2×(x1+x2+x3+x4+x5)的末位数为0,而96的末位数为6,所以6﹣5=1,即x12+x22+x32+x42+x52的末位数为1.故选:A.5.解:2n的个位数字是2,4,8,6四个一循环,所以2130÷4=532…2,则22130的末位数字是4.故选:B.6.解:∵相邻两数和为奇质数,则圆周上的数奇偶相间,∴8的两侧为3,5,而7的两侧为4,6,∴剩下两数1,2必相邻,且1与4,6之一邻接,考虑三个模块【4,7,6】,【5,8,3】,【1,2】的邻接情况,得到4种填法.故选:A.7.解:由23=3+5,分裂中的第一个数是:3=2×1+1,33=7+9+11,分裂中的第一个数是:7=3×2+1,43=13+15+17+19,分裂中的第一个数是:13=4×3+1,53=21+23+25+27+29,分裂中的第一个数是:21=5×4+1,63=31+33+35+37+39+41,分裂中的第一个数是:31=6×5+1,所以63“分裂”出的奇数中最大的是6×5+1+2×(6﹣1)=41.故选:A.8.解:∵0﹣100中的完全平方数有:0,1,4,9,16,25,36,49,64,81,100;完全立方数有:0,8,27,64;∴0﹣100的自然数中既不是完全平方数与也不是完全立方数的共有101﹣11﹣4+2=88个;∴在不大于100的自然数中,既不是完全平方数(平方根是整数)也不是完全立方数(立方根是整数)的数的概率为.故选:D.9.解:根据题意个位数需要满足要求:∵n+(n+1)+(n+2)<10,即N<2.3,∴个位数可取0,1,2三个数,∵十位数需要满足:3n<10,∴n<3.3,∴十位可以取0,1,2,3四个数,故四个数的连绵数共有3×4=12个.故选:C.10.解:∵a1,a2,a3,…,a n,…中,个位数字每4个数一循环,∴a2004的个位数字是7,a2003的个位数字是3,则a2004﹣a2003的个位数字是7﹣3=4.故选:B.11.解:设原来完全平方数M的个位数码是a,十位数码是b,则交换后得到另一个完全平方数N的个位数码是b,十位数码是a,因为M>N,所以两个数的差是(10b+a)﹣(10a+b)=10b+a﹣10a﹣b=9b﹣9a=9(b﹣a),设M=x2,N=y2,则M﹣N=x2﹣y2=(x+y)(x﹣y)=9(b﹣a),由于完全平方数个位上只能是0(不合题意),1,4,5,6,9,则b﹣a=1,2,3,4,5,8,9,则有(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),,解得,即M=196,N=169(符合题意),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去),(不合题意舍去).只有一组解符合要求,因此符合条件的M是196,个数为1.故选:A.12.解:ab+9=3a+3b,(a﹣3)(b﹣3)=0,∵b是无理数,∴a﹣3=0,∴a=3;∵31=3,32=9,33=27,34=81,可知3n的个位数字是3,9,7,1四个一循环,2012÷4=503,∴a2012的个位上的数字是1.故选:D.二.填空题(共8小题)13.解:设5×2m+1=n2(其中n为正整数),则5×2m=n2﹣1=(n+1)(n﹣1),∵5×2m是偶数,∴n为奇数,设n=2k﹣1(其中k是正整数),则5×2m=4k(k﹣1),即5×2m﹣2=k(k﹣1).显然k>1,∵k和k﹣1互质,∴或或,解得:k=5,m=4.因此,满足要求的整数m只有1个.故答案为:1.14.解:根据题意可得:a,b,c,d是小于10的自然数,∵a3+b3+c3+d3+1=10c+d,∴可得a3+b3+c3+d3+1是两位数,∴a,b,c,d均为小于5的自然数,∴如果c=1,d=0,则a=2,b=0,此时这个四位数为2010,如果c=1,d=1,则a=2,b=0,此时这个四位数为2011,如果c=1,d=2,则a=1,b=1,此时这个四位数为1112,如果c=2,找不到符合要求的数,如果c=3,d=0,则a=1,b=1,此时这个四位数为1130,如果c=3,d=1,则a=1,b=1,此时这个四位数为1131,如果c=4,则c3=64,不符合题意,故此四位数可能为:2010或2011或1112或1130或1131.故答案为:5.15.解:∵=0.,∴数字B为1,4,2,8,5,7中,其中的一个,则B必定是1、2、4、5、7、8中的一个,即一个三位数可能是111、222、444、555、777、888中的一个,因为乘积是6位数,所以,A>1根据乘积的个位数字与B相同,当B=1时,A=1,不符合题意,舍去,当B=2时,A=1(舍)或6,∴666×222=147825,刚好符合题意,∴A+B=6+2=8,当B=4,A=1(舍)或6,∴666×444=295704,不符合题意,当B=5时,A=1(舍)或3或5(舍)或7或9,333×555=184815,不符合题意,777×555=431235,不符合题意,999×555=554445,不符合题意,当B=7时,A=1(舍),当B=8时,A=1(舍)或6,∴666×888=591408,不符合题意,所以A+B=2+6=8,故答案为:8.16.解:设小王年龄为x岁,小孙年龄为y岁,可得,100x+y=m2,100(x+31)+y+31=n2,两式相减得100×31+31=n2﹣m2,31×101=(n﹣m)(n+m),∴,解得,,∴100x+y=352=1225,∴x=12,y=25,即:小王现在的年龄是12岁,故答案为:12.17.解:①∵27的分解有27×1,9×3,∴9×3为27的最佳分解,则f(12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f(13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f(2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f(2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f(22)==,∴f(2)=f(32),故说法④正确;⑤∵m是一个完全平方数,设m=n2(m>0),∴n×n为m的最佳分解,则f(m)==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.18.解:∵a1=26;因为2+6=8,所以a2=65;因为6+5=11,所以a3=122;因为1+2+2=5,所以a4=a1.发现:每3个一循环,则10÷3=3…1,则a10=a1=26.∴a10=a1=26.故答案为:26.19.解:由题意可知,5的乘方的末4位数字末4位数字从5次方开始以3125、5625、8125、0625四个数字为一循环,∵2013÷4=503…1,∴52013的末4位数字与55的末4位数字相同是3125.故答案为:3125.20.解:如图,∵运算结果2993的百位与十位上都是9,∴在进行减法运算时需要借位,∴a=3,∵10+b﹣a=9+1,解得:b=3,∴a+b=6,∵十位数字是9,∴c≠0,∵个位数字为3,且a+b+c+3>9,∴个位相减时也需借位,∴10+c﹣b﹣a=9+1,解得:c=6,∵10+d﹣c﹣b﹣a=3,∴d=5.∴这个四位数是3365.故答案为:3365.三.解答题(共7小题)21.解:(1)把y=1代入﹣=得,,解得,x=,故答案为;(2)∵﹣=,∴,去分母得,6x﹣10y=15x﹣15y,移项得,15x﹣6x=15y﹣10y,合并得,9x=5y,即:y=x,故答案为y=x;(3)∵(a.b)是“巧合数对”,∴b=a,∴6a﹣13b﹣3(5a﹣6b+2)=6a﹣13b﹣15a+18b﹣6=﹣9a+5b﹣6=﹣9a+5×a﹣6=﹣6.22.解:(1)设三位自然数为,(1≤a≤9,0<b≤9,0<c≤9的整数),∵三位数是“和悦数”,∴b=a+c,取a=2,c=5,则b=7,∴三位数为275,取a=5,c=3,则b=8,∴三位数为583,任意一个“和悦数”是11的倍数,设三位自然数为,∵三位数是“和悦数”,∴b=a+c,∴三位数为100a+10(a+c)+c=110a+11c=11(10a+c),∵a,c整数,∴10a+c是整数,∴11(10a+c)能被11整除,即:任意一个“和悦数”是11的倍数;(2)设两个十位上的数字相同的“和悦数”为m=,n=,(a≥e,当a=e时,c>d),则b=a+c=e+d,∴c﹣d=e﹣a,c=b﹣a.d=b﹣e.∴F(m)=a•c=a(b﹣c),F(n)=e•d=e(b﹣e),∵F(m)﹣F(n)=5,∴a•(b﹣a)﹣e(b﹣e)=ab﹣a2﹣eb﹣e2=(ab﹣eb)﹣(a2﹣e2)=b(a﹣e)﹣(a+e)(a﹣e)=(a﹣e)(b﹣a﹣e)=5,∵a,b,e是整数,∴a﹣e=1或a﹣e=5,∴m﹣n=(100a+10b+c)﹣(100e+10b+d)=(110a+11c)﹣(110e+11d)=110(a﹣e)+11(c﹣d)=110(a﹣e)﹣11(a﹣e)=99(a﹣e)=99或495.23.解:(1)由21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,不难发现2的正整数幂的个位数字以2、4、8、6为一个周期循环出现,由此可以得到:∵299=24×24+3,∴299的个位数字与23的个位数字相同,应为8.不难发现9的正整数幂的个位数字以9、1为一个周期循环出现,由此可以得到:∵999=92×49+1,∴999的个位数字与91的个位数字相同,应为9.(2)∵22010=24×502+2,∴22010的个位数字与22的个位数字相同,应为4;∵32010=34×502+2,∴32010的个位数字与32的个位数字相同,应为9;∵92010=92×1005,∴92010的个位数字与92的个位数字相同,应为1.∴4+9+1=14.∴22010+32010+92010的个位数字为4;(3)92010﹣22010﹣32010的个位数字为21﹣4﹣9=8.24.解:根据题意得,F(542)==11,∵282能被2整除,828能被3整除,282能4整除,∴三位数282是3的一个“行进数”,故答案为11,2;(2)∵三位数是3的一个“行进数”,∴400+10x+y能被3整除,100x+10y+4能被4整除,100y+40+x能被5整除,而100y+40+x能被5整除,∴x=0(舍)或x=5,而400+10x+y能被3整除,∴400+10×5+y=450+y能被3整除,∴y能被3整除,∴y=0或3或6或9,而100x+10y+4能被4整除,当y=0时,100×5+10×0+4=504能被4整除,符合题意,∴原三位数为450,F(450)==9,当y=3时,100×5+10×3+4=534不能被4整除,不符合题意,当y=6时,100×5+10×6+4=564能被4整除,符合题意,∴原三位数为456,F(456)==15,当y=9时,100×5+10×9+4=594不能被4整除,不符合题意,∴F()的最大值为15.25.解:(1)由题意得,第二行的前两格是,两个十位数字相乘,积如果是一位数前面补0,后两格是,两个个位数字相乘,积如果是一位数前面补0,如:2×7=14,3×8=24,第三行的前三格是,第一个两位数字的个位数字乘以第二个两位数的十位数字再加上第一个两位数的十位数字乘以第二个两位数的个位数字,如图:2×8+3×7=16+21=37,第四行,同列的两个数相加,如果大于9,进一位;64×87=5568,6×8=48,4×7=28,6×7+4×8=42+32=74,如图,所以,a=4,b=8,c=2,d=8,e=7,f=4,故答案为:4,8,2,8,7,4;(2)由(1)的规律得,3×y+1×x=10x+6,∴y=3x+2,∵x,y是两位数的十位数字和个位数字,∴1≤x≤9,0≤y≤9的整数,∴0≤3x+2≤9,∴﹣≤x≤,∴0<x≤,∴x=1或x=2,当x=1时,y=5,即:两位数为15,当x=2时,y=8,即:两位数为28,即:满足条件的两位数为15或28,故答案为15或28.26.解:(1)方程:x2﹣4x+3=0的“快乐数F(1,﹣4,3)==﹣1,x2﹣(2m﹣3)x+m2﹣4m﹣5=0,△=b2﹣4ac=4m+29,∵5<m<22,即:49<4m+29<117,4m+29=64或81或100,m=13,m=(舍去),m=(舍去),方程变为:x2﹣23x+112=0,则F(1,﹣23,112)=112﹣=﹣,故:答案是﹣1,其“快乐数”数是﹣;(2)x2﹣(m﹣1)x+m+1=0,△=(﹣m+1)2﹣4(m+1)=(m﹣3)2﹣12,设:△=a2,则:(m﹣3+a)(m﹣3﹣a)=12,(m﹣3+a)=6或2或﹣6或﹣2,(m﹣3﹣a)=2或6或﹣2或﹣6,解得:m=7或﹣1,方程变为:x2﹣6x+8=0或x2+2x=0;x2﹣(n+2)x+2n=0,△=(n﹣2)2,F[1,﹣(n+2),2n]=﹣,当m=7时,2n×(﹣1)﹣8×[﹣]=0,解得:n=1或4,当m=﹣1时,2n×(﹣1)﹣0=0,解得:n=0,故:n=0或1或4.27.解:(1)最小的平衡数为1234,F(1234)=(123+234+341+412)÷222=5,最大的平衡数为9876,F(9876)=(987+876+769+698)÷222=15;(2)∵s=10x+y+3201,t=1000m+10n+126∴s=,t=,∴+++=320+x+200+10x+y+1+100x+10y+10+3+100y+100+32 =111x+111y+666,∴F(s)==,∵s是平衡数,故y=x﹣2,∴F(s)==x+2,同理:F(t)==,∵t是平衡数,∴m=n﹣3,1≤m≤9,0≤n≤7∴F(t)=n+3,∵0≤y≤8,∴0≤y=x﹣2≤8,∴2≤x≤10,∵0≤x≤9.∴2≤x≤9,∴4≤x+2≤11,同理:7≤n+3≤10,∴11≤F(s)+F (t )≤21,∵F(s)+F(t)是一个完全平方数,∴x+n=11,∵0≤x≤9,0≤n≤7,x,n都是整数∴x=6,n=5或x=5,n=6当x=6,n=5时,F(s)=8,F(t)=8,∴k==0当x=5,n=6时,F(s)=7,F(t)=9,∴k===﹣∴k的最大值为0.21。
初中数学竞赛试题及答案大全
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)20022003200420052006200720082009201020112012201320142015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53) 4 5a 、b )共有(6分别是垂足,那么7___________。
89、a=___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。
12、设抛物线()452122++++=a x a x y 的图象与x 轴只有一个交点,(1)求a 的值;(2)求618323-+a a 的值。
13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器ABCEF支援给D市18台,E市10台。
2018年四川成都中考数学试卷(含解析)
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
2018年全国初中数学竞赛试题及答案
若关于 m 的方程有正整数解,则
9 4n(n 1) 8 (2 n 1)2 l 2 ( l 为正整数),
即 l 2 (2n 1)2 8,[ l (2n 1)][( l (2 n 1)] 8
4
l (2n 1) 8 l (2n 1) 4
所以
,或
,
l (2n 1) 1 l (2n 1) 2
解得: n
5 4
所以 PQ= yp
yQ
( a2
3a
4)
(a2
3a
4) =
2
2a
8
即当 a= 0(属于 -2≤ a≤2)时, PQ 的最大值为 8。
12.已知 a , b 都是正整数,试问关于 x 的方程 x 2 abx 1 ( a b) 2
把它们求出来;如果没有,请给出证明.
-4
Q
-6
B
-8
-10
0 是否有两个整数解?如果有,请
但不多于 8 个,红球不少于 2 个,黑球不多于 3 个,那么上述取法的种数是(
)
( A )14
( B) 16
(C) 18
(D )20
解:选( B )。只用考虑红球与黑球各有 4 种选择:红球( 2,3,4,5 ),黑球( 0,1,2,3 )共 4× 4= 16 种
3.已知 a 、 b 、 c 是三个互不相等的实数,且三个关于 x 的一元二次方程 ax 2 bx c 0 ,
综上,存在正整数 a= 1, b=3 或 a=3, b=1,使得
方程 x 2 abx 1 (a b) 0 有两个整数解为 x1 1, x2 2 。 2
DE
13.如图,点 E, F 分别在四边形 ABCD 的边 AD , BC 的延长线上,且满足
2018年四川省南充市中考数学试卷(含答案解析版)
81、2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)(2018•南充)下列实数中,最小的数是()3A.−√2B.0 C.1 D.√82.(3分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)(2018•南充)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)(2018•南充)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)(2018•南充)如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A .12B .1C .32D .√39.(3分)(2018•南充)已知1x −1y =3,则代数式2x+3xy−2y x−xy−y的值是( ) A .−72 B .−112 C .92 D .34 10.(3分)(2018•南充)如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE ⊥AP 于点E ,延长CE 交AD 于点F ,过点C 作CH ⊥BE 于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE=√5B .EF=√22C .cos ∠CEP=√55D .HF 2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
2018八年级数学竞赛试题(含答案)
八年级数学竞赛试卷考试时间:100分钟 总分:150分姓名: 班级: 得分:一、选择题(每题5分,共50分)1、下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d )2、已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是((A )x >0(B )x <0 (C )x <1 (D )x >1 3、在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C4、某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( )A 、从图中可以直接看出喜欢各种球类的具体人数;B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系5、已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ).A .2B .-4C .-2或-4D .2或-46、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定7、已知b>a>0,a 2+b 2=4ab ,则ba b a -+等于( ). A .-21B . 3C .2D .-38、将一个正方形分割成n 个小正方形(n>1),则n 不可能取( ).A .4B .5C .8D .99、若x 取整数,则使分式1-2x 36x +的值为整数的x 值有( ). (A)3个 (B)4个 (C)6个 (D)8个10、已知1x ,2x ,3x 的平均数为5,1y ,2y ,3y 的平均数为7,则1123x y +,2223x y +,3323x y +的平均数为( )(A)31 (B)313 (C)935 (D)17二、填空题(每题8分,共40分)11、点O 为线段 A B 上一点, ∠AOC = 10︒ , ∠COD = 50︒ ,则 ∠BOD = 或A O B12、已知 m >0 ,且对任意整数 k ,2018123k m+均为整数,则 m 的最大值为 . 13、已知某三角形的三条高线长 a ,b ,c 为互不相等的整数,则 a + b + c 的最小值 为 .14、如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有则=15、如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.二、简答题(每题20分,共60分) 16、现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年 年初交 10 万元,第 6 年年初返 6 万元,以后每年处返1.5 万元;方案二:购 买一款年利率 5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来 两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 + 1.053 + 1.052 =3.47563125 )y x yx y x -+=*()()31*191211**017、一筐苹果,若分给全班同学每人3个,则还剩下25 个;若全班同学一起吃,其中5个同学每人每天吃1个,其他同学每人每天吃2个,则恰好用若干天吃完.问筐里最多共有多少个苹果?18、如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.八年级答案:一、C CADB BDBBA二、11、120度或者140度12、2/3 13、9 14、163/113 15、2 三、1617、18、。
2018年全国初中数学联赛试题参考答案和评分标准 精品
2018年全国初中数学联赛试题参考答案和评分标准精品2018年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准。
第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分。
如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数。
第一试一、选择题:(本题满分42分,每小题7分)1.已知$a=1+\frac{1}{2+1}$,$b=3-2$,$c=6-2$,那么$a,b,c$的大小关系是()A。
$a<b<c$B。
$a<c<b$XXX<a<c$D。
$b<c<a$答】C.因为 $\frac{1}{2+1}=\frac{1}{3}$,所以$a=1+\frac{1}{3}=\frac{4}{3}$,$b=1$,$c=4$。
因为 $\frac{1}{3}<1$,所以$a<\frac{4}{3}+1=\frac{7}{3}<c$,所以 $b<a<c$。
2.方程$x^2+2xy+3y^2=34$的整数解$(x,y)$的组数为()A。
3B。
4C。
5D。
6答】B.方程即$(x+y)^2+2y^2=34$,显然$x+y$必须是偶数,所以可设$x+y=2t$,则原方程变为$2t^2+y^2=17$。
因为$2t^2\leq 16$,所以$t=\pm 2$,从而可求得原方程的整数解为$(x,y)=(-7,3),(1,3),(7,-3),(-1,-3)$,共4组。
3.已知正方形ABCD的边长为1,E为BC边的延长线上一点,$CE=1$,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为()A。
$\frac{65}{26}$B。
$\frac{3}{3}$C。
$\frac{2}{5}$D。
$\frac{9}{4}$答】D.过点C作$CP\parallel BG$,交DE于点P。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国初中数学联合竞赛试卷
第一试(4月2日上午8:30----9:30)
一、选择题(本题满分42分,每小题7分)
1、计算的值是()。
(A)1;(B);(C);(D)5。
2、若,则的值是()。
(A);(B);(C)5;(D)6。
3、设是不相等的任意正数,又,则这两个数一定()。
(A)都不大于2;(B)都不小于2;(C)至少有1个大于2;(D)至少有1个小于2。
4、正整数小于100,并满足等式,其中表示不超过
的最大整数,这样的正整数有()。
(A)2个;(B)3个;(C)12个;(D)16个。
5、已知一个梯形的四条边的长分别为1、2、3、4,则此梯形的面积等于()。
(A)4;(B)6;(C);(D)。
6、已知ABCD是一个半径为R的圆的内接四边形,AB=12,CD=6,分别延长AB和DC,它们相交于P且BP=8,∠APD=60°,则R等于()。
(A)10;(B);(C);(D)14。
二、填空题(本题满分28分,每小题7分)
1、是正数,并且抛物线和都与轴
有公共点,则的最小值是________。
2、某果品店组合销售水果,甲种搭配:2千克A水果,4千克B水果;乙种搭配:3千克A水果,8千克B水果,1千克C水果;丙种搭配:2千克A水果,6千克B水果,l 千克C水果。
A水果价格每千克2元,B水果价格每千克1.2元,C水果价格每千克10元。
某天该店销售三种搭配共得441.2元,其中A水果的销售额为116元,则C水果的销售额为________元。
3、实数满足和,则
________。
4、设正三角形ABC的边长为2,M是AB边上的中点,P是边BC上的任意一点,PA+PM
的最大值和最小值分别记为和,则________。
=============== =============== ===============
第二试(4月2日上午10:30----11:30)
一、(本题满分20分)
设是实数,二次函数的图象与轴有两个不同的交点。
(1)求证:;
(2)若间的距离不超过,求的最大值。
二、(本题满分25分)
EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐角为θ,且∠BEG
与∠CFH都是锐角。
已知EG=,FH=,四边形EFGH的面积为。
(1)求证:;
(2)试用表示正方形ABCD的面积。
三、(本题满分25分)
设关于的二次方程的
两根都是整数,求满足条件的所有实数的值。
=============== =============== ===============
第一试试题答案
一、1、(C);2、(A);3、(C);4、(D);5、(D);6、(B)。
二、1、20;2、150;3、4;4、。
第二试部分试题答案
三、。