1蒙特卡罗算法举例
算法之美--1.蒙特卡洛方法计算pi
算法之美--1.蒙特卡洛⽅法计算pi基本思想:利⽤圆与其外接正⽅形⾯积之⽐为pi/4的关系,通过产⽣⼤量均匀分布的⼆维点,计算落在单位圆和单位正⽅形的数量之⽐再乘以4便得到pi的近似值。
样本点越多,计算出的数据将会越接近真识的pi(前提时样本是“真正的”随机分布)。
蒙特卡罗(Monte Carlo)计算圆周率的主要思想:给定边长为R的正⽅形,画其内切圆,然后在正⽅形内随机打点,设点落在圆内的概为P,则根据概率学原理: P = 圆⾯积 / 正⽅形⾯积= PI * R * R / 2R * 2R = PI / 4。
即 PI=4P。
这样,当随机打点⾜够多时,统计出来的概率就⾮常接近于PI的四分之⼀了。
#include <iostream>#include <ctime>using namespace std;int main(){const int MAX_TIMES = 20000000;srand(static_cast<unsigned int>(time(0)));int in=0;for (int i = 0; i < MAX_TIMES;i++){double x = static_cast<double>(rand()) / RAND_MAX;double y = static_cast<double>(rand()) / RAND_MAX;if (x*x+y*y<=1.0){in++;}if (i%(MAX_TIMES/100)==0){cout << ".";}}double pi = 4.0*in / MAX_TIMES;cout << "\nPI=" << pi << endl;return0;}实现了⼀下,感觉时间⽤的有点长。
蒙特卡罗算法举例
蒙特卡罗算法举例
蒙特卡罗算法(Monte Carlo algorithm)是一种基于随机样本的计算方法,它通过模拟大量的随机数据来获得问题的概率性结果。
这种算法可以用于估计数学问题、物理问题、金融问题以及其他实际应用中的复杂问题的解。
下面将以几个实际例子来说明蒙特卡罗算法的应用。
例1:估计圆周率π的值
具体步骤:
1.在正方形内生成大量均匀分布的随机点。
2.统计落入圆形内的点的数量。
3.通过落入圆形的点的数量与总点数的比例来估计π的值。
例2:绘制希腊国旗
具体步骤:
1.建立一个正方形区域。
2.在正方形区域内随机生成大量的点。
3.统计每个小正方形内的点的数量。
4.将每个小正方形的点的数量转化为绘制像素点的比例。
例3:计算投资回报率的概率分布
具体步骤:
1.建立资产的收益率分布模型,可使用历史数据进行参数估计。
2.随机生成资产的未来收益率。
3.根据资产的权重计算投资组合的回报率。
4.迭代多次,统计投资组合回报率的概率分布。
例4:模拟森林火灾蔓延的概率
具体步骤:
1.建立一个森林地区的模型,包括地形、植被分布等信息。
2.随机生成火源的起始位置。
3.模拟火势的蔓延规律,考虑风向、植被密度等因素。
4.统计火灾烧毁的面积。
以上是几个蒙特卡罗算法的应用示例。
蒙特卡罗算法的优点是可以解决复杂问题,并提供概率性结果。
但需要注意的是,结果的准确性受到样本数量的影响,样本数量越大,结果越接近真值。
此外,算法的运行效率也是一个需要考虑的因素。
蒙特卡罗法
统计学模拟法之一
01 概念
03 优缺点 05 应用举例
目录
02 基本思路 04 步骤
蒙特卡罗法也称统计模拟法、统计试验法。是把概率现象作为研究对象的数值模拟方法。是按抽样调查法求 取统计值来推定未知特性量的计算方法。蒙特卡罗是摩纳哥的著名赌城,该法为表明其随机抽样的本质而命名。 故适用于对离散系统进行计算仿真试验。在计算仿真中,通过构造一个和系统性能相近似的概率模型,并在数字 计算机上进行随机试验,可以模拟系统的随机特性。
解:希望能用某种方法把我方将要对敌人实施的20次打击结果显示出来,确定有效射击的比率及毁伤敌方火 炮的平均值。这是一个概率问题,可以通过理论计算得到相应的概率和期望值。但这样只能给出作战行动的最终 静态结果,而显示不出作战行动的动态过程。
为了显示我方20次射击的过程,必须用某种方式模拟出以下两件事:一是观察所对目标的指示正确或不正确; 二是当指示正确时,我方火力单位的射击结果。对第一件事进行模拟试验时有两种结果,每一种结果出现的概率 都是1/2。因此,可用投掷1枚硬币的方式予以确定。当硬币出现正面时为指示正确,反之为不正确。对第二件事 进行模拟试验时有3种结果,毁伤1门火炮的可能为1/3,毁伤2门火炮的可能为1/6,没能毁伤敌火炮的可能为1/2。 这时,可用投掷骰子的办法来确定,如果出现的是1、2、3三个点则认为没能击中敌人,如果出现的是4、5点则 认为毁伤敌1门火炮,如果出现6点则认为毁伤敌2门火炮。
应用举例
在我方某前沿防守地域,敌人以1个炮兵排(含两门火炮)为单位对我方进行干扰和破坏。为躲避我方打击, 敌方对其指挥所进行了伪装并经常变换射击地点。经过长期观察发现,我方指挥所对敌方目标的指示有50%是准 确的,而我方火力单位在指示正确时,有1/3的射击效果能毁伤敌人1门火炮,有1/6的射击效果能全击的过程动态地显现出来。
蒙特卡罗算法及简单应用
蒙特卡罗算法及简单应用蒙特卡罗算法是一种基于统计的计算方法,主要用于估计数学、物理和工程领域中难以直接求解的问题。
它通过随机采样和统计分析的方法,可以近似地得到问题的解或概率分布。
蒙特卡罗算法的核心思想是利用随机性来代替确定性,通过重复进行大量的随机实验,从而得到问题的近似解。
蒙特卡罗算法的主要步骤如下:1. 定义问题:将问题转化为数学模型,并明确待求解的量。
2. 随机采样:根据问题的特点,选择合适的随机采样方法,生成一系列的随机样本。
3. 计算估计值:根据随机样本计算待求解量的统计量,如均值、方差等。
4. 得到结果:根据统计量得出问题的近似解或概率分布,并根据需求进行分析和应用。
蒙特卡罗算法的简单应用非常广泛,下面以两个例子来说明。
1. 计算圆周率π的近似值:假设有一个边长为2的正方形,并在其中画一个半径为1的圆,那么这个圆的面积就是π/4。
现在我们需要通过蒙特卡罗算法估计圆周率的近似值。
步骤如下:1. 在正方形内随机生成大量的点。
2. 统计落在圆内的点的个数。
3. 通过统计量计算圆的面积,进而估计π的值。
这里的关键在于随机点的生成和统计量的计算,通过重复进行大量的实验,我们可以得到π的近似值。
2. 金融风险评估:蒙特卡罗算法可以用于金融领域中的风险评估。
以股票投资为例,我们希望知道在不同的投资策略下,投资组合的收益和风险的分布情况。
假设我们有若干个股票的历史数据,包括每日的收益率和波动率。
利用蒙特卡罗算法可以模拟出若干个未来的可能情景,然后根据投资策略计算每个情景下的投资组合收益和波动率,最终得到收益和风险的概率分布。
通过分析这些分布,投资者可以评估不同策略的风险和回报情况,制定合理的投资决策。
蒙特卡罗算法不仅可以应用于上述两个简单问题,还可以应用于复杂的问题,如模拟核反应堆的裂变过程、计算复杂的多维积分和求解偏微分方程等。
蒙特卡罗算法的优点是适用于求解各种类型的问题,无论是确定性问题还是概率性问题,只要问题可以建模为数学模型,并且可以通过随机采样进行估计,就可以使用蒙特卡罗算法进行求解。
蒙特卡洛方法例题
蒙特卡洛方法例题
蒙特卡洛方法是一种基于随机抽样的数值计算方法,它通过大量模拟实验来近似求解问题。
这种方法在20世纪40年代由美国物理学家蒙特卡洛提出,如今已经在各个领域得到了广泛的应用。
蒙特卡洛方法的原理很简单,关键是确定概率模型。
首先,我们需要建立一个与问题相关的概率模型,然后生成一系列随机数,根据这些随机数计算出对应的数值结果,最后对结果进行统计分析,以得到问题的近似解。
下面我们通过一个例子来说明蒙特卡洛方法的具体应用。
例题:设随机变量X服从正态分布,即X ~ N(μ, σ^2),求X的期望值和方差。
解:我们可以使用蒙特卡洛方法来求解这个问题。
1.确定概率模型:我们已经知道随机变量X服从正态分布,所以概率模型为X = μ + σZ,其中Z ~ N(0, 1)。
2.生成随机数:生成一个标准正态分布的随机数Z1。
3.计算累积概率:根据正态分布表,查找Z1对应的概率值。
4.计算X的期望值和方差:根据概率模型,计算X的期望值μ"和方差σ"。
通过大量的蒙特卡洛模拟实验,我们可以得到X的期望值和方差的近似值。
蒙特卡洛方法在实际应用中具有广泛的应用价值,例如求解复杂数学问题、线性方程组、非线性方程或方程组、进行参数估计和假设检验等。
然而,
它也存在一定的局限性,如计算速度较慢、对采样点的数量要求较高等。
总之,蒙特卡洛方法是一种实用且高效的数值计算方法,在各个领域都取得了显著的成果。
蒙特卡罗模拟及例
1)问题背景
返回 D 吸收
三种 状态
穿透
阐述中子的运动, 2)简化假设: 为模拟做理论准备 *1 假定屏蔽层平行板厚度为D=3d,其中d 为两次碰撞之间中子的平均游动距离;
*2 假设在第10 次碰撞以后,中子速度下降到 为某一很小数值而终止运动(被引收). *3 假定中子在屏蔽层内相继两次碰撞之间游 动的距离服从指数分布;
4
计算机上做n次掷点试验: 产生n 对二维随机点(xi,yi) ,i=1 ,2, …, n .
其中,xi 和yi 是RND 随机数对. 检查每对数是否满足: 相当于第i 2 2 x i yi 1 个随机点落 在1/4圆内. 若有k 个点落在l/4圆内 随机事件“点落入1/4圆内”的 频率为 k/n
中子数(个) 穿透(%)
100 1000 3000 5000 30.0 26.0 26.5 26.3
吸收(%)
28.0 23.4 21.8 22.0
返回(%)
42.0 50.6 51.7 51.7
中子穿透屏蔽层的百分比超过了1/4,模拟结 果表明屏蔽层厚度D=3d不合适.
问
多厚的屏蔽层才能使穿透的概率 题: W<10-6?
注:平均值法本质上是用样本平均值作为
总体教学期望的估计。
2. 蒙特卡罗模拟试验次数的确定
M-C 模拟是一种试验近似方法 , 试验次 数如何确定?
希望:模拟次数较少、 模拟精度较高
?
频率法的讨论 频率法是用事件A出现的频率作为概率p 的估计: kn ˆ p n 问题:试验次数 n 多大时,对给定的置信度 1-α(0<α<1),估计精度达到ε.
三、 蒙特卡罗模拟及例
蒙特卡罗(Monte-Carlo)模拟,又称蒙特卡 罗方法、统计试验法等. M-C模拟是静态模拟,描述特定时间点上的 系统行为. 模拟过程中 基本思想:把随机事件 不出现时间 (变量)的概率特征与 参数。 数学分析的解联系起来.
数学建模算法之蒙特卡罗方法——原理编程及应用
数学建模算法之蒙特卡罗方法——原理编程及应用蒙特卡罗方法是一种基于随机数的数学建模算法,它在估计和模拟复杂的数学问题时非常有用。
蒙特卡罗方法的原理是通过随机抽样来进行近似计算,然后使用统计学方法来分析和推断结果。
蒙特卡罗方法的核心思想是通过进行大量的随机样本实验,来估计问题的解或者概率。
它的基本过程如下:1.问题建模:将要解决的问题转化为数学模型,并明确需要估计的量。
2.随机抽样:根据问题的性质和要求,设计合适的随机抽样方法,生成大量的随机样本。
3.计算估计量:对每个样本,将其代入数学模型,计算得到估计量的值。
4.统计分析:对所有样本的估计量进行统计分析,包括计算均值、方差等。
5.结果解释:根据统计分析的结果,得出对问题的估计值和置信区间。
蒙特卡罗方法的一个重要特点是可以处理复杂的问题,因为需要进行大量的随机实验。
它广泛应用于科学研究、金融决策、工程设计等领域。
下面以两个实际应用为例介绍蒙特卡罗方法的具体编程和应用。
实例一:估计π的值蒙特卡罗方法可以用来估计π的值。
其基本思路是以原点为中心,边长为2的正方形内切一个以原点为圆心的半径为1的圆,通过生成大量的随机点,并统计落在圆内的点的个数来估计圆的面积,然后根据面积比例来估计π。
编程步骤如下:1.生成随机点:生成大量的随机点,均匀分布在正方形内。
2.判断点位置:判断每个点是否落在圆内,即判断点的横坐标和纵坐标的平方和是否小于13.统计结果:统计圆内的点的个数。
4.计算面积和π的估计值:根据圆内点的个数,计算圆的面积和π的估计值。
实例二:金融风险分析蒙特卡罗方法可以用于金融风险分析,例如估计一些投资组合的回报率和风险。
编程步骤如下:1.生成随机数:生成符合历史回报率的随机数序列,代表不同的投资回报率。
2.计算投资回报率:根据生成的随机数序列,计算投资组合的回报率。
3.重复实验:重复上述步骤多次,生成多个投资回报率的样本。
4.统计分析:对多个投资回报率样本进行统计分析,计算均值、方差等指标。
蒙特卡罗算法案例
蒙特卡罗算法案例蒙特卡罗算法是一种随机模拟方法,适用于许多领域的问题。
其基本思想是通过模拟随机事件的多次试验来计算问题的解。
本文将以几个蒙特卡罗算法的案例为例,介绍其应用。
1. 估计圆周率估计圆周率是蒙特卡罗算法中最基本的问题之一。
其思路是在单位正方形中生成随机点,然后统计落在单位圆内的点的比例,根据一些数学公式可以得出圆周率的估计值。
实际应用中,该算法可用于控制质量检测、金融行业风险评估等。
2. 模拟股票价格走势蒙特卡罗算法可以用于模拟股票价格的走势。
该算法将时间分割成许多小段,并模拟每个时间段内股票价格的波动。
在每个时间段内,随机生成一个服从正态分布的随机数,然后与前一个价格相加,得出下一个价格。
重复此过程多次,就可以得到模拟出的价格走势。
该算法可用于股票波动风险评估、股票交易策略制定等。
3. 模拟交通流交通流是城市规划和运输领域的重要问题之一。
蒙特卡罗算法可以用于模拟交通流,并评估不同策略的交通状况。
该算法将道路划分为许多小格子,并随机生成车辆和行进方向。
模拟每个时间步(如1秒),车辆根据预设的规则移动到相邻的格子,重复此过程多次,就可以得到模拟出的交通流。
该算法可用于交通定价、交通规划和管制等。
4. 模拟物理系统蒙特卡罗算法可以应用于模拟物理系统中的多粒子问题。
例如,在蛋白质分子动力学研究中,蒙特卡罗算法可以模拟蛋白质的构象变化,评估其稳定性和功能。
该算法将蛋白质分子看做由许多粒子组成的复杂系统,粒子之间的相互作用按规定的势能计算。
随机地改变粒子位置或取向,以计算系统的能量差,然后按照一定的概率接受或拒绝状态的改变。
重复进行多次模拟,就可以得到蛋白质分子构象的分布,以及评估蛋白质与其他分子的相互作用。
总之,蒙特卡罗算法具有广泛的应用领域和高度的灵活性,能够处理计算难度较高或模型比较复杂的问题。
虽然它一般需要进行大量的计算,但随着计算机性能的不断提高,其使用范围和效率也在不断扩展和提高。
蒙特卡洛法应用案例
蒙特卡洛法应用案例
蒙特卡洛法是一种通过随机抽样和统计试验方法进行概率计算的方法,应用非常广泛。
以下是一些蒙特卡洛法的应用案例:
1.金融领域:蒙特卡洛法可以用于计算股票价格、债券收益率、期货合约
等金融产品的概率分布,帮助投资者进行决策。
2.物理学:蒙特卡洛法可以用于模拟原子、分子、材料等物理系统的行为,
如分子动力学、量子力学、统计力学等。
3.工程领域:蒙特卡洛法可以用于评估建筑物、桥梁、机器等结构的可靠
性,以及进行优化设计。
4.统计学:蒙特卡洛法可以用于生成随机数列、计算积分、求解方程组等
统计问题。
5.医学领域:蒙特卡洛法可以用于模拟病毒传播、疾病扩散等医学问题,
以及进行临床试验的设计和数据分析。
6.游戏开发:蒙特卡洛法可以用于生成随机地图、生成随机事件等,增加
游戏的趣味性和可玩性。
举例说明蒙特卡洛算法的解题步骤
举例说明蒙特卡洛算法的解题步骤一、简介蒙特卡洛算法是一种基于随机抽样的算法,通常用于解决一些涉及概率和统计的问题。
这种算法通过模拟随机过程,利用统计方法来求解问题,具有很高的计算效率和准确性。
二、解题步骤1.确定问题:首先,我们需要明确要解决的问题是什么。
根据问题的性质,我们可以初步判断是否适合使用蒙特卡洛算法。
2.定义随机变量:在蒙特卡洛算法中,我们需要一个或多个随机变量来模拟问题的实际情况。
这些随机变量通常与要解决的问题有关,并且可以通过随机抽样得到。
3.模拟随机过程:利用随机数生成器,对随机变量进行多次抽样,模拟问题的随机过程。
每次抽样后,我们可以根据实际情况得到一个结果。
4.统计处理:对模拟过程中得到的结果进行统计处理,通常采用平均值、中位数、方差等统计指标来评估算法的精度和效率。
5.优化和调整:根据统计结果,我们可以对算法进行优化和调整。
例如,增加抽样的次数、改进随机数生成器的性能等,以提高算法的精度和效率。
6.输出结果:最后,根据优化后的算法,我们可以得到问题的近似解。
通常,蒙特卡洛算法可以得到一个统计意义上的近似解,而不是精确解。
下面以一个简单的例子来说明上述步骤的应用:问题:在一个有100个球的盒子里,随机抽取5个球,求抽到红色球的概率为多少?解题步骤:1.确定问题:我们要通过蒙特卡洛算法估算抽到红色球的概率。
2.定义随机变量:我们将红色球的概率表示为随机变量P(红色球)。
3.模拟随机过程:我们可以通过随机抽样模拟抽取5个球的过程。
假设每次抽样得到的球是随机的,没有特定的顺序。
我们抽取5个球后,记录其中红色球的个数。
4.统计处理:我们重复这个过程多次(例如,1000次或10000次),并记录抽到红色球的总次数和总抽样次数。
根据这些数据,我们可以估算抽到红色球的平均概率。
5.优化和调整:我们发现,增加抽样的次数可以提高估计的精度。
因此,我们可以重复这个过程多次,每次增加抽样的数量,以得到更准确的估计值。
Monte-Carlo(蒙特卡洛方法)解析
常用的线性同余生成器
Modulus m 2^31-1
=2147483647
2147483399 2147483563
Multiplier a 16807
在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P(A) 的估计,即 pˆ fn ( A) 。
然后取 ˆ
2l afn ( A)
作为
的估计。根据大数定律,当 n 时,
pˆ
fn ( A) a.s.
p.
从而有ˆ 2l P 。这样可以用随机试验的方法求得 的估计。历史上 afn ( A)
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
例 1 :设 X ~ U (a,b) ,则其分布函数为
0
F
(
x)
x b
a a
1,
xa a xb
xb
F -1( y) a (b a) y , 0 y 1
生成 U (0,1) 随机数 U,则 a (b - a)U 是来自
算法实现
许多程序语言中都自带生成随机数的方法, 如 c 中的 random() 函数, Matlab中的rand()函数等。 但这些生成器生成的随机数效果很不一样, 比如 c 中的函数生成的随机数性质就比较差, 如果用 c , 最好自己再编一个程序。Matlab 中的 rand() 函数, 经过了很多优化。可以产生性质很好的随 机数, 可以直接利用。
U (a,b) 的随机数。
例 2:
设 X ~ exp( ) 服从指数分布,则 X 的分布函数为:
蒙特卡罗模型例子
蒙特卡罗模型例子1.引言1.1 概述概述部分的内容可能如下:在实际生活和工作中,我们常常需要面对各种不确定性和风险。
为了能够更好地应对未知的挑战和做出明智的决策,人们开发了各种数学模型和方法来模拟和预测可能的情景和结果。
其中,蒙特卡罗模型作为一种常用的计算机模拟方法,被广泛地应用于金融、工程、科学和其他领域。
蒙特卡罗模型的基本思想是通过随机抽样和概率分析,通过大量的随机模拟实验来估计和推断目标系统的特性和结果。
它的名称来自于蒙特卡罗赌场,在那里随机性是主要的特点,正是因为如此,这种模型也特别适用于模拟和分析那些具有不确定性和随机性的问题。
通过使用蒙特卡罗模型,我们可以在不知道确切数值的情况下,进行数值计算和分析。
它可以帮助我们做出更加全面和科学的决策,并且可以提供决策风险评估和结果的可信度。
蒙特卡罗模型的应用非常广泛,例如在金融领域,我们可以使用蒙特卡罗模型来估计投资组合的绩效和风险;在工程领域,我们可以用它来模拟建筑结构的可靠性和抗震性能;在科学研究中,我们可以使用蒙特卡罗模型来模拟分子动力学和天体运动等复杂系统。
本文将介绍蒙特卡罗模型的基本原理和方法,并通过一些具体例子来展示其在实际中的应用。
通过深入了解和学习蒙特卡罗模型,我们可以更好地应对未知和风险,为我们的决策提供科学的依据和支持。
同时,本文还将对蒙特卡罗模型的发展和应用进行展望,探讨其未来的研究和应用前景。
1.2文章结构文章结构部分的内容应包括以下方面:在文章结构部分,我们将对整篇文章的组织和内容进行介绍和概述。
文章由引言、正文和结论三个部分组成。
首先,引言部分将对蒙特卡罗模型例子的背景和意义进行概述。
我们会解释蒙特卡罗模型的定义以及其在不同领域中的应用。
引言部分的目的旨在引起读者的兴趣,并让他们了解文章的主要内容和目标。
接下来,正文部分将深入介绍蒙特卡罗模型。
我们会从基本概念开始,解释蒙特卡罗模型的原理和相关算法。
我们将介绍蒙特卡罗模型的核心思想以及如何使用概率和随机性来模拟实际问题。
数学建模算法之蒙特卡罗方法——原理、编程及应用
数学建模算法之蒙特卡罗方法——原理、编程及应用一、前言1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam和Nick Metropolis共同发明了蒙特卡罗方法。
此算法被评为20世纪最伟大的十大算法之一。
蒙特卡罗方法(Monte Carlo method),又称随机抽样或统计模拟方法,是一种以概率统计理论为指导的一类非常重要的数值计算方法。
此方法使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
由于传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
二、蒙特卡罗方法的基本原理以及思想1、蒲丰投针实验其基本思想源于法国数学家蒲丰提出著名的蒲丰投针实验,并以该方法求圆周率。
为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a(l<a)的平行线相交的频率代替概率P,再利用准确的关系式:求出π值。
其中N为投针次数,n为针与平行线相交次数。
这就是古典概率论中著名的蒲丰氏问题。
2、射击问题设r表示射击运动员的弹着点到靶心的距离,g(r)表示击中r处相应的得分数(环数),f(r)为该运动员的弹着点的分布密度函数,它反映运动员的射击水平。
则该运动员的射击成绩为用概率语言来说,<g>是随机变量g(r)的数学期望,即当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
有一个例子可以使你比较直观地了解蒙特卡洛方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡洛方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
蒙特卡罗法
在实际问题中,大量问题很难用数学模型描述,或有些问题即使能建立起数学模型,也由于模型中含有的随机因素太多,而难于用解析的方法求解,这时就需要借助于模拟的方法。
模拟又称为仿真,其基本思想是建立一个试验的模型,此模型需包含所研究系统的主要特点。
通过运行这个试验模型,可获得所研究系统的一些必要信息。
蒙特卡罗(Monte Carlo)方法就是一种应用随机数来进行模拟试验的方法。
此方法通过对研究系统进行随机观察抽样,根据对样本值的观察统计,可求得所研究系统的某些重要参数。
一、引例1. 排队模型:海港系统的卸载货物问题考虑一个中小规模的海港,拥有专门为货船卸载货物的设备。
假定在任何时刻只允许一艘船卸载货物,船仅为了卸载货物而停靠该港口,且连续两艘船先后到达港口的间隔时间范围是[15,145](单位:min),并且是随机的。
每艘船需要的卸载货物时间依赖于船的型号和装载量,其卸载时间的变化区间为[45,90](单位:min)。
解答下面问题:(1)每艘船在港口的平均停留时间和最长停留时间是多少?(2)定义一艘船的等待时间为船只到达港口时间到开始卸载货物时间,问每艘船的平均等待时间和最长等待时间是多少?(3)试确定系统卸载设备的空闲率(或使用率)。
2. 海港系统的卸载货物过程分析海港系统的状态变量有:船只在港停留时间、等待卸载货物时间、服务时间、船只数和卸载货物的设备数等。
海港系统是一个关于时间的状态转移过程,对其卸载货物问题,可先借助计算机来简单模拟海港系统的实际运行状况,然后再作一般性的讨论。
为此首先假定:(1)每艘船可能在任意时刻到达港口;(2)连续两艘船到达港口的间隔服从区间[15,145]上的均匀分布;(3)每艘船的卸载时间也服从[45,90]区间上的均匀分布;(4)该港口只考虑卸载货物这一活动,不考虑其它活动;(5)只考虑从零时刻起到最后一艘船离岗的总的运行时间T;(6)每艘船卸完货物后立刻离开港口;(7)在[0, T]时间范围内,考虑评价系统指标体系即卸载设备的使用率、货船的平均等待时间等。
一文详解蒙特卡洛(MonteCarlo)法及其应用
⼀⽂详解蒙特卡洛(MonteCarlo)法及其应⽤概述蒙特卡罗⽅法是⼀种计算⽅法。
原理是通过⼤量随机样本,去了解⼀个系统,进⽽得到所要计算的值。
它⾮常强⼤和灵活,⼜相当简单易懂,很容易实现。
对于许多问题来说,它往往是最简单的计算⽅法,有时甚⾄是唯⼀可⾏的⽅法。
它诞⽣于上个世纪40年代美国的"曼哈顿计划",名字来源于赌城蒙特卡罗,象征概率。
π的计算第⼀个例⼦是,如何⽤蒙特卡罗⽅法计算圆周率π。
正⽅形内部有⼀个相切的圆,它们的⾯积之⽐是π/4。
现在,在这个正⽅形内部,随机产⽣10000个点(即10000个坐标对 (x, y)),计算它们与中⼼点的距离,从⽽判断是否落在圆的内部。
如果这些点均匀分布,那么圆内的点应该占到所有点的π/4,因此将这个⽐值乘以4,就是π的值。
通过R语⾔脚本随机模拟30000个点,π的估算值与真实值相差0.07%。
⽆意识统计学家法则(Law of the unconscious statistician)这是本⽂后续会⽤到的⼀个定理。
作为⼀个预备知识,我们⾸先来介绍⼀下它。
先来看⼀下维基百科上给出的解释。
In probability theory and statistics, the law of the unconscious statistician (sometimes abbreviated LOTUS) is a theorem used to calculate the 期望值 of a function of a 随机变量 when one knows the probability distribution of but one does not explicitly know the distribution of . The form of the law can depend on the form in which one states the probability distribution of the 随机变量 .If it is a discrete distribution and one knows its PMF function (but not ), then the 期望值 of iswhere the sum is over all possible values of .If it is a continuous distribution and one knows its PDF function (but not ), then the 期望值 of isLOTUS到底表达了⼀件什么事呢?它的意思是:已知随机变量的概率分布,但不知道的分布,此时⽤LOTUS公式能计算出函数的数学期望。
计算材料学概述 之 蒙特卡洛方法.详解
随机数产生的办法
关于随机数的几点注意
注1 由于均匀分布的随机数的产生总是采用某个确定 的模型进行的,从理论上讲,总会有周期现象出现的。 初值确定后,所有随机数也随之确定,并不满足真正 随机数的要求。因此通常把由数学方法产生的随机数 成为伪随机数。 但其周期又相当长,在实际应用中几乎不可能出 现。因此,这种由计算机产生的伪随机数可以当作真 正的随机数来处理。 注2 应对所产生的伪随机数作各种统计检验,如独 立性检验,分布检验,功率谱检验等等。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规 则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机 地”投掷N个点,若有M个点落于“图形”内,则该“图形” 的面积近似为M/N。
用该方法计算π的基本思路是: 1 、根据圆面积的公式: s=πR^2 ,当R=1时,
11
面积的计算
辛普逊方法
蒙特-卡洛方法
在长方形中均匀投N0组(x,y) 如 y<f(x), 则 N=N+1
I = ΣSn
f (x)
Hale Waihona Puke I =(N/N0)×S0f (x)
S0
S
x x
MC 的优点 MC与传统数学方法相比,具有直观性强,简便易行的优点,该方
法能处理一些其他方法无法解决的负责问题,并且容易在计算机 上实现,在很大程度上可以代替许多大型、难以实现的复杂实验 和社会行为。无污染、无危险、能摆脱实验误差。
Monte Carlo方法之随机数的产生
许多计算机系统都有随机数生成函数 F90: call random_seed
call random_number(a) 2、ISEED=RTC()
蒙特卡罗方法(Ⅰ)讲解
0 2 [x E(X )]2 f (x)dx
f(x)是X的分布密度函数。则当N充分大时,有如下的近似式
P
XN
E(X )
N
2 et2 / 2dt 1 2 0
其中α称为置信度,1-α称为置信水平。这表明,不等式
x1 6406
x12 41036836
x2 0368
x22 00135424
x3 1354 x32 01833316
x4 8333
x42 69438889
相应的伪随机数序列是0.6406,0.3680,0.1354,0.8333,0.4388等
具有周期性,有些数甚至会紧接着重复出现,很少使用。
§2 伪随机数的产生和检验---数学方法
(2)Lehmer 线性同余法( 1951年)
对于任一初始值x0,伪随机数序列由下面递推公式确定:
xn1 (axn c) mod(M )
n+1
xn M
x0---种子,改变它的值就得到基本序列的不同区段随机数。
•马文淦, 《计算物理学》 (中国科技大学出版社,2001年)
•丁泽军,《计算物理》 (2011年)
计算机模拟和蒙特卡罗方法
物理学研究方法
•格林函数
•重整化群(NRG,
DMRG,FRG) 理论方法
实验方法
•微扰法
•变分法
•转移矩阵法
•精确对角化方法
模拟方法
•DMFT等
•分子束外延 •电化学方法
•ARPES
E( cos ) 2 M 2N
N
M
MonteCarlo(蒙特卡洛算法)算法
用Monte Carlo 计算定积分
考虑积分
I
x 1exdx,
0
0.
假定随机变量具有密度函数
fX (x) ex,
则
I E( X 1).
用Monte Carlo 计算定积分-
2
2
T
T
Monte Carlo 模拟连续过程的欧式 期权定价-
均匀分布
R=unidrnd(N),-产生1到N间的均匀分布随 机数
R=unidrnd(N,n,m),产生1到N间的均匀分布 随机数矩阵
连续均匀分布
R=unifrnd(A,B) -产生(A,B)间的均匀分布随 机数
R=unifrnd(A,B,m,n)产生(A,B)间的均匀分布 随机数矩阵
Matlab 的随机数函数-
正态分布随机数
R=normrnd(mu,sigma) R=normrnd(mu,sigma,m) R=normrnd(mu,sigma,m,n)
特定分布随机数发生器 R=random(‘name’,A1,A2,A3,m,n)
例
a=random(‘Normal’,0,1,3,2) a=
基本思想和原理
基本思想:当所要求解的问题是某种事件出现 的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。
原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。
实现从已知概率分布抽样
构造了概率模型以后, 按照这个概率分 布抽取随机变量 (或随机向量),这一 般可以直接由软件包调用,或抽取均匀 分布的随机数构造。这样,就成为实现 蒙特卡罗方法模拟实验的基本手段,这 也是蒙特卡罗方法被称为随机抽样的原 因。
一随机模拟蒙特卡罗算法
一 随机模拟(蒙特卡罗算法)一 随机模拟法随机模拟法也叫蒙特卡罗法,它是用计算机模拟随机现象,通过大量仿真试验,进行分析推断,特别是对于一些复杂的随机变量,不能从数学上得到它的概率分布,而通过简单的随机模拟就可以得到近似的解答。
M onte Carlo 法也用于求解一些非随机问题,如重积分、非线性方程组求解、最优化问题等。
需要指出的是,Monte Carlo 计算量大,精度也不高,因而主要用于求那些解析方法或常规数学方法难解问题的低精度解,或用于对其他算法的验证。
蒙特卡罗方法的基本思想是:当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。
在解决实际问题的时候应用蒙特·卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。
用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。
使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的:使用随机数发生器产生一个随机的分子构型。
对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。
计算新的分子构型的能量。
比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。
若新的分子构型能量低于原分子构型的能量,则接受新的构型。
若新的分子构型能量高于原分子构型的能量,则计算玻尔茲曼常数,同时产生一个随机数。
若这个随机数大于所计算出的玻尔兹曼因子,则放弃这个构型,重新计算。
若这个随机数小于所计算出的玻尔兹曼因子,则接受这个构型,使用这个构型重复再做下一次迭代。
如此进行迭代计算,直至最后搜索出低于所给能量条件的分子构型结束。
二 随机模拟法应用实例考虑二重积分(,)AI f x y dxdy =⎰⎰,其中(,)0,(,)f x y x y A ≥∀∈根据几何意义,它是以(,)f x y 为曲面顶点,A 为底的柱体C 的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MC方法计算阴影部分面积
计算阴影部分面积。
一个古人要求一个图形的面积,他把图形画在一块方形布上,然后找来一袋豆子,然后将所有豆子洒在布上,落在图形内豆子的重量比上那块布上所有豆子的重量再乘以布的面积就是他所要求的图形的面积。
两种编程思路来计算这个面积:
方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的这个正方形分成N(N的大小取决于划分的步长)个点,然后找出N个点中有多少个点是属于阴影部分中,假设这个值为k,则阴影部分的面积为:k/N*12^2
方法二:将整个坐标轴看成一个边长为12的正方形,然后在(-6,6)中随机出N(N越大越好,至少超过1000)个点,然后找出这N个点中有多少个点在阴
影区域内,假设这个值为k,则阴影部分的面积为:k/N*12^2。
然后重复这个过程100次,求出100次面积计算结果的均值,这个均值为阴影部分面积。
对比分析:以上两个方法都是利用蒙特卡罗方法计算阴影部分面积,只是在处理的细节有一点区别。
前者是把豆子均匀分布在布上;后者则是随机把豆子仍在布上。
就计算结果的精度而言,前者取决点的分割是否够密,即N是否够大;后者不仅仅通过N来控制精度,因为随机的因素会造成单次计算结果偏高和偏小,所以进行反复多次计算最后以均值来衡量阴影部分面积。
附上MATLAB程序:
方法一:
clear
x=-6:0.01:6;
y=x;
s=size(x);
zs=s(1,2)^2;
k=0;
for i=1:s(1,2)
for j=1:s(1,2)
a1=(x(i)^2)/9+(y(j)^2)/36;
a2=(x(i)^2)/36+y(j)^2;
a3=(x(i)-2)^2+(y(j)+1)^2;
if a1<1
if a2<1
if a3<9
k=k+1;
end
end
end
end
end
mj=(12^2)*k/zs; 运行结果:
mj =
7.2150
方法二:
clear
N=10000;
n=100;
for j=1:n
k=0;
for i=1:N
a=12*rand(1,2)-6;
x(i)=a(1,1);
y(i)=a(1,2);
a1=(x(i)^2)/9+(y(i)^2)/36; a2=(x(i)^2)/36+y(i)^2;
a3=(x(i)-2)^2+(y(i)+1)^2; if a1<1
if a2<1
if a3<9
k=k+1;
end
end
end
end
m(j)=(12^2)*k/N;
end
mj=mean(m);
运行结果:
mj =
7.2500。