分段函数练习题及答案(最新整理)
高考数学函数专题训练《分段函数》含答案解析

高考数学函数专题训练 分段函数一、选择题1.已知函数21,1()11,1x x f x x x x -⎧<⎪=+⎨⎪-⎩…,若()f a 3=,则实数a 的值为( )A .2B .2-C .2±D .2或3-【答案】C【解析】Q 函数21,1()11,1x x f x x x x -⎧<⎪=+⎨⎪-⎩…,()3f a =,∴当1a <时,1()31a f a a -==+,解得2a =-; 当1a …时,2()13f a a =-=,解得2a =或2a =-(舍).综上,实数a 的值为2±.故选C . 2. 若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭【答案】A【解析】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <;且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A.3. 若函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,,当[],1x m m ∈+时,不等式()()2-<+f m x f x m 恒成立,则实数m 的取值范围是( ) A .(),4-∞- B .(),2-∞-C .()2,2-D .(),0-∞【答案】B【解析】依题意得:函数()314,025,0xx f x x x x ⎧⎛⎫+≤⎪ ⎪=⎨⎝⎭⎪--+>⎩,在x ∈R 上单调递减,因为()()2-<+f m x f x m ,所以2m x x m ->+,即2x m <,在[],1x m m ∈+上恒成立, 所以2(1)m m +<,即2m <-,故选B .4. 已知函数lg ,0()1lg ,0x x f x x x >⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,若()()f m f m >-,则实数m 的取值范围是( )A .(1,0)(1,)-⋃+∞B .(,1)(1,)-∞-+∞UC .(1,0)(0,1)-UD .(,1)(0,1)-∞-U【答案】A【解析】由函数的解析式可得函数()f x 为奇函数,则不等式()()f m f m >-即()()f m f m >-,即()0f m >,由此可得可得实数m 的取值范围是()()1,01,-⋃+∞.故选A.5. 已知函数1,0,()ln(),0,kx x f x x x -≥⎧=⎨--<⎩若函数()f x 的图象上关于原点对称的点有2对,则实数k 的取值范围为( ) A .(,0)-∞ B .1(0,)2C .(0,)+∞D .(0,1)【答案】D【解析】要使函数()f x 的图象上关于原点对称的点有2对,只需函数()()ln 0y x x =--<的图象关于原点对称的函数()ln 0y x x =>的图象与直线()10y kx x =->的交点个数为2即可.如图,可作出函数()()ln 0y x x =--<关于原点对称的函数()ln 0y x x =>的图象,当直线1y kx =-与ln y x =的图象相切时,设切点为(),ln m m ,又ln y x =的导数为1'y x =,则1ln 1km mk m -=⎧⎪⎨=⎪⎩,解得11m k =⎧⎨=⎩,可得切线的斜率为1,结合图象可知()0,1k ∈时,函数ln y x =的图象与直线1y kx =-有2个交点,即函数()f x 的图象上关于原点对称的点有2对,故选D.6. 已知函数f(x)=2-(0),0(0),()(0)x ax b xxg x x⎧+>⎪=⎨⎪<⎩在区间24,-4a b ba⎛⎫++⎪⎝⎭上满足f(-x)+f(x)=0,则g(-2)的值为()A.-22B.22C.-2D.2【答案】B【解析】由题意知f(x)是区间24,-4a b ba⎛⎫++⎪⎝⎭上的奇函数,∴a+4a-b2+4b=0,由于()224244b b b-+=--+≤,由对勾函数的性质,当0a>时,44aa+≥,故a<0,∴(b-2)2+2---aa⎛⎪⎝⎭=0,解得b=2,a=-2.∴g(-2)=-f(2)=-2-2a+b=-2+22+2=22.故选B.7. 已知函数()22log042708433x xf xx x x⎧<≤⎪=⎨-+>⎪⎩,,,若a b c d,,,互不相同,且满足,()()()()f a f b f c f d===则abcd的取值范围是()A.()3233,B.()3234,C.()3235,D.()3236,【答案】C【解析】由题意,可画出函数()f x图象如下:由题意,,,,a b c d Q 互不相同,∴可不妨设a b c d <<<.∵()()f a f b =,由图象,可知22log a log b -=.即:220log a log b +=.∴20log ab =,∴1ab =.又∵()()()()f a f b f c f d ===,∴依据图象,它们的函数值只能在0到2之间, ∴4578c d <<,<<.根据二次函数的对称性,可知:2612c d +=⨯=.∴()()2·121245abcd cd c c c c c ,<<==-=-+则可以将abcd 看成一个关于c 的二次函数.由二次函数的知识,可知:212c c -+在45c <<上的值域为()3235,. abcd ∴的取值范围即为()3235,,故选C . 8. 已知函数(,且)在上单调递增,且关于的方程恰有两个不相等的实数解,则的取值范围是( ) A .B .C .D .【答案】D 【解析】由函数()f x 的解析式可知函数在区间上单调递增,当时,函数单调递减,由复合函数的单调性法则可知:,且函数在处满足:,解得:,故,方程恰有两个不相等的实数解,则函数与函数的图像有且仅有两个不同的交点,绘制函数的图像如图中虚线所示,令可得:,由可知,,则直线与函数的图像在区间上存在唯一的交点,原问题转化为函数与二次函数在区间上存在唯一的交点,很明显当,即时满足题意,当直线与二次函数相切时,设切点坐标为,亦即,由函数的解析式可得:,故:,则,切点坐标为,从而:,即.据此可得:的取值范围是.故选D .9. 已知函数11ln ,01()1,12x x x f x x -+<≤⎧⎪=⎨>⎪⎩,若方程2()(1)()0f x a f x a -++=恰有三个不同的实数根,则实数a 的取值范围为 A .)0,(-∞ B .(0,)+∞ C .(1,)+∞ D .(0,1)【答案】D【解析】2()(1)()0f x a f x a -++=可变形为[()][()1]0f x a f x --=,即()a x f =或()1=x f ,由题可知函数()f x 的定义域为(0,)+∞,当(]0,1x ∈时,函数()f x 单调递增;当()1,x ∈+∞时,函数()f x 单调递减,画出函数()f x 的大致图象,如图所示,当且仅当1x =时,()1=x f ,因为方程2()(1)()0f x a f x a -++=恰有三个不同的实数根,所以()a x f =恰有两个不同的实数根,即(),y f x y a ==的图象有两个交点,由图可知10<<a 时,(),y f x y a ==的图象有两个交点,所以实数a 的取值范围为(0,1),故选D .10. 已知函数()2,02()211,0x x f x x f x x ⎧≤≠-⎪=+⎨⎪-+>⎩且若关于x 的方程()f x kx =都有4个不同的根,则k 的取值范围是( ) A .52,2⎡⎫⎪⎢⎣⎭B .52,2⎛⎤ ⎥⎝⎦C .75,42⎡⎫⎪⎢⎣⎭D .75,42⎛⎤⎥⎝⎦【答案】C【解析】()f x kx =都有4个不同的根,等价于(),,y f x y kx ==的图象有四个交点,因为()2,02()211,0x xf x x f x x ⎧≤≠-⎪=+⎨⎪-+>⎩且,所以,若01x <≤,则110x -<-≤,则2()(1)111f x f x x =-+=++;若12x <≤,则2Bq mRυυ=,则2()(1)12f x f x x=-+=+; 若23x <≤,则112x <-≤,则2()(1)131f x f x x =-+=+-; 若34x <≤,则213x <-≤,则2()(1)142f x f x x =-+=+-; 若45x <≤,则314x <-≤,则2()(1)153f x f x x =-+=+-; ...,作出()f x 的图象如图,求得()()4,7,2,5A B ,则75,42OAOB kk ==, 由图可知,7542k ≤<时,(),,y f x y kx ==的图象有四个交点,此时,关于x 的方程()f x kx =有4个不同的根,所以,k 的取值范围是75,42⎡⎫⎪⎢⎣⎭,故选C .11. 已知函数1,03 ()lg(6),36gx a xf xx a x⎧-<≤⎪=⎨--<<⎪⎩,(其中a R∈),若()f x的四个零点从小到大依次为1x,2x,3x,4x,则4121iix x x=+∑的值是()A.16 B.13 C.12 D.10【答案】B【解析】由题意可知,()f x有四个零点等价于函数lg,03()lg(6),36x xg xx x⎧<≤⎪=⎨-<<⎪⎩图象与函数y a=有四个交点,如图所示,由图形可知,1lg x a-=,2lg x a=,3lg(6)x a-=,4lg(6)x a--=,∴110ax-=,210ax=,3610ax-=,4610ax--=,即110ax-=,210ax=,3610ax=-,4610ax-=-,所以121x x=,41101061061012a a a aiix--==++-+-=∑,故412113iix x x=+=∑,故选B.12. 已知函数ln,1()1(2)(),1x xf xx x a xe≥⎧⎪=⎨+-<⎪⎩(a为常数,e为自然对数的底数)的图象在点(),1A e处的切线与该函数的图象恰好有三个公共点,求实数a 的取值范围是( ) A.33a --<<-+B.233a -+<<C.3a <--233a -+<< D.3a -+<【答案】C【解析】由()ln f x x =,1x ≥,得()1f x x '=,()1'f e e= ()f x ∴在点(),1A e 处的切线方程为1y x e=,① 函数()()()12y f x x x a e==+-,1x <② ∴由①②联立方程组可得:11(2)()y x ey x x a e ⎧=⎪⎪⎨⎪=+-⎪⎩,其中1x <,化简得:2(1)20x a x a +--=,③Q 切线与该函数的图象在(),1A e 点有一个交点,∴只需要满足③在当1x <时有两个不相同的交点,很明显2x =-不是函数的零点,整理方程可得:()222322x x a x x x +==++-++,问题转化为函数y a =与平移之后的对勾函数()2232y x x =++-+有两个不同的交点, 绘制函数()2232y x x =++-+的图像如图所示,结合均值不等式的结论可知,当2x >-时,()2232232y x x =++-≥+, 当2x <-时,()2232232y x x =++-≤-+, 且当1x =时,()222323y x x =++-=+, 结合函数图像可知,实数a 的取值范围是:322a <--或23223a -+<<. 故选C . 二、填空题13.函数22,1()log ,1x x f x x x ⎧<=⎨-≥⎩的值域为____________.【答案】(,2)-∞【解析】当1x <时,()2xf x =,其值域为()0,2,当1x ≥时,()2log f x x =-,其值域为(],0-∞所以函数()22,1log ,1x x f x x x ⎧<=⎨-≥⎩的值域为(]()(),00,2,2-∞⋃=-∞14. 函数223,0,(),0,x x f x x x --<⎧=⎨≥⎩若0a b >>,且()()f a f b =,则()f a b +的取值范围是________. 【答案】[)1-+∞,【解析】设()()f a f b t ==,作出函数()f x 的图象, 由图象可得0t ≥时,由()2f a a t ==,解得a t =,由()23f bb t =--=,解得32tb --=, 则23131(1)12222t a b t t t t --+=+=-+-=---, 因为0t ≥,则0t ≥,设m a b =+, 则21(1)112m a b t =+=---≤-, 此时()()23231f a b f m m +==--≥-=-, 所以()f a b +的取值范围是[1,)-+∞.15. 设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】12,34⎡⎫⎪⎢⎪⎣⎭. 【解析】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f xg x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为12211k k k +=+,得24k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为1234⎡⎫⎪⎢⎪⎣⎭,. 16. 已知函数()()ln ,02,2x x e f x f e x e x e⎧<≤⎪=⎨-<<⎪⎩,函数()()F x f x ax =-有4个零点,则实数a 的取值范围是____________. 【答案】10,e ⎛⎫ ⎪⎝⎭【解析】设2e x e <<,则02e x e <-<,故()()ln 2f x e x =-,即()()ln ,0ln 2,2x x e f x e x e x e ⎧<≤⎪=⎨-<<⎪⎩, 绘制函数图像如图所示,函数()()F x f x ax =-有4个零点则函数()f x 与函数y ax =有4个交点,如图所示,考查临界情况,当直线与函数相切时,设切点坐标为()00,x ax ,由题意可得:0001ln a x x ax ⎧=⎪⎨⎪=⎩,解得:01x e a e =⎧⎪⎨=⎪⎩. 则直线与函数相切时斜率为1e, 数形结合可知实数a 的取值范围是10,e ⎛⎫ ⎪⎝⎭.。
2023届新高考数学复习:专项(分段函数零点问题 )经典题提分练习(附答案)

2023届新高考数学复习:专项(分段函数零点问题)经典题提分练习一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0-B .[)1,-+∞C .(),0∞-D .(],1-∞2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( )A .1B .3C .4D .54.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x ax a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( )A .3B .4C .5D .67.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x a x ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( ) A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)7,2,28⎫⋃+∞⎪⎪⎝⎭D.7,228⎛⎫⎡⎤⋃ ⎪⎢⎥ ⎪⎣⎦⎝⎭ 8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( )A .4B .5C .6D .7二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( )A .1B .74C .2D .313.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( )A .0B .14-C .13-D .15-18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________.20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0x x x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________.25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩ 则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________.29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0xx x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.参考答案一、单选题1.(2023ꞏ天津南开ꞏ高三南开中学校考期末)已知函数()22,0log ,0x x f x x x ⎧≤=⎨>⎩,若函数()()g x f x m =+有两个零点,则m 的取值范围是( ) A .[)1,0- B .[)1,-+∞ C .(),0∞- D .(],1-∞【答案】A【答案解析】()()0()g x f x m f x m =+=⇔=-Q()g x ∴存在两个零点,等价于y m =-与()f x 的图象有两个交点,在同一直角坐标系中绘制两个函数的图象:由图可知,保证两函数图象有两个交点,满足01m <-≤,解得:[)1,0m ∈- 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减;当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π, 作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A3.(2023ꞏ陕西西安ꞏ高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨-<⎩, 若函数()()()g x f x f x =--,则函数()g x 的零点个数为( ) A .1B .3C .4D .5【答案】D【答案解析】当0x >时,0x -<,()3f x x -=当0x <时,0x ->,()e xf x --=()()()3e ,00,0e 3,0x x x x g x f x f x x x x -⎧->⎪∴=--==⎨⎪+<⎩,()()()()g x f x f x g x -=--=-,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =->,()3e 0x g x '=->,令()3e 0x g x '=->,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln 3)3ln 330g =->,而()226e 0g =-<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=-< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞-上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.4.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x = ()22122,2212,sin x a x a x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[0,)+∞内恰有5个零点,则a 的取值范围是( )A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .5711,2,424⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D【答案解析】当0a ≤时,对任意的0x ≥,()()22212f x x a x a =-+++在[)0,∞+上至多2个零点,不合乎题意,所以,0a >.函数()22212y x a x a =-+++的对称轴为直线12x a =+,()()22214247a a a ∆=+-+=-. 所以,函数()f x 在1,2a a ⎡⎫+⎪⎢⎣⎭上单调递减,在1,2a ⎛⎫++∞ ⎪⎝⎭上单调递增,且()2f a a =-.①当470a ∆=-<时,即当704a <<时,则函数()f x 在[),a +∞上无零点, 所以,函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有5个零点,当0x a ≤<时,111222a x a -≤-+<,则()11222a x a πππ⎛⎫-≤-+< ⎪⎝⎭,由题意可得()5124a πππ-<-≤-,解得532a ≤<,此时a 不存在;②当Δ0=时,即当74a =时,函数()f x 在7,4⎡⎫+∞⎪⎢⎣⎭上只有一个零点, 当70,4x ⎡⎫∈⎪⎢⎣⎭时,()2cos 2f x x π=-,则7022x ππ≤<,则函数()f x 在70,4⎡⎫⎪⎢⎣⎭上只有3个零点,此时,函数()f x 在[)0,∞+上的零点个数为4,不合乎题意;③当()20Δ470f a a a ⎧=-≥⎨=->⎩时,即当724a <≤时,函数()f x 在[),a +∞上有2个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有3个零点,则()3122a πππ-<-≤-,解得322a ≤<,此时724a <<; ④当()20Δ470f a a a ⎧=-<⎨=->⎩时,即当2a >时,函数()f x 在[),a +∞上有1个零点,则函数()12sin 22f x x a π⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦在[)0,a 上有4个零点,则()4123a πππ-<-≤-,解得522a ≤<,此时,522a <<.综上所述,实数a 的取值范围是75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭.故选:D.5.(2023ꞏ全国ꞏ高三专题练习)已知定义在R 上的函数()11,0,1,0,1x x x f x x x ⎧--≥⎪=⎨<⎪-⎩若函数()()11g x f x ax =--+恰有2个零点,则实数a 的取值范围是( ) A .(){}1,10,4⎛⎫-∞-+∞ ⎪⎝⎭B .(){}1,10,14⎛⎫-∞- ⎪⎝⎭C .()1,10,4⎡⎫-∞-⎪⎢⎣⎭D .(){}14,10,14⎡⎫--⎪⎢⎣⎭【答案】B【答案解析】()()11,111,1x x x f x x x ⎧--≤⎪-=⎨->⎪⎩,故()()1,11111,1x x x f x x x ⎧-≤⎪-+=⎨-+>⎪⎩,则函数()()11g x f x ax =--+恰有2个零点等价于()11f x ax -+=有两个不同的解, 故()11,y f x y ax =-+=的图象有两个不同的交点,设()()()()1,01111,011,1x x x g x f x x x x x x ⎧⎪-≤≤⎪=-+=--<⎨⎪⎪-+>⎩又(),y g x y ax ==的图象如图所示,由图象可得两个函数的图象均过原点,若0a =,此时两个函数的图象有两个不同的交点, 当0a ≠时,考虑直线y ax =与()()201g x x x x =-≤≤的图象相切,则由2ax x x =-可得()2100a ∆=--=即1a =, 考虑直线y ax =与()11(1)g x x x=-+≥的图象相切,由11ax x =-+可得210ax x -+=,则140a ∆=-=即14a =.考虑直线y ax =与()2(0)g x x x x =-≤的图象相切,由2ax x x =-可得()2100a ∆=+-=即1a =-, 结合图象可得当114a <<或1a <-时,两个函数的图象有两个不同的交点, 综上,114a <<或1a <-或0a =, 故选:B.6.(2023ꞏ全国ꞏ高三专题练习)已知函数()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩,则函数()()22g x f f x ⎡+⎤⎣⎦=+的零点个数为( ) A .3B .4C .5D .6【答案】B【答案解析】令()2t f x =+,当1x <-时,1()(,2)f x x x =+∈-∞-且递增,此时(,0)t ∈-∞,当10x -<<时,1()(,2)f x x x=+∈-∞-且递减,此时(,0)t ∈-∞,当210e <<x 时,()ln (,2)f x x =∈-∞-且递增,此时(,0)t ∈-∞, 当21e x >时,()ln (2,)f x x =∈-+∞且递增,此时(0,)t ∈+∞, 所以,()g x 的零点等价于()f t 与=2y -交点横坐标t 对应的x 值,如下图示:由图知:()f t 与=2y -有两个交点,横坐标11t =-、201t <<: 当11t =-,即()3f x =-时,在(),1x ∈-∞-、(1,0)-、21(0,)e上各有一个解;当201t <<,即2()1f x -<<-时,在21,e x ∞⎛⎫∈+ ⎪⎝⎭有一个解.综上,()g x 的零点共有4个. 故选:B7.(2023ꞏ四川绵阳ꞏ四川省绵阳南山中学校考一模)已知0a >,函数()=f x 22,43,x x ax ax x a -+≤⎧⎨-+>⎩,若()f x 恰有2个零点,则a 的取值范围是( )A.[)2,⎫⋃+∞⎪⎪⎝⎭B .()[)0,12,+∞C.[)72,8⎫⋃+∞⎪⎪⎝⎭D.7,28⎫⎡⎤⋃⎪⎢⎥⎪⎣⎦⎝⎭ 【答案】A【答案解析】①若2x =是一个零点,则需要2()43()f x x ax x a =-+> 只有一个零点, 即有2a ≥,且此时当x a >时,需要2430()x ax x a -+=>只 有一个实根, 而221612162120a ∆=-≥⨯-> ,解方程根得2x a =±,易得2a 2a <<<2a 即当2a ≥ 时, ()f x 恰有 2个零点,122,2x x a ==. ②若2x =不是函数的零点,则2x a =为函数的 2 个零点,于是22Δ161202a a a a ⎧<⎪=->⎨⎪<⎩ ,解得:1.2a << 综上:[)2,2a ∞⎛⎫∈⋃+ ⎪ ⎪⎝⎭.故选:A.8.(2023ꞏ全国ꞏ高三专题练习)已知函数()2ln ,0,1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤ B .11e k -<< C .e 0k -<< D .10e k -<<【答案】D【答案解析】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11e e f ⎛⎫=- ⎪⎝⎭,且10e x <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10ek -<<,故选:D .9.(2023ꞏ广东广州ꞏ高三广州市真光中学校考期末)定义在R 上的奇函数()f x ,当0x ≥时,()[)[)12log (1),0,113,1,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .21a -B .12a -C .21a --D .12a --【答案】B【答案解析】由题设,画出[0,)+∞上()f x 的大致图象,又()f x 为奇函数,可得()f x 的图象如下:()F x 的零点,即为方程()0f x a -=的根,即()f x 图像与直线y a =的交点.由图象知:()f x 与y a =有5个交点:若从左到右交点横坐标分别为12344,,,,x x x x x , 1、12,x x 关于3x =-对称,126x x +=-;2、30x <且满足方程()()()333f x a f x a f x a =⇒-=-⇒-=-即()132log 1x a -+=,解得:312a x =-;3、45,x x 关于3x =轴对称,则456x x +=;1234512∴++++=-a x x x x x 故选:B10.(2023ꞏ全国ꞏ高三专题练习)已知函数()222,12()=log 1,1x x f x x x ⎧+≤⎪⎨⎪->⎩,则函数()()3()22F x f f x f x =--⎡⎤⎣⎦的零点个数是 ( ) A .4B .5C .6D .7【答案】A【答案解析】令(),()0t f x F x ==,则3()202f t t --=, 作出()y f x =的图象和直线32+2y x =,由图象可得有两个交点,设横坐标为12,t t ,∴120,(1,2)t t =∈.当1()f x t =时,有2x =,即有一解;当2()f x t =时,有三个解, ∴综上,()0F x =共有4个解,即有4个零点. 故选:A 二、多选题11.(2023ꞏ河南郑州ꞏ高三郑州市第七中学校考期末)已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( )A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD【答案解析】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解, 由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .12.(2023ꞏ河南濮阳ꞏ高三濮阳一高校考期中)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,其中b ∈R ,若函数()()y f x g x =-恰有2个零点,则b 的值可以是( ) A .1B .74C .2D .3【答案】BD【答案解析】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--≥-=⎨<⎩ , ∵函数()()y f x g x =-恰好有两个零点,∴方程()()0f x g x -=有两个解,即()(2)0f x f x b +--=有两个解, 即函数()(2)y f x f x =+-与y b =的图象有两个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩ ,作函数()(2)y f x f x =+-与y b =的图象如下, 当12x =-和52x =,即115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,当724b <≤时,有不止两个交点, 当2b >或74b =时,满足函数()(2)y f x f x =+-与y b =的图象有两个交点, 当74b <时,无交点, 综上,2b >或74b =时满足题意,故选:BD.13.(2023ꞏ江西ꞏ高三校联考阶段练习)已知函数()221,0,2,0,x x f x x x x ⎧->=⎨--≤⎩则以下判断正确的是( )A .若函数()()g x f x m =-有3个零点,则实数m 的取值范围是()0,1B .函数()f x 在(),0∞-上单调递增C .直线1y =与函数()y f x =的图象有两个公共点D .函数()f x 的图象与直线2y x =+有且只有一个公共点【答案解析】当0,x ≤()22211y x x x =--=++-,故()221,02,0x x f x x x x ⎧->=⎨--≤⎩的图像如图所示,对AC ,函数()()g x f x m =-有3个零点,相当于()y f x =与y m =有3个交点,故m 的取值范围是()0,1,直线1y =与函数()y f x =的图象有两个公共点,AC 对; 对B ,函数()f x 在(),0∞-上先增后减,B 错;对D ,如图所示,联立222y x y x x =+⎧⎨=--⎩可得解得20x y =-⎧⎨=⎩或11x y =-⎧⎨=⎩,由图右侧一定有一个交点,故函数()f x 的图象与直线2y x =+不止一个公共点,D 错.14.(2023ꞏ广东佛山ꞏ高三佛山市三水区实验中学校考阶段练习)已知()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,令()()g x f x a =-,则下列结论正确的有( )A .若()g x 有1个零点,则0a =B .()0f x >恒成立C .若()g x 有3个零点,则102a <<D .若()g x 有4个零点,则112a ≤< 【答案】AD【答案解析】()121,02|log ,0x x f x x x +⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪⎩,作出()f x 的图象,如图所示:因为()()g x f x a =-,所以()g x 的零点个数即为函数()y f x =与y a =的图象的交点的个数,对于A :若()g x 有1个零点,则函数()y f x =与y a =的图象仅有一个公共点,由图象得0a =,故A 正确;对于B :由图象得()0f x ≥恒成立,故B 错误;对于C :若()g x 有3个零点,则函数()y f x =与y a =的图象有三个公共点,由图象得1a =或者102a <<,故C 错误;对于D :若()g x 有4个零点,则函数()y f x =与y a =的图象有四个公共点,由图象得112a ≤<,故D 正确. 故选:AD .15.(2023ꞏ黑龙江绥化ꞏ高三校考阶段练习)已知函数()31,0log ,0ax x f x x x +≤⎧=⎨->⎩,若()(())1g x f f x =+,则下说法正确的是( )A .当0a >时,()g x 有4个零点B .当0a >时,()g x 有5个零点C .当a<0时,()g x 有1个零点D .当a<0时,()g x 有2个零点【答案】AC【答案解析】当0a >时,令()f x t =,由()10f t +=,解得13t =或3t =或2t a=-. 作出函数()f x 的图象,如图1所示,易得()f x t =有4个不同的实数解, 即当0a >时,()g x 有4个零点.故A 正确,B 错误; 当a<0时,令()f x t =,所以()10f t +=,解得13t =或3t =或2t a=-(舍) 作出函数()f x 的图象,如图2所示,易得()f x t =有1个实数解, 即当a<0时,()g x 有1个零点.故C 正确,D 错误. 故选:AC.16.(2023ꞏ广东深圳ꞏ高三深圳市南山区华侨城中学校考阶段练习)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中N k ∈;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点;【答案】ACD【答案解析】作出函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩的图象如图所示.所以max min ()1,()1f x f x ==-.对于A :任取12,[1,)x x ∈+∞,都有()12max min 13()()()()122f x f x f x f x -≤-=--=.故A 正确; 对于B :因为151111,,222222kf f f k ⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以111?121511*********k k f f f k +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭- .故B 错误; 对于C :由1()(2)2f x f x =-,得到1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭,即()2(2)k f x f x k =+.故C 正确;对于D :函数()ln(1)y f x x =--的定义域为()1,+∞.作出()y f x =和ln(1)y x =-的图象如图所示:当2x =时,sin2ln10y π=-=;当12x <<时,函数()y f x =与函数()ln 1y x =-的图象有一个交点;当2x >时,因为2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,971ln 1ln 1224⎪->⎛⎫ ⎝>=⎭,所以函数()y f x =与函数()ln 1y x =-的图象有一个交点,所以函数()ln(1)y f x x =--有3个零点.故D 正确.故选:ACD17.(2023ꞏ全国ꞏ模拟预测)已知函数lg ,0()1,0x x f x x x ⎧>=⎨+≤⎩,若函数()[2()]g x f f x a =+有7个零点,则实数a 的可能取值是( ) A .0B .14-C .13-D .15-【答案】BD【答案解析】在0x ≤上()f x 单调递增且值域为(,1]-∞; 在01x <≤上()f x 单调递减且值域为[0,)+∞; 在1x >上()f x 单调递增且值域为(0,)+∞; 故()f x 的图象如下:由题设,()[2()]g x f f x a =+有7个零点,即[2()]f f x a =-有7个不同解,当0a -<时有2()1f x <-,即1()2f x <-,此时()g x 有1个零点;当0a -=时有2()1f x =±,即1()2f x =±,∴1()2f x =-有1个零点,1()2f x =有3个零点,此时()g x 共有4个零点;当0lg 2a <-≤时有12()lg 21f x -<≤-或12()12f x ≤<或12()2f x <≤, ∴1lg 21()022f x --<≤<有1个零点,11()42f x ≤<有3个零点,1(1)2f x <≤有3个零点,此时()g x 共有7个零点;当lg 21a <-≤时有lg 212()0f x -<≤或102()2f x <<或22()10f x <≤, ∴lg 21()02f x -<≤有1个零点,10()4f x <<有3个零点,1()5f x <≤有2个零点,此时()g x 共有6个零点;当1a ->时有102()10f x <<或2()10f x >, ∴10()20f x <<有3个零点,()5f x >有2个零点,此时()g x 共有5个零点; 综上,要使()g x 有7个零点时,则lg 20a -≤<,(lg 20.30103≈) 故选:BD18.(2023ꞏ全国ꞏ高三专题练习)若函数f (x )=4,22021()(3),2x m x x m x m x ⎧-<⎨--⎩…恰有两个零点,则正整数m 的取值可能为( )A .1B .2C .15D .16【答案】AD【答案解析】函数f (x )的零点即为方程f (x )=0的解.当m =1时,解方程f (x )=0,当x <2时,4x ﹣1=0,解得:x =0; 当x ≥2时,2021(x ﹣1)(x ﹣3)=0,解得:x =1或3,只取x =3. ∴函数有两个零点0或3.∴A 对;当m =2时,解方程f (x )=0,当x <2时,4x ﹣2=0,解得:x =12; 当x ≥2时,2021(x ﹣2)(x ﹣6)=0,解得:x =2或6. ∴函数有三个零点12或2或6.∴B 错;当m =15时,解方程f (x )=0,当x <2时,4x ﹣15=0,解得:x =log 415<2; 当x ≥2时,2021(x ﹣15)(x ﹣45)=0,解得:x =15或45. ∴函数有三个零点log 415或15或45.∴C 错;当m =16时,解方程f (x )=0,当x <2时,4x ﹣16=0,解得:x =2不成立; 当x ≥2时,2021(x ﹣16)(x ﹣48)=0,解得:x =16或48. ∴函数有两个零点16或48.∴D 对; 故选:AD .三、填空题19.(2023ꞏ全国ꞏ高三专题练习)知函数()3223,015,1x x m x f x mx x ⎧++≤≤=⎨+>⎩,若函数()f x 有两个不同的零点,则实数m 的取值范围为_____________. 【答案】50m -<<【答案解析】由答案解析式知:在[0,1]上()f x 为增函数且()[,5]f x m m ∈+, 在(1,)+∞上,0m ≠时()f x 为单调函数,0m =时()5f x =无零点, 故要使()f x 有两个不同的零点,即1x =两侧各有一个零点,所以在(1,)+∞上()f x 必递减且()(,5)f x m ∈-∞+,则050m m <⎧⎨+>⎩,可得50m -<<.故答案为:50m -<<20.(2023ꞏ全国ꞏ高三专题练习)已知函数24,()1,x x x af x e x a ⎧-≤=⎨->⎩,若函数()[()]g x f f x =在R 上有三个不同的零点,则实数a 的取值范围是______________.【答案】)⎡⎡⎣⎣【答案解析】令()t f x =,则()()g x f t =,由于函数()[()]g x f f x =在R 上有三个不同的零点,所以()()0g x f t ==必有两解,所以20a -≤<或2a ≥.当20a -≤<时,()f x 的图像如下图所示,由图可知,()y f t =必有两个零点122,0t t =-=,由于()2f x t =有两个解,所以()1f x t =有一个解,即242a -≤-,解得0a ≤<.当2a ≥时,()f x 的大致图像如下图所示,()y f t =必有两个零点342,2t t =-=,由于()3f x t =有两个解,所以()4f x t =有一个解,所以242a -<,解得2a ≤<综上所述,实数a 的取值范围是)⎡⎡⎣⎣ .故答案为:)⎡⎡⎣⎣21.(2023ꞏ上海黄浦ꞏ高三上海市向明中学校考开学考试)已知函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,函数()()()g x f x f x =--恰有5个零点,则实数a 的取值范围为____________.【答案】1,0e ⎛⎫- ⎪⎝⎭【答案解析】因为函数()f x 满足,1(1)ln(1),1ax a x f x x x +≤-⎧+=⎨+>-⎩,所以,0()ln ,0ax x f x x x ≤⎧=⎨>⎩,-,0()ln(-),0ax x f x x x ≥⎧-=⎨<⎩, 因为函数()()()g x f x f x =--恰有5个零点, 所以函数()y f x =与()y f x =-恰有5个交点,如图,因为y ax =-与y ax =交于原点,要恰有5个交点,,0y ax x =->与ln y x =必有2个交点, 设,0y ax x =->与ln y x =相切,切点为(,)m n , 此时切线斜率为1100n y x m m -'===-,解得1,ln 1n m ==, 解得e m =,所以切点为(e,1),所以e 1a -=,解得1a e =-,所以要使函数()()()g x f x f x =--恰有5个零点,则1(,0)ea ∈-.故答案为:1,0e ⎛⎫- ⎪⎝⎭.22.(2023ꞏ黑龙江哈尔滨ꞏ高三黑龙江实验中学校考阶段练习)已知函数()f x 定义城为(]0,12,恒有()()44f x f x +=,(]0,4x ∈时()222x f x -=-;若函数()()()2g x f x t f x =+⋅有4个零点,则t 的取值范围为______. 【答案】[]32,28--【答案解析】设(]4,8x ∈,则(]40,4x -∈,则[]6()(4)44(4)422x f x f x f x -=-+=-=-,设(]8,12x ∈,则(]80,4x -∈,则[][]()(4)44(4)4(8)4f x f x f x f x =-+=-=-+1016(8)1622x f x -=-=-,则(](](]2610220,4()4224,816228,12x x x x f x x x ---⎧-∈⎪⎪=-∈⎨⎪-∈⎪⎩,,,,则(3)(7)(11)0f f f ===,函数()f x 图象如下:由2()()()0g x f x t f x =+⋅=,可得()0f x =,或()f x t =-, 由()0f x =,可得3x =,或7x =,或11x =,则()f x t =-仅有一根,又(8)f =810162228--=,(12)f =1210162232--=, 则2832t ≤-≤,解之得3228t -≤≤-, 故答案为:3228t -≤≤-.23.(2023ꞏ全国ꞏ高三专题练习)已知函数()f x 2e 1,0,0x x ax x a x ⎧-≥=⎨++<⎩,恰有2个零点,则=a __________.【答案】12【答案解析】当0x ≥时,令()e 10xf x =-=,解得0x =,故()f x 在[)0+∞,上恰有1个零点,即方程20ax x a ++=有1个负根.当0a =时,解得0x =,显然不满足题意;当0a ≠时,因为方程20ax x a ++=有1个负根,所以2Δ140.a =-≥ 当2Δ140a =-=,即12a =±时,其中当12a =时,211022x x ++=,解得=1x -,符合题意;当12a =-时,211022x x -+-=,解得1x =,不符合题意; 当2140a ∆=->时,设方程20ax x a ++=有2个根1x ,2x ,因为1210x x =>,所以1x ,2x 同号, 即方程20ax x a ++=有2个负根或2个正根,不符合题意.综上,12a =.故答案为:0.5.24.(2023ꞏ北京ꞏ高三专题练习)已知函数ln ,0()e 1,0xx x f x x >⎧=⎨+≤⎩,且函数()()g x f x m =-恰有两个不同的零点,则实数m 的取值范围是___________. 【答案】12m <≤【答案解析】由()0g x =得()f x m =,即函数()g x 的零点是直线y m =与函数()y f x =图象交点横坐标, 当0x ≤时,()e 1x f x =+是增函数,函数值从1递增到2(1不能取),当0x >时,()ln f x x =是增函数,函数值为一切实数,在坐标平面内作出函数()y f x =的图象,如图,观察图象知,当12m <≤时,直线y m =与函数()y f x =图象有2个交点,即函数()g x 有2个零点, 所以实数m 的取值范围是:12m <≤. 故答案为:12m <≤25.(2023ꞏ全国ꞏ高三专题练习)设函数()()3221014680x x f x x x g x x x x x ⎧+>⎪=-+=⎨⎪---≤⎩,,,,,则函数()()()1h x f g x =-的零点为________.【答案】14322---,,, 【答案解析】函数()h x 的零点即为方程()0h x =的解,也即()()1f g x =的解. 令()t g x =,则原方程的解变为方程组()()1t g x f t ⎧=⎪⎨=⎪⎩,①②的解.由方程②可得320t t -=, 解得0t =或1t =,将0t =代入方程①,而方程104x x+=无解, 由方程2680x x ---=解得4x =-或2x =-;将1t =代入方程①,而方程114x x +=,解得12x =, 由方程2681x x ---=,解得3x =-.综上,函数()h x 的零点为14322---,,,,共四个零点. 故答案为:14322---,,,. 26.(2023春ꞏ上海浦东新ꞏ高三上海市川沙中学校考期中)已知函数()y f x =的定义域是[0,)+∞,满足2201()4513,?2834x x f x x x x x x ≤<⎧⎪=-+≤<⎨⎪-+≤<⎩且(4)()f x f x a +=+,若存在实数k ,使函数()()g x f x k =+在区间[0,2021]上恰好有2021个零点,则实数a 的取值范围为____ 【答案】11(,)505504-【答案解析】由函数在[0,4)x ∈上的答案解析式作出如图所示图像,由(4)()f x f x a +=+知,函数()f x 是以4为周期,且每个周期上下平移|a |个单位的一个函数,若使[0,2021]x ∈时,存在R k ∈,方程()()g x f x k =+在[0,2021]x ∈上恰有2021个零点,等价于()f x k =-在[0,2021]x ∈上恰有2021个交点,如图所示,知在每个周期都有4个交点,即(1,2)k -∈时满足条件,且必须每个周期内均应使k -处在极大值和极小值之间,才能保证恰有2021个交点, 则当0a ≥时,需使最后一个完整周期[2016,2020)中的极小值(2018)2f <, 即(2018)(2)50415042f f a a =+=+<,解得1504a <,即1[0,504a ∈ 当a<0时,需使最后一个极大值(2021)1f >, 即(2021)(1)50525051f f a a =+=+>,解得1505a >-,即1(,0)505a ∈-, 综上所述,11(,505504a ∈-故答案为:11,505504⎛⎫- ⎪⎝⎭27.(2023ꞏ浙江ꞏ高三专题练习)若函数()()()2210,10k x f x x x kx x ⎧-<⎪=⎨⎪-->⎩恰有4个零点,则实数k 的取值范围是______.【答案】10,4⎛⎫⎪⎝⎭【答案解析】当0x <时,令()0f x =可得:21k x =, 当0x >时,令()0f x =可得:21x k x-=,令()()()221010x x g x x x x ⎧<⎪⎪=⎨-⎪>⎪⎩, 若01x <<,()21x g x x -+=, ()320x g x x -'=<,()g x 为减函数, 若1x ≥,()21x g x x -=, ()320x g x x -+'==,2x =, 若[)1,2x ∈,()0g x '<,()g x 为减函数, 若()2,x ∈+∞,()0g x '>,()g x 为增函数,()124g = 画出()g x 的图像,如下图:如要()f x 有4个零点,则104k <<, 故答案为:10,4⎛⎫ ⎪⎝⎭. 28.(2023ꞏ全国ꞏ高三专题练习)若348,122()1,222x x f x x f x ⎧--≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩则()()6g x xf x =-在*1,2,n n N ⎡⎤∈⎣⎦内的所有零点之和为:__________. 【答案】3(21)2n - 【答案解析】当312x ≤≤时,f (x )=8x ﹣8, 所以()218()82g x x =--,此时当32x =时,g (x )max =0; 当322x ≤<时,f (x )=16﹣8x ,所以g (x )=﹣8(x ﹣1)2+2<0; 由此可得1≤x ≤2时,g (x )max =0.下面考虑2n ﹣1≤x ≤2n 且n ≥2时,g (x )的最大值的情况. 当2n ﹣1≤x ≤3•2n ﹣2时,由函数f (x )的定义知()11112222n n x x f x f f --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 因为13122n x-≤≤, 所以()22251(2)82n n g x x --=--, 此时当x =3•2n ﹣2时,g (x )max =0;当3•2n ﹣2≤x ≤2n 时,同理可知,()12251(2)802n n g x x --=--+<.由此可得2n ﹣1≤x ≤2n 且n ≥2时,g (x )max =0. 综上可得:对于一切的n ∈N *,函数g (x )在区间[2n ﹣1,2n ]上有1个零点, 从而g (x )在区间[1,2n ]上有n 个零点,且这些零点为232n n x -=⋅,因此,所有这些零点的和为()3212n -. 故答案为()3212n -. 29.(2023ꞏ全国ꞏ高三专题练习)已知函数1,0()42,0x x x x f x x --⎧+>=⎨-≤⎩,若函数(32)y f x a =--恰有三个不同的零点,则实数a 的取值范围是________【答案】23a <≤.【答案解析】函数()f x 当0x >时是对勾函数,因为112x x x x -+=+≥=,当且仅当10x x x ⎧=⎪⎨⎪>⎩即1x =时,取最小值.所以函数最小值为2,且在(0,1)上为减函数,在(1,)+∞上为增函数.当0x ≤时,2x y -= 是减函数,且21x -≥,所以2x y -=-为增函数,且21x --≤-,所以函数()42x f x -=-为增函数,且()3f x ≤,函数图像如图所示.令32t x =-,函数(32)y f x a =--恰有三个不同的零点,可以看成函数()y f t a =-恰有三个不同的零点,函数()f t 的图像与直线y a =有三个交点.由图像可知23a <≤.30.(2023ꞏ全国ꞏ高三专题练习)已知函数32,0()461,0x e x f x x x x ⎧<=⎨-+≥⎩,则函数2()3[()]2()g x f x f x m =--有5个零点时m 的范围_____________.【答案】01m ≤<【答案解析】当0x ≥时,2'()121212(1)f x x x x x =-=-,在区间()0,1上,()()'0,f x f x <单调递减,在区间()1,+∞上,()()'0,f x f x >单调递增,故函数在1x =处取得极小值()11f =-,据此绘制函数()f x 的图像如图所示,结合函数图像和题意可知原问题等价于函数232y x x =-与函数y m =有两个交点,且交点的横坐标的范围分别位于区间(]1,0-和区间()0,1内,观察二次函数的图像可得m 的范围是01m ≤<.。
第19章 分段函数练习题及答案

数学第19章分段函数(练习)练1. 已知一次函数y=2x+4的图象上有两点A(3,a),B(4,b),则a与b的大小关系为_________练2 一次函数y=(m2+3)x-2,y随x的增大而_________练3 函数y=(m –1)x+1是一次函数,且y随自变量x增大而减小,那么m的取值为______.练4 如图,点A(x1,y2)与点B(x2,y2)都是直线y=kx+b上的点,且x1<x2,试比较y1 y2练1:为缓解用电紧张,某电力公司特制定了新的用电收费标准,每月用电量x (度)与应付电费y(元)的关系如图所示.(1)根据图象,请分别求出当0≤x≤50和x>50时,y与x的函数解析式. (2)请回答:当每月用电量不超过50度时,收费标准是;当每月用电量超过50度时,收费标准是练2 小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分。
试写出这段时间里她的跑步速度y (米/分)随跑步时间x (分)变化的函数关系式,并画同函数图象.练3 学校组织学生到距离6千米的展览馆参观,学生王军因故未能乘上学校的包车,于是在校门口乘出租车,出租车收费标准如下:(1)写出费用y与行驶里程x之间的函数关系式,并画出函数图象(2)王军仅有14元钱,他到展览馆的车费是否足够?春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.右图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.y/ oCO x/时参考答案。
分段函数、解析式与图像含详解答案

解析式、分段函数、函数图像作业题型一分段函数1.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为2.设函数23,0()(2),0x x x f x f x x ⎧+≥=⎨+<⎩,则(3)f -=_____3.设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a =4.分段函数已知函数3,0,()4,0.x x f x x x -+≤⎧=⎨>⎩(1)画函数图像(2)求((1))f f -;(3)若0()2f x >,求0x 的取值范围.题型二解析式1.求下列函数的解析式(1)已知2()f x x x =+,求(1)f x -的解析式(2)若1)f x +=+()f x 的解析式(3)如果1f x ⎛⎫ ⎪⎝⎭=1x x-,则当x ≠0,1时,求()f x 的解析式(4)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式2.求下列函数的解析式(1)已知函数()f x 是一次函数,若()48f f x x =+⎡⎤⎣⎦,求()f x 的解析式;(2)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +-=,求()f x 的解析式(3)已知函数f (x )+2f (-x )=x 2+2x,求()f x 的解析式.(4)已知函数()f x 的定义域是一切非零实数,且满足13()24f x f x x ⎛⎫+=⎪⎝⎭.求()f x 的解析式.3.已知函数()21f x x =-,2,0,(){1,0,x x g x x ≥=-<求()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦的解析式.题型三函数图像1.画出函数2)(x x f =的图像,并用变换的方法画出以下函数的图像。
(1)2)(2+=x x f (2)2)1()(-=x x f (3)2)2()(2+-=x x f (4)32)(2+-=x x x f (5)542)(2-+=x x x f 2.画出下列函数函数的图像。
高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)

高考数学《分段函数的性质与应用》基础知识与专项练习题(含答案)分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。
即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。
3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。
如果不便作出,则只能通过代数方法比较()(),f x f x −的关系,要注意,x x −的范围以代入到正确的解析式。
4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。
否则是断开的。
例如:()221,34,3x x f x x x −≤⎧=⎨−>⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。
再比如 ()221,31,3x x f x x x −≤⎧=⎨−>⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。
(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。
例如:()13f x x =−+,可转化为:()13,113,1x x f x x x −+≥⎧=⎨−+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。
分段函数练习题

分段函数练习题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1、分段函数1、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .提示:本题考查分段函数的求值,注意分段函数分段求。
解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C.902、函数的图象为下图中的( )提示:分段函数分段画图。
解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C.1203、下列各组函数表示同一函数的是( )①f(x)=|x|,g(x)=⎩⎨⎧<-≥)0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1}A.①③B.①C.②④D.①④267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110||x y x x=+提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。
解析:此题中①③正确,故正确答案为A.1204、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2D.3提示:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.考查对分段函数的理解程度。
解析:因为 f (2)=log 3(22﹣1)=1,所以f (f (2))=f (1)=2e 1﹣1=2.因此f (f (2))=f (log 3(22﹣1))=f (1)=2e 1﹣1=2,故正确答案为C.905、定义在R 上的函数)(x f 满足)(x f =, 则)3(f 的值为( )A .1- B. 2- C. 1D. 2提示:本题主要考查分段函数的求值,同时考查了递推关系,属于基础题.解析:将3代入相应的分段函数进行求值,则f (3)=f (2)﹣f (1),f (2)=f (1)﹣f (0)从而f (3)=f (1)﹣f (0)﹣f (1)=﹣f (0),将0代入f (x )=log 2(4﹣x )进行求解.∴f(3)=f (1)﹣f (0)﹣f (1)=﹣f (0)=﹣log 2(4﹣0)=﹣2, 故正确答案为B .⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x1806、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .232 C. 4D. 1提示:本题主要考查分段函数的求值,但是直接分段函数分段作图就将这道题做麻烦了,不如直接代入求解。
分段函数专题(含答案)

分段函数专题一.选择题(共7小题)1.下列关于分段函数的描述正确的是()①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f(x)=|x|是一个分段函数;③f(x)=|x﹣2|不是分段函数;④分段函数的定义域都是R;⑤分段函数的值域都为R;⑥f(x)={x,x≥0−x,x<0,则f(1)=−1.A.①②⑥B.①④C.②D.③④⑤2.设f(x)={2e x−1,x<2log3(x2−1),x≥2,则f(f(2))的值为()A.0B.1C.2D.33.已知函数f(x)={|log x|,0<x≤10−12x+6,x>10,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)4.已知f(x)={x+2,x≤−1x2,−1<x<22x,x≥2,若f(x)=3,则x的值是()A.1 B.1或32C.1,32或±√3D.√35.函数f(x)={x2+bx+c,x≤02,x>0,若f(−4)=f(0),f(−2)=−2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.46.已知函数f(x)={(a−2)x−1,x≤1log a x,x>1,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3]D.(2,+∞)7.已知函数f(x)={x2+1,x≤0−2x,x>0使函数值为5的x的值是()A.﹣2B.2或﹣C.2或﹣2D.2或﹣2或﹣二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 . 三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.12.已知函数f(x)={x+2,x≤−1x2,−1<x<22x,x≥2(1)在坐标系中作出函数的图象;(2)若f(a)=12,求a的取值集合.13.已知函数f(x)=2x−1,g(x)={x2,x≥0−1,x<0求f[g(x)]和g[f(x)]的解析式.14.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.分段函数专题答案一.选择题(共7小题)1.下列关于分段函数的描述正确的是( )①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f (x )=|x |是一个分段函数;③f (x )=|x ﹣2|不是分段函数;④分段函数的定义域都是R ;⑤分段函数的值域都为R ;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1. A .①②⑥ B .①④ C .② D .③④⑤【答案】①分段函数在每段定义域内都是一个独立的函数,但这几段组合在一起是一个函数,故错误;②f (x )=|x |={x,x ≥0−x,x <0是一个分段函数,正确; ③f (x )=|x −2|={x −2,x ≥22−x,x <2是一个分段函数,错误; ④分段函数的定义域不都是R ,错误;⑤分段函数的值域不都为R ,错误;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1,错误. 故正确的命题为:②,故选:C2.设f (x )={2e x−1,x <2log 3(x 2−1),x ≥2,则f(f (2))的值为( ) A .0 B .1 C .2 D .3【答案】f(f (2))=f [log 3(22−1)]=f (1)=2e 1−1=2,故选C .3.已知函数f (x )={|log x |,0<x ≤10−12x +6,x >10,若a,b,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【答案】作出函数f (x )的图象如图,不妨设a <b <c ,则−log a =log b =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选C .4.已知f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2,若f (x )=3,则x 的值是( )A .1B .1或 32C .1, 32或±√3D .√3【答案】该分段函数的三段各自的值域为(−∞,1],[0,4),[4,+∞),而3∈[0,4),故所求的字母x 只能位于第二段.∴f (x )=x 2=3,x =±√3,而﹣1<x <2,∴x =√3故选D .5.函数f (x )={x 2+bx +c,x ≤02,x >0,若f (−4)=f (0),f (−2)=−2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4【答案】由题知(−4)2+b (−4)+c =c,(−2)2+b (−2)+c =−2,解得b =4,c =2故f (x )={x 2+bx +c,x ≤02,x >0, 当x ≤0时,由f (x )=x 得x 2+4x +2=x ,解得x =−1,或x =−2,即x ≤0时,方程f (x )=x 有两个解.又当x >0时,有x =2适合,故方程f (x )=x 有三个解.故选C .6.已知函数f (x )={(a −2)x −1,x ≤1log a x ,x >1,若f (x )在(﹣∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)【答案】对数函数在x >1时是增函数,所以a >1,又f (x )=(a −2)x −1,x ≤1是增函数,∴a >2,并且x =1时(a −2)x −1≤0,即a −3≤0,所以2<a ≤3故选C7.已知函数f (x )={x 2+1,x ≤0−2x,x >0使函数值为5的x 的值是( ) A .﹣2 B .2或﹣ C .2或﹣2 D .2或﹣2或﹣【答案】由题意,当x ≤0时,f (x )=x 2+1=5,得x =±2,又x ≤0,所以x =﹣2; 当x >0时,f (x )=−2x =5,得x =−52,舍去.故选A二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .【答案】∵函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点, ∴a >0 且y =x 2+2x +1在(﹣2,0)上有2个零点,∴{ a >0a (−2)2+2(−2)+1>02<1a <0∆=4−4a >0, 解得34<a <1,故答案为:(34,1).9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 .【答案】因为:f (x )={x +4,x <0x −4,x >0, ∴f (−3)=−3+4=1 f [f (−3)]=f (1)=1−4=−3.故答案为:−3.三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.【答案】【(1)∵f (x )=−x 2+|x |={−x 2−x,x <0−x 2+x,x ≥0 ∴函数f (x )的图象如下图所示:(2)由(1)中函数图象可得:函数f (x )的单调递增区间为:(−∞,−12]和[0,12],函数f (x )的单调递减区间为:[−12,0]和[−12,+∞).(3)(2)由(1)中函数图象可得:函数f (x )的最大值为14.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.【答案】(1)当0<t≤1时,如图,设直线x=t与△OAB分别交于C、D两点,则|OC|=t,又CDOC =BCOE=√3,∴|CD|=√3t,∴f(t)=12|0C|∙|CD|=12∙t∙√3t=√32t2(2)当1<t≤2时,如图,设直线x=t与△OAB分别交于M、N两点,则|AN|=2−t,又MNAN =BEAE=√3,∴MN=√3(2−t)∴f(t)=12∙2∙√3−12|AN|∙|MN|=√3−√32(2−t)2=−√32t2+2√3t−√3(3)当t>2时,f(t)=√3综上所述f(t)={√32t2,0<t≤1−√32t2+2√3t−√3,1<t≤2√3,t>212.已知函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2(1)在坐标系中作出函数的图象;(2)若f (a )=12,求a 的取值集合.【答案】-(1)函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2的图象如下图所示:(2)当a ≤−1时,f (a )=a +2=12,可得:a =−32;当−1<a <2时,f (a )=a 2=12,可得a =±√22; 当a ≥2时,f (a )=2a =12 ,可得:a =14(舍去);综上所述,a 的取值构成集合为{−32,−√22} 13.已知函数f (x )=2x −1,g (x )={x 2,x ≥0−1,x <0求f[g (x )]和g[f (x )]的解析式. 【答案】当x ≥0时,g (x )=x 2,f [g (x )]=2x 2−1,当x <0时,g (x )=−1,f [g (x )]=−3,∴f [g (x )]={2x 2−1,x ≥0−3,x <0∵当2x−1≥0,即x≥12时,g[f(x)]=(2x−1)2,当2x−1<0,即x<12时,g[f(x)]=−1,∴g[f(x)]={(2x−1)2,x≥12−1,x<1214.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.【答案】(1)∵f(−4)=f(0),f(−2)=−1,∴16−4b+c=3,4−2b+c=−1,解得:b=4,c=3,∴f(x)={x2+4x+3,−4≤x<0−x+3,0≤x≤4,(2)函数的定义域为[−4,4],当x<0时,y=x2+4x+3=(x+2)2﹣1由x<0可得,y≥﹣1当x≥0时,y=−x+3≤3∴﹣1≤y≤3∴函数的值域为[−1,3].其图象如图所示15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.【答案】(1)函数f(x)的对称轴为x=a,①当a<−2时,∵函数f(x)在[−2,4]上单调递减,∴y=g(a)=f(−2)=−4a−1,②当﹣2≤a≤4时,y=g(a)=f(a)=a2+3,③当a>4时,∵函数f(x)在[−2,4]上单调递增,∴y=g(a)=f(4)=8a−13,综上有y=g(a)={−4a−1,a<−2a2+3,−2<a≤4 8a−13,a>4,(2)作出y=g(a)的草图如右,观察知当a=1时y=g(a)有最小值4.。
高三分段函数单调性练习题

高三分段函数单调性练习题分段函数是数学中常见的函数形式,其特点是定义域被分成多个部分,并在每个部分使用不同的函数规则进行描述。
掌握分段函数的单调性是解题的基本要求,下面我们来进行一些分段函数单调性的练习。
题目一:判断函数f(x) = x+1 (x≤0), f(x) = x^2 (x>0) 的单调性。
解析:首先,我们将函数f(x)分成两个部分,其定义域也相应分为两部分:x≤0和x>0。
当x≤0时,函数f(x) = x+1,这是一个线性函数,其单调性可直接判断。
由于系数为1,可以知道在x≤0的范围内,函数f(x)是递增的。
当x>0时,函数f(x) = x^2,这是一个二次函数。
我们可以通过求导数的方法来判断它的单调性。
求导得到f'(x) = 2x,在x>0的范围内,f'(x)始终大于0,说明函数f(x)在此范围内是递增的。
综上所述,函数f(x)在整个定义域内都是单调递增的。
题目二:判断函数g(x) = 3x-1 (x≤-1), g(x) = x^2 (x>-1) 的单调性。
解析:同样地,我们将函数g(x)分成两个部分,其定义域也相应分为两部分:x≤-1和x>-1。
当x≤-1时,函数g(x) = 3x-1,这是一个线性函数,其单调性可直接判断。
由于系数为3,可以知道在x≤-1的范围内,函数g(x)是递增的。
当x>-1时,函数g(x) = x^2,这是一个二次函数。
我们同样可以通过求导数的方法来判断其单调性。
求导得到g'(x) = 2x,在x>-1的范围内,f'(x)始终大于0,说明函数g(x)在此范围内是递增的。
综上所述,函数g(x)在整个定义域内都是单调递增的。
通过以上练习题,我们可以发现,对于分段函数的单调性判断,可以分别对每个部分进行讨论,并结合函数的具体形式来判断单调性。
对于线性函数来说,系数的正负决定了函数的单调性;对于二次函数来说,可以通过求导数的方法来判断。
分段函数习题及解析

1.已知函数f (x )=232,1,,1,x x x ax x +<⎧⎨+≥⎩若f (f (0))=4a ,则实数a = 2 .解析:f (0)=2,f (f (0))=f(2)=4+2a=4a ,所以a=22. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = A.4 B. 14 C.-4 D-14【答案】B 【解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==, 所以B 正确.3.定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),1(log 2x x f x f x x ,则f (2009)的值为( )A.-1B. 0C.1D. 2【解析】:由已知得2(1)log 21f -==,(0)0f =,(1)(0)(1)1f f f =--=-,(2)(1)(0)1f f f =-=-,(3)(2)(1)1(1)0f f f =-=---=,(4)(3)(2)0(1)1f f f =-=--=,(5)(4)(3)1f f f =-=,(6)(5)(4)0f f f =-=, 所以函数f(x)的值以6为周期重复性出现.,所以f (2009)= f (5)=1,故选C.4.设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是 (A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦【答案】D【解析】本题主要考查函数分类函数值域的基本求法,属于难题。
依题意知22222(4),2()2,2x x x x f x x x x x ⎧-++<-⎪⎨--≥-⎪⎩,222,12()2,12x x x f x x x x ⎧+<->⎪⎨---≤≤⎪⎩或 5.若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)【答案】C【解析】本题主要考查函数的对数的单调性、对数的基本运算及分类讨论思想,属于中等题。
分段函数习题

分段函数习题(共12页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分段函数解析式、求值一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数2,0()31,0x x f x x x ⎧<=⎨-≥⎩,则(1)(2)f f -+的值为( )A .6B .5C .1D .02.已知函数2log ,0,()3,0,xx x f x x >⎧=⎨≤⎩则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( ) A .27B .9C .127D .193.已知函数21log (2),1()2,1xx x f x x +-<⎧=⎨≥⎩,则2(2)(log 6)f f -+=( ) A .3B .6C .9D .124.已知函数()()()log 0 10a x x x f x b x ⎧>⎪=⎨+≤⎪⎩,且()92f =,()13f -=,则()3f f -=⎡⎤⎣⎦( )A .12B .12-C .2D .-25.设函数3,10,()((5)),10,x x f x f f x x -≥⎧=⎨+<⎩则(7)f 的值为( )A .5B .6C .7D .86.函数4,0()(),0x t x f x g x x ⎧+≥=⎨<⎩为定义在R 上的奇函数,则21log 3f ⎛⎫ ⎪⎝⎭等于( ) A .23B .-9C .-8D .13-7.设函数()()22,03,0x x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()9f 的值为( )A .7-B .1-C .0D .128.已知函数()()21log 4,4{12,4x x x f x x --<=+≥则()()20log 32f f +=( ) A .19B .17C .15D .139.已知函数()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .32B .74C .2D .9410.若函数()()f x x R ∈是周期为4的奇函数,且在[]0,2上的解析式为()()()1,01cos ,12x x x f x x x π⎧-≤≤=⎨<≤⎩,则112223f f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭的值为( ) A .49-B .49C .19-D .29-11.已知函数()f x 的定义域为(),-∞+∞,如果()2sin ,02016lg(),0x x f x x x ⎧≥⎪+=⎨-<⎪⎩,那么(2016)(7984)4f f π+⋅-=( )A .2016B .14C .4D .1201612.已知函数()f x 满足()()6f x f x =+,当(]0,6x ∈时,()2cos ,0335log ,362x x f x x x π⎧<≤⎪⎪=⎨⎛⎫⎪-<≤ ⎪⎪⎝⎭⎩,则32f f ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭等于( ) A .12B .12-C .32-D .32二.填空题13.若函数21,0()241,0xx f x x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-+≥⎩,则((2))f f =_______. 14.若函数lg ,0(),0x x x f x a b x >⎧=⎨+≤⎩且(0)3f =,(1)4f -=,则((3))f f -=______15.如图所示,已知函数在区间(1,2]-上的图象,则此函数的解析式()f x =_____16.定义在R 上的函数()f x 满足()()6.f x f x +=当[)3,3x ∈-时,()()22,31,13x x f x x x ⎧-+-≤<-⎪=⎨-≤<⎪⎩,(1)(2)(3)(2018)(2019)f f f f f +++⋯++=_______三.解答题(解答应写出文字说明、证明过程或演算步骤)17.设函数22,1(),122,2x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,(1)求3(2),2f f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦的值;(2)若()3f x =,求x 的值.18.已知(2)(0),()(2)(0).x x x f x x x x -⎧=⎨+<⎩求(4),[(4)],(1)f f f f m -,并解不等式(1)0f x -<.19.已知函数()21,22,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求()(55,,2f f f f ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的值; (2)若()3f a =,求实数a 的值.20.已知cos (1)()(1)1(1)x x f x f x x π<⎧=⎨-->⎩,sin (0)()(1)1(0)x x g x g x x π<⎧=⎨-->⎩,求1411113366⎛⎫⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭f fg g 的值.21.已知()y f x =是定义在(,)-∞+∞上的偶函数,当0x ≥时,2()23f x x x =--. (1)用分段函数形式写出()y f x =的解析式; (2)写出()y f x =的单调区间; (3)求出函数的最值.《分段函数》(一)解析1.【解析】10-<,()()2111f ∴-=-=,20>,()23215f ∴=⨯-=,.(1)(2)=6f f ∴-+.故选:A.2.【解析】由函数2log ,0,()3,0,xx x f x x >⎧=⎨≤⎩则211log 244f ⎛⎫==- ⎪⎝⎭,又()21239f --==,即1149f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,故选:D. 3.【解析】由21log (2),1()2,1x x x f x x +-<⎧=⎨≥⎩,所以()2log 622(2)(log 6)1log 2221269f f -+=+++=++=.故选:C4.【解析】由()92f =,即log 92a =,得3a =, 由()13f -=,得113b -+=, 得12b =,于是()()392f f f -==⎡⎤⎣⎦.故选:C . 5.【解析】由已知(7)((12))(9)((14))(11)8f f f f f f f =====.故选:D .6.【解析】根据题意,()()4,0,0x m x f x g x x ⎧+≥⎪=⎨<⎪⎩为定义在R 上的奇函数,则有()0040f t =+=,解可得:1t =-, 则()24log 3log 92log 341418f =-=-=,则()()2221log log 3log 383f f f ⎛⎫=-=-=- ⎪⎝⎭;故选:C.7.【解析】()()()()()()()209936633330021f f f f f f f =-==-==-==-=-,故选:B.8.【解析】()()()()()51220log 3205log 40+12=211619.f f f f -+=+=-+++=选A.9.【解析】()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,222log 4log 7log 8<<,即()2log 72,3∈()()()22log 7log 72222227log 7log 71log 72224f f f -∴=-=-===,故选:B 10.【解析】因为()f x 的周期为4,且为奇函数,所以11333(4)()cos 02222f f f π⎛⎫=+=== ⎪⎝⎭,2210102222(4)()(4)()()3333339f f f f f f ⎛⎫=+==-+=-=-=- ⎪⎝⎭,所以112223f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭29-.故选:D.11.【解析】(),02016lg(),0x x f x x x ≥+=-<⎪⎩,∴ (2016)(7984)(2016)(100002016)44f f f f ππ+⋅-=+⋅-+4lg10000lg1044π=⋅==.故选:C .12.【解析】因为函数()f x 满足()()6f x f x =+,所以3362292f f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为9(3,6]2∈,所以2295log log 212922f ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭, 因为1(0,3]∈,所以1(1)cos32f π==, 所以31(1)2292f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A13.【解析】因为(2)4813f =-+=-,所以31((2))(3)82f f f -⎛⎫=-== ⎪⎝⎭.14.【解析】根据条件可知0134a b a b -⎧+=⎨+=⎩,解得:12a =,2b =即()lg ,122xx f x ⎧⎪=⎨⎛⎫+ ⎪⎪⎝⎭⎩ 00x x >≤ , ()310f -=,()()()310lg101f f f -===15.【解析】由图象可知,每一段都是一次函数,设(),0f x kx b k =+≠,当(1,0)x ∈-时,直线过点(1,0),(0,1)-,所以11b k =⎧⎨=⎩,所以()1f x x =+,当[]0,2x ∈时,直线过点(0,0),(2,1)-,所以210k b b +=-⎧⎨=⎩,解得120k b ⎧=-⎪⎨⎪=⎩, 所以()12f x x =-,所以()1((1,0))1([0,2])2x x f x x x +∈-⎧⎪=⎨-∈⎪⎩ 16.【解析】()()6f x f x +=故函数()f x 是6T =的周期函数.(1)(2)(3)(4)(5)(6)1210101f f f f f f +++++=+-+-+=故(1)(2)(3)(2018)(2019)3361(1)(2)(3)338f f f f f f f f +++⋯++=⨯+++=17.【解析】(1)(2)220f -=-+=;2339()()224f ==,399922442f f f ⎡⎤⎛⎫⎛⎫==⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题意123x x ≤-⎧⎨+=⎩,或2123x x -<<⎧⎨=⎩,或223x x ≥⎧⎨=⎩,解得x 18.【解析】()()()()()44248,4882848f f f f ⎡⎤=⨯-=-=-=--=⎣⎦ 当10,1m m -≥≤时2(1)(1)(21)1f m m m m -=--+=- 当10,1m m -<>时2(1)(1)(21)43f m m m m m -=-+-=-+所以221(1),(1)43(1);m m f m m m m ⎧--=⎨-+>⎩ (1)0f x -<∴2110x x ≤⎧⎨-<⎩或21430x x x >⎧⎨-+<⎩ 所以1x <-或13x <<,即不等式(1)0f x -<解集为(,1)(1,3)-∞-⋃19.【解析】(1)由](()](55,2,2,2,,22-∈-∞---∈-∞-,知2()(2((55143f f ⨯-=-+=-,+=-5531222f ⎛⎫- ⎪⎝⎭=-+=-,而3222<<--,253339323222244f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴---⨯- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭==+=-=-. (2)当2a ≤-时,13a +=,即22a >=-,不合题意,舍去, 当22a <<-时,223a a +=,即2230a a +-=,整理得:0(13)()a a -+=,解得1a =或3a =-, 2()()1222∈∉-,,-3-,,1a ∴=符合题意,当2a ≥时,213a -=,即2a =符合题意,综上可得,当()3f a =时,1a =或2a =. 20.【解析】1411111115cos 1sin 133663366f f g g f g ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++-+=+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111122226g ⎛⎫=+-++-- ⎪⎝⎭1sin 226π⎛⎫=+-- ⎪⎝⎭11222=--2=- 21.【解析】(1)()y f x =是定义在(,)-∞+∞上的偶函数,当0x ≥时,2()23f x x x =--,∴当0x <时,设0x <,则0x ->, ∴22()()()2()323f x f x x x x x =-=----=+- 即0x <时,2()23f x x x =+-.故2223,0()23,0x x x f x x x x ⎧--≥=⎨+-<⎩. (2)如图所示:当0x ≥时,2()23f x x x =--,对称轴为1x =,∴增区间为[1,)+∞,减区间为[0,1];当0x <时,2()23f x x x =+-,对称轴为1x =-,∴增区间为[1,0)-,减区间为(,1]-∞-.综上,()f x 的增区间为[1,0)-,[1,)+∞,减区间为(,1]-∞-,[0,1]. (3)由(2)知,当0x ≥时,2()23f x x x =--,min ()(1)1234f x f ==--=-,无最大值; 当0x <时,2()23f x x x =+-,min ()(1)1234f x f =-=--=-,无最大值. 综上,函数的最小值为-4,无最大值.。
分段函数练习题

分段函数练习题分段函数是数学中的一个重要概念,也是许多数学问题的解决途径之一。
在本篇文章中,我将为你介绍一些常见的分段函数练习题,并提供详细的解答步骤。
1. 题目一:给定分段函数f(x)如下,求f(2)的值:f(x) = 2x + 1, 当x < 1f(x) = x^2, 当x >= 1解答:根据给定的分段函数,我们可以得知当x小于1时,函数f(x)等于2x+1;当x大于等于1时,函数f(x)等于x的平方。
因此,要求f(2)的值,我们需要确定2属于哪个区间。
由于2大于等于1,因此2属于[x >= 1]这个区间。
所以,f(2) = 2^2 = 4。
因此,f(2)的值为4。
2. 题目二:给定分段函数g(x)如下,求g(0)的值:g(x) = -3, 当x < -2g(x) = 2x, 当-2 <= x < 0g(x) = x^2, 当x >= 0解答:根据给定的分段函数,我们可以得知当x小于-2时,函数g(x)等于-3;当x大于等于-2且小于0时,函数g(x)等于2x;当x大于等于0时,函数g(x)等于x的平方。
因此,要求g(0)的值,我们需要确定0属于哪个区间。
由于0既不小于-2,也不大于等于0,所以0属于[-2 <= x < 0]这个区间。
所以,g(0) = 2 * 0 = 0。
因此,g(0)的值为0。
3. 题目三:给定分段函数h(x)如下,求h(-3)的值:h(x) = x^2, 当x < -1h(x) = x + 1, 当-1 <= x < 2h(x) = 3x, 当x >= 2解答:根据给定的分段函数,我们可以得知当x小于-1时,函数h(x)等于x的平方;当x大于等于-1且小于2时,函数h(x)等于x+1;当x大于等于2时,函数h(x)等于3x。
因此,要求h(-3)的值,我们需要确定-3属于哪个区间。
由于-3小于-1,因此-3属于[x < -1]这个区间。
分段函数-含答案

分段函数-含答案(总5页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第2课时 分段函数 课时目标 了解分段函数的概念,会画分段函数的图象,并能解决相关问题.分段函数(1)分段函数就是在函数定义域内,对于自变量x 的不同取值区间,有着不同的__________,这样的函数通常叫做分段函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应______________________.一、选择题 1.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6,f x +2x <6,则f (3)为( )A .2B .3C .4D .52.设函数f (x )=⎩⎪⎨⎪⎧ 1-x 2, x ≤1,x 2+x -2,x >1,则f [1f 2]的值为( ) B .-2716D .18 3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:每间房定价 100元 90元 80元 60元住房率 65% 75% 85% 95%要使每天的收入最高,每间房的定价应为( )A .100元B .90元C .80元D .60元4.已知函数y =⎩⎪⎨⎪⎧ x 2+1 x ≤0,-2x x >0,使函数值为5的x 的值是( )A .-2B .2或-52C .2或-2D .2或-2或-525.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m 元收费;用水超过10立方米的,超过部分按每立方米2m 元收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( )A .13立方米B .14立方米C .18立方米D .26立方米6.函数f (x )=⎩⎪⎨⎪⎧2x 2 0≤x ≤121<x <2x +1x ≥2的值域是( )A.R B.(0,+∞)C.(0,2)∪(2,+∞) D.[0,2]∪[3,+∞)题号123456答案二、填空题7.已知f(x)=⎩⎪⎨⎪⎧x-3 x≥9f[f x+4] x<9,则f(7)=____________________________________.8.设f(x)=⎩⎪⎨⎪⎧2x+2,-1≤x<0,-12x,0<x<2,3,x≥2,则f{f[f(-34)]}的值为________,f(x)的定义域是______________.9.已知函数f(x)的图象如右图所示,则f(x)的解析式是________.三、解答题10.已知f(x)=⎩⎪⎨⎪⎧x2-1≤x≤1,1x>1或x<-1,(1)画出f(x)的图象;(2)求f(x)的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域.13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.含有绝对值的函数解析式要化为分段函数处理.4.画分段函数的图像要逐段画出,求分段函数的值要按各段的区间范围代入自变量求值.第2课时 分段函数 知识梳理(1)对应法则 (2)并集 (3)分别作出每一段的图象作业设计1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.]2.A [f (2)=22+2-2=4,1f 2=14,f (14)=1-(14)2=1516.] 3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.]4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2,若-2x =5,则x =-52,与x >0矛盾,故选A.] 5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎪⎨⎪⎧ mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).] 6.D [画图象可得.]7.6解析 ∵7<9, ∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8).又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6.即f (7)=6.{x |x ≥-1且x ≠0}解析 ∵-1<-34<0, ∴f (-34)=2×(-34)+2=12.而0<12<2, ∴f (12)=-12×12=-14. ∵-1<-14<0,∴f (-14)=2×(-14)+2=32. 因此f {f [f (-34)]}=32. 函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎪⎨⎪⎧x +1, -1≤x <0,-x ,0≤x ≤1 解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎪⎨⎪⎧ -a +b =0,b =1.∴⎩⎪⎨⎪⎧ a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入, 则k =-1.10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ; 当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8; 当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x . 综上可知,f (x )=⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.解 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x 2=1-x . ∴f (x )=⎩⎪⎨⎪⎧1 0≤x ≤21-x -2<x <0. (2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).13.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12500. ∴d =12500v 2S .当d =S 2时,可解得v =25 2. ∴d =⎩⎪⎨⎪⎧ S 20≤v <25212500v 2S v ≥252.。
分段函数应用题带答案

分段函数应用题带答案1解:(1)24分钟(1分)(2)设水流速度为千米/分,冲锋舟速度为千米/分,根据题意得解得答:水流速度是千米/分.(3)如图,因为冲锋舟和水流的速度不变,所以设线段所在直线的函数解析式为把代入,得线段所在直线的函数解析式为由求出这一点的坐标答:冲锋舟在距离地千米处与救生艇第二次相遇.2. 甲: 从100米高度出发, 均速前进, 20分钟登高300-100=200米, 速度是200/20=10米/分钟, 但为了和乙的时间相关, x要扣除2分钟, 高度就是100+2*10=120米y=10x+120 (0≤x≤18) 乙:从2分钟登高30米( 因为b=15X2=30), 从2分钟到t 分钟登高到300米, 所以y=30+[270/(t-2)]x (0≤x≤18, 2 (1)甲登山的速度是每分钟10米,乙在A 地提速时距地面的高度b 为30米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y (米)与登山时间x (分)之间的函数关系式.甲: y=10x+120 (0≤x≤18) 乙: y=30+30x (0≤x≤9)(3)登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?就是求当x 为何值时, 10x+120=30+30x 可解得x=4.5分, 登山时间等于x+2=6.5分, 即6分30秒. 此时乙的高度是y=30+30*4.5=165米(甲的`高度是y=10*6.5+100=165, 或y=10*4.5+120=165) 距A 地的高度是165-30=135米3解:(1)y =150+m +(x -150) n %···················· 3分(2)由表2知,小陈和大李的医疗费超过150元而小于10000元,因此有:150+m +(300-150) n %=280 ······················ 5分150+m +(500-150) n %=320 m =100解得:····························· 6分n =20 1∴y =150+100+(x -150) 20%=x +220. 5 ∴y =1x+220(150 (3)个人实际承担的费用最多只需2220元. (10)分4. 解:(1)锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时,设函数解析式为y=k1x+b1,把x=0,y=96和x=2,y=80代入得:∴y=-8x+96(0≤x≤2),、当x>2时,设函数解析式为y=k2x+b2,把x=2,y=80和x=4,y=72代入得:∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.② 若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t 分钟开始接水,挡0 则8(2-t )+4[3-(2-t )]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t )+[3-(2-t )]=3(分),符合.当t>2时,则8×2÷4=4(W 发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.(1) 由图3可得,当0≤t ≤30时,市场日销售量y 与上市时间t 的关系是正比例函数,所以设市场的日销售量:y=kt,∵ 点(30,60)在图象上,∴ 60=30k .∴ k =2.即 y =2t,当30≤t ≤40时,市场日销售量y 与上市时间t 的关系是一次函数关系,所以设市场的日销售量:y=k1t+b,因为点(30,60)和(40,0)在图象上,60=30k 1+b 所以, 0=40k +b 1 解得 k1=-6,b =240.∴ y =-6t +240.综上可知,当0≤t ≤30时,市场的日销售量:y =2t,当30≤t ≤40时,市场的日销售量:y=-6t+240。
分段函数初二数学练习题

分段函数初二数学练习题题目一:求解分段函数的定义域与值域给定函数:$$f(x) =\begin{cases}2x+1, & x\leq2 \\x^2, & x>2 \\\end{cases}$$要求:1. 求解函数$f(x)$的定义域与值域;2. 绘制函数$f(x)$的图像。
解答:根据题目已给条件,我们可以得出下面的结论:1. 定义域的求解:首先考虑分段函数中第一段$2x+1$的定义域。
由于没有限制$x$的取值范围,所以该段函数$2x+1$在整个实数域上都有定义。
即第一段部分的定义域为$(-\infty, +\infty)$。
接下来考虑第二段$x^2$的定义域。
该函数要求$x$的取值必须大于2,因为$x^2$在$x\leq2$的时候没有实数解。
所以第二段部分的定义域为$(2, +\infty)$。
综合第一段和第二段的定义域,得到函数$f(x)$的定义域为$(-\infty, +\infty)$。
2. 值域的求解:首先考虑第一段$2x+1$的值域。
根据该函数的定义,我们可以发现无论$x$取多大,函数值$2x+1$总是大于等于1的。
所以第一段部分的值域为$[1, +\infty)$。
接下来考虑第二段$x^2$的值域。
该函数要求$x$的取值必须大于2,所以$x^2$的值域也必须大于$2^2=4$。
即第二段部分的值域为$(4,+\infty)$。
综合第一段和第二段的值域,得到函数$f(x)$的值域为$(1, +\infty)$。
至此,我们已经求解出了函数$f(x)$的定义域和值域。
下面我们绘制函数$f(x)$的图像:【插入图像】图中蓝色的部分代表函数$f(x)=2x+1$,红色的部分代表函数$f(x)=x^2$。
可以看出两段函数在$x=2$处连接。
从图中可以清晰地看出函数$f(x)$的定义域和值域。
综上所述,函数$f(x)$的定义域为$(-\infty, +\infty)$,值域为$(1, +\infty)$。
分段函数练习题(打印版)

分段函数练习题(打印版)### 分段函数练习题(打印版)#### 一、选择题1. 下列分段函数中,哪一个是奇函数?- A. \( f(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x< 0 \end{cases} \)- B. \( f(x) = \begin{cases} x^3, & x \geq 0 \\ -x^3, & x< 0 \end{cases} \)- C. \( f(x) = \begin{cases} x^2 + 1, & x \geq 0 \\ -x^2 + 1, & x < 0 \end{cases} \)- D. \( f(x) = \begin{cases} x + 1, & x \geq 0 \\ -x - 1,& x < 0 \end{cases} \)2. 给定分段函数 \( f(x) = \begin{cases} x + 2, & x < 1 \\ 3x- 1, & x \geq 1 \end{cases} \),求 \( f(-1) \) 和 \( f(2) \)。
3. 判断下列分段函数的连续性:- A. \( f(x) = \begin{cases} 2x, & x < 2 \\ 4 - x, & x\geq 2 \end{cases} \)- B. \( f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases} \)#### 二、填空题1. 若分段函数 \( f(x) = \begin{cases} x + 1, & x \leq 0 \\ x^2, & x > 0 \end{cases} \),求 \( f(-2) \) 和 \( f(1) \)。
第5章 一次函数小专题:分段函数(含答案)

小专题(九)分段函数1.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是( A )第1题图第2题图2.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( A )A.0.4元B.0.45 元C.约0.47元D.0.5元3.如图是某工程队在一项修筑公路的工程中,修筑的公路长度y(米)与时间x(天)之间的关系函数(图象为折线).根据图象提供的信息,可知到第七天止,该工程队修筑的公路长度为( D )A.630米B.504米C.480米D.450米第3题图第4题图4.(绍兴五校联考期末)小波、小威从学校出发到青少年宫参加书法比赛,小波步行一段时间后,小威骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(米)与小波出发时间t(分)之间的函数关系如图所示.下列说法:①小威先到达青少年宫;②小威的速度是小波速度的2.5倍;③a=24;④b=480.其中正确的是( B )A.①②③B.①②④C.①③④D.①②③④5.(江山期末)在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法的序号是①②④.6.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:y元.(1)直接写出x≤50 000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20 000元,问他的住院医疗费用是多少元?解:(1)①当x≤8 000时,y=0;②当8 000<x≤30 000时,y=(x-8 000)×50%=0.5x-4 000;③当30 000<x≤50 000时,y=(30 000-8 000)×50%+(x-30 000)×60%=0.6x-7 000.(2)当花费30 000元时,报销钱数为y=0.5×30 000-4 000=11 000(元),∵20 000>11 000,∴他的住院医疗费用超过30 000元.当花费50 000元时,报销钱数为y=0.6×50 000-7 000=23 000(元),∵20 000<23 000,∴他的住院医疗费用小于50 000元.故把y=20 000代入y=0.6x-7 000中,得20 000=0.6x-7 000,解得x=45 000.答:他的住院医疗费用是45 000元.7.在平面直角坐标系中,一动点P (x ,y )从M (1,0)出发,沿由A (-1,1),B (-1,-1),C (1,-1),D (1,1)四点组成的正方形边线(如图1)按一定方向运动.图2是P 点运动的路程s (个单位)与运动时间t (秒)之间的函数图象,图3是P 点的纵坐标y 与P 点运动的路程s 之间的函数图象的一部分.(1)s 与t 之间的函数关系式是s =12t (t ≥0); (2)与图3相对应的P 点的运动路径是M →D →A →N ;P 点出发10秒首次到达点B ;(3)写出当3≤s ≤8时,y 与s 之间的函数关系式,并在图3中补全函数图象.解:当3≤s <5,即P 从A 到B 时,y =4-s ;当5≤s <7,即P 从B 到C 时,y =-1;当7≤s ≤8,即P 从C 到M 时,y =s -8.补全图形,如图.8.为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a 折售票,节假日按团队人数分段定价售票,即m 人以下(含m 人)的团队按原价售票;超过m 人的团队,其中m 人仍按原价售票,超过m 人部分的游客打b 折售票.设某旅游团人数为x 人,非节假日购票款为y 1(元),节假日购票款为y 2(元).y 1,y 2与x 之间的函数图象如图所示.(1)观察图象可知:a =6;b =8;m =10;(2)直接写出y 1,y 2与x 之间的函数关系式;(3)某旅行社导游于5月1日带A 团,5月20日(非节假日)带B 团都到该景区旅游,共付门票款1 900元,A ,B 两个团队合计50人,求A ,B 两个团队各有多少人.解:(2)设y 1=k 1x ,∵函数图象经过点(10,300),∴10k 1=300.∴k 1=30.∴y 1=30x .当0≤x ≤10时,设y 2=k 2x ,∵函数图象经过点(10,500),∴10k 2=500.∴k 2=50.∴y 2=50x .当x >10时,设y 2=kx +b ,∵函数图象经过点(10,500)和(20,900), ∴⎩⎪⎨⎪⎧10k +b =500,20k +b =900.∴⎩⎪⎨⎪⎧k =40,b =100. ∴y 2=40x +100.∴y 2=⎩⎪⎨⎪⎧50x (0≤x ≤10),40x +100(x >10).(3)设A 团有n 人,则B 团的人数为(50-n ), 当0≤n ≤10时,50n +30(50-n )=1 900, 解得n =20(不符合题意,舍去),当n >10时,40n +100+30(50-n )=1 900, 解得n =30,∴50-n =50-30=20.答:A 团有30人,B 团有20人.。
分段函数的单调性(含答案)

分段函数的单调性一、单选题(共10道,每道10分)1.若是上的增函数,则实数的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性2.已知函数在上单调递减,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性3.已知是上的单调递增函数,则实数a的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分段函数的单调性4.若函数是上的减函数,则实数的取值范围是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分段函数的单调性5.若函数在上单调递减,则实数a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性6.若函数在上单调递增,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性7.已知函数满足:对任意实数,当时,总有,那么实数a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性8.已知函数,若,则实数的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分段函数的单调性9.已知函数,若,则实数x的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分段函数的单调性10.已知,若不等式在上恒成立,则实数a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分段函数的单调性。
初二分段函数试题及答案

初二分段函数试题及答案一、选择题1. 已知分段函数f(x)定义如下:f(x) = { 2x-1, x ≥ 0{ x+3, x < 0则f(-1)的值为()A. 2B. 1C. -2D. 4答案:C2. 函数g(x) = { 3x, x > 0{ 2x-1, x ≤ 0下列哪个值不在g(x)的值域内?()A. 1B. 2C. 3D. 4答案:D3. 若分段函数h(x) = { x^2, x ≥ 0 { -x+1, x < 0则h(1) + h(-1)的值为()A. 0B. 1C. 2D. 3答案:C二、填空题4. 已知分段函数p(x) = { 4x+1, x ≥ 1 { 3x-2, x < 1当x=2时,p(x)的值为________。
答案:95. 函数q(x) = { 5-x, x ≥ 2{ x+1, x < 2当x=1.5时,q(x)的值为________。
答案:2.56. 给定分段函数r(x) = { x+4, x > 0{ 2x-3, x ≤ 0若r(x) = 5,求x的值。
答案:x=1 或 x=-1三、解答题7. 已知分段函数s(x) = { 2x+3, x ≥ 0{ -x+1, x < 0求s(x)在x=0处的值,并判断s(x)在x=0处是否连续。
答案:s(0) = 3,s(x)在x=0处连续。
8. 函数t(x) = { 3x+2, x ≥ -1{ -2x+4, x < -1求t(x)在x=-1处的值,并判断t(x)在x=-1处是否连续。
答案:t(-1) = 1,t(x)在x=-1处不连续。
9. 已知分段函数u(x) = { x^2-4x+3, x ≥ 1{ -x+2, x < 1求u(x)的值域。
答案:u(x)的值域为[-2, +∞)。
10. 函数v(x) = { 4x-1, x ≥ 2{ x^2+1, x < 2求v(x)在x=2处的左极限和右极限,并判断v(x)在x=2处是否连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )
2.(2011年葫芦岛高一检测)设f (x )=
Error!,则f (5)的值是( )
A .24
B .21
C .18
D .16
3.函数y =x +的图象为( )|x |x
4.函数f (x )=Error!的值域是________.
1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+的像和B 中元素-1的原像分别为( )
2A.,0或2 B .0,22C .0,0或2 D .0,0或2
2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )
3.函数f (x )=Error!的值域是( )
A .R
B .[-9,+∞)
C .[-8,1]
D .[-9,1]4.已知f (x )=Error!
若f (x )=3,则x 的值是( )
A .1
B .1或32
C .1,或± D.32
335.已知函数f (x )=Error!
g (x )=Error!当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )
A .0,1
B .0,0
C .1,1
D .1,0
6.设f (x )=Error!已知f (a )>1,则实数a 的取值范围是( )
A .(-∞,-2)∪(-12,+∞)
B.(-12,12)
C .(-∞,-2)∪(-12,1)
D.∪(1,+∞)(-12,12
)7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A 中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.8.已知函数f (x )=Error!则f (4)=________.
9.已知f (x )=Error!则不等式x +(x +2)·f (x +2)≤5的解集是________.
10.已知f (x )=Error!,
(1)画出f (x )的图象;
(2)求f (x )的定义域和值域.
11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,
在B 地停留1小时后,再以65千米/小时的速度返回A 地.试将汽车12
离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长
为7
cm ,腰长为2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动
2(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写
出左边部分的面积y 与x 的函数解析式,并画出大致图象.1:解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.
2:解析:选A.f (5)=f (f (10)),
f (10)=f (f (15))=f (18)=21,
f (5)=f (21)=24.
3:解析:选C.y =x +=Error!,再作函数图象.|x |x 4:解析:当x <1时,x 2-x +1=(x -)2+≥;当x >1时,0<<1,则所求值域为(0,+1234341x
∞),故填(0,+∞).
答案:(0,+∞)
1:答案:C
2:解析:选C.由题意,当0<x ≤3时,y =10;
当3<x ≤4时,y =11.6;
当4<x ≤5时,y =13.2;
…
当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.
3:解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.
4:解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±,而-1<x <2,∴x =.
335:解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.
6:解析:选C.f (a )>1⇔
Error!或Error!或Error!
⇔Error!或Error!或Error!
⇔a <-2或-<a <1.12即所求a 的取值范围是(-∞,-2)∪.(-12
,1)
7:解析:由题意可知m →n ,a →b ,t →u ,i →j ,所以密文“nbuj ”破译后为“mati ”.
答案:mati
8:解析:f (4)=f (2)=f (0)=0.
答案:0
9:解析:原不等式可化为下面两个不等式组
Error!或Error!,
解得-2≤x ≤或x <-2,即x ≤.3232答案:(-∞,]32
10:解:(1)利用描点法,作出f (x )的图象,如图所示.
(2)由条件知,
函数f (x )的定义域为R.
由图象知,当-1≤x ≤1时,
f (x )=x 2的值域为[0,1],
当x >1或x <-1时,
f (x )=1,所以f (x )的值域为[0,1].
11:解:∵260÷52=5(小时),260÷65=4(小时),
∴s =Error!
12:解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .
因为ABCD 是等腰梯形,
底角为45°,AB =2 cm ,
2所以BG =AG =DH =HC =2 cm.
又BC =7 cm ,所以AD =GH =3 cm.
①当点F 在BG 上时,即x ∈[0,2]时,y =x 2;12
②当点F 在GH 上时,
即x ∈(2,5]时,y =×2=2x -2;x +(x -2)2
③当点F 在HC 上时,即x ∈(5,7]时,y =S
五边形ABFED =S 梯形ABCD -S Rt △CEF =(7+3)×2-(7-x )21212=-(x -7)2+10.12
综合①②③,得函数解析式为y =Error!函数图象如图所示.。