八年级上册全等三角形专题练习(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册全等三角形专题练习(解析版)
一、八年级数学轴对称三角形填空题(难)
1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.
【答案】15CP ≤≤
【解析】
【分析】
根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.
【详解】
如图,当点E 与点B 重合时,CP 的值最小,
此时BP=AB=3,所以PC=BC-BP=4-3=1,
如图,当点F 与点C 重合时,CP 的值最大,
此时CP=AC ,
Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,
故答案为1≤CP≤5.
【点睛】
本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.
2.如图,已知等边ABC
∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF
∆,连接BF并延长至点,N M为BN上一点,且5
CM CN
==,则MN的长为_________.
【答案】6
【解析】
【分析】
作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出
1
2
4
CG BC
==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.
【详解】
解:如图示:作CG⊥MN于G,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CE=CF,∠ACB=∠ECF=60°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
即∠ACE=∠BCF,
在△ACE与△BCF中
AC BC
ACE BCF
CE CF
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△ACE≌△BCF(SAS),
又∵AD是三角形△ABC的中线
∴∠CBF=∠CAE=30°,
∴
1
2
4
CG BC
==,
在Rt△CMG中,2222
543
MG CM CG
=-=-,
∴MN=2MG=6,
故答案为:6.
【点睛】
本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .
3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.
【答案】80或100
【解析】
【分析】
根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,
,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.
【详解】
由题意可分如下两种情况:
(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,
1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠
(等边对等角),
两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,
又12DAE BAC ∠+∠+∠=∠
20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒
,
由三角形内角和定理得180B C BAC ∠+∠+∠=︒,
20180BAC BAC ∴∠+︒+∠=︒
,
80BAC ∴∠=︒
;
(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,
3,4B C ∴∠=∠∠=∠
(等边对等角),
两式相加得34B C ∠+∠=∠+∠,
又34DAE BAC ∠+∠+∠=∠,
3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒
,
20B C BAC ∴∠+∠=∠-︒
由三角形内角和定理得180B C BAC ∠+∠+∠=︒,
20180BAC BAC ∴∠-︒+∠=︒
,
100BAC ∴∠=︒
.
故答案为80或100.
【点睛】
本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.
4.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.