八年级上册全等三角形专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册全等三角形专题练习(解析版)

一、八年级数学轴对称三角形填空题(难)

1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.

【答案】15CP ≤≤

【解析】

【分析】

根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.

【详解】

如图,当点E 与点B 重合时,CP 的值最小,

此时BP=AB=3,所以PC=BC-BP=4-3=1,

如图,当点F 与点C 重合时,CP 的值最大,

此时CP=AC ,

Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,

故答案为1≤CP≤5.

【点睛】

本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.

2.如图,已知等边ABC

∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF

∆,连接BF并延长至点,N M为BN上一点,且5

CM CN

==,则MN的长为_________.

【答案】6

【解析】

【分析】

作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出

1

2

4

CG BC

==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.

【详解】

解:如图示:作CG⊥MN于G,

∵△ABC和△CEF是等边三角形,

∴AC=BC,CE=CF,∠ACB=∠ECF=60°,

∴∠ACB-∠BCE=∠ECF-∠BCE,

即∠ACE=∠BCF,

在△ACE与△BCF中

AC BC

ACE BCF

CE CF

=

∠=∠

⎪=

∴△ACE≌△BCF(SAS),

又∵AD是三角形△ABC的中线

∴∠CBF=∠CAE=30°,

1

2

4

CG BC

==,

在Rt△CMG中,2222

543

MG CM CG

=-=-,

∴MN=2MG=6,

故答案为:6.

【点睛】

本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .

3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.

【答案】80或100

【解析】

【分析】

根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,

,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.

【详解】

由题意可分如下两种情况:

(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,

1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠

(等边对等角),

两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,

又12DAE BAC ∠+∠+∠=∠

20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠+︒+∠=︒

80BAC ∴∠=︒

(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,

3,4B C ∴∠=∠∠=∠

(等边对等角),

两式相加得34B C ∠+∠=∠+∠,

又34DAE BAC ∠+∠+∠=∠,

3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒

20B C BAC ∴∠+∠=∠-︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠-︒+∠=︒

100BAC ∴∠=︒

.

故答案为80或100.

【点睛】

本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.

4.如图,△ABC 是等边三角形,高AD 、BE 相交于点H ,BC=43,在BE 上截取BG=2,以GE 为边作等边三角形GEF ,则△ABH 与△GEF 重叠(阴影)部分的面积为_____.

相关文档
最新文档