11100101序列检测器
时序电路设计-101序列检测器
数字逻辑设计及应用课程设计报告姓名:雷蕾学号:2010012030036选课号:设计题号: 5一.设计题目:设计101序列检测器二.设计要求要求使用状态机设计一个序列检测器,检测输入数据,当输入中出现101时,输出1,否则输出为0。
不进行重复判断,即当出现10101…时,输出为00100…判断的具体流程如下:1.电路复位,进入状态S0,等待输入2.S0状态下:如果输入为0,则停留在S0,如果输入为1,则跳转到S13.S1状态下:如果输入为0,则跳转到S2,如果输入为1,则停留在S14.S2状态下:如果输入为1,则输出1,并跳转到S0,如果输入为0,则输出0,并跳转到S0检测器电路实现:时钟信号,1 bit输入待判断信号,1bit输出判断结果。
三.设计过程1.设计方案:通过使用ISE编写verilog语言,实现以下过程:1s3只有当s3接收到的输入信号为1的时候,输出才会为1,其余时候输出都为0.2.设计程序:模块文件:`timescale 10ns/1ns//////////////////////////////////////////////////////////////////////////////////// Company:// Engineer://// Create Date: 21:02:40 06/06/2012// Design Name:// Module Name: abcd// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://////////////////////////////////////////////////////////////////////////////////// module abcd(input reset,input clk,input ipt,output reg result);parameter [1:0] s0 = 2'b00, s1 = 2'b01, s2 = 2'b10;reg[1:0] state;always @ (posedge clk)beginif(reset)beginstate<=s0;result<=0;endelsebegincase(state)s0:beginif(ipt==0)beginstate<=s0;result<=0;endelse.beginstate<=s1;result<=0;endends1:beginif(ipt==0)beginstate<=s2;result<=0;endelsebeginstate<=s1;result<=0;endends2:beginif(ipt==0)beginstate<=s0;result<=0;endelsebeginstate<=s0;result<=1;endenddefault:beginstate<=s0;result<=0;endendcaseendendendmodule测试文件:`timescale 10ns / 1ps////////////////////////////////////////////////////////////////////////////// //// Company:// Engineer://// Create Date: 23:05:50 06/06/2012// Design Name: test_detector// Module Name: D:/TDDOWNLOAD/fortwo2/haha.v// Project Name: fortwo2// Target Device:// Tool versions:// Description://// Verilog Test Fixture created by ISE for module: test_detector//// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://////////////////////////////////////////////////////////////////////////////// //module haha;module test_detector();reg clk;reg reset;reg ipt;wire result;reg[20:0] indata=20'b101001110011011110110;integer i;initial clk=1;always #1 clk=~clk;initialbeginreset=1;ipt=0;#4reset=0;for(i=0;i<21;i=i+1)beginipt=indata[i];#2;end#10$stop;endabcd detector_instance(.clk(clk),.reset(reset),.ipt(ipt),.result(result));endmodule3.仿真结果四.设计结论(包括:设计结果分析、设计中遇到的问题、设计心得和体会等) 1.设计结果分析:以时钟信号的一个周期为基准,有仿真结果可看出,当输入(ipt)为连续的一个周期高一个周期的低一个周期的高(即101)时,输出(result)为高。
序列检测器原理
序列检测器原理
序列检测器是一种用来检测和识别输入序列中特定模式的设备或算法。
它能够根据事先给定的规则或模型对输入序列进行分析和判断,并输出相应的结果或响应。
序列检测器通常由以下几个组成部分构成:
1. 输入接口:用于接收输入序列的信号或数据。
2. 存储器:存储检测器的状态信息和输入序列的历史数据。
3. 状态机:用于根据输入序列的不同模式进行状态转换和控制。
4. 判决逻辑:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出接口:根据判决的结果,输出相应的响应或结果。
序列检测器的工作原理如下:
1. 初始化:将序列检测器的状态设为初始状态,准备接收输入序列。
2. 接收输入:逐个接收输入序列的信号或数据。
3. 状态转换:根据当前状态和输入序列的特征,根据事先设定好的规则或模型进行状态转换。
4. 判决匹配:根据当前状态和输入序列的特征,判断当前模式是否匹配。
5. 输出结果:根据判决的结果,输出相应的响应或结果。
6. 循环操作:重复执行2-5步骤,直至所有的输入序列被处理完毕。
通过以上的工作原理,序列检测器可以有效地检测和识别输入序列中的特定模式。
它在许多应用中都有广泛的应用,如通信领域中的错误检测、模式识别等。
序列检测器实验报告
序列检测器设计实验内容:设计一个1110010序列检测器,即检测器检测到序列1110010时,输出为1,否则输出为0。
输入信号:一个时钟输入信号clk;一个输入端x以输入序列来检测;一个输入y用来选择是检测序列1110010或是检测自己输入的序列;一个输入k(7..0)用来输入想要检测器检测的序列;输出信号:一个7位输出信号q,用来输出正在检测的7位序列;一个1位输出信号unlk,当被检测序列符合时,输出unlk为1否则为0;中间信号:再定义两个7位的中间信号a和combination;执行操作:在上升的时钟沿时候,将从x输入的序列赋给7位a,在y等于1的情况下,令中间信号combination为1110010,否则,在y等于0的情况下,令中间信号combination为从k输入的七位长序列。
最后把a的值赋给q,如果a与combination输出unlk等于1否则等于0。
(1)序列检测器语言设计:library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;USE IEEE.STD_LOGIC_ARITH.ALL;entity xulie2 isport (clk,x:in std_logic;y:in std_logic;k:in std_logic_vector(7 downto 1);unlk:out std_logic;q:out std_logic_vector(7 downto 1)); end xulie2;architecture art of xulie2 issignal a:std_logic_vector(7 downto 1);signal combination: std_logic_vector(7 downto 1);beginprocess(clk)beginif clk'event and clk='1' thena<=a(6 downto 1)&x;if y='1' thencombination<="1110010";else combination<=k;end if;end if;q<=a;end process;unlk<='1' when(a=combination) else '0';end art;序列检测器波形图:其中ENDTIME=10.0us GRIDSIZE=100.0ns波形图分析:如图,选择输入端y输入为1时,q对应着输出从x输入的7位序列,如果从x输入的待检测的7位序列为1110010时,unlk为1,否则为0,当选择输入端y输入为0时,q依旧对应着输出从x输入的待检测的当前7为序列,但是只有当从x输入的7为序列与从k输入的7位序列一致时,输出端unlk才为1,否则为0。
实验三_用状态机实现序列检测器的设计Verilog
实验三用状态机实现序列检测器的设计一、实验目的:用状态机实现序列检测器的设计,并对其进行仿真和硬件测试。
二、原理说明:序列检测器可用于检测一组或多组由二进制码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出a,否则输出b。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
例3-1描述的电路完成对序列数"11100101"的。
当这一串序列数高位在前(左移)串行进入检测器后,若此数与预置的密码数相同,则输出“a”,否则仍然输出“b”。
【例3-1】//顶层文件:module XULIEQI(clk,reset,din18,LED7S);input clk;input reset;input [17:0] din18;output [6:0] LED7S;wire [3:0] AB;wire [17:0] din18;xulie u1 (clk, din18, reset, din);schk u2 (din,clk,reset,AB);decl7s u3 (AB,LED7S);endmodule//串行检测:module schk(DIN,CLK,CLR,AB);input DIN,CLK,CLR;output[3:0] AB;reg [3:0] AB;reg [7:0] Q;parameteridle = 8'b00000000,a = 8'b00000001,b = 8'b00000010,c = 8'b00000100,d = 8'b00001000,e = 8'b00010000,f = 8'b00100000,g = 8'b01000000,h = 8'b10000000;parameter data=8'b11100101;always @(posedge CLK or negedge CLR) if(!CLR)beginQ <= idle;endelsebegincase(Q)idle:beginif(DIN==data[7]) Q<=a;else Q<=idle;enda:beginif(DIN== data[6]) Q<=b;else Q<=idle;endb:beginif(DIN== data[5]) Q<=c;else Q<=idle;endc:beginif(DIN== data[4]) Q<=d;else Q<=c;endd:beginif(DIN== data[3]) Q<=e;else Q<=a;ende:beginif(DIN== data[2]) Q<=f;else Q<=idle;endf:beginif(DIN== data[1]) Q<=g;else Q<=b;endg:beginif(DIN== data[0]) Q<=h;else Q<=idle;endh:beginif(DIN== data[7]) Q<=a;else Q<=idle;enddefault :Q<=idle;endcaseendalways @(Q)beginif(Q==h) AB <= 4'b1010 ;else AB <= 4'b1011 ;endendmodule//前端预置8位数据输入:module xulie(clk, din18, reset, din);input clk;input[17:0] din18;input reset;output din;reg din;parameters0 = 5'b00000,s1 = 5'b00001,s2 = 5'b00010,s3 = 5'b00011,s4 = 5'b00100,s5 = 5'b00101,s6 = 5'b00110,s7 = 5'b00111,s8 = 5'b01000,s9 = 5'b01001,s10 = 5'b01010,s11 = 5'b01011,s12 = 5'b01100,s13 = 5'b01101,s14 = 5'b01110,s15 = 5'b01111,s16 = 5'b10000,s17 = 5'b10001;reg[4:0] cur_state,next_state;always @ (posedge clk or negedge reset) if(!reset)cur_state <= s17;elsecur_state <= next_state;always @ (cur_state or din18 or din ) begincase (cur_state)s17 : begindin <= din18[17];next_state <= s16;ends16 : begindin <= din18[16];next_state <= s15;ends15 : begindin <= din18[15];next_state <= s14;s14 : begindin <= din18[14];next_state <= s13;ends13 : begindin <= din18[13];next_state <= s12;ends12 : begindin <= din18[12];next_state <= s11;ends11 : begindin <= din18[11];next_state <= s10;ends10 : begindin <= din18[10];next_state <= s9;ends9 : begindin <= din18[9];next_state <= s8;ends8 : begindin <= din18[8];next_state <= s7;ends7 : begindin <= din18[7];next_state <= s6;ends6 : begindin <= din18[6];next_state <= s5;ends5 : begindin <= din18[5];next_state <= s4;ends4 : begindin <= din18[4];next_state <= s3;s3 : begindin <= din18[3];next_state <= s2;ends2 : begindin <= din18[2];next_state <= s1;ends1 : begindin <= din18[1];next_state <= s0;ends0: begindin <= din18[0];next_state <= s17;enddefault : begindin <= 1'b0;next_state <= s0;endendcaseendendmodule提示:1.若对于D <= "11100101 ",电路需记忆:初始状态、1、11、111 、1110 、11100、111001、1110010、11100101 共9种状态。
111序列检测器
“111”序列检测器1设计内容题目:“1 1 1”序列检测器。
原始条件:使用D触发器( 74 LS 74 )、“与”门 ( 74 LS 08 )、“或”门( 74 LS 32 )、非门( 74 LS 04 ),设计“1 1 1”序列检测器。
集成电路引脚图:图12设计要求1.能够运用数字逻辑的理论和方法,把时序逻辑电路设计和组合逻辑电路设计相结合,设计一个有实际应用的数字逻辑电路。
2.使用同步时序逻辑电路的设计方法,设计“1 1 1”序列检测器。
写出设计中的5个过程。
画出课程设计图。
3.根据74 LS 74、74 LS 08、74 LS 32、74 LS 04集成电路引脚号,在设计好的“1 1 1”序列检测器电路图中标上引脚号。
4.在试验设备上,使用74 LS 74、74 LS 08、74 LS 32、74 LS 04集成电路连接、调试和测试“1 1 1”序列检测器电路。
3设计原理及过程3.1建立原始状态图和状态表设计的序列检测器的功能是检测外部输入二进制代码中的“111”序列。
该同步时序逻辑电路有一个外部输入x和一个外部输出Z。
在作原始状态图时,一旦外部输入序列输入一个“1”,就要把它记载下来,因为这个“1”可能是“111”序列的第一个“1”。
紧接着下一个输入是否为“1”,因为“11”是外部输入“111”序列的前二位。
其后如果再输入一个“1”,外部输出就为“1”。
所以电路必须记住外部输入二进制代码中的“1”、“11”、“111”这3种输入情况。
每一种输入情况应该用一个状态记录下来。
根据要求,假设外部输入x的序列和相应的外部输出Z如下:外部输入x:0 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1外部输出Z:0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0在建立原始状态图和状态表之前,并不知道实现上述逻辑功能的同步时序逻辑电路有多少个状态,可以指定某个状态为初始状态,在这里用A、B表示电路的不同状态。
实验三用状态机实现序列检测器的设计
仿真,分析结果
4、锁引脚
1)根据DE2_pin_assignments文件内容、格式制作 本设计引脚对应文件的引脚锁定文件: XUELIEQI.csv
• 由Processing->generate functional simulation netlist,提取功能仿真的网表
• 由processing -> start simulation 进行功能仿 真,并对结果进行分析。
• 时序仿真
• 由assignments->settings,更改仿真器的设置为 时序仿真:timing
• 双击波形文件下的空白区,得到如下对话框,点 击Noder Finder
弹出下面的对话框,单击List,选中AB、CLK、CLR 、DIN、Q几个端口,单击>_后,点击OK
• 由edit->end time ,设定仿真终止时间为 1us, 选中CLK点击 设置周期是10ns,
并对CLR,DIN作相应设置
• 由assigments->settings,对仿真工具设定为功 能仿真,并将激励文件调入
• 由Processing->generate functional simulation netlist,提取功能仿真的网表
• 由processing -> start simulation 进行功能仿
实验三 用状态机实现序列检测器的设计
任务分析
• 本次实验的核心是:应用有限状态机设计思路, 检测输入的串行数据是否是”11100101”。
使用D触发器设计一个11001序列检测器
使用D触发器设计一个11001序列检测器讨论使用D触发器设计一个11001序列检测器,讨论序列可交迭(Overlap)检测和不可交迭检测在设计上的区别,讨论分别采用Mealy机设计和采用Moore机设计的区别,讨论未用状态的处理问题。
【要求】给出电路原理图或HDL代码,要求进行仿真,并给出仿真结果。
1.原件介绍D触发器(74LS74)、“与”门(74LS08)、“或”门(74LS32)、“非”门(74LS04),集成电路引脚2.设计思路根据要求,设计的序列检测器有一个外部输入x 和一个外部输出Z 。
输入和输出的逻辑关系为:当外部输入x 第一个为"1",外部输出Z 为"0";当外部输入x 第二个为"1",外部输出Z 为"0";当外部输入第三个x 为"0",外部输出Z 为"0",当外部输入第四个x 为“0”,外部输出Z 为0,当外部输入第五个x 为“1”,输入X 0 1 1 1 0 0 1 0 1 输出Y 0 0 0 0 0 0 1 0 0要判别序列检测器是否连续接收了"11001",电路必须用不同的状态记载外部输入x 的值。
假设电路的初始状态为A ,x 输入第一个"1",检测器状态由A 装换到B ,用状态B 记载检测器接受了"11001"序列的第一个"1",这时外部输出Z=0;x 输入第二个"1",检测器状态由B 装换到C ,用状态C 记载检测器接了“11001”序列的第二个"1",外部输出Z=0;x 输入第三个"0",检测器状态由C 装换到D ,外部输出Z=0;x 输入第四个为“0”,检测器状态由D 装换到E ,外部输出Z=0;x 输入第五个为“1”,检测器状态由E 装换到F ,外部输出Z=1。
1010序列检测器
题目:作1010序列检测器的状态图。
已知输入输出序列为:
输入:001010010101010110
输出:000001000010101000
实验步骤:
第一步:进行逻辑抽象,得出原始状态图和状态转换表。
该电路为Mealy型时序电路,设输入为x,输出为z,其输入和输出序列如下:
输入x:001010010101010110
输出z:000001000010101000
设定初始状态0000为S0,0001态为S1.,0010为S2,0101为S3。
状态转换图和原始状态表分别如下:
第二步:状态化简
经检查得到这些状态已是最简,无需化简。
第三步:状态编码。
用两位二进制代码来表示,设状态变量为Q2,Q1,根据状态编码原则可以确定:
(1)S0,S2相邻。
S1,S3相邻
(2)S0,S1相邻。
S1,S2相邻
(3)S1应取0编码
最后得到:S1=00 ,S2=11 ,S3=01,S0=10的四个状态,其编码后的状态转换图和转换表分别如下:
1/1
第四步:选定触发器。
选用D触发器,由上图可以画出Z函数的卡诺图和各触发器状态Q2n+1和Q1n+1函数的卡诺图如下:
由D触发器的特性方程得到:
Q2Q1n
Z=X n
Q2n+1=D2=X
Q2+XQ2n Q1n
Q1n+1=D1=X n
第五步:画出其相应逻辑图如下:
第六步:判断是否自启动
因为本题没有无效状态,所以可以自启动。
101序列检测器原理
101序列检测器原理你想啊,就像我们在生活里找东西一样,这个序列检测器呢,就是在一堆数字或者信号里找特定的“宝贝”,这个宝贝就是101这个序列啦。
那它到底是怎么做到的呢?这就像是一场超级有趣的寻宝游戏呢。
我们先得有个小“机关”,这个机关就是状态机啦。
状态机就像是一个有着不同状态的小机器人,它可以在不同的情况下做出不同的反应。
比如说,最开始的时候,它有个初始状态,就像是小机器人在休息,啥都还没开始找呢。
当它接收到第一个信号的时候,如果这个信号是1,那它就会进入一个新的状态,这个状态就像是小机器人开始警觉起来啦,觉得可能找到了宝贝的开头。
要是这个信号是0呢,那它就还在初始状态,就像小机器人打了个盹儿,觉得还不是时候。
然后呢,当它处于那个警觉状态的时候,如果下一个信号是0,那它就进入到一个中间状态啦,这个状态就像是小机器人在心里默默记着,已经有了个1,现在又有个0,离目标更近一步喽。
要是下一个信号是1呢,那它就得回到初始状态重新开始找啦,就像小机器人发现自己找错了路,得重新出发。
当它在中间状态的时候,如果下一个信号是1,哇塞,那就找到了101这个宝贝啦,小机器人就可以欢呼起来啦,就像我们找到了藏起来的小糖果一样开心。
要是下一个信号是0呢,那它又得回到初始状态重新开始找喽。
这个101序列检测器啊,在实际生活里用处可大啦。
比如说在数字通信里,就像是一个超级小侦探。
它能在那些乱乱的数字信号流里,把101这个特定的序列给找出来。
这就好比在一堆信件里,找到一封特别标记的信一样。
再想象一下,在电路里呢,它也像是一个聪明的小管家。
电路里有各种各样的信号在跑来跑去,101序列检测器就能把那些符合101序列的信号给挑出来,然后进行特殊的处理,就像小管家把特别的东西单独放到一个小盒子里一样。
而且哦,这个原理其实也没有那么难理解啦。
就像我们玩游戏的时候,有一定的规则,按照规则走就能达到目的。
101序列检测器也是按照它自己的小规则,在那些数字或者信号里游刃有余地找到目标。
1011序列检测器
综合设计性实验报告题目:学生姓名:学号:班级:指导教师:学期:2010——2011第2学期目录一基本知识点 (1)二实验器件 (1)三设计思路 (1)四设计过程 (2)(一)三位二进制减法计数器(无效状态000,001)(二)5五引脚功能 (9)六逻辑电路图: (11)七实验结果波形图 (12)八设计心得体会 (12)一基本知识点1、掌握时序电路的设计方法和步骤2、掌握触发器的设计与应用3、掌握移位寄存器的原理与应用4 熟悉集成电路的引脚排列;5 掌握芯片的逻辑功能及使用方法;6 了解序列产生及检测器的组成及工作原理7 会在EWB软件上进行仿真;二实验器件1、移位寄存器74LS194 1片2、负边沿JK触发器74LS112 1片3四输入与非门74LS20 1片4、六输入非门74LS05 1片5 电源一个6 地线一个7 与门,或门,非门若干个8 时钟脉冲一个三设计思路1作原始状态表。
根据给定的电路设计条件构成原始状态表和状态转化图2状态表的简化。
原始状态表通常不是最小化状态表,它往往包括多余的状态,因此必须首先对它进行简化。
3状态分配。
即对简化后的状态给以编码。
这就要根据状态数确定触发器的数量并对每个状态指定一个二进制数构成的编码。
4根据给定的电路设计条件选择触发器根据5 作激励函数和输出函数。
根据选用的触发器激励表和电路的状态表,综合出电路中各触发器的激励函数和电路的输出函数。
⑸6画逻辑图,并检查自启动功能四设计过程(一)101101001信号发生器的设计设计一个信号序列发生器,在产生的信号序列中,含有“1011”信号码,要求用一片移位寄存器,生成信号序列“10110100”,其中含有1011码,其设计按以下步骤进行:、、1本实验所用仪器为移位寄存器74LS194,确定移存器的位数n。
因M=9,故n≥4,用74LS194 的四位。
2确定移存器的九个独立状态。
将序列码101101001按照每四位一组,划分为九个状态,其迁移关系如下所示:3作出状态转换表及状态转换图如下:4 画出状态转化图5 根据以上转化图,画出卡诺图6 利用以上卡诺图将化简,得到D0 =/Q3/Q0+/Q3Q2/Q17根据74LS194功能,将D0作为输入,在Q0端即得到所要的101101001 序列.(二)101101001序列信号检测器的设计用负边沿J-K触发器74LS112,设计一个“1011”序列检测器。
数电设计序列检测器
五.实验要求
写出实现巴克码1110010序列检测器的设计 写出实现巴克码1110010序列检测器的设计 1110010 思路,并列出详细的设计过程. 思路,并列出详细的设计过程. 画出序列检测器的电路图. 画出序列检测器的电路图. 接线验证电路是否符合要求. 接线验证电路是否符合要求. 详细说明在设计操作中遇到问题与解决方法. 详细说明在设计操作中遇到问题与解决方法. 对实验结果进行分析. 对实验结果进行分析.
�
对串行输入的序列信号进行检测当电路输入序列连续送入1110010时检测器输出为1指示灯亮
序列检测器
一. 实验目的
熟悉和掌握时序电路的设计方法. 熟悉和掌握时序电路的设计方法.
二.实验器材
根据设计的电路,自行详细地列出 根据设计的电路, 所需要的芯片,电阻,电容等, 所需要的芯片,电阻,电容等,以 备连接验内容 设计一个巴克码1110010序列检测器. 设计一个巴克码1110010序列检测器. 1110010序列检测器 设计要求: 设计要求:
对串行输入的序列信号进行检测,当电 对串行输入的序列信号进行检测, 路输入序列连续送入1110010 1110010时 路输入序列连续送入1110010时,检测器 输出为1,指示灯亮;其他情况,检测器 输出为1 指示灯亮;其他情况, 输出都为0 输出都为0.
110序列检测器的设计及仿真实现
题目:设计 110 序列检测器,当输入信号时输出,否则一、设计思路我们采用 Moore 机完成这个功能。
对于触发器的选择,为了简便我们选用 D触发器以及基本的门电路完成基本设计。
二、时钟同步状态机1根据题目要求我们得到下面的状态图状态表示的意义Q X=0X=1输出 Z 等待 1 的出现A A B0出现 1B A C0出现 11C D C0出现 110D A B1Q*2转移输出表Q0 Q1输入 X输出 ZX=0X=10000010010011011101101000011Q0 Q13状态图如图:通过卡诺图化简可得转移方程:输出方程:Q0 =Q0Q1Q1 X Q1XZ Q0Q1我们选择 D 触发器作为记忆电路部分由 D 触发器的特征方程 : Q D得激励方程: D 0=Q0Q1Q1XD1X三、 Verilog 程序如下:module shiyan2 (clk,x,z);input clk,x;output z;wire[1:0] state;wire[1:0] excite;nextlogic u1(x,state,excite); statememory u2(clk,excite,state); outputlogic u3(state,z); endmodulemodule statememory (clk,d,q); input clk;input[1:0] d;output[1:0] q;reg[1:0] q;always @ (posedge clk) begin q <= d;endendmodulemodule nextlogic (x,q,d);input x; input[1:0] q;output[1:0] d;assign d[0]=(q[1]&q[0])|(q[1]&x); assign d[1]=x;endmodulemodule outputlogic (q,z); input[1:0] q;output z;assign z=(!q[1])&q[0]; Endmodule四、仿真结果及电路图得到功能仿真结果为:时序仿真结果为:利用程序生成的电路图为从电路图和仿真结果来看这次的仿真能够完全达到题目的要求。
序列检测器实验报告
实验七序列检测器实验一、实验目的1、掌握序列检测器的工作原理;2、掌握时序电路的经典设计方法;3、学习AHDL 语言的状态机的设计方法;二、原理代码序列检测器是一种同步时序电路,它用于搜索,检测输入的二进制代码串中是否出现指定的代码序列,001 序列检测器的原理图如下:三、实验内容设计一个 1110010 序列检测器,即检测器连续收到一组串行码“1110010”后,输出检测标志1,否则输出0。
要求用图形输入法完成:①作状态图和状态表;②状态化简,建立最简状态表;③写出状态编码;画出状态编码表;④建立激励函数,输出函数真值表;⑤写出激励函数和输出函数表达式;⑥画出逻辑电路测试图;⑦逻辑功能仿真,记录仿真波形并加以说明;⑧下载验证(两种以上的方式)根据实验要求,得到实验所需要的是八个状态,包括初始状态。
根据实验要求检现态S 次态/输出 S/QD=0 D=1初始状态 S0 S0 /0 S1/0接收到1 S1 S0 /0 S2/0接收到11 S2 S0 /0 S3/0接收到111 S3 S4 /0 S3/0接收到1110 S4 S5 /0 S0/0接收到11100 S5 S0 /0 S6/0接收到111001 S6 S7 /1 S2/0接收到1110010 S7 S0 /0 S1/0确定各种不同状态的的表示并且做出状态表根据所得到的状态表写出真值表达式D0*=D0D2’X’+D0D1’D2+D0’D1D2X’D1*=D0D1D2+D1D2’X+XD0’D1+D0’D2X+D1’D2X00 01 11 1000 101 1 111 1 110 1D2*= D0D2’X’+D0’D2’X+XD0’D1+D1D2X根据得到的函数方程,画出电路图如下得到序列波形图输出一个时钟信号以方便下载的时候能够比较方便的对输入的序列进行调试手动调整输入的序列已达到要求,方便检测。
同时在始终是下跳沿的是后调整输入,这样的话不会出现不能及时的出现z为1时的值Sel为q[2..0]的输出,通过它的值来选择7个输入的值的有效性,并确定result的值,使清零端有(无)效,以此来得到最后的输出为一还是为0实验心得:这次的实验收获颇多,一直没有自己用D触发器设计过元件,但是这次自己设计了一个,虽然在刚刚开始的时候听了同学的讲解,但是最终自己是弄懂了,并会连接和设计,在实验过程中,由于连线很复杂,容易将线结在一起,所以在连线时要尽量的化简,务必使线少一点,整个图清晰明了,然后检验时也会少去许多不必要的麻烦在对整个设计的进行状态分析时,要选择好做需要的状态过程,并且分析,不然在最后得方程画图时,会出现不了期望的结果。
VHDL序列检测器
课程:VHDL数字系统设计与测试题目:序列检测器(1110010)功能:输入一个串行位流,当出现“1110010”时,输出为1,其它输出为0设计思路:通过状态机来实现序列检测器状态机转移图(quartus)具体的VHDL代码:library ieee;use ieee.std_logic_1164.all; //VHDL库声明entity sequence_dectector isport(clk,rst,d: in bit;q: out bit);end sequence_dectector;//实体定义及输入输出architecture behavior of sequence_dectector is //构造体部分type state is (state1,state2,state3,state4,state5,state6,state7,state8);signal present_state ,next_state: state;//定义枚举数据类型begin// 状态机时序逻辑部分的设计process(rst , clk)beginif(rst = '1') thenpresent_state <= state1; // 复位有效时,状态变为state1elsif(clk'event and clk = '1') thenpresent_state <= next_state; // 复位无效时,时钟上升沿状态更新end if;end process;//状态机中组合逻辑部分的设计process(d , present_state) //状态不同时,输出也不同,根据d的不同来确定下一状态begincase present_state iswhen state1 =>q <= '0';if(d = '1') then next_state <= state2;else next_state <= state1;end if;when state2 =>q <= '0';if(d = '1') then next_state <= state3; else next_state <= state1;end if;when state3 =>q <= '0';if(d = '1') then next_state <= state4; else next_state <= state1;end if;when state4 =>q <= '0';if(d = '0') then next_state <= state5; else next_state <= state4;end if;when state5 =>q <= '0';if(d = '0') then next_state <= state6; else next_state <= state2;end if;when state6 =>q <= '0';if(d = '1') then next_state <= state7;else next_state <= state1;end if;when state7 =>q <= '0';if(d = '0') then next_state <= state8;else next_state <= state3;end if;when state8 => //此时检测到"1110010",输出为1 q <= '1';if(d = '0') then next_state <= state1;else next_state <= state2;end if;end case;end process;end behavior;quartus的功能仿真图有功能仿真图可知代码实现了要求的序列检测器的要求。
序列检测器 实验报告
序列检测器实验报告序列检测器是一种常见的信号处理技术,广泛应用于通信、雷达、生物医学和金融等领域。
本文将介绍序列检测器的原理、实验设计和实验结果,并对其应用进行讨论。
一、序列检测器的原理序列检测器是一种用于检测和识别输入信号序列的设备或算法。
它通过对输入信号进行观测和分析,判断信号是否符合特定的模式或规律。
常见的序列检测器包括有限状态机、卷积神经网络和隐马尔可夫模型等。
有限状态机是一种基本的序列检测器,它由一组状态和状态之间的转移规则组成。
在每个时刻,输入信号会触发状态之间的转移,最终达到一个终止状态。
通过定义状态和转移规则,可以实现对输入信号序列的检测和识别。
二、实验设计本实验旨在设计并实现一个简单的序列检测器,用于检测二进制信号序列中是否存在特定的模式。
实验使用MATLAB软件进行仿真,并基于有限状态机的原理进行设计。
1. 实验步骤(1)定义有限状态机的状态和转移规则;(2)生成一组随机的二进制信号序列作为输入;(3)根据状态和转移规则,对输入信号进行观测和分析;(4)判断输入信号是否符合特定的模式,并输出检测结果。
2. 实验参数为了简化实验设计,我们假设输入信号序列中的模式为"110"。
具体的状态和转移规则如下:(1)初始状态为S0;(2)当输入为"1"时,状态转移为S1;(3)当输入为"0"时,状态转移为S0;(4)当当前状态为S1且输入为"0"时,状态转移为S2;(5)当当前状态为S2且输入为"1"时,状态转移为S3;(6)当当前状态为S3且输入为"0"时,状态转移为S0。
三、实验结果经过实验设计和仿真,我们得到了以下实验结果:1. 输入信号序列:1011010110112. 检测结果:存在模式"110"通过对输入信号序列进行观测和分析,我们成功地检测到了模式"110"的存在。
序列检测器
序列检测器编辑词条编辑摘要摘要介绍了一种序列检测器的设计方法,该电路可应用于安全防盗、密码认证等加密场合,以及在海量数据中对敏感信息的自动侦听。
电路采用数字系统设计方法,步骤程序化,电路可靠性高。
序列检测器是一种能够检测输入的一串二进制编码,当该二进制码与事先设定的码一致时,检测电路输出高电平,否则输出低电平。
该检测电路可广泛用于日常生产、生活及军事。
目录1应用目的2内容和原理3设计步骤4结果及分析目录1应用目的2内容和原理3设计步骤4结果及分析收起编辑本段应用目的1、熟练掌握Quartus II 的使用方法及Verilog HDL的编程方法。
2、掌握有限状态机的工作原理3、熟悉串行信号的输入和扫描。
4、理解在多状态情况下的状态选择和控制。
5、实现用有限状态机对输入串行信号101的读取和判断。
编辑本段内容和原理内容:要求当检测器检测到101时cout=1。
原理:序列检测器可用于检测一组或多组由二进制代码组成的脉冲序列信号,当序列检测器连续收到一组串行二进制码后,如果这组码与检测器中预先设置的码相同,则输出为1,否则输出0。
由于这种检测的关键在于正确码的收到必须是连续的,这就要求检测器必须记住前一次的正确码及正确序列,直到在连续的检测中所收到的每一位码都与与预置数的对应码相同。
在检测过程中,任何一位不相等都将回到初始状态重新开始检测。
101序列检测器状态图:编辑本段设计步骤(1) 新建一个工程,选择命令File| New Project Wizard出现工程建立向导,工程名wcx,选择输入或选择工程存放的路径、工程名、顶层实体名。
(2) 新建一个Verilog HDL文件,进行布局文件的描述,布局文件如下:module wcx (clock, resetn, w, z);input clock, resetn, w;output z;reg [2:1] y, Y;parameter [2:1] A = 2'b00, B = 2'b01, C =2'b10,D=2'b11;always @(w or y)case (y)A: if (w) Y = B;else Y = A;B: if (w) Y = B;else Y = C;C: if (w) Y = D;else Y = A;D: if (w) Y = B;else Y = C;default: Y = 2'bxx;endcasealways @(negedge resetn or posedge clock)if (resetn == 0) y <= A;else y <= Y;assign z = (y == D);endmodule(3) 编译设计文件。
实验三:状态机实现序列检测器设计
实验三:状态机实现序列检测器设计《FPGA》课程报告设计题目:状态机实现序列检测器设计学生班级:学生学号:学生姓名:指导教师:时间:成绩:一、实验目的:1.理解有限状态机的概念;2. 掌握有限状态机的状态图的画法及其含义二、实验原理:本次实验的内容是:应用有限状态机设计思路,检测输入的串行数据是否是”11100101”,本次实验由顶层文件、串行检测、并行数据转串行、数码管显示四个模块组成。
1.并行数据转串行数据模块功能是:可以异步复位,可以在时钟控制下,将并行输入数据din[7:0],按照din[7],din[6],din[5],din[4],din[3],din[2],din[1],din[0]的顺序输出至串行检测模块的输入端口din。
2.串行检测模块:输入信号:DIN-----1bit的串行输入数据CLK-----同步输入时钟CLR ------异步清零信号,当CLR=1,系统输出置0,否则,系统正常工作输出信号: AB--------4bits数据,如果系统检测到“11100101”这8bit的输入,AB=4’b1010,否则,AB=4’b1011.三、实验过程:1.首先建立一个新的工程,添加一个新的Verilog Module文件,然后写入并行数据转串行数据模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:2.再新建一个Verilog Module文件,在其中写入串行检测模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:3. 再新建一个Verilog Module文件,数码管显示模块的代码,代码如下:然后执行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:4.编写顶层文件,将上面三个模块例化在一起,代码如下:然后将新的顶层文件经行综合,确认无误后,新建一个Test Bench WaveForm文件,进行仿真,仿真图如下:5.添加消抖模块,然后编写新的顶层文件,将消抖模块与上面的模块例化在一起,代码如下:保存后生成新的顶层文件:6.完成以上操作后,执行综合确认无误,经行锁引脚操作:锁引脚完成后,编辑、修改约束文件:7. 生成下载配置文件,下载到开发板进行经行验证。
Verilog_1110010
序列检测器是时序数字电路中非常常见的设计之一。
它的主要功能是将一个指定的序列从数字码流中识别出来。
例如检测器收到一组串行码(1110010)后,输出标志1,否则,输出0。
序列码(1110010)检测器verilog源程序如下`timescale 1ns/100psModule sequence_dectect(in,out,clock,reset);input in,clock,reset;output out;reg[2:0] state;wire out;parameter START=3’b000,A=3’b001,B=3’b010,C=3’b011,D=3’b100,E=3’b101,F=3’b110;assign out=(state==E&&in==0)?1:0;always@(posedge clock or negedge reset)if(!reset)beginstate<=START;endelsecasex(state)START:if(in==1) state=A;A: if(in==0) state<=B;else state<=A;B: if(in==1) state<=C;else state<=A;C: if(in==1) state<=D;else state<=B;D: if(in==1) state<=E;else state<=B;E: if(in==0) state<=F;else state<=A;F: if(in==1) state<=C;else state<=A;default:state=START;endcaseendmodule测试文件`include “sequence_dectect.v”`timescale 1ns/100ps;module test;reg clk,rst;reg[63:0] date;wire out_signal,current_bit;assign current_bit=data[63];initialbeginclk<=0;rst<=1;#2 rst<=0;#30 rst<=1;data=64’b1101_1101_1101_0111_0111_0101_1100_0101_1101_1011_0001_0000_1011_1010_1100_0101;endalways #10 clk=~clk;always@(posedge clk)data<={data[62:0],data[63]};sequence_dectect m(current_bit,out_signal,clk,rst);endmodule。
数电课程设计(十三进制同步减法计数器和串行序列信号检测器)概述
1 十三进制同步减法计数(无效状态为0001、0010、0011)的设计1.1 课程设计的目的:1、了解同步计数器的工作原理和逻辑功能。
2、掌握计数器电路的分析、设计方法及应用。
3、熟悉设计过程和边沿JK 触发器原理。
1.2 设计总框图:CP输入减法计数器脉冲 输出进位信号1.3 设计过程:1.3.1、状态图:/0 /0 /0 /0 /0 /0 1111 1110 1101 1100 1011 1010 1001/00000 0100 0101 0110 0111 1000/1 /0 /0 /0 /0 /01.3.2、选择触发器、求时钟方程、输出方程和状态方程(1)选择触发器由于JK 触发器功能齐全、使用灵活,故选用4个下降沿出发的边沿JK 触发器。
(2)求时钟方程 CP 0=CP 1=CP 2=CP 3=CP (3)求输出方程输出方程的卡诺图为:十三进制同步减法计数器8421 BCD 码00 01 11 1000011110输出方程: Y =Q n3Q n2(4)状态方程:次态卡诺图:00 01 11 1000011110所以:Q3n+1 的卡诺图为:00 01 11 10000111101 ×××0 0 0 00 0 0 00 0 0 01111 ××××××××××××0000 0001 0110 01011011 1100 1110 11010111 1000 1010 10011 ×××0 0 0 01 1 1 10 1 1 1Q 2n+1的卡诺图为:00 01 11 1000 01 11 10Q 1n+1的卡诺图为:00 01 11 1000 01 11 10Q 0n+1 的卡诺图为:00 01 11 1000 01 11 10状态方程:Q 3n+1= Q n 3Q n 2 + Q n 3Q n 0 + Q n 3Q n 1+ Q ——n 3Q _——n 2=Q ——n 3Q _——n 2 + (Q n 0+Q n 1+Q n 2)Q n 3 Q 2n+1=Q ——n 2Q ——n 1Q ——n 0+ (Q n 0+Q n 1)Q n 3Q 1n+1=Q ——n1Q ——n 0Q n 3 + Qn1Q n 0 +Q ——n1Q ——n3Q _——n 2Q 0n+1 =Q ——n 0(Q n 3+Q n 1+Q ——n 2)1 × × × 0 1 1 1 0 1 1 1 11 × × × 0 0 1 0 1 0 1 0 111 × × × 0 0 0 1 1 0 0 1 11驱动方程为:J3=Q_——n2 K3=Q_——2Q——0Q——1J2=Q——n1Q——n0 K2=Q——n1Q——n0J1==Q——n0Q n2 Q n2Q——n3Q——n0Q n3 K1=Q——n0J0=Q n1Q n2Q n3K0=1(6) 检验能否自启动(无效状态0001,0010,0011)0011 0010 10010001 1010所以能自启动1.4逻辑接线图:1.5 电路接线图1.6实验仪器74LS112芯片2块,74LS08芯片1块74LS00芯片2块开关导线若干1.7实验结论(分析实验中出现的故障及产生的原因)实验正常,个芯片运行正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
状态图:
状态表:
VHDL:
Library IEEE.;
Use.ieee.std_logic_1164.all;
LIBRARY IEEE ;
USE IEEE.STD_LOGIC_1164.ALL;
ENTITY SCHK IS
PORT( DIN,CLK,CLR : IN STD_LOGIC ; --串行输入数据位/工作时钟/复位信号
AB : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); --检测结果输出
END SCHK;
ARCHITECTURE behav OF SCHK IS
SIGNAL Q : INTEGER RANGE 0 TO 8 ;
SIGNAL D : STD_LOGIC_VECTOR(7 DOWNTO 0); --8位待检测预置数
BEGIN
D <= "11100101 " ; --8位待检测预置数
PROCESS( CLK, CLR )
BEGIN
IF CLR = '1' THEN Q <= 0 ;
ELSIF CLK'EVENT AND CLK='1' THEN --时钟到来时,判断并处理当前输入的位CASE Q IS
WHEN 0=> IF DIN = D(7) THEN Q <= 1 ; ELSE Q <= 0 ; END IF ;
WHEN 1=> IF DIN = D(6) THEN Q <= 2 ; ELSE Q <= 0 ; END IF ;
WHEN 2=> IF DIN = D(5) THEN Q <= 3 ; ELSE Q <= 0 ; END IF ;
WHEN 3=> IF DIN = D(4) THEN Q <= 4 ; ELSE Q <= 0 ; END IF ;
WHEN 4=> IF DIN = D(3) THEN Q <= 5 ; ELSE Q <= 0 ; END IF ;
WHEN 5=> IF DIN = D(2) THEN Q <= 6 ; ELSE Q <= 0 ; END IF ;
WHEN 6=> IF DIN = D(1) THEN Q <= 7 ; ELSE Q <= 0 ; END IF ;
WHEN 7=> IF DIN = D(0) THEN Q <= 8 ; ELSE Q <= 0 ; END IF ;
WHEN OTHERS => Q <= 0 ;
END CASE ;
END IF ;
END PROCESS ;
PROCESS( Q ) --检测结果判断输出
BEGIN
IF Q = 8 THEN AB <= "1010" ; --序列数检测正确,输出“A”
ELSE AB <= "1011" ; --序列数检测错误,输出“B”
END IF ;
END PROCESS ;
END behav ;
提示:若对于D <= "11100101 ",电路需记忆:初始状态、1、11、111 、 1110 、11100、111001、1110010、11100101 共9种状态。