解函数方程的几种方法

合集下载

高中函数解析式的七种求法

高中函数解析式的七种求法

高中函数解析式的七种求法函数解析式的七种求法一、待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1设是一次函数,且,求解:设,则二、配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。

但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。

例2已知,求的解析式解:,三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3已知,求解:令,则,四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点则,解得:,点在上把代入得:整理得五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5设求解①显然将换成,得:②解①②联立的方程组,得:例6 设为偶函数,为奇函数,又试求的解析式解为偶函数,为奇函数,又①,用替换得:即②解①②联立的方程组,得,六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

例7已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有再令得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。

例8设是定义在上的函数,满足,对任意的自然数都有,求解,不妨令,得:,又①分别令①式中的得:将上述各式相加得:,。

x方程式的解算方法

x方程式的解算方法

x方程式的解算方法x方程式是数学中常见的一类方程,其中未知数x出现在方程的指数上。

解x 方程式的方法有多种,下面将介绍其中几种常见的解算方法。

一、对数法对数法是解决x方程式的一个常用的方法,特别适用于指数函数方程式。

对于形如a^x=b的方程式,可以将其转化为对数方程式来求解。

具体步骤如下:1. 将方程式取对数:loga(b)=x。

2. 计算对数:使用合适的对数底数计算loga(b)的值。

3. 得到解:将计算得到的对数值作为x的解。

举例说明:解方程式2^x=8。

1. 取对数:log2(8)=x。

2. 计算对数:log2(8)=3。

3. 得到解:方程式的解为x=3。

二、平方根法平方根法可以用来解决指数乘方后出现自变量的方程式。

对于形如(sqrt(x))^n=a的方程式,可以使用平方根法求解。

具体步骤如下:1. 求平方根:两边同时开n次平方根,得到(sqrt(x))^n=a的平方根形式。

2. 取正负值:由于开平方根会产生两个解,需要取正负值。

3. 解方程:对每一个取值解开平方根方程,得到x的解。

举例说明:解方程式(sqrt(x))^2=9。

1. 求平方根:(sqrt(x))^2=3^2。

2. 取正负值:得到两个方程式sqrt(x)=3和sqrt(x)=-3。

3. 解方程:对每一个方程式解开平方根,得到x的两个解x=9和x=0。

三、换元法换元法是用来解决一类尖锐倾斜的方程式,其中指数函数的底数和因变量之间存在依赖关系。

通过引入一个新的变量,将原方程式转化为一个简单的线性方程式,从而求解。

具体步骤如下:1. 选择一个合适的换元变量:引入一个新变量t,使得指数函数的底数和指数可以被表示为t的函数。

2. 变换方程:将原方程式中的指数函数用t表示。

3. 解线性方程:解变换后的线性方程,得到t的解。

4. 还原解:将t的解代入到换元变换中,得到x的解。

举例说明:解方程式3^x-2x=1。

1. 选择换元变量:引入新变量t,使得3^x=t。

函数方程解题的关键技巧与方法

函数方程解题的关键技巧与方法

函数方程解题的关键技巧与方法函数方程是数学中常见的一类问题,它通过给定的条件和方程来寻找函数的解。

解决函数方程的关键技巧和方法有很多,本文将介绍其中几种常用的方法。

一、代入法代入法是解决函数方程的常用方法之一。

它的基本思路是将方程中的未知函数代入,然后通过简化方程,找到函数的解。

例如,考虑以下的函数方程:f(x) - 2f(2-x) = 1我们可以先令 x = 2,这样就可以得到:f(2) - 2f(0) = 1然后,代入其他的数值,比如 x = 0,我们得到:f(0) - 2f(2) = 1通过这样的代入和化简的过程,我们可以得到一个方程组,从中解出 f(x) 的值。

二、函数复合法函数复合法是解决函数方程的另一种常见方法。

它的基本思路是通过构造一个新函数,将原方程转化为一个更简单的形式,从而求得函数的解。

举个例子,考虑以下的函数方程:f(x + 2) + f(x - 2) = 2f(x)我们可以尝试定义一个新函数 g(x) = f(x + 2),这样原方程就变成了:g(x) + g(x - 4) = 2g(x - 2)现在我们可以利用这个新方程来简化原方程,并通过求解 g(x) 来找到 f(x) 的解。

三、递推法递推法在解决函数方程中也是十分有用的方法。

它的基本思路是通过分析给定的条件和方程,构造递推式,从而找到函数的解。

例如,考虑以下的函数方程:f(x + 2) = 3f(x + 1) - 2f(x)我们可以通过给定的条件 f(0) = 1 和 f(1) = 2,构造递推式:f(2) = 3f(1) - 2f(0) = 4f(3) = 3f(2) - 2f(1) = 8f(4) = 3f(3) - 2f(2) = 16通过递推,我们可以得到 f(x) 的解为 2^x。

四、特殊点法特殊点法是解决函数方程的一种常见方法,它的基本思路是通过找到特殊点,从而对函数进行分析,进而求得函数的解。

例如,考虑以下的函数方程:f(x) = f(1-x)我们注意到当 x = 1/2 时,有 f(1/2) = f(1 - 1/2) = f(1/2),也就是说函数在 x = 1/2 这个特殊点对称。

函数方程的几种解法

函数方程的几种解法

解函数方程的几种方法李素真摘要:本文通过给出求解函数方程的基本方法,来介绍函数方程,探索通过构造函数方程求解其它问题的方法,以获得新的解题思路。

关键词:函数方程;换元法;待定系数法;解方程组法;参数法含有未知函数的等式叫做函数方程,能使函数方程成立的函数叫做函数方程的解,求函数方程的解或证明函数方程有无解的过程叫解函数方程。

函数方程的解法有换元法(或代换法)、待定系数法、解方程组法、参数法。

1.换元法换元法是将函数的“自变量”或某个关系式代之以一个新的变量(中间变量),然后找出函数对中间变量的关系,从而求出函数的表达式。

例1 已知x x f x sin )2(+=,求)(x f 。

解:令u x =2 )(0>u ,则u x log 2=,于是可得,)log sin()log ()(222u u u f +=)(0>u ,以x 代替u ,得)log sin(log 2)(22u x x f += )0(>x 。

例2 已知xxx x f 212ln )1(+=+ )0(>x ,求)(x f 。

解:令t x x =+1,则11-=t x )1(>t ,于是12ln 1121112ln )(+=-+-=t t t t f , 即12ln )(+=x x f 。

例3 已知x x f 2cos )cos 1(=+,求)(x f 。

解:原式可以化为 1cos 22cos )cos 1(2+==+x x x f ,令t x =+cos 1,]2,0[∈t ,则换元后有1)1(2)(2--=x t f ]2,0[∈x 。

2.待定系数法待定系数法适用于所求函数是多项式的情形。

当我们知道了函数解析式的类型及函数的某些特征,用待定系数法来解函数方程较为简单。

一般首先确定多项式的次数,写出它的一般表达式,然后由已知条件,根据多项式相等的条件确定待定系数。

例4 已知)(x f 为多项式函数,且422)1()1(2+-=-++x x x f x f ,求)(x f 。

考点02 求函数解析式的3种方法(解析版)

考点02  求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

函数解析式的常用求解方法函数解析式的求解九种方式函数解析式有几种形式

一、函数解析式的常用求解方法(1)待定系数法:(已知函数类型如:一次、二次函数、反比例函数等):若已知f(x)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得f(x)的表达式。

待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。

(2)换元法(注意新元的取值范围):已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得,然后代入f(g (x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式。

(3)配凑法(整体代换法):若已知f(g(x))的表达式,欲求f(x)的表达式,用换元法有困难时,(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f (x)的式子。

(4)消元法(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等):若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。

(5)赋值法(特殊值代入法):在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。

二、函数解析式的求解九种方式:1.代入法:已知f(x)的解析式,求f[g(x)] 的解析式.[例1] 若f(x)=2x+1,g(x)=x-1, 求f[g(x)],g[f(x)].2. 换元法已知f[g(x)]=h(x), 求f(x)的解析式.令g(x)=tx=(t),则f(t)=h[(t)],再将t换成x即可.但要注意换元前后变量的等价性。

[例2] 已知f( +1)= x+2 ,求f(x),f(x+1).3.配凑法已知f[g(x)]=h(x), 求f(x)的解析式。

若能将h(x)用g(x)表示, 然后用x去代换g(x),则就可以得到f(x)的解析式。

[例3] 已知f(x+ )= x3 + , 求f(x),f(x+1).4.待定系数法根据已知函数的类型或者特征,求函数解析式。

函数解析式的几种基本方法及例题

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题:1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式。

(注意定义域)例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2).(2) 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=(x-2)=(x-2)2-1=x 2-4x+3.(2) 2)1()1(2-+=+x x x x f Θ, 21≥+x x2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

(注意所换元的定义域的变化)例2 (1) 已知x x x f 2)1(+=+,求)1(+x f(2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+=x t ,则1≥t ,2)1(-=t x Q x x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f 1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x(2)设.)(,,,111111111-=∴-=-===x x f t tt f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。

应用此法解题时往往需要解恒等式。

例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x,则应有.)(1212102242222--=∴⎪⎩⎪⎨⎧-=-==∴⎪⎩⎪⎨⎧=+-==x x x f c b a c a b a四、构造方程组法:已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

求函数解析式的方法和例题

求函数解析式的方法和例题

求函数解析式的方法和例题一、常见的求函数解析式的方法。

1. 代数法,通过代数运算,将已知的函数关系式化简成解析式的形式。

例如,对于一元一次函数y=ax+b,我们可以通过代数运算将已知的函数关系式y=ax+b化简为解析式y=2x+3。

2. 图像法,通过观察函数的图像特征,推导出函数的解析式。

例如,对于二次函数y=ax^2+bx+c,我们可以通过观察抛物线的开口方向、顶点坐标等特征来推导出函数的解析式。

3. 系数法,对于一些特定的函数类型,可以通过系数的求解来得到函数的解析式。

例如,对于指数函数y=a^x,我们可以通过已知的函数值和指数的关系来求解出函数的解析式。

4. 反函数法,有些函数的解析式可以通过求解其反函数得到。

例如,对于对数函数y=log_a(x),我们可以通过求解其反函数来得到函数的解析式。

二、求函数解析式的例题。

1. 求一元一次函数y=ax+b的解析式,已知当x=1时,y=3;当x=2时,y=5。

解:根据已知条件,我们可以列出方程组:a1+b=3。

a2+b=5。

通过解方程组,可以求解出a=2,b=1,因此函数的解析式为y=2x+1。

2. 求二次函数y=ax^2+bx+c的解析式,已知其图像经过点(1,2),顶点坐标为(-1,3)。

解:根据已知条件,我们可以列出方程组:a1^2+b1+c=2。

a(-1)^2+b(-1)+c=3。

通过解方程组,可以求解出a=1,b=0,c=1,因此函数的解析式为y=x^2+1。

3. 求指数函数y=a^x的解析式,已知当x=2时,y=16;当x=3时,y=64。

解:根据已知条件,我们可以列出方程组:a^2=16。

a^3=64。

通过解方程组,可以求解出a=4,因此函数的解析式为y=4^x。

以上就是关于求函数解析式的方法和例题的介绍,希望能对大家有所帮助。

通过学习和掌握这些方法和技巧,相信大家可以更好地理解和运用函数解析式,提高数学解题的能力。

必修1求函数解析式的常用方法

必修1求函数解析式的常用方法

必修1求函数解析式的常用方法在数学中,函数解析式是表示函数关系的一种方法,能够通过输入一个自变量的值来计算对应的函数值。

在求函数解析式时,有几种常用的方法可以帮助我们推导出函数解析式,包括代数法、求导法、极限法和积分法等。

一、代数法(方程法)代数法是一种常用的求函数解析式的方法,通过建立方程组来解决问题。

具体步骤如下:1.确定未知数:观察函数关系,确定未知数的个数和性质。

2.建立方程:将已知条件和未知数之间的关系转化为方程。

3.求解方程组:利用代数运算的方法求解方程组。

4.验证:将求得的解带入原方程进行验证,确保解的正确性。

例如,已知函数f(x)满足f(x)-f(x-1)=x,我们可以采用代数法求函数解析式。

解:设f(x) = ax + b,将f(x)的表达式带入已知条件f(x) - f(x - 1) = x中,得到:ax + b - a(x - 1) - b = x整理得:ax + b - ax + a - b = x去掉相同项后得:a=1再将a=1代入f(x),得到f(x)=x+b。

因此,函数f(x)的解析式是f(x)=x+b,其中b是常数。

二、求导法求导法是一种通过对函数求导来求解函数解析式的方法。

该方法主要适用于求解一阶线性微分方程。

1.已知已知函数的导数表达式;2.将导数表达式带入微分方程,得到关于未知函数的微分方程;3.求解微分方程,得到未知函数;4.对求得的未知函数进行验证。

例如,已知函数f'(x)=2x+1,我们可以采用求导法求函数解析式。

解:对已知函数f'(x) = 2x + 1进行积分,得到f(x) = ∫(2x + 1)dx = x^2 + x + C其中C为常数。

因此,函数f(x)的解析式是f(x)=x^2+x+C。

三、极限法极限法是一种通过取极限的方法来求解函数解析式的方法。

该方法主要适用于求解极限关系存在的函数。

1.观察函数的极限特征;2.利用极限性质推导函数解析式;3.对推导的解析式进行验证。

求函数方程的六种常用方法

求函数方程的六种常用方法

求函数方程的六种常用方法函数方程是数学中常见的问题类型,解决函数方程需要运用不同的方法和策略。

以下是六种常用的方法:1. 代入法代入法是最常见也是最简单的求解函数方程的方法。

通过将变量代入方程中,并解方程,即可得到函数的解。

这种方法适用于一些简单的函数方程,如一次函数或二次函数。

2. 类比法类比法是通过观察已知函数方程的形式和性质,找到与之类似的函数方程,并利用已知函数的性质来求解。

这种方法常用于解决一些特殊类型的函数方程,如指数函数方程或三角函数方程。

3. 分离变量法对于涉及到多个变量的函数方程,可以使用分离变量法将方程分离成两个单独的函数方程。

然后,对每个单独的函数方程进行求解,并将求解结果合并,得到原函数方程的解。

4. 微分法微分法在求解函数方程中起到重要的作用。

通过对函数方程进行微分,得到新的微分方程。

然后,通过求解微分方程来求解函数方程。

这种方法适用于一些复杂的函数方程,如高阶导数方程。

5. 极限法极限法是一种在数学分析中常用的求解函数方程的方法。

通过观察函数在某些特殊点的极限值,确定函数的性质和解的存在性。

然后,通过运用极限的性质来求解函数方程。

6. 变量替换法变量替换法是将函数方程中的变量进行替换,将复杂的函数方程转化为简单的函数方程。

然后,通过求解简化后的函数方程来求解原函数方程。

这种方法常用于处理一些复杂的函数方程,如三角函数方程或指数函数方程。

以上六种方法是求解函数方程常用的策略,具体应根据具体的函数方程类型来选择合适的方法。

希望这份文档对您有所帮助。

函数解析式的求解及常用方法(同步讲解)

函数解析式的求解及常用方法(同步讲解)
且f (0) 1, 求 f (x).
解: 令x y得
f (0) f (x) 2x2 x2 x
f (x) x2 x 1
【小结】:一般的,已知一个关于x,y的抽象函数,利用特殊值去掉一个未知 数y,得出关于x的解析式。
变式:已知函数 f (x)对于一切实数 x都, y有
f (x y) f (y) (x 2y 1)x 成立,且
即 2 y 4x 1
4x

y x2 1 x4
故 g(x) x 2 1 (x 4)
x4
练习
1若f x 2 x2 x 1求f x 2若f ( x) x求f x
3已知 f x 1 x 求f x
4已知 f f x 27x 26 求一次函数f x
课堂小结
请问同学们通过本节课的学习你获得哪些知识?
变式训练2
1、若 3 f (x) f (x) 2 x ,求f (x) 2、若 f (x) 2 f (1) x ,求f (x)
x
三、待定系数法
例3、已知 f (x) 是一次函数,且 f [ f (x) ] = 4x -1, 求 f (x) 的解析式。
解:设 f (x) = kx + b
则 f [ f (x) ] = f ( kx + b ) = k ( kx + b ) + b
解:方法一:f ( x 1) x 2 2x 2 x2 2x 11 ( x 1)2 1
f x
配凑法
f (x) x2 1
方法二:令 t x 1,则x t 1
f t f x 1 x2 2x 2
换元法
t 12 2t 1 2 t2 1,
f x x2 1.
【小结】:已知f[g(x)],求f(x)的解析式,一般可用换元法,具体为:令 t=g(x),再求出f(t)可得f(x)的解析式。换元后要确定新元t的取值范围。

求函数解析式常用的方法

求函数解析式常用的方法

求函数解析式常用的方法函数的解析式是指能够描述函数关系的数学表达式。

常见的函数解析式有多种求法,下面介绍几种常用的方法。

一、通过已知的函数图像求函数的解析式:1.方程法:已知函数的图像,可以通过观察图像上的点与坐标轴的交点,列方程来求解。

例如,已知函数图像上点(1,3)和(2,5),可以列出方程f(1)=3和f(2)=5,然后通过解方程组的方法求得函数解析式。

2.函数平移法:已知函数图像上的一些平移属性,可以通过对已知函数进行平移操作得到所求函数的解析式。

例如,已知函数f(x)在原坐标系上的图像向左平移2个单位,可以得到函数f(x+2)。

3.倒推法:已知函数的图像为已知函数的变换之一,可以从已知函数推导出所求函数的解析式。

例如,已知函数f(x)的图像是函数g(x)的图像上关于y轴对称得到的,可以通过对函数f(x)进行关于y轴对称操作得到函数g(x)的解析式。

二、通过已知函数求函数的解析式:1.基本函数的组合:常见的基本函数包括线性函数、二次函数、指数函数、对数函数等。

可以通过将基本函数进行合理的组合和变换,来构建所求函数的解析式。

2.反函数法:已知函数的反函数,可以通过对已知函数的自变量和因变量进行互换得到所求函数的解析式。

例如,已知函数f(x)的反函数是g(x),则所求函数的解析式为f(y)=x。

3.极限法:当函数的极限存在时,可以通过极限的概念推导所求函数的解析式。

例如,已知函数的极限为一些常数,可以通过求出极限值来得到所求函数的解析式。

三、通过函数的性质求函数的解析式:1.函数的奇偶性:如果一个函数是奇函数,那么它的解析式中不含有$x^2$的项;如果一个函数是偶函数,那么它的解析式中不含有$x$的项。

2.函数的周期性:如果一个函数是周期函数,那么它的解析式中必定含有正弦或余弦等与周期函数相关的函数。

3.函数的导数与微分:通过求函数的导数和微分,可以得到函数所满足的微分方程,然后进一步求解微分方程从而得到函数的解析式。

求函数解析式的四种常用方法

求函数解析式的四种常用方法

求函数解析式的四种常用方法求函数解析式的四种常用方法: 1、设法化成一元一次方程,再通过检验判断一元一次方程的解的存在性;2、利用函数图像和单调性求函数解析式; 3、利用函数奇偶性来求解;4、利用“韦达定理”来求解。

2、根据图像的变化,利用“特殊值”求解。

例题:求抛物线的方程。

(1)已知抛物线y=mx+c的图象过点(-5, 5),且过原点(0, 0)。

(2)求y的最大值和最小值(3)若将抛物线y=mx+c上的点代入y=mx+c=x+m中,可得y的值为7,求x的取值范围。

例题:求圆的方程(1)已知直线y=4/x+6/y的图象与直线y=-3/2在坐标平面内的截距相等,且图象过点(0, 3)。

(2)求y的最大值。

(3)若将y=4/x+6/y上的点代入y=-3/2-x-8/3中,可得y的值为9,求x的取值范围。

3、利用奇偶性求解。

例题:已知函数y=5/6+12/13,当x=1时, y=-2/13;当x=5/6时, y=-7/23;当x=9时, y=-11/22。

试求y的解析式,并说明奇偶性。

4、利用“韦达定理”来求解。

例题:已知f(x) = x**2-12x+30.(1)若f(x) =0,求x的值; (2)已知f(x)的图象与y=8/5有两个不同的交点,且图象在y轴的第一、二象限,试求x的取值范围。

解析:(1)由f(x) =x**2-12x+30,即f(x)的图象为双曲线。

可设y=8/5;解得-6/5<y<-3/5,即-4/5≤y≤-3/5,由题意得-6/5≤y≤-3/5;解得-6/5≤y≤-3/5,则0<y≤-3/5;(2)将f(x)的图象移到(0, -1)之间,得到双曲线y=-1/4-4/3;在(-1, 1)内画出y=-1/4-4/3的图象,从而得到函数y=-1/4+4/3的图象;解得x≤1/3。

几种函数方程的求解方法

几种函数方程的求解方法

1 柯西函数方程
先介绍柯西函数方程的求解过程. 1 . 1 柯 西 函 数 方 程 [2]
设 / U )是 R 上 的 连 续 函 数 ,且对一 切 的 U 6 R ,均有
f ( x + y )=f (x )+f (y ). 则 存 在 实 数 a = / ( l ) ,使得 f (x )= ax(x G R ).
/ ( 甲 ) = | ( / U ) + / ( y )).
求 /(*). 解 设 / ( 0 ) = 6. 由已知得
} ( / ( . ) +/ ( r ) ) = / ( ^ ^ )
= y (/(^ + r )+/(〇 ))
=^f(x +y) =f(x) +f(y) - f ( 0 ) ^ f ( x + j )-/(〇)
« —► 〇〇
n —► 〇〇
因 此 ,/"(尤): 似
6 R ).
1 . 2 柯西函数方程的变式
在 解 题 过 程 中 ,利 用 柯 西 函 数 方 程 可 得 出 几 种 常 用 的 变 式 .[2]
设/U )为 R 上的连续函数. (1) 若对一切的%、7 6 11,总有 f(x +y)=f(x)f(y),
= ( / ( ^ ) - / ( 〇 ) ) + ( / ( y )-/(〇 )).
令 g (尤)=/(丨)-/(〇).贝丨J g(x +y) =g(x) +g(y). 由 柯 西 函 数 方 程 ,知 当 X G Q 时 , g(x) =xg(l ). 当 R 时 ,不 妨 设 g (幻 单 调 递 增 ,存 在 收 敛 数 列 U 4 j 、丨汍丨(A 矣X 矣此),且当 A:—•+ 〇〇时 ,a t 、执 均 收 敛 于 ac•则

求函数解析式的四种常用方法(1)

求函数解析式的四种常用方法(1)

3.设 y=f(x)是二次函数,方程 f(x)=0 有两个相等实根,
且 f′(x)=2x+2,求 f(x)的解析式.
解:设 f(x)=ax2+bx+c(a≠0), 则 f′(x)=2ax+b=2x+2, ∴a=1,b=2,f(x)=x2+2x+c. 又∵方程 f(x)=0 有两个相等实根, ∴Δ=4-4c=0,c=1,故 f(x)=x2+2x+1.
求函数解析式的四种常用方法
(3)换元法:已知复合函数 f(g(x))的解析式, 可用换元法,此时要注意新元的取值范围;
求函数解析式的四种常用方法
(4)解方程组法:已知关于 f(x)与 f1x或 f(- x)的表达式,可根据已知条件再构造出另 外一个等式组成方程组,通过解方程求出 f(x).
求函数解析式的四种常用方法
求函数解析式的四种常用方法
(1) 配凑法:由已知条件 f(g(x))=F(x), 可将 F(x)改写成关于 g(x)的表达式, 然后以 x 替代 g(x),便得 f(x)的表达式;
变式 题
换元法 拼凑法
求函数解析式的四种常用方法
(2)待定系数法:若已知函数的类型 (如一次函数、二次函数)可用待定系数法;
(4).已知f(1-cosx)=sin2x,求f(x)
(5).二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0 的两实根平方和为10,图象过点(0,3),求f(x) 的解析式。
(6):已知:方程:x2+ax+a+1=0的两根满足一 个条件:一根大于k,一根小于k(k是实数),求a 的取值范围。
(4)定义在(-1,1)内的ቤተ መጻሕፍቲ ባይዱ数 f(x)满足 2f(x)-f(-x)=lg(x+1), 求函数 f(x)的解析式.

函数方程的几种解法

函数方程的几种解法

函数方程的几种解法
函数方程是数学中的一种基本概念,它指的是一种表达式,可以用来描述特定数学关系的函数。

函数方程通常用来解决数学中的特定问题,它可以用来计算变量之间的关系,从而得出最终的结果。

函数方程的解法有多种,下面将介绍几种比较常见的解法:
一、图形解法。

图形解法是一种最简单的解法,它可以通过绘制函数图形来解决函数方程。

首先,根据函数方程中的变量和参数,画出函数图形,然后根据图形的形状和特征,可以解决函数方程。

二、分段函数解法。

分段函数解法是一种比较常用的解法,它可以将复杂的函数方程分解为若干个简单的子函数,每个子函数有不同的解法。

然后,根据子函数的解法,可以解出整个函数方程的解。

三、代数解法。

代数解法是一种比较传统的解法,它可以通过使用代数方法来解决函数方程。

这种方法通常要求解决者掌握一定的代数技巧,以便有效地解决函数方程。

四、数值解法。

数值解法是一种比较新的解法,它可以通过迭代法等方法,使用计算机来计算函数方程的解。

这种方法具有计算速度快,解法准确等优点,在解决复杂函数方程中有着巨大的优势。

以上就是函数方程的几种解法,它们各有优劣,在解决不同的函数方程时,需要根据实际情况来选择最合适的解法。

在使用上,要充分利用各种解法的优势,在正确理解函数方程的基础上,有效地解决数学问题。

解函数方程的几种方法

解函数方程的几种方法

绪论在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国内外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述.首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程.其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略.最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的.1函数方程的一些相关概念1.1函数方程的定义含有未知函数的等式叫做函数方程.如()()f x f x-=,=-,()()f x f x+=等,其中()f x即是未知函数.f x f x(1)()1.2函数方程的解设某一函数()f x对自变量在其定义域内的所有值均满足某已知方程,那么把()f x就叫做函数方程f x就叫做已知函数方程的解.即能使函数方程成立的()的解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、()1=-分别是上述各方程的解.f x x1.3解函数方程求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,或求出某些函数值,或证明这个函数所具有的其他性质.2函数方程的常见解法由于函数与方程的性质极多,解题的方法也形式多样,出现较为频繁的有换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法、数学归纳法等等.2.1换元法(代换法)换元法又叫代换法或引进辅助未知数法或定义法.将函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不发生变化),得到一个新的较为简单的函数方程,然后直接求解未知函数.但值得注意的是,某些换元会导致函数的定义域发生变化,这时就需要进行验证换元的可行性.例 2.1已知2-=,求()f x x(1cos)sinf x.分析此题是一个最基本的函数方程问题,要求解函数()f x的表达式,就需要将1cos xsin x进行转化.当然,我们可以先用换元法把x,y用t代替,消+和2去x,y,就得到一个关于t的解析式,再用x替代t,于是得解.但这里我们还给出了另外的解法,就是用()=的参数表达式进行求解.y f x解法一令1cos x t-=,所以c o s1=-,x t因为-≤≤,1cos1x所以x≤-≤,01cos2即t≤≤.02又因为22-==-,f x x x(1cos)sin1cos所以22=--=-+,(02)f t t t t()1(1)2t≤≤,故2=-+,(02)f x x x()2≤≤.x解法二设所求函数()=的参数表达式y f x=-,x t1c o s2y t=,sin即得=-,(1)c o s1t x2s i n t y=. (2)2+,消去参数t,得(1)(2)2-+=,(1)1x y整理,得22y x x =-+,[0x ∈,2],即2()2f x x x =-+,[0x ∈,2].在本题中,由于三角函数可以相互转化,很容易看出1cos x -与2sin x 之间的联系,然后直接利用换元法进行转化,但考虑到x (或t )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.2.2 赋值法赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域内赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.例 2.2.1 函数:f N N +→(N +为非负整数),满足:(i ) 对任意非负整数n ,有(1)()f n f n +>;(ii ) 对任意,m n N +∈,有(())()1f n f m f n m +=++.求(2001)f 的值.分析 本题欲求(2001)f 的值,则须了解()f n 有什么性质.由条件(i )、(ii )可以联想到(0)f 的取值是本题的关键,而分别利用条件(i )、(ii )进行推导,并结合反证法推出矛盾,得到(0)f 的唯一值,进而得解.解 令(0)f k =,其中k 为非负整数.由(ii)得()()1f n k f n +=+. (1)若0k =,则()()1f n f n =+,矛盾.故0k ≠,由(i )有(1)()()1f n k f n k f n +-<+=+. (2) 若1k >,则11n k n +-≥+,于是由(i ),得(1)(1)()1f n k f n f n +-≥+≥+, (3) 但(2)与(3)矛盾,故1k =是惟一解.当1k =时,式(1)为(1)()1f n f n +=+,此函数满足条件(i )、(ii ),所以得惟一解(2001)2002f =.例 2.2.2 解函数方程()()2()cos f x y f x y f x y ++-=.分析 此题是函数方程里较为典型的一个问题,在很多文章中都有提到.本题中方程含有,x y 两个未知数,对于一个方程,首先想到的就是消元,考虑到三角函数cos y 的特殊性质,可用一些比较特殊的值分别去代换,x y ,再求得()f x 的表达式.解 在原方程中令0x =,y t =得()()2(0)cos f t f t f t +-=, (1) 再令2x t π=+,2y π=得()()0f t f t π++=, (2) 又再令2x π=,2y t π=+得()()2()sin 2f t f t f t ππ++-=-, (3) (1)+(2)-(3)得()(0)cos ()sin 2f t f t f t π=+. 令(0)a f =,()2b f π=并将t 换成x 得 ()cos sin f x a x b x =+,(a ,b 均为任意常数).代入(1)式验证()()f x y f x y ++-cos()sin()cos()sin()a x y b x y a x y b x y =++++-+-2cos cos 2sin cos a x y b x y =+2cos (cos sin )y a x b x =+2()cos f x y =.所以()f x 是函数方程(1)的解.赋值法是很特殊的一种方法,首先它考验人们的“眼力”,即根据所给出的式子找出其规律;其次,就是“笔力”即计算方面的能力,所赋的值即某些特殊值要有助于解题;最后,不难看出赋值法其实就是与代换法、消元法等方法相结合的一种方法.如例2.2.1就是赋值法与反证法相结合,例2.2.2是赋值法、代换法、消元法结合的典型.2.3迭代周期法(递推法)函数迭代是一类特殊的函数复合形式.一般由函数方程找出函数值之间的关系,通过n 次迭代得到函数方程的解法.例 2.3.1 对任意正整数k ,令()f k 定义为k 的各位数字和的平方,求2001(11)f .分析 本题是迭代的简单运用题,由“()f k 定义为k 的各位数字和的平方”入手,可以找出11与函数方程以及函数值之间的关系,结合数列相关知识通过n 次迭代从而求解.解 由已知有 12(11)(11)4f =+=,2(11)((11))(4)16f f f f ===,322(11)((11))(16)(16)49f f f f ===+=,432(11)((11))(49)(49)169f f f f ===+=,542(11)((11))(169)(169)256f f f f ===++=,652(11)((11))(256)(256)169f f f f ===++=,…从而当n 为大于3的奇数时,(11)256n f =,当n 为大于3的偶数时,(11)169n f =,故2001(11)256f =.例 2.3.2 设()f x 定义在自然数集N 上,且对任意,x y N ∈,都满足(1)1f =,()()()f x y f x f y xy +=++,求()f x . 解 令1y =,得(1)()1f x f x x +=++,再依次令1x =,2…, 1n -,有(2)(1)2f f =+,(3)(2)3f f =+,…(1)(2)(1f n f n n -=-+-,()(1)f n f nn =-+, 依次代入,得()(1)23f n f =+++…(1)(1)2n n n n ++-+=, 所以(1)()2x x f x +=,()x N +∈. 前面的例2.3.1仅是迭代的入门题,可以直接根据函数方程找出函数值之间的关系,然后通过n 次迭代进行求解.而在迭代问题中,很大一部分题目并不是仅借助迭代的思想来解决的,而是综合所学知识进行求解.如例4.2就是赋予一些特殊值,再利用递推法简化问题,从而求解.2.4待定系数法待定系数法适用于所求函数是多项式的情形,且已知所求函数解析式的类型,可先设出一个含有特定系数的代数式,然后利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)而求出待定系数的值,或者消除这些待定系数,使问题得以解决.例 2.4.1 已知()f x 是一次函数,且[()]41f f x x =-,求()f x .解 因为()f x 是一次函数,不妨设()(0)f x ax b a =+≠,又因为[()]41f f x x =-,所以()()41f ax b a ax b b x +=++=-,即241a x ab b x ++=-,于是有24a =,1a b b +=-. 解这个方程组得2a =,或者 2a =-,13b =-, 1b =. 所以1()23f x x =-或()21f x x =-+. 本题考虑到()f x 是一次函数,故可设出()f x 的一般形式,再由条件[()]41f f x x =-代入()f x 进而对应求出a ,b .这属于较简单的待定系数法应用,而对于关系f 有很多次的就另当别论了.例 2.4.2 已知()f x 是一次函数,且10次迭代{[(f f f …())]}10241023f x x =+,求()f x .分析 观察本题,()f x 是一次函数且函数方程是一个10次迭代的方程,要怎样进行思考呢?只能依据题中最基本的条件进行解决,故而给出如下解法:解 设()(0)f x ax b a =+≠,则(2)2()[()]()()(1)f x f f x f ax b a ax b b a x a b ==+=++=++,(3)(2)232()(()){[()]}[(1)](1)f x f f x f f f x f a x a b a x a a b ===++=+++, …(9)1098(())(f f x a x a a =+++…1)a b ++.因为(10)()10241023f x x =+,所以10101024(2)a ==±,98(a a ++…1011)10231a a b b a -++==-. 解方程组得2a =,1b =或2a =-,3b =-.故所求的一次函数为()21f x x =+或()23f x x =--.观察题中条件,问题的难度比例2.4.1的增加了许多,这又怎么做呢?万变不离其宗,仍采用待定系数法进而找出规律,并结合等比数列相关性质而求得a ,b ,但要注意解决这类问题时千万不要漏根.2.5 数学归纳法数学归纳法主要适用于定义域是正整数的函数方程,其解题方法是通过对(1)f ,(2)f ,(3)f ,…的具体计算,加以概括抽象,提出对()f n 的解析式的一个猜想,然后用数学归纳法对猜想进行证明.根据已知条件,首先运用赋值法求出函数()f x 在某些点的特殊值,再猜想()f x 的表达式,最后用数学归纳法证明此猜想.例 2.5.1 函数()f n 的定义域为正整数集,值域为非负整数集,所有正整数m ,n 满足()()()0f m n f m f n +--=或1; (2)0f =,(3)0f >,(9999)3333f = ,求(1982)f .解 由(11)(1)(1)0f f f +--=或1,而0(2)2(1)f f =≥,所以(1)0f =,由(21)(2)(1)0f f f +--=或1,得(3)0f =或1,因为(3)0f >,所以(3)1f =,同理,可推得(32)2f ⨯≥,(33)3f ⨯≥…已知(9999)(33333)3333f f =⨯=,猜想(3)f k k ≥,(3333)k <.下面用数学归纳法证明.(1)由上可知,1k =,2,3时,结论成立.(2)假设对小于k 的一切自然数,结论成立.则(3)[3(1)3]f k f k k =-+[3(1)](3)f k f ≥-+11k ≥-+k =,即(3)(3333)f k k k ≥<,如果(3)1f k k ≥+,则(9999)(99993)(3)f f k f k ≥-+33331k k ≥-++3333>,与题设矛盾,所以(3)f k k =,显然,有660(1982)661f ≤≤.若(1982)661f =,则(9999)(5198289)f f =⨯+5(1982)(89)f f ≥+5661(89)f ≥⨯+330529≥+3333>,与题设矛盾.所以(1982)660f =.例 2.5.2 已知2()2f x x x =+,求()n f x .解 由2()(1)1f x x =+-,因此有22242()(())((1)1)(1)1(1)1f x f f x f x x x ==+-=+-=+-,233222()(())((1)1)(1)1f x f f x f x x ==+-=+-, 猜想2()(1)1nn f x x =+-.下面用归纳法证明.(1)显然2n =时,猜想成立.(2)假设对n 成立,即 2()(1)1nn f x x =+-,则 (1)()(())n n f x f f x +=2((1)1)n f x =+- 22((1)11)1n x =+-+-12(1)n x +=+.综合(1)、(2),对任意n N ∈,有2()(1)1n n f x x =+-.数学归纳法一般适用于证明题,但有时候不排除这类找规律、猜想进而证明猜想的问题.遇到这种问题的时候,首先要找准规律,证明起来也就会很轻松了.2.6数列法利用等比、等差数列相关知识(通项公式、求和求积公式),求定义在N 上的函数()f x .例 2.6 已知(1)1f =,且对任意正整数n 都有(1)3()2f n f n +=+,求()f n . 解 在已知等式两边都加上1,得(1)12f +=,(1)13()213[()1]f n f n f n ++=++=+,所以(1)13()1f n f n ++=+. 因此,数列{()1}f n +是首项为(1)12f +=,公比为3的等比数列,它的第n 项为1()123n f n -+=⋅,故1()231n f n -=⋅-.熟悉等差、等比数列的相关性质如公差(比)、求和公式等,运用起来解决本题就会感到得心应手.2.7 反证法反证法在数学上使用得相当普遍,即一些问题从正面直接证明有困难,而它的结论的相反结论比原结论更具体,更明确,易于导出矛盾,这时一般采用反证法.先从已知条件中得出满足函数方程的一些特殊解,然后再用反证法证明除了这些解以外无其他解.例 2.7 设f :(0,)(0+∞→,)+∞是连续函数,若对x ∀,(0y ∈,)+∞,有 ()(())f x f xf y y=. (1) 证明此函数方程无解.证明 在(1)中取1x y ==,得((1))(1)f f f =, 取(1)y f =,得()(((1)))(1)f x f xf f f =, 再取1y =,得((1))()f xf f x =.从而有()()((1))(((1)))(1)f x f x f xf f xf f f ===, 即(1)1f =.在(1)中取1x =,得(1)1(())f f f y y y==, 联立(1)推出()((()))()()f x x f xf f y f f y y==,即()()()x f x f y f y=. 取x st =,y t =,s ∀,(0t ∈,)+∞,有()()()f s t f t f s =,s ∀,(0t ∈,)+∞, (2) 我们知道满足上面函数方程的连续函数为()a f x x =,(ln ())a f e =. 由1(())f f y y=,知 21a y y -=,即21a =-.矛盾,所以(1)没有连续解. 2.8不等式法在推导过程中,主要利用不等式02a b a +≥≥,0)b ≥的等式成立的充要条件a b =.例 2.8 设()f x 的定义域为(0,1),且()(1)2()(1)f x f x f y f y -+=-,x ∀,(0y ∈,1). (1) 若()0f x >,(0x ∀∈,1)且1()12f =,求f x (). 分析 本题给出了函数()f x 的一系列成立的条件,只要依据条件进行思考就很容易解决了.首先我们知道函数()f x 有一个特殊值1()12f =,而函数方程(1)中有,x y 两个未知量,故而解决问题时考虑到消元,并尽量结合1()2f 的值来使问题简化.解 在(1)式中取12y =,得 ()(1)2()(1)11()(1)22f x f x f x f x f f -=+=+--, (2) 再在(1)式中取12x =,y x =得11()()11222()(1)()(1)f f f x f x f x f x =+=+--, (3) 把(2)和(3)相加得 411()(1)()(1)f x f x f x f x =++-+-≥4=, 所以1()()f x f x =, 即2(())1f x =,因为()f x 是正的,故()1f x ≡,(0x ∀∈,1).3 其它方法前面介绍的几种方法在中学数学中比较常见,应用起来也得心应手.但初等问题何其繁多,解决的途径也就形式多样.还有很多其它的方式,由于本文篇幅有限,在此仅给出方法及其概念.如:参数法、配凑法、通解问题、多项式法以及柯西法等.参数法即先设参数再消去参数得出函数的对应关系,而求出()f x .前面在例2.1.1的解法二已经就参数法进行作答,在此我们就不再讲解了.配凑法是根据函数的概念、对应法则并结合配方法求解函数方程的一种基本方法.当我们不能利用设元法求解时,配凑法不失为一种有效的方法,也是应用定义的一种方法.前面已经介绍了很多求解函数方程的方法.然而,求一个或若干个解也许容易,如果要求出一个函数方程的所有解常常遇到困难.这时就是所谓的通解问题.我们知道,只要给出函数在一个周期内的函数值,则需要将定义域延拓到整个实数域R 上,从而求得的()f x 就是相应函数方程的解.例如函数方程()()f x T f x +=,x R ∈,对以[0,]T 为定义域的任意函数()g x ,都可以得到函数方程的解()g x , 当0x T ≤≤时;()f x =()g x nT -, 当(1)nT x n T ≤≤+时.其中n为整数.当函数方程中的未知函数是多项式时,就称为多项式函数方程.这是函数方程中较为常见、也较简单的一类.多项式法就是利用多项式相等的原理,通过比较等式两边的次数、系数,或通过比较方程的根的个数来求出多项式函数方程的解的方法.方程()()()+=称之为Cauchy方程,是法国数学家Cauchy最早研f x y f x f y究并解决的.他的解法是一种逐步扩充其定义域的推理方法,即先在自然数集上,求其函数方程应具有的形式,然后逐步证明这种解的定义域可扩充到整数、有理数、无理数直到实数.这种解题方法后人称之为Cauchy方法.在()f x单调(或连续)的条件下,先将自变量考虑成自然数求出函数方的解,然后证明该解的表达式当其自变量取成整数、有理数及实数时仍然满足该函数方程,从而获得函数方程的解.但它受函数连续性要求的限制.柯西法在高等数学中的使用频率极高,故在中学里只需了解就可.结论由于函数方程的形式相当多,解决的方式也就相对的丰富.尤其是在高等数学中,运用微积分解决函数方程问题就显得非常简单了;但在初等解法里,方式方法丰富多样:换元法(代换法)、赋值法、待定系数法、迭代周期法(迭代法)、数学归纳法、数列法、反证法及不等式法等,都是常见而且易懂的初等解法.但在解决很多问题时,不仅仅使用一种方法,也有几种方式相结合而进行的,如:例2.2.2就是换元法与赋值法的结合,例2.7是赋值法与反证法的结合.在求解某些问题时,通过构造函数方程,也可以将问题转化为函数方程分解,从而使问题比较简化、明了.参考文献[1] 张伟年、杨地莲、邓圣福.函数方程[M].成都:四川教育出版社,2002,36-72.[2] 陈刚、陈凌云.函数方程的初等解法[J].绥化师专学报.1996,第1期:120.[3] 黄洪琴.函数方程[J].成都教育学院报.2005,第19卷(6):117-118.[4] 毕唐书.全线突破.高考总复习·数学(理科版)[M].北京:中国社会出版社,2005,13.[5] 陈传理、张同君.竞赛数学教程[M].第2版.北京:高等教育出版社,2005,170-170.[6] 聂锡军.函数方程的解法及应用[J].丹东师专学报.1997,总第68期:20.[7] 姚开成.函数方程的几种解法[J].新疆石油教育学院学报.2000,第5卷(5):46-47.[8] 张同君、陈传理.竞赛数学解题研究[M].北京:高等教育出版社,2000(2005重印),72-75.[9] 余元希.初等代数研究(下册)[M].北京:高等教育出版社,1988(2004重印),344-345.[10] 蒋国宝.函数方程的解法[J].宁德师专学报(自然科学版).1998,第10卷(1):37-38.[11] 赵伟.解函数方程的若干初等方法[J].中学数学月刊.2004,第6期:30-31.致谢在本篇论文的选题,以及写作过程中,承蒙指导教师代泽明副教授的悉心指导,多次修改终于完成了本篇论文.在此我向代老师致以诚挚的感谢:通过这次论文的编写我感受到了学术编写的困难和乐趣,深省数学知识在各学科中的重要作用.同时,也感谢同组的所有同学,他们在我写作此篇论文的过程中也给予了我很多帮助.大学四年转瞬即逝,作为一名即将毕业的学生,我感谢绵阳师范学院的所有老师,感谢你们在这四年里对我的谆谆教导;感谢你们在这四年里对我的培养;感谢你们在这四年里对我的关怀;感谢你们为祖国培养了一批又一批优秀的人民教师.最后祝愿绵阳师范学院的明天更美好!祝愿数学与信息科学系前程似锦!祝愿所有老师身体健康,工作顺利!范臣菊 2007年5月30日。

(完整版)求函数方程的六种常用方法

(完整版)求函数方程的六种常用方法

(完整版)求函数方程的六种常用方法
在数学中,求解函数方程是一项常见的任务。

以下是六种常用
的方法用于解决函数方程问题。

1. 代数方法
代数方法是使用代数运算来求解函数方程的一种方法。

它通常
将方程中的变量替换为常数或者引入新的变量,通过代数运算化简
方程,从而求得函数的表达式或关系。

2. 函数递推法
函数递推法是通过逐步迭代,根据给定的初始条件和递推关系,逐步计算出函数的值,从而获得函数的表达式或关系。

3. 图像法
图像法是通过绘制函数的图像来求解函数方程。

通过观察函数
的图像特征,如零点、极值点等,可以推断出函数的性质和表达式。

4. 函数拟合法
函数拟合法是通过将函数方程的解与已知的数据点进行拟合,找到一个满足这些数据点的函数表达式。

这种方法通常使用最小二乘法或其他数值拟合技术。

5. 微分方程法
微分方程法是将函数方程转化为微分方程,通过求解微分方程的方法得到函数的表达式。

这种方法通常适用于一些特定类型的函数方程,如常微分方程。

6. 迭代法
迭代法是一种数值计算方法,通过反复迭代运算来逼近函数方程的解。

它常用于求解无法通过代数方法解析求解的函数方程。

以上六种方法是求解函数方程常用的方法,每种方法都有其适用的情况和优缺点。

在实际应用中,我们可以根据具体问题选择合适的方法来求解函数方程。

请注意,该文档所述的方法仅供参考,并不保证能够解决所有函数方程的问题。

在实际应用中,根据具体情况和问题特点进行灵活选择和使用方法,以获得最佳的解决方案。

数学解决函数方程问题的四种常见方法

数学解决函数方程问题的四种常见方法

数学解决函数方程问题的四种常见方法在数学领域,函数方程问题一直是一个重要的研究方向。

解决函数方程问题的方法有很多,但其中有四种方法是最常见和最经典的。

本文将对这四种方法进行详细介绍,帮助读者更好地理解和掌握这些方法。

一、代数法代数法是解决函数方程问题最基本的方法之一。

它通过将未知函数表示为一个或多个变量的代数表达式,然后利用方程的性质进行变形和运算,最终得到函数的解。

在代数法中,常用的技巧包括代入法、消元法和配凑法等。

通过这些技巧,我们可以将复杂的函数方程转化为简单的代数方程,从而更容易求解。

二、几何法几何法是解决函数方程问题的另一种重要方法。

它通过利用几何图形和几何性质来解释函数的性质和方程的意义,从而得到方程的解。

在几何法中,我们常常利用几何图形的对称性、平移性和旋转性等性质,结合函数的定义和方程的条件,来推导出函数的解。

这种方法不仅直观,而且可以帮助我们更好地理解函数方程的本质和几何意义。

三、递推法递推法是解决函数方程问题的一种迭代推导方法。

它通过构造一个递推序列,利用序列中前一项和后一项之间的关系来求解函数方程。

递推法在解决一些特殊类型的函数方程问题时非常有效,例如线性递推方程、二项式递推方程等。

通过寻找递推序列的通项公式,我们可以得到函数的解析表达式,从而解决函数方程问题。

四、分析法分析法是解决函数方程问题的一种基于数学分析的方法。

它通过利用导数、积分和极限等数学工具,对函数进行分析和推导,从而解决函数方程。

在分析法中,我们常常利用函数的导数性质、连续性和极限值等特点,来推导函数的性质和解析表达式。

这种方法在解决一些复杂的函数方程问题时非常有效,但需要一定的数学分析基础和技巧。

在实际应用中,以上四种方法常常互相结合,相互补充,形成一个有机整体。

通过灵活运用这些方法,我们可以更准确地解答各类函数方程问题。

对于不同类型的函数方程问题,选择合适的方法非常重要。

在实际解决问题时,我们需要根据具体情况选择合适的方法,从而更好地解决函数方程问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首先,我们会给出函数方程的相关概念包括函数方程的定义、函数方程的解以及解函数方程.
其次,利用函数与方程的基本性质,就中学数学中常出现的方法进行归纳并结合相应的例题解析.当然由于中学数学中考查点的不同,我们的讨论也有所侧重.对常见的方法包括换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法等均会加重笔墨,尤其会给出一些较为典型的例题分析以及巧解的方法,而对于不常用的方法本文也会提到,以让读者了解到比较前全面的函数方程问题的解题策略.
最后,就种种方法进行总结归纳.“法无定法”,关键在于人们对问题的观察、分析,进而选择最优的方法来解决问题.很多情况下,由于解决的途径并不唯一,所以在解决问题的时候一般采用多种方法同步求解,以达到简化求解过程的目的.
1函数方程的一些相关概念
1.1函数方程的定义
含有未知函数的等式叫做函数方程.如 , , 等,其中 即是未知函数.
1.2函数方程的解
设某一函数 对自变量在其定义域的所有值均满足某已知方程,那么把 就叫做已知函数方程的解.即能使函数方程成立的 就叫做函数方程的解.函数方程的解可能是一个函数,也可能是若干个函数或无穷多个函数或无解.如偶函数、奇函数、 分别是上述各方程的解.
1.3解函数方程
求函数方程的解或证明函数方程无解的过程就称为解函数方程.即指的是在不给出具体函数形式,只给出函数的一些性质和一些关系式而要确定这个函数,或求出某些函数值,或证明这个函数所具有的其他性质.
解 在原方程中令 , 得
,(1)
再令 , 得
,(2)
又再令 , 得
,(3)
(1)+(2)-(3)得
.
令 , 并将 换成 得
,( , 均为任意常数).
代入(1)式验证
.
所以 是函数方程(1)的解.
赋值法是很特殊的一种方法,首先它考验人们的“眼力”,即根据所给出的式子找出其规律;其次,就是“笔力”即计算方面的能力,所赋的值即某些特殊值要有助于解题;最后,不难看出赋值法其实就是与代换法、消元法等方法相结合的一种方法.如例2.2.1就是赋值法与反证法相结合,例2.2.2是赋值法、代换法、消元法结合的典型.
解 令 ,其中 为非负整数.由(ii)得
.(1)
若 ,则

矛盾.故 ,由(i)有
.(2)
若 ,则

于是由(i),得
,(3)
但(2)与(3)矛盾,故 是惟一解.当 时,式(1)为

此函数满足条件(i)、(ii),所以得惟一解 .
例2.2.2解函数方程 .
分析 此题是函数方程里较为典型的一个问题,在很多文章中都有提到.本题中方程含有 两个未知数,对于一个方程,首先想到的就是消元,考虑到三角函数 的特殊性质,可用一些比较特殊的值分别去代换 ,再求得 的表达式.
2.2赋值法
赋值和代换是确定适合函数方程的函数性质的基本方法,根据所给条件,在函数定义域赋与变量一个或几个特殊值,使方程化繁为简,从而使问题获解.
例2.2.1函数 ( 为非负整数),满足:
(i)对任意非负整数 ,有 ;
(ii)对任意 ,有 .
求 的值.
分析 本题欲求 的值,则须了解 有什么性质.由条件(i)、(ii)可以联想到 的取值是本题的关键,而分别利用条件(i)、(ii)进行推导,并结合反证法推出矛盾,得到 的唯一值,进而得解.
2函数方程的常见解法
由于函数与方程的性质极多,解题的方法也形式多样,出现较为频繁的有换元法(代换法)、赋值法、迭代周期法(递推法)、待定系数法、数学归纳法等等.
2.1换元法(代换法)
换元法又叫代换法或引进辅助未知数法或定义法.将函数方程中的自变量适当地以别的自变量代换(代换时应注意使函数的定义域不发生变化),得到一个新的较为简单的函数方程,然后直接求解未知函数.但值得注意的是,某些换元会导致函数的定义域发生变化,这时就需要进行验证换元的可行性.
,

.
又因为
,
所以
, ,

, .
解法二 设所求函数 的参数表达式


即得
,(1)
.(2)
,消去参数 ,得

整理,得
, , ,

, , .
在本题中,由于三角函数可以相互转化,很容易看出 与 之间的联系,然后直接利用换元法进行转化,但考虑到 (或 )的定义域,这个环节一般容易出错.故一般采用后面介绍的参数法相对来说也就简单多了.
2.3迭代周期法(递推法)
函数迭代是一类特殊的函数ห้องสมุดไป่ตู้合形式.一般由函数方程找出函数值之间的关系,通过n次迭代得到函数方程的解法.
例2.3.1对任意正整数 ,令 定义为 的各位数字和的平方,求 .
分析 本题是迭代的简单运用题,由“ 定义为 的各位数字和的平方”入手,可以找出11与函数方程以及函数值之间的关系,结合数列相关知识通过 次迭代从而求解.
例2.1已知 ,求 .
分析 此题是一个最基本的函数方程问题,要求解函数 的表达式,就需要将 和 进行转化.当然,我们可以先用换元法把 , 用 代替,消去 , ,就得到一个关于 的解析式,再用 替代 ,于是得解.但这里我们还给出了另外的解法,就是用 的参数表达式进行求解.
解法一 令 ,所以

因为
,
所以
解 由已知有 ,






从而当 为大于3的奇数时,

当 为大于3的偶数时,


.
例2.3.2设 定义在自然数集 上,且对任意 ,都满足 , ,求 .
解 令 ,得

再依次令 , …, ,有





依次代入,得
… ,
所以
, .
前面的例2.3.1仅是迭代的入门题,可以直接根据函数方程找出函数值之间的关系,然后通过 次迭代进行求解.而在迭代问题中,很大一部分题目并不是仅借助迭代的思想来解决的,而是综合所学知识进行求解.如例4.2就是赋予一些特殊值,再利用递推法简化问题,从而求解.
绪论
在数学研究的许多领域中如代数学、几何学、概率论等都涉及函数方程问题,在计算机科学中迭代理论和方法也涉及函数方程问题,在航空技术、遥感技术、经济学理论、心理学理论等诸多方面也提出了许多函数方程模型.函数方程因此一直受到广泛关注,是当今数学研究的一个十分重要的课题.由于函数方程形式多样,涉及面广,难度大,需要大量的数学基础知识.尤其是在中学数学教学中,函数方程是最基本、最易出现的问题,也是历年高考的重点.在中学教学和国外数学竞赛中,经常遇到函数方程问题.这类题目一般是求解某一给定的函数方程,而数学上尚无一般方法可循.当然,较大一部分中学生在遇到这类问题时,常常没有比较清晰的解题思路.本文就着重以函数与方程的性质来讨论函数方程在中学数学中的应用,及解决问题的途径,并通过实际问题的求解过程来阐述.
相关文档
最新文档