求函数零点的几种方法
考点1零点的求法及零点的个数
考点 1零点的求法及零点的个数题型 1:求函数的零点。
[例1]求函数 y x32x2x 2的零点.[ 解题思路 ] 求函数yx 32x 2x 2的零点就是求方程 x 32x 2x 2 0的根[解析]令 x32x2x 2 0,∴ x2 ( x 2) ( x 2) 0∴ (x 2)( x 1)( x 1) 0 ,∴x1或x 1或 x 2即函数yx32x 2x2的零点为 -1 ,1,2。
[ 反思归纳 ]函数的零点不是点,而是函数函数y f ( x) 的图像与x轴交点的横坐标,即零点是一个实数。
题型 2:确定函数零点的个数。
[例2]求函数 f(x)=lnx+2x - 6 的零点个数 .[ 解题思路 ] 求函数 f(x)=lnx+ 2x -6 的零点个数就是求方程 lnx + 2x -6=0 的解的个数[ 解析 ] 方法一:易证 f(x)= lnx+ 2x -6 在定义域(0,)上连续单调递增,又有 f (1) f (4)0,所以函数 f(x)= lnx + 2x-6 只有一个零点。
方法二:求函数 f(x)=lnx +2x- 6 的零点个数即是求方程lnx +2x- 6=0 的解的个数y ln x即求y62x 的交点的个数。
画图可知只有一个。
[ 反思归纳 ]求函数y f ( x)的零点是高考的热点,有两种常用方法:①(代数法)求方程f ( x)0的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数y f ( x)的图像联系起来,并利用函数的性质找出零点。
题型 3:由函数的零点特征确定参数的取值范围[ 例3] (2007 ·广东 ) 已知 a 是实数 , 函数f x2ax22x 3a, 如果函数y f x在区间1,1上有零点,求 a 的取值范围。
[ 解题思路 ] 要求参数 a 的取值范围,就要从函数y f x 在区间1,1 上有零点寻找关于参数 a 的不等式(组),但由于涉及到 a 作为x2的系数,故要对 a 进行讨论[ 解析]若a 0, f ( x)2x 3 ,显然在1,1上没有零点 ,所以a 0.48a 3a8a 224a4, 解得a37令2 a37y f x1,12时,上;①当恰有一个零点在②当f1 f 1a1a50 ,即1 a 5 时,yf x在1,1 上也恰有一个零点。
如何求函数零点的大致区间
如何求函数零点的大致区间
要求函数零点的大致区间,可以利用函数的性质和一些数值计算方法来确定。
以下是一些常用的方法:
1. 利用函数的图像来确定零点的大致区间。
首先,画出函数的图像,观察函数在横轴上的交点。
根据交点的位置,可以估计出零点的大致区间。
例如,如果函数在某个区间内的图像上方有一个交点,而在该区间内的图像下方没有交点,则该区间内很可能存在一个零点。
2. 利用函数的符号变化来确定零点的大致区间。
首先,找出函数的可能零点的候选区间。
然后,计算函数在这些候选区间的值,并观察函数值的符号变化。
如果函数在某个区间内的函数值从正数变为负数,或者从负数变为正数,则该区间很可能包含一个零点。
3. 利用二分法来确定零点的大致区间。
二分法是一种数值计算方法,通过不断将函数的区间进行划分,并计算函数在每个区间中点的值,然后根据函数值的符号确定下一步的区间,直到找到零点的大致区间为止。
4. 利用牛顿迭代法来确定零点的大致区间。
牛顿迭代法是一种数值计算方法,通过不断迭代逼近函数的零点。
根据函数的零点的近似值,通过牛顿迭代公式计算下一个近似值,并根据迭代过程中的函数值的符号确定零点的大致区间。
这些方法不一定能够准确得到零点的位置,但可以给出一个较为可靠的零点的大致区间。
matlab找零点函数
matlab找零点函数在MATLAB中,要寻找函数的零点,可以使用几种不同的方法,包括二分法、牛顿法、割线法和方程迭代法等。
下面将介绍这些方法的原理和MATLAB中的实现。
1. 二分法(Bisection Method):对于一个已知的连续函数 f(x),如果在区间 [a, b] 内 f(a) 和 f(b) 异号,则函数在该区间内至少存在一个零点。
二分法的基本思想是不断将区间二分,直到找到零点的近似解。
可以使用MATLAB内置函数 fzero 来实现二分法。
例如,对于函数 f(x)= x^2 - 4,在区间 [1, 3] 内寻找零点的代码如下:```matlabx = fzero(f, [1, 3]);disp(x);```2. 牛顿法(Newton's Method):牛顿法基于函数的泰勒级数近似,通过迭代逼近函数的零点。
其基本思想是在当前估计值 x0 处,通过函数f(x) 的导数 f'(x) 来计算下一个估计值 x1、可以使用MATLAB内置函数fzero 来实现牛顿法。
例如,对于函数 f(x) = x^2 - 4,在初始估计值x0 = 2 处寻找零点的代码如下:```matlabx0=2;x = fzero(f, x0);disp(x);```3. 割线法(Secant Method):割线法是在牛顿法的基础上做了改进,使用两个初始估计值 x0 和 x1 来逼近函数的零点。
割线法的迭代公式为x(n+1) = x(n) - f(x(n)) * (x(n) - x(n-1)) / (f(x(n)) - f(x(n-1)))。
同样,可以使用MATLAB内置函数 fzero 来实现割线法。
例如,对于函数 f(x) = x^2 - 4,在初始估计值 x0 = 1 和 x1 = 2 处寻找零点的代码如下:```matlabx0=1;x1=2;x = fzero(f, [x0, x1]);disp(x);```4. 方程迭代法(Fixed-Point Iteration Method):方程迭代法是将原方程 f(x) = 0 转化为等价的迭代方程 x = g(x),通过不断迭代g(x) 来逼近函数的零点。
求函数零点所在区间方法
求函数零点所在区间方法
牛顿迭代法和二分法是求函数零点所在区间上常用的两种方法。
牛顿迭代法是一种属于非线性迭代的方法。
该方法以拟合函数的二次函数进行局部逼近,因此也称为牛顿二次插值法,其核心是基于变分法的单点迭代方法,利用函数的前缀
函数在某点处的导数及势函数在此点处的值,迭代求解函数零点的近似值。
牛顿迭代法的
关键是计算函数的非线性的导数,根据变分法的思想,每次迭代过后,利用两点的差商求
函数的一次近似值。
如果函数是二次函数,则可以利用牛顿迭代法,转换为一次导数等于
0就可以获得最终精确零点。
牛顿迭代法的特点是速度快,收敛性良好,在数值计算中经
常用来求函数零点所在区间,不过,该方法仅能求连续函数的零点,也就是说可以求出连
续函数在某个区间内的零点。
二分法也称为折半法、折半搜索法,与牛顿迭代法很相似,属于单点迭代,效率较低,适用于求函数单调区间上的零点。
其核心思想是:在某个函数区间上,选取点,判断函数
图像在该点是上升或下降,从而在不断缩小范围的基础上,找到函数零点所在的区间,最
终得到函数零点。
牛顿迭代和二分法都是求函数零点的基本方法,牛顿迭代法收敛速度较快,但是只适合连续函数;而二分法使用简单,可以求不连续而且是单调的函数的零点,
是比较常用的求函数零点的方法,但是它的收敛速度相较于牛顿迭代来慢一些。
求函数零点的方法
求函数零点的方法
1. 图像法:将函数的图像画出来,零点即为函数与x轴交点。
2. 代数法:将函数化简并解方程,使函数等于0,求出解即为零点。
3. 迭代法:根据函数的单调性不断逼近零点,直至满足精度要求。
4. 数值逼近法:利用数值计算方法,对函数进行逼近,求出函数的近似零点。
5. 正交多项式法:将函数展开成正交多项式的形式,利用正交多项式的性质求出函数的零点。
6. 差分法:利用函数在不同点上的取值差别,逼近求出函数的零点。
7. 导数法:利用导数的定义和性质,求出函数的导数,并找出导数为0的点,即为函数的零点。
零点定理文档
零点定理简介在数值计算和数学分析领域中,零点定理是指寻找函数的零点的一类方法。
也就是说,它们帮助我们找到函数在某个区间内的根或解。
零点定理在实际应用中起着重要的作用,例如在优化算法、非线性方程求解和图像处理等领域。
一、二分法二分法是最常见的零点定理之一。
它的思想非常简单,通过不断缩小区间来逼近根的位置。
具体步骤如下:1.选择一个初始区间[a, b],其中函数f(a)和f(b)的符号必须不同。
2.计算区间的中点c,即(a + b) / 2。
3.计算函数在中点处的值f(c)。
4.如果f(c)等于 0,那么c就是零点。
如果不等于 0,继续下一步。
5.如果f(a)与f(c)的符号相同,说明根在区间[c,b]中,将a的值更新为c,然后返回第 2 步。
6.如果f(b)与f(c)的符号相同,说明根在区间[a,c]中,将b的值更新为c,然后返回第 2 步。
该方法不断迭代,直到找到满足精度或迭代次数的根。
二分法的优点是收敛速度较快且易于实现,但它对初始区间的选择比较敏感。
二、牛顿法牛顿法是另一种常用的零点定理。
它是一种迭代方法,通过使用函数的导数来逼近根的位置。
以下是牛顿法的步骤:1.选择一个初始点x0。
2.计算函数在x0处的导数f'(x0)。
3.计算曲线和 x 轴的交点,即求解方程f(x0) +f'(x0) * (x - x0) = 0,其中x是未知的根。
4.通过求解上述方程,得到x1。
将其作为下一次迭代的初始点。
5.重复步骤 2-4,直到满足预设的精度条件或达到最大迭代次数。
牛顿法的收敛速度较快,尤其是初始点选择得当时。
然而,对于某些函数和情况,牛顿法可能会出现发散的问题。
三、割线法割线法是一种类似于牛顿法的迭代方法。
与牛顿法使用函数的导数来逼近根不同,割线法使用两个初始点之间的割线来逼近根。
具体步骤如下:1.选择两个初始点x0和x1。
2.计算函数在x0和x1处的值f(x0)和f(x1)。
3.计算通过两点(x0, f(x0))和(x1, f(x1))的割线的方程。
函数的单调性与零点的求解
函数的单调性与零点的求解函数的单调性和零点的求解在数学中是非常重要的概念和技巧。
单调性描述了一个函数在某个区间内的增减趋势,而求解函数的零点则是求出函数取零的x值。
本文将对函数的单调性和零点的求解进行详细的讨论。
一、函数的单调性函数的单调性指的是函数在定义域内增减的趋势。
一个函数可以是递增的,也可以是递减的,还可以是常数函数或者不单调的函数。
下面是一些常用的判断函数单调性的方法:1. 导数法:对于连续可导的函数,通过求导可以得到函数的导函数,即函数的变化率。
如果导函数在某个区间内恒正,那么函数在该区间内是递增的;如果导函数在某个区间内恒负,则函数在该区间内是递减的。
2. 增减表法:对于不连续的函数或者无法求导的函数,可以通过增减表来判断函数的单调性。
增减表是一个表格,将函数的定义域分成若干个区间,然后确定每个区间上函数的增减性。
在每个区间内选择一个x值,代入函数中求得函数值,然后观察函数值的增减情况,从而确定函数的单调性。
二、函数零点的求解函数的零点指的是函数取零的x值,即满足函数f(x) = 0的x值。
求解函数的零点在许多数学问题中都是非常重要的:1. 列方程法:对于一元函数,可以通过列方程来求解函数的零点。
将函数等于零的方程列出,然后通过解方程的方法来求得函数的零点。
例如,对于函数f(x) = x^2 - 4x + 3,我们可以将f(x) = 0化为方程x^2 -4x + 3 = 0,然后通过因式分解、配方法或者求根公式等方法解方程,得到函数的零点为x = 1和x = 3。
2. 图像法:对于一元函数,可以通过观察函数的图像来估计函数的零点。
将函数的图像绘制在坐标系中,然后通过观察图像与x轴的交点来估计函数的零点。
这种方法在函数比较简单、对称性较明显的情况下比较有效。
3. 数值解法:对于一些复杂的函数,或者求解精度要求较高的情况,可以使用数值解法来求解函数的零点。
常用的数值解法包括二分法、牛顿迭代法、割线法等。
函数零点区间的求法
函数零点区间的求法
函数零点求法是一种数学技术,其主要作用是通过分析函数的行为来确定它在特定区间内的零点(即根)。
由于函数零点可以揭示函数的性质,它一直是最基本的求解解析函数的方式之一。
如果一个函数在某个区间内只有一个零点,那么可以根据函数表达式的性质使用某种方法找出这个点。
有三种基本方式可以用来求取函数零点:分段函数、图形法以及特征分析法。
首先,最简单的是分段函数,它可以通过迭代一个函数的一个极限,找出一段区间内可能存在零点的函数临界值来确定其零点。
其次,采用图形法时,可以画出函数的曲线图,通过观察其曲线的性质来确定
它的零点。
最后,特征分析法的基本思想是用求导法对函数求导,因此可以由零点的性质确定函数的零点。
此外,当求解函数零点区间时,可以采取多种不同的策略,比如使用函数迭代、采用仿射变换等方法。
这些方法可以精确地求出函数零点区间,并预测函数的行为。
总之,函数零点求法是一种探索函数的特性的重要方法,它可以用来准确地
确定函数在特定区间内的零点,从而更好地分析函数的行为。
所以,这种算法广泛应用于数学、物理和工程等领域,它的重要性和威力不容小觑。
求函数零点的方法二分法
,
b0]
的中点,那么此中点对应的横坐标为
x0=(1+2)/2=1.
1 1 (3)如果f(a1)f(x1) >0 ,那么零点位于区间[x1 , b1]中,令a2=x1,b2=b1.
xa 点时不变号,这样的零点叫做不变号零点 (ba) (ab).
2 2 变号零点:x1 , x2
0
0
0ቤተ መጻሕፍቲ ባይዱ
(3)如果f(a1)f(x1) >0 ,那么零点位于区间[x1 , b1]中,令 a2=x1,b2=b1.
……
继续实施上述步骤,直到区间[an,bn] ,函数的零点总位 于区间[an,bn] 上,当an 和 bn 按照给定的精确度所取的近 似值相同时,这个相同的近似值就是函数 y=f(x)的近似零点, 计算中止.这时函数y=f(x) 的近似零点满足给定的精确度.
例题分析
求函数f (x) = x3+x2-2x-2 的一个正实数零点〔精确到0.1〕
解: 由于f (1)=-2<0,f (2)=6>0可以确定区间[1,2]作为 计算的初始区间. 用二分法逐步计算,列表如下:
端点或中点横坐标 计算端点或中点的函数值
定区间
a0=1, b0=2
f (1)=-2, f (2)=6
0
0
0
f (x2)=-0. 计 算 f(x)与 f(a), 并 判 断 :
f (1)=-2, f (2)=6
0
0
(1)如果 f (x0)=0 用二分法逐步计算,列表如下:
4375] 的左右端点保
,那么
x0就是f (x)
的零点,计算中止
留两位有效数字所取的近似值都是1.
数学-精品专题----七种零点问题
题型一:零点存在定理法判断函数零点所在区间 (3)一、单选题 (3)二、多选题 (6)三、填空题 (9)四、解答题 (14)题型二:方程法判断零点个数 (16)一、单选题 (16)二、多选题 (18)三、填空题 (20)四、解答题 (22)题型三:数形结合法判段函数零点个数 (24)一、单选题 (24)二、多选题 (28)三、填空题 (31)四、解答题 (34)题型四:转化法判断函数零点个数 (39)一、单选题 (39)二、多选题 (42)三、填空题 (44)四、解答题 (46)题型五:零点存在定理与函数性质结合判断零点个数 (48)一、单选题 (48)二、多选题 (50)三、解答题 (53)题型六:利用函数零点(方程有根)求参数值或参数范围 (57)一、单选题 (57)二、多选题 (59)三、填空题 (61)四、解答题 (62)题型七:利用函数的交点(交点个数)求参数 (63)一、单选题 (63)二、多选题 (66)三、填空题 (68)四、解答题 (71)1.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.2.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.3.正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k的不等式组,从而可求相应的参数的取值范围.4.涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.5.函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.6.对于复合函数()y f g x ⎡⎤=⎣⎦的零点个数问题,求解思路如下: (1)确定内层函数()u g x =和外层函数()y f u =; (2)确定外层函数()y f u =的零点()1,2,3,,i u u i n ==;(3)确定直线()1,2,3,,i u u i n ==与内层函数()u g x =图象的交点个数分别为1a 、2a 、3a 、、n a ,则函数()y f g x ⎡⎤=⎣⎦的零点个数为123n a a a a ++++.题型一:零点存在定理法判断函数零点所在区间一、单选题【分析】结合对数函数、函数零点存在性定理等知识求得正确答案. 【详解】1133log 4log 10a =<=,3372,12b b =<<<,对于函数()()2ln 0f x x x x=->, ()f x 在()0,∞+上递增,()()22ln 210,e 10ef f =-<=->,所以()f x 存在唯一零点x c =,()2,e c ∈,使()0f c =,所以对于2ln c c=,有()2,e c ∈,所以a b c <<.故选:AA .3,4()B .4,5()C .5,6()D .8,9()【答案】B【分析】根据零点存在定理,先判断函数的单调性,再计算函数在端点处的函数值,即可得到答案.【详解】()12ln 3f x x x=-- ,由对数函数和幂函数的性质可知,函数在,()0x ∈+∞时为单调增函数,11(3)2ln332 1.0993033f =--≈⨯--<, 11(4)4ln2340.69330.478044f =--≈⨯--=-<,11(5)2ln532 1.60930.018055f =--≈⨯--=>,11(6)2ln632(ln 2ln3)2 1.7926630.4140f =--=+≈⨯--=>,因为()f x 在,()0x ∈+∞内是递增,故(8)0,(9)0f f >> ,函数是连续函数,由零点判断定理知,()f x 的零点在区间(4,5)内,故选:B .【分析】先根据题意解方程,解出5e 910k-=,在和端点值比较大小,由函数单调性和函数连续得到结果.【详解】将200,5,20A t L ===代入()()1e kt L t A -=-,解得:5e 910k-=,其中5e x y -=单调递减,而414e e --⎛⎫= ⎪⎝⎭,4910000e 106561-⎛⎫=< ⎪⎝⎭,而4y x -=在()0,∞+上单调递减,所以115204ee910-⨯-=<,结合单调性可知1113249<<e e 10e ---<,即1115551015209<0e e e 1-⨯-⨯-⨯<<,而050e 91e 10-⨯==>,其中5e xy -=为连续函数,故记忆率k 所在区间为1(0,)20. 故选:A【分析】根据零点存在性定理进行求解.【详解】易知()f x 在R 上单调递增且连续.由于()1440163f -=-<,()122043f -=-<,()111023f -=->,当0x >时,()0f x >,所以()02,1x ∈--.故选:B【分析】求出c 的值,利用零点存在定理得出31,2b ⎛⎫∈ ⎪⎝⎭,然后比较a 、b 、c 的大小关系,结合函数()f x 的单调性可得出结论.【详解】因为()f x 的定义域为()0,∞+,()1e 0xf x x'=+>,则函数()f x 在其定义域上为增函数,3e 16>,则32e 4>,则3233e ln 4022f ⎛⎫=+-> ⎪⎝⎭,因为()1e 40f =-<,由零点存在定理可知31,2b ⎛⎫∈ ⎪⎝⎭,由()2310g x x x '=--=可得1=x 2=x .当x <或x >时,()0g x '>x <<()0g x '<.所以,1c =<.因为2223log log 3log 422a =<=<=,所以,01cb a <<<<,故()()()f a f b fc >>.故选:A.6.(2022·安徽·安庆一中高三期末(理))函数2()log f x x x =+的零点所在的区间为( )【分析】依据函数零点存在定理去判断2()log f x x x =+的零点所在的区间即可. 【详解】2()log f x x x =+为(0,)+∞上的递增函数, 222111112log log 3log 03333332f ⎛⎫=+=-<-< ⎪⎝⎭=-,21111log 02222f ⎛⎫=+=-< ⎪⎝⎭,()22222251log log 353log 333333f ⎛⎫=+=-=- ⎪⎝⎭()221log 32log 2703=->()()22222333511log log 354log 3log log 04444443281f ⎛⎫=+=-+=-+=-+> ⎪⎝⎭,则函数2()log f x x x =+的零点所在的区间为12,23⎛⎫⎪⎝⎭故选:B二、多选题【分析】由题可得4()e x f x a x π-'=-,由()14f π=-可知,()04f π'=,进而可求1a =,然后再证明即得;再利用数形结合可得()'f x 在,2ππ⎛⎫⎪⎝⎭上存在唯一的零点,利用零点存在定理及三角函数的性质即得.【详解】∵4()e 1x f x a x π-⎛⎫=- ⎪⎝⎭,∵4()e x f x a x π-'=-+,又函数4()e 1x f x a x π-⎛⎫=-- ⎪⎝⎭在区间0,2π⎛⎫ ⎪⎝⎭的最小值为1-,∵函数在区间0,2π⎛⎫⎪⎝⎭上不单调,又44()e 1144f a ππππ-⎛⎫=-=- ⎪⎝⎭,∵4x π=时,函数在区间0,2π⎛⎫⎪⎝⎭上取得最小值,可得原条件的一个必要条件()04f π'=,∵44()e 1044f a a ππππ-'=-=-+=,即1a =,下面证明充分性:当1a =时,4()e 1xf x x π-=-,4()e xf x x π-'=-,令()4e xg x x π-=-,则()4os exx g x π-'=>,∵函数()'f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又44(0)e 0,()e 02f f πππ-''=-<=->,∵函数()'f x 在0,2π⎛⎫⎪⎝⎭上存在唯一的零点4x π=,且在0,4π⎛⎫ ⎪⎝⎭上()0f x '<,在,42ππ⎛⎫ ⎪⎝⎭上()0f x '>,∵函数()f x 在区间0,2π⎛⎫⎪⎝⎭的最小值为()14f π=-,综上,1a =故A 正确;∵4()e xf x x π-'=-+,令4()e 0x f x x=π-'=-,得4e x x π-,由函数图象可知4e x ,y y x π-==在区间,2ππ⎛⎫⎪⎝⎭上只有一个交点,即存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭,使得040e x x π-,又3243()e 10,()e 04f >f ππππ--''=-+=-<,故03,4x ππ⎛⎫∈ ⎪⎝⎭,且当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当()0,x x π∈时,()0f x '<,∵在区间,2ππ⎛⎫⎪⎝⎭上,()f x 唯一的极大值点0x ,040000()e 11x f x x x x π-⎛⎫=-=- ⎪⎝⎭02sin 14x π⎛⎫=-- ⎪⎝⎭,∵03,4x ππ⎛⎫∈ ⎪⎝⎭,03,424x πππ⎛⎫-∈ ⎪⎝⎭,∵00()2sin 12114f x x π⎛⎫=--<-= ⎪⎝⎭.故CD 正确.故选:ACD.8.(2022·全国·高三专题练习)设函数()y f x =的定义域为R ,如果存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,则称函数()y f x =是“类周期函数”,T 为函数()y f x =的“类周期”.现有下面四个命题,正确的是( )A .函数()x f x -=3是“类周期函数”B .函数()3f x x =是“类周期函数”C .如果函数()cos f x x ω=是“类周期函数”,那么“k ωπ=,Z k ∈”D .如果“类周期函数”()y f x =的“类周期”为1-,那么它是周期为2的周期函数 【答案】ACD【分析】根据类周期函数的定义,分别进行判断即可.【详解】解:对于A ,若函数()xf x -=3是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即33x T x T ---=⋅,即(3)30T x T ---⋅=,即30T T --=,令()3Tg T T -=-,因为()()1200110,11033g g =-=-<=-=>,且函数()g T 在0,1上连续,所以函数()3Tg T T -=-在0,1上存在零点,即方程30T T --=在0,1上有解,即存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()x f x -=3是“类周期函数”,故A 正确;对于B ,若函数()3f x x =是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即()33x T T x+=⋅,则()33x T T x+=,即1x T Tx x+=+对任意的x 恒成立,则0T =,矛盾,所以不存在常数()0T T ≠,对于任意x ∈R ,都有()()f x T T f x +=⋅,所以函数()3f x x =不是“类周期函数”,故B 错误.对于C ,若函数()cos f x x ω=是“类周期函数”,则存在非零常数T ,使()()f x T T f x +=⋅,即cos()cos x T T x ωωω+=;故1T =或1T =-, 当1T =时,cos()cos x x ωωω+=,由诱导公式得2k ωπ=,k Z ∈;当1T =-时,cos()cos x x ωωω+=-,由诱导公式得()21k ωπ=+,k Z ∈;故“k ωπ=,k Z ∈”,故C 正确;对于D ,如果“类周期函数”()y f x =的“类周期”为1-, 则(1)()f x f x -=-,即(1)()((1))(1)f x f x f x f x -=-=--+=+;故它是周期为2的周期函数;故D 正确.9.(2021·江西·模拟预测)已知实数1m n <<,设方程()()()(1)()(1)0x m x n x m x x n x --+--+--=的两个实数根分别为1212,()x x x x <,则下列结论正确的是( )A .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集为12(,)x xB .不等式()()()(1)()(1)0x m x n x m x x n x --+--+--<的解集可能为空集C .121x m x n <<<<D .121m x n x <<<< 【答案】AD【分析】构造二次函数()()()(1)()()()1x m x n x m x x n x x f --+--+--=,分析函数()f x 的图象特征即可判断作答.【详解】令()()()(1)()()()1x m x n x m x x n x x f --+--+--=,R x ∈, 因1m n <<,则函数()f x 的图象对称轴1(,1)3m n x m ++=∈,且()f x 在1(,)3m n ++-∞上递减,在1(,)3m n +++∞上递增,又()(1)()0m n f m m --=>,()(1)()0n m f n n --=<,(1)(0()1)1m f n -->=,于是得函数()f x 有两个零点1212,()x x x x <,且满足121m x n x <<<<,不等式()0f x <的解集为12(,)x x ,所以A 正确,B 不正确,C 不正确,D 正确.故选:AD三、填空题在ABC 中,函数y x =+若命题“x ∃∈若函数()f x 【答案】∵∵∵【分析】∵利用大边对大角和正弦定理可证;∵变形后利用基本不等式进行求解最大值;∵先把命题否定,得到对x R ∀∈,2(3)10ax a x +-+>恒成立,分0a =与0a ≠两种情况求出a的取值范围;∵先根据(1)2af =-得到32a b c =--,得到(2)f a c =-,接下来分0c >与0c ≤,利用零点存在性定理得到答案.【详解】在ABC 中,因为A B >,所以a b >,由正弦定理得:sin sin a bA B=,所以sin sin A B >,同理可证,当sin sin A B >时,A B >,故在ABC 中,A B >是sin sin A B >的充要条件,∵正确;因为1x <,所以10x -<,201x ,所以()221111111y x x x x ⎡⎤=-++=--++≤-⎢⎥--⎣⎦,当且仅当()211x x -=-,即1x =等号成立,所以函数2(1)1y x x x =+<-的最大值是1-∵错误;命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则对x R ∀∈,2(3)10ax a x +-+>恒成立,当0a =时,310x -+>不恒成立,当0a ≠时,只需0Δ0a >⎧⎨<⎩,解得:19a <<,综上:若命题“x R ∃∈,使得2(3)10ax a x +-+≤”是假命题,则19a <<;∵正确;(1)2a b c a f ++==-,所以32ab c =--,因为(0)f c =,3(2)42422a f a b c a c c a c ⎛⎫=++=+--+=- ⎪⎝⎭,当0c >时,(0)0f c =>,因为0a >,所以(1)02af =-<,故()(0)10f f <,由零点存在性定理得:在区间()0,1上,至少存在一个零点,当0c ≤,(2)0f a c =->,()(2)10f f <,由零点存在性定理得:在区间()1,2上至少存在一个零点,综上:函数()f x 在区间(0,2)内必有零点,∵正确. 故答案为:∵∵∵11.(2022·全国·高三专题练习)已知函数()()2e x f x ax x =+-,且2a >-,()f x '为()f x 的导函数,下列命题:∵存在实数a ,使得导函数()f x '为增函数; ∵当0a >时,函数()f x 不单调;∵当21a -<≤-时,函数()f x 在R 上单调递减; ∵当1a =时,函数()f x 有极值.在以上命题中,正确的命题序号是______. 【答案】∵∵∵∵【分析】求()f x ',令0a =可判断∵;根据零点存性定理可判断022,0x a ⎛⎫∃∈-- ⎪⎝⎭使得()00f x '=,可判断∵;令()()g x f x '=,求()g x ',由()g x '的符号判断()g x 的单调性,可求得()0g x ≤恒成立即()0f x '<恒成立可判断∵;求()f x '的单调性,根据零点存在性定理可知()00,1x ∃∈,使得()00f x '=可判断∵,进而可得正确答案.【详解】由()()2e xf x ax x =+-可得()()2e 1x f x ax a '=++-,对于∵,若0a =时,()2e 1xf x '=-为增函数,故∵对;对于∵,若0a >时,2222e 10af a a --⎛⎫'--=--< ⎪⎝⎭,()010f a '=+>,022,0x a ⎛⎫∃∈-- ⎪⎝⎭,使得()00f x '=,所以函数()f x 不单调,故∵对;对于∵,令()()2e 1x g x ax a =++-,则()()22e xg x ax a '=++,当21a -<≤-时,由()0g x '>得22x a ⎛⎫<-+ ⎪⎝⎭,由()0g x '<得22x a ⎛⎫>-+ ⎪⎝⎭所以()g x 在2,2a ⎛⎫-∞-- ⎪⎝⎭上单调递增,在22,a ⎛⎫--+∞ ⎪⎝⎭上单调递减,从而()22max e1a g x a ⎛⎫-+ ⎪⎝⎭=--,要使220e 1a a ⎛⎫-+ ⎪⎝⎭-≤-,则令22t a ⎛⎫=-+ ⎪⎝⎭,则112t a =--,所以e 12t t ≤+,令()()e 1102t t m t t =---≤≤,()1e 2t m t '=-,则()m t 在11,ln 2⎛⎫- ⎪⎝⎭单调递减,在1ln ,02⎛⎫ ⎪⎝⎭单调递增,而()11110e 2m -=+-<,()00e 010m =--=所以()0m t ≤恒成立,从而()22max e10a g x a ⎛⎫-+ ⎪⎝⎭=--≤,即()0f x '≤恒成立,即()f x 在R 上单调减.故∵正确;对于∵,当1a =时,()()3e 1x f x x '=+-,()()4e x f x x ''=+,可知()()3e 1xf x x '=+-在(),4-∞-单调递减,在()4,-+∞单调递增,因为()020f '=>,()2110ef '-=-<,()00,1x ∃∈,使得()00f x '=,所以函数()f x 有极值,故∵对.综上所述:∵∵∵∵都正确,故答案为:∵∵∵∵. 12.(2021·福建·三明一中高三学业考试)已知函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则k =__________.【答案】-3或2【分析】对函数()f x 求导,借助导数探讨其单调性,再用零点存在性定理分析计算即得.【详解】对函数()23x f x x =--求导得:()2ln 21x f x '=-,由()0f x '=得22log xe =,解得22log (log )x e =,当22log (log )x e <时,()0f x '<,当22log (log )x e >时,()0f x '>,于是得()f x 在22(,log (log ))e -∞上递减,在22(log (log ),)e +∞上递增,显然,13(3)0,(2)084f f -=>-=-<,则函数()f x 在区间(3,2)--上存在一个零点,又(2)10,(3)20f f =-<=>,即函数()f x 在区间(2,3)上存在一个零点,因函数()23x f x x =--的零点()()0,1x k k k Z ∈+∈,则3k =-或2k =,所以3k =-或2k =.故答案为:-3或2【分析】令21()()log 2x f x x =-,利用零点存在性定理可得a ∈,1(0,)2b ∈,从而可得12a b <- 【详解】令21()()log 2x f x x =-,则()f x 在(0,)+∞上单调递减,因为f (1)110022=-=>,111()log ()0222f =-=-<,21()log 2a a =,所以a ∈.122log b b =,0b >,21b ∴>,1(0,)2b ∴∈,∴12a b <- ∵:ln()a b -可能小于等于0,∴∵错误,∵:0b a -<,0221b a -∴<=,∴∵正确, ∵:0a b >>,∴11a b <,11a b∴->-,∴∵正确,∵:(1,2)a ∈,2log 0a ∴>, 1(0,)2b ∈,2log 0b ∴<,22log 0log a b ∴>>.∴∵正确,故答案为:∵∵∵.【分析】对于选项∵∵∵,直接代入求解即可判断;对于选项∵∵,先根据条件构造函数,判断函数的单调性,利用零点存在性定理判断即可.【详解】∵()224f x x x x =+-=,得240x x x +-=⇒=x =满足条件,故∵满足题意;∵()22,132,1x x f x x x ⎧≤⎪=⎨->⎪⎩,当1x ≤时,220x x x =⇒=或12x =;当1x >时,()2232321x x x x x -=⇒-=⇒=或3x =,即3x =;满足条件,故∵满足题意;∵()()21x f x e x x =+-=,令()2xg x e x =+-,易知()g x 为R 上的增函数,又()()010020,1120g e g e =+-<=+->,由零点存在性定理得()g x 在区间()0,1存在唯一的零点.故∵满足题意;∵()ln f x ax x a =--(01a <<),()ln ln 10ax x a x x a x a --=⇒+-+=, 令()()ln 1h x x a x a =+-+,又01a <<,则10a ->,易知()h x 为()0,∞+上的增函数, 又()()11131ln 12ln 20,1ln111044444h a a a h a a ⎛⎫=+-+=-++<=+-+=> ⎪⎝⎭,由零点存在性定理得()h x 在区间1,14⎛⎫⎪⎝⎭存在唯一的零点.故∵满足题意;∵()220f x x x x x=+=⇒=无实数解, 故∵满足题意;故答案为:∵∵∵∵.【点睛】本题主要考查了对布劳威尔不动点定理的理解,考查了零点存在性定理;考查学生的逻辑推理能力,运算求解能力.属于中档题.【分析】分别求出f (x )、g (x )零点所在区间,即可得到f (x +3)、g (x -4)的零点所在区间,结合题意,即可得到b -a 的最小值.【详解】∵f (x )=1+x -22x +33x ,∵'2()1f x x x =-+,∵'2213()1()024f x x x x =-+=-+>恒成立,∵f (x )=1+x -22x +33x 在R 上是单调递增函数.∵f (0)=1>0,f (-1)=506-<,∵f (x )在区间[-1,0]上存在唯一零点,∵f (x +3)在区间[-4,-3]上存在唯一零点;又∵g (x )=1-x +22x -33x ,∵'2()1g x x x =-+-,∵'2213()1()024g x x x x =-+-=---<恒成立,∵g (x )=1-x +22x -33x 在R 上是单调递减函数,∵g (2)=503-<,g (1)=106>,∵g (x )在区间[1,2]上存在唯一零点,∵g (x -4)在区间[5,6]上存在唯一零点,由F (x )=f (x +3)g (x -4)=0,得f (x +3)=0或g (x -4)=0,故函数F (x )的零点均在[-4,6]内,则b -a 的最小值为10.故答案为:10.【点睛】本题考查利用导数判断函数的单调性、函数零点与方程,考查分析理解,求值计算的能力,属中档题.四、解答题16.(2022·陕西西安·高三阶段练习(文))已知函数22()e x f x ax -=-(e 为自然对数的底数,R a ∈).(1)若1a =-,求证:()'f x 在区间()0,1内有唯一零点; (2)若()f x 在其定义域上单调递减,求a 的取值范围. 【答案】(1)证明见解析;(2)[0,2e].【分析】(1)把1a =-代入,求出()'f x 并探讨其单调性,再结合零点存在性定理判断作答. (2)利用给定单调性建立不等式,再分类分离参数,构造函数,讨论求解作答.(1)当1a =-时,()22e xf x x -=+,求导得:2()2e 2x f x x -'=-+,令2()2e 2x x x ϕ-=-+,则2()4e 20x x ϕ-'=+>,则函数()ϕx 在R 上单调递增,即函数()'f x 在R 上单调递增,而(0)20f '=-<,221(1)2e 22(1)0e f -'=-+=->,由函数零点存在性定理知,存在唯一0(0,1)x ∈,有0()0f x '=,所以()'f x 在区间()0,1内有唯一零点.(2)函数22()e x f x ax -=-的定义域是R ,依题意,R x ∀∈,2()2e 20x f x ax -'=--≤成立, 当0x =时,20-≤成立,R a ∈,当0x >时,2e x a x -≥-,令2e ()xg x x -=-,0x >,2221()0e x x g x x +'=>,即函数()g x 在(0,)+∞上单调递增,又当0x >时,()0g x <恒成立,于是得0a ≥,当0x <时,2e x a x -≤-,令2e ()xh x x -=-,0x <,2221()e x x h x x +'=,当12x <-时,()0h x '<,当102x -<<时,()0h x '>, 因此,()h x 在1(,)2-∞-上单调递减,在1(,0)2-上单调递增,当12x =-时,min 1()()2e 2h x h =-=,于是得2e a ≤,综上得:02e a ≤≤,所以a 的取值范围是[0,2e].【点睛】思路点睛:涉及函数不等式恒成立问题,可以探讨函数的最值,借助函数最值转化解决问题.f x 零点的个数;,求a 的取值范围答案见解析;(2)6a ≤【分析】(1)对()f x 求导有()()(1)e (0)xf x x x a x '=-->,再研究()e (0)xg x a x x -=>的单调性,结合()01f '=及零点存在性定理,讨论a 的范围判断f x 零点的个数.(2)讨论0a ≤、0e a <<、e a =、e a >,结合fx 的符号研究()f x 的单调性并结合(1)ef =求参数a 的范围.(1)()()()2e (1)(1)e (0)x xf x x x a x x x a x '=---=-->,令()e (0)x g x a x x -=>,则()(1)e 0x g x x '=+>,故()g x 在(0,)+∞上单调递增,而()01f '=, 当0a ≤时,e x x a =无解;当0e a <<时,由(0)0g a =-<,(1)e 0g a =->,故e x x a =有一个在(0,1)上的解;当e a =时,由(1)0g =,故e x x a =的解为1;当e a >时,由(1)e 0g a =-<,()(e 1)0a g a a -=>,故e x x a =有一个在(1,)+∞上的解; 综上,当0a ≤或e a =时,导函数f x 只有一个零点.当0e a <<或e a >时,导函数f x 有两个零点.(2)当0a ≤时,e 0x x a ->,则函数()f x 在1x =处取得最小值(1)e f =.当0a >时,由(1)知:()g x 在(0,)+∞上单调递增,则必存在正数0x 使得00e 0xx a -=.若e a >则01x >,在(0,1)上00e 0x x a -<,则()0f x '>,在0(1,)x 上00e 0x x a -<,则()0f x '>,在()0,x +∞上00e 0x x a ->,则()0f x '<,所以()f x 在(0,1)和()0,x +∞上单调递增,在()01,x 上单调递减,又(1)e f =,不合题意.若e a =则01x =,在(0,)+∞上0f x ,则()f x 在(0,)+∞上单调递增,又(1)e f =,不合题意.若0e a <<则001x <<,在0(0,)x 上00e 0x x a -<,则()0f x '>,在0(),1x 上00e 0x x a ->,则()0f x '<,在()1,+∞上00e 0x x a ->,则()0f x '>,所以()f x 在()00,x 和(1,)+∞上单调递增,在()0,1x 上单调递减,则(0)3(1)e 2a f f =-≥=,解得62e a ≤-,即062e a <≤-.综上,62e a ≤-.题型二:方程法判断零点个数一、单选题【分析】由奇偶性定义可判断出A 正确;令()0f x =可确定B 正确;根据()f x 定义域为R ,()112f =-,可知若最小值为12-,则1x =是()f x 的一个极小值点,根据()10f '≠可知C 错误;由0x =时,cos x π取得最大值,21x +取得最小值可确定D 正确. 【详解】对于A ,()f x 定义域为R ,()()()()22cos cos 11x xf x f x x x ππ--===+-+, ()f x ∴为偶函数,A 正确;对于B ,令()0f x =,即cos π0x ,()2x k k πππ∴=+∈Z ,解得:()12x k k =+∈Z , ()f x ∴有无数个零点,B 正确;对于C ,()112f =-,∴若()f x 的最小值为12-,则1x =是()f x 的一个极小值点,则()10f '=; ()()()222sin 2cos 1xx x xf x xππππ++'=-+,()2sin 2cos 11042f πππ+'∴==-≠,1x ∴=不是()f x 的极小值点,C 错误;对于D ,1cos 1x π-≤≤,211x +≥;则当cos 1x π=,211x +=,即0x =时,()f x 取得最大值1,D 正确.故选:C. 2.(2022·北京·模拟预测)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个C .3个D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3故选:C【分析】利用()()f x a f a x +=-知()f x 关于直线x a =对称的性质验证A ;求得3102f π⎛⎫=-≠ ⎪⎝⎭可判断B ;化简()sin (1cos )f x x x =+,令()0f x =,得()x k k Z π=∈,进而判断C ;利用导数研究函数的单调性可判断D.【详解】对于A ,由已知得11()sin()sin 2()sin sin 222f x x x x x πππ-=-+-=-,即()()π-≠f x f x ,故()f x 不关于2x π=对称,故A 错误;对于B ,331sin sin 310222f πππ⎛⎫=+=-≠ ⎪⎝⎭,故B 错误; 对于C ,利用二倍角公式知()sin (1cos )f x x x =+,令()0f x =得sin 0x =或cos 1x =-,即()x k k Z π=∈,所以该函数在区间[]0,10内有4个零点,故C 错误;对于D ,求导2()cos cos22cos cos 1f x x x x x '=+=+-,令cos x t =,由57,33x ππ⎡⎤∈⎢⎥⎣⎦,知1,12t ⎡⎤∈⎢⎥⎣⎦,即2()21g t t t =+-,利用二次函数性质知()0g t ≥,即()0f x '≥,可知()f x 在区间57,33x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,故D 正确;故选:D.4.(2022·全国·高三专题练习)已知函数f(x)={|x |+2,x <1,x +2x ,x ≥1.,则函数()||y f x x =-零点个数为( ) A .0 B .1C .2D .3【答案】A【分析】当1x <时和1≥x 时,分别化简函数()||y f x x =-的解析式可直接判断零点的个数.【详解】当1x <时,22y x x =+-=,所以不存在零点;当1≥x 时,220t x x x x=+-=>,也不存在零点,所以函数()||y f x x =-的零点个数为0.故选:A.二、多选题【分析】根据函数解析式,结合函数性质,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :()f x 的定义域为{}0x x ≠,A 错误; 对B :()()11x x f x f x x x-++-==-=--,且定义域关于原点对称,故()f x 是奇函数,B 正确;对C :当0x >时,()111x f x x x+==+,单调递减,C 正确; 对D :因为0x ≠,10x +>,所以()0f x =无解,即()f x 没有零点,D 错误.故选:BC .【分析】写出()f x 的分段函数形式,A 应用正余弦函数的性质判断()f x 的周期性,B 由已知可得12cos 2cos 21x x ==,则112x k π=,222x k π=(12,k k Z ∈),即可判断正误;根据解析式,应用特殊值法判断C 、D 的正误.【详解】将函数()f x 化作分段函数,即cos 2,sin cos ()cos 2,sin cos x x x f x x x x -≥⎧=⎨<⎩,A ,(2)[sin(2)cos(2)]sin(2)cos(2)()f x x x x x f x πππππ+=+++⋅+-+=,()f x 是周期为2π的函数,对;B ,由12()()2f x f x +=得12|()||()|1f x f x ==,则12cos 2cos 21x x ==, 此时112x k π=,222x k π=(12,k k Z ∈),可得1212()2k k x x π++=,对; C ,由解析式得(0)()12f f π==,()f x 在[,]22ππ-上不单调,错;D ,由解析式知3()()12f f ππ==-,即()()1g x f x =+在[0,2]π上至少有两个零点,错.故选:AB.7.(2022·全国·高三专题练习)若()f x 和()g x 都是定义在R 上的函数,且方程()f g x x =⎡⎤⎣⎦有实数解,则下列式子中可以为()g f x ⎡⎤⎣⎦的是( ) A .22x x + B .1x + C .cos x e D .ln(||1)x +【答案】ACD【分析】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解,逐个判断选项即可得出答案.【详解】由方程()f g x x =⎡⎤⎣⎦有实数解可得(){}()g f g x g x =⎡⎤⎣⎦,再用x 替代()g x ,即 []()x g f x =有解.对于A ,22x x x =+,即20x x +=,方程有解,故A 正确; 对于B ,1x x =+,即01=,方程无解,故B 错误;对于C ,当cos ,x e x =令cos ()x h x e x =-,因为(0)0f e =>,1022f ππ⎛⎫=-< ⎪⎝⎭,由零点的存在性定理可知,()h x 在0,2π⎛⎫⎪⎝⎭上存在零点,所以方程有解,故选项C 正确;对于D ,当ln(||1)x x +=时,0x =为方程的解,所以方程有解,故选项D 正确.故选:ACD.【分析】对A :根据偶函数的定义即可作出判断;对B :由有界性0|cos |1x ≤≤,1sin ||1x -≤≤,且32x π=时sin |||cos |1x x +=-即可作出判断;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,可得函数()f x 有两个零点,根据偶函数的对称性即可作出判断;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,利用三角函数的图象与性质即可作出判断.【详解】解:对A :因为()sin |||cos()|sin |||cos |()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,故选项A 正确;对B :因为0|cos |1x ≤≤,1sin ||1x -≤≤,所以sin |||cos |1x x +≥-,而32x π=时sin |||cos |1x x +=-,所以()f x 的最小值为1-,故选项B 正确;对C :当[]0,2x π∈时,sin cos ,023()sin cos ,223sin cos ,22x x x f x x x x x x x πππππ⎧+≤⎪⎪⎪=-<⎨⎪⎪+<⎪⎩,令()0f x =,可得54=x π,74π,又由A 知函数()f x 为偶函数,所以函数()f x 在区间[]2,0π-上也有两个零点54π-,74π-,所以函数()f x 在区间[]2,2ππ-上有4个零点,故选项C 正确;对D :当,2x ππ⎛⎫∈ ⎪⎝⎭时,()sin cos 4f x x x x π⎛⎫=-=- ⎪⎝⎭,因为2x ππ<<,所以3444x πππ<-<,而sin y x =在,42ππ⎛⎫ ⎪⎝⎭上单调递增,在3,24ππ⎛⎫⎪⎝⎭上单调递减,故选项D 错误.故选:ABC.三、填空题【答案】42ω<<或22ω<≤.【分析】先求出零点的一般形式,再根据()f x 在区间(4π,23π)上恰有2个零点可得关于整数k 的不等式组,从而可求ω的取值范围.【详解】令()0f x =,则1sin 62x πω⎛⎫-= ⎪⎝⎭,故()1,66k x k k Z ππωπ-=+-∈,故()166kk x πππω+-+=,因为()f x 在区间(4π,23π)上恰有2个零点,所以存在整数k ,使得: ()()()()()()()123421116666213166663k k k k k k k k ππππππωωππππππππωω+++⎧+-+++-+⎪≤⎪⎪⎨⎪++-+++-+⎪<⎩<≤⎪,若k 为偶数,则()()()13233423k k k k πππωωπππωππω⎧+⎪+≤⎪⎪⎨⎪+++⎪<⎩<≤⎪, 整理得到:()444433733232k k k k ωω⎧+≤<+⎪⎪⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故0k ≥, 当2k ≥时,4394322k k +>+,故∵无解,当0k =时,有4437922ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩即742ω<<.若k 为奇数,则()()()42313323k k k k πππππωωπππωω⎧++⎪≤<≤⎪⎪⎨⎪+++⎪<⎪⎩,整理得到:()444333102223k k k k ωω⎧⎛⎫≤<+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+<≤+ ⎪⎪⎝⎭⎩∵,因为0>ω,故1k ≥-,当3k ≥时,3452k k >+,故∵无解,当1k =-时,有4433722ωω⎧-≤<⎪⎪⎨⎪<≤⎪⎩,无解.当1k =时,有284391322ωω⎧≤<⎪⎪⎨⎪<≤⎪⎩,故91322ω<≤.综上,742ω<<或91322ω<≤.故答案为:742ω<<或91322ω<≤. 【点睛】思路点睛:对于正弦型函数的零点个数问题,可先求出零点的一般形式,再根据零点的分布得到关于整数k 的不等式组,从而可求相应的参数的取值范围.【分析】根据m 的范围分类讨论f (x )的零点即可.【详解】∵m =0时,f (x )={x 2+3x,x ≤0,x −1,x >0,令f (x )=0,则x =0或x =-3或x =1,即f (x )有三个零点,满足题意;∵m ≠0时,令f (x )=0,则x >0时,101mx x +-=+,则21x m =-(*), x≤0时,230x x m ++=(**),显然x ≤0时的方程(**)最多有两个负根,而x >0时的方程(*)最多只有一正根,为了满足题意,则x >0时必有1根,则1-m >0,且根为x ∵m <1;x ≤0时方程必然有两个负根,则Δ094090004m m m m ⎧>->⎧⇒⇒<<⎨⎨>>⎩⎩, ∵0<m <1;综上所述,m ∵[)0,1.故答案为:[)0,1.四、解答题【分析】(1)求得11e f x ax a x =+-+,分0a =、0a <、0a >三种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由()0f x =可得出20ax x a -+=,由102a <<结合判别式可判断出方程20ax x a -+=的根的个数,由此可证得结论成立.(1)解:函数()f x 的定义域为R ,()()()()2211e 11e x x f x ax a x a ax a x '⎡⎤=+-+-=+-+⎣⎦.当0a =时,则()()1e xf x x '=-+,由()0f x '<可得1x >-,由()0f x '>可得1x <-,此时函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞; 当0a ≠时,由()0f x '=可得11=-x a或1x =-. ∵当0a <时,111a-<-,由()0f x '<可得11x a <-或1x >-,由()0f x '>可得111x a -<<-,此时函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭;∵当0a >时,111a ->-,由()0f x '<可得111x a -<<-,由()0f x '>可得1x <-或11x a >-,此时函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为1,1a ⎛⎫-∞- ⎪⎝⎭、()1,-+∞,单调递增区间为11,1a ⎛⎫-- ⎪⎝⎭; 当0a =时,函数()f x 的单调递增区间为(),1-∞-,单调递减区间为()1,-+∞;当0a >时,函数()f x 的单调递增区间为(),1-∞-、11,a ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为11,1a ⎛⎫-- ⎪⎝⎭.(2)解:由()0f x =可得20ax x a -+=,因为102a <<,则()()21412120a a a ∆=-=-+>,即关于x 的方程20ax x a -+=有两个不等的实根, 所以,当102a <<时,()f x 在R 上有且仅有两个零点.【点睛】思路点睛:讨论含参函数的单调性,通常注意以下几个方面: (1)求导后看最高次项系数是否为0,须需分类讨论;(2)若最高次项系数不为0,通常是二次函数,若二次函数开口方向确定时,再根据判别式讨论无根或两根相等的情况;(3)再根据判别式讨论两根不等时,注意两根大小比较,或与定义域比较.【答案】(1)2个(2)存在,且a 的取值范围是0,7⎡⎤⎢⎥⎣⎦.【分析】(1)解方程()0f x =,即可得解;(2)由()00f =,分析可知当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤,分0a =、0a <、0a >三种情况分析,结合一次函数的基本性质可得出关于实数a 的不等式,综合可求得实数a 的取值范围.(1)解:当3a =时,()()3221f x x x x x =+=+,令()0f x =,可得0x =或1x =-,此时函数()f x 有2个零点.(2)解:当(),2x ∈-∞时,由()()32111032f x ax a x =+-≤.当0x =时,对任意的R a ∈,()00f =,满足题意; 当2x <且0x ≠时,由()0f x ≤可得()2310ax a +-≤, 若0a =,则有30-≤,合乎题意; 若0a <,当3302ax a-<<时,()2310ax a +->, 则()2310ax a +-≤对任意的()(),00,2x ∈-∞⋃不可能恒成立,舍去; 若0a >,则有()4310a a +-≤,解得37a ≤,此时307a <≤.综上所述,当307a ≤≤时,当(),2x ∈-∞时,()0f x ≤恒成立. 题型三:数形结合法判段函数零点个数一、单选题1.(2022·安徽淮南·二模(文))已知函数,则下列关于函数的描述中,其中正确的是( ). ①当时,函数没有零点;②当时,函数有两不同零点,它们互为倒数; ③当时,函数有两个不同零点;④当时,函数有四个不同零点,且这四个零点之积为1. A .①② B .②③C .②④D .③④【答案】C【分析】画出函数图象即可判断①,令解方程即可判断③,将零点问题转化成函数图象交点的问题,利用数形结合即可判断②和④.【详解】当时,,函数图象如下图所示, ()1,0ln ,0x a x f x x x a x ⎧++<⎪=⎨⎪->⎩()f x 0a =()f x 02a <<()f x 2a =()f x 2a >()f x ()0f x =0a =()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩由此可知该函数只有一个零点,故①不正确; 当时,则函数的零点为和, ∵函数有两个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点,则函数有两不同零点时的取值范围是,设对应的两个零点为,,即或,解得,, 则,所以它们互为倒数,故②正确;当时,函数解析式为,令,解得,令,解得或,由此可知函数有三个零点,故③不正确; 当时,则函数的零点为和, ∵函数有四个不同零点,∴由函数的图象可知,解得, 当时,则函数的零点为和,此情况不存在有两不同零点;0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩20a -<-<02a <<0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x ()f x a 02a <<1x 2x 1ln x a =2ln x a =-1e a x =21e e aax -==121x x ⋅=2a =()12,0ln 2,0x x f x x x x ⎧++<⎪=⎨⎪->⎩()1200x x x++=<1x =-()ln 200x x -=>2e x =21e x =0a >()f x ()10x a x x+=-<()ln 0x a x =>()f x ()1,0ln ,0x x f x x x x ⎧+<⎪=⎨⎪>⎩2a -<-2a >0a <()f x ()10x a x x+=-<()ln 0x a x =>()f x设对应的两个零点为,,,,即或,解得,, 当时,整理得,当时,, 则该方程存在两个不等的实数根和,由韦达定理得,所以,则故④正确; 故选:.2.(2022·河南安阳·模拟预测(文))已知函数,则关于的方程有个不同实数解,则实数满足( ) A .且 B .且 C .且 D .且【答案】C【分析】令,利用换元法可得,由一元二次方程的定义知该方程至多有两个实根、,作出函数的图象,结合题意和图象可得、,进而得出结果.【详解】令,作出函数的图象如下图所示:由于方程至多两个实根,设为和,由图象可知,直线与函数图象的交点个数可能为0、2、3、4,由于关于x 的方程有7个不同实数解,则关于u 的二次方程的一根为,则, 则方程的另一根为,直线与函数图象的交点个数必为4,则,解得. 所以且. 故选:C.1x 2x 3x 4x 1ln x a =2ln x a =-1e a x =21e e aax -==10x a x++=210x ax ++=2a >0∆>3x 4x 341x x ⋅=12341e 11e aax x x x =⋅⋅=C ()221xf x =--x ()()20f x mf x n ++=7,m n 0m >0n >0m <0n >01m <<0n =10m -<<0n =()u f x =20u mu n ++=1u 2u ()f x 10u =2u m =-()u f x =()u f x=20u mu n ++=1u u =2u u =1u u =()u f x =()()20f x mf x n ++=20u mu n ++=10u =0n =20u mu +=2u m =-2u u =()u f x =10m -<-<01m <<01m <<0n =3.(2022·安徽·模拟预测(文))已知函数,若有4个零点,则实数a 的取值范围是( ) A . B .C .D .【答案】A【分析】在同一坐标系中作出的图象,根据有4个零点求解. 【详解】解:令,得, 在同一坐标系中作出的图象,如图所示:由图象知:若有4个零点, 则实数a 的取值范围是, 故选:A4.(2022·河南河南·三模(理))函数的所有零点之和为( ) A .0 B .2 C .4 D .6【答案】B【分析】结合函数的对称性求得正确答案.【详解】令,得, 图象关于对称,在上递减. ,令,所以是奇函数,图象关于原点对称,所以图象关于对称,,在上递增, 所以与有两个交点,()2ln ,02,0x x f x x x x ⎧>=⎨--≤⎩()()g x f x a =-()0,1(]0,1[]0,1[)1,+∞(),y f x y a ==()()g x f x a =-()()0g x f x a =-=()f x a =(),y f x y a ==()()g x f x a =-()0,1()112e e 1x xf x x --=---()112e e 01x xf x x --=--=-112e e 1x x x ---=-()21g x x =-()1,0()(),1,1,-∞+∞()11e e ,x x h x --=-()()()()1e e ,e e x x x x H x h x H x H x --=+=--=-=-()H x ()h x ()1,0()10h =()1ee e x xh x -=-R ()h x ()g x两个交点关于对称,所以函数的所有零点之和为. 故选:B二、多选题5.(2022·广东·普宁市华侨中学二模)对于函数,下列结论中正确的是( )A .任取,都有B .,其中;C .对一切恒成立;D .函数有个零点; 【答案】ACD【分析】作出函数的图象.对于A :利用图象求出,即可判断;对于B :直接求出,即可判断;对于C :由,求得,即可判断; 对于D :作出和的图象,判断出函数有3个零点.【详解】作出函数的图象如图所示.所以.()1,0()112e e 1x xf x x --=---2sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩12,[1,)x x ∈+∞123()()2f x f x -≤11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭k ∈N ()2(2)()k f x f x k k N *=+∈[0,)x ∈+∞()ln(1)y f x x =--3sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min (),()f x f x 1511222222k f f f k ⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1()(2)2f x f x =-()2(2)k f x f x k =+()y f x =ln(1)y x =-()ln(1)y f x x =--sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩max min ()1,()1f x f x ==-对于A :任取,都有.故A 正确; 对于B :因为,所以.故B 错误;对于C :由,得到,即.故C 正确;对于D :函数的定义域为.作出和的图象如图所示:当时,;当时,函数与函数的图象有一个交点; 当时,因为,,所以函数与函数的图象有一个交点,所以函数有3个零点.故D 正确. 故选:ACD6.(2022·江苏·南京市宁海中学模拟预测)已知是定义在R 上的偶函数,且对任意,有,当时,,则( )A .是以2为周期的周期函数B .点是函数的一个对称中心12,[1,)x x ∈+∞()12max min 13()()()()122f x f x f x f x -≤-=--=1151111,,222222k f f f k +⎛⎫⎛⎫⎛⎫⎛⎫==+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1112215112121222212kkf f f k ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎝⎭++++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-1()(2)2f x f x =-1(2)()2kf x k f x ⎛⎫+= ⎪⎝⎭()2(2)kf x f x k =+()ln(1)y f x x =--()1,+∞()y f x =ln(1)y x =-2x =sin2ln10y π=-=12x <<()y f x =()ln 1y x =-2x >2111s 49422in 41f f π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭971ln 1ln 1224⎪->⎛⎫⎝>=⎭()y f x =()ln 1y x =-()ln(1)y f x x =--()f x x ∈R ()()11f x f x -=-+[]0,1x ∈()22f x x x =+-()f x ()3,0-()f x。
数学必修一函数的零点知识点
数学必修一函数的零点知识点
数学必修一中,函数的零点是一个重要的知识点。
以下是关于函数的零点的基本知识点:
1. 零点的定义:对于函数 f(x),如果存在某个实数 a,使得 f(a) = 0,那么 a 就是 f(x) 的零点。
换句话说,就是函数图像与 x 轴相交的点。
2. 方程的根:函数的零点也可以理解为方程 f(x) = 0 的根。
解方程 f(x) = 0 可以求得函数的零点。
3. 判断零点的方法:
- 通过图像:可以通过绘制函数的图像,找到函数与 x 轴相交的点来确定零点。
- 通过方程:可以将函数 f(x) 置为零,即 f(x) = 0,然后解方程来求得零点。
4. 零点的性质:
- 零点可能有重根:即某个 x 值对应的函数值可能为 0 的次数大于 1。
- 零点的奇偶性:如果 f(x) 有一个零点 a,则 f(-x) 也有一个零点 -a。
即零点是关于原点对称的。
5. 零点与图像的关系:函数的零点与函数图像的交点有着紧密的关系。
例如,函数上方和下方零点的个数的差别可以用来分析函数的增减性。
6. 零点的应用:零点在数学中应用广泛,可以用来求方程的根、函数的解析式等。
这些是关于函数的零点的一些基本知识点,希望对你有帮助!。
求函数零点的例题
求函数零点的例题例题1:求函数 $f(x) = x^2 - 4x + 3$ 的零点。
解答:要求函数的零点,就是要找到函数对应的 $y$ 值为 0 的$x$ 值。
所以我们可以将函数 $f(x)$ 设为 0,得到方程 $x^2 - 4x + 3 = 0$。
现在,我们可以使用因式分解、配方法或求根公式等方法来解这个方程。
首先,我们可以尝试使用因式分解的方法。
注意到 $3 = 1\times 3$,而 $-4 = -1 + (-3)$,所以我们可以将方程改写为 $(x - 1)(x - 3) = 0$。
根据零因子法则,我们可以得到 $x - 1 = 0$ 或$x - 3 = 0$。
解这两个方程可以得到 $x = 1$ 或 $x = 3$,所以函数的零点为 $x = 1$ 和 $x = 3$。
例题2:求函数 $g(x) = \sqrt{x} - x$ 的零点。
解答:要求函数的零点,就是要找到函数对应的 $y$ 值为 0 的$x$ 值。
所以我们可以将函数 $g(x)$ 设为 0,得到方程$\sqrt{x} - x = 0$。
现在,我们可以通过平方消去根号来解这个方程。
首先,将方程两边同时平方,得到 $x - x^2 = 0$。
然后,移项得到 $x^2 - x = 0$。
再次移项得到 $x^2 = x$。
最后,将方程改写为 $x^2 - x = 0$,得出 $x(x - 1) = 0$。
根据零因子法则,我们可以得到 $x = 0$ 或 $x - 1 = 0$,即 $x = 0$ 或 $x = 1$。
所以函数的零点为 $x = 0$ 和 $x = 1$。
不能用二分法求零点的函数
不能用二分法求零点的函数一、引言函数零点是指函数图像与x轴相交的点,也就是函数的解。
求函数的零点是数学中的一个重要问题,它在科学研究和工程实践中具有广泛的应用。
常用的方法有二分法、牛顿法、割线法等。
二分法是求函数零点的一种经典方法,简单易懂,容易实现。
然而,并非所有的函数都适合用二分法来求解。
本文将围绕这一问题展开阐述,探讨不能用二分法求零点的函数,并介绍一些可行的替代方法。
二、二分法求零点的基本原理二分法的基本思想是将区间逐步缩小,在每一步中,找到区间的中点,然后根据中点的值与零点的大小比较,将零点所在的区间一分为二、重复此过程,最终将区间缩小到足够小,以满足所需精度。
三、二分法的使用条件1.函数在所选区间上连续且单调。
这是二分法的基本要求,因为二分法的核心在于通过比较中点与零点的大小关系来缩小区间。
2.函数在所选区间上无穷次可微。
这是为了确保二分法的收敛性,即区间不断缩小,最终趋于零点。
四、不能用二分法求解的函数1.零点不唯一的函数。
对于零点不唯一的函数,二分法无法确定具体的零点所在位置。
例如,函数f(x) = sin(x)在区间[0, 2π]上有无穷多个零点,二分法无法准确求得其中的任何一个零点。
2.函数图像与x轴相切的情况。
当函数与x轴相切时,函数的图像在切点处的斜率为零。
由于二分法的核心在于通过比较中点与零点的大小关系来缩小区间,而函数图像的斜率为零的点无法通过这种比较来找到精确的零点位置。
3.函数图像有极小值或极大值的情况。
对于具有极小值或极大值的函数,二分法可能陷入局部最小值或最大值,并错失零点。
例如,函数f(x)=x^2在区间[-1,1]上有一个极小值点,但该区间内没有零点,因此二分法无法求得函数的零点。
五、替代方法1.牛顿法牛顿法是解决非线性方程的一种迭代方法,用于求解函数的零点。
牛顿法通过不断逼近切线与x轴的交点,实现零点的近似求解。
对于那些无法用二分法求解的函数,牛顿法是一种较好的替代方法。
函数的零点的求法
知识点1.(1)函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.(2)函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.2.方法(1)代数法求函数零点:直接求方程0)(=x f 的实数根;(2)几何法求函数零点:对于不能直接求解的超越方程,可以将)()(0)(x h x g x f =⇔=再分别设)(x g y =,)(x h y =转化为它们的图象交点问题,即:函数)(x g y =与)(x h y =的图象有几个交点,那么方程0)(=x f 就有几个实根,函数)(x f y =就有几个有零点。
1.函数在区间上的零点个数为( )A .4B .5C .6D .72.函数的零点个数为( )A .0B .1C .2D .33 .函数在区间内的零点个数是( )A .0B .1C .2D .34.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 [答]( ) (A )(0,1). (B )(1,). (C )(,) (D )(,2) 解析:04147lg )47()75.1(,2lg )(<-==-+=f f x x x f 由构造函数 02lg )2(>=f 知0x 属于区间(,2) 5.0x 是函数f(x)=2x+11x-的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0 (C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0 6. f (x )=2xe x +-的零点所在的一个区间是(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2) 7.函数的零点与的零点之差的绝对值不超过, 则可以是 A. B. C. D.8.设定义在上的函数是最小正周期为的偶函数,是的导函数,当时,;当且时 ,,则函数在上的零点个数为 ( )A.2 B.4 C.5 D.89.函数2f x-=的零点个数为()x(x)2A.0 B.1 C.2 D.3答案: .2,,,,,,,B。
牛顿法求零点的方法
牛顿法求零点的方法牛顿法是一种用来求解方程零点的迭代方法,其基本思想是利用函数的局部线性近似来不断逼近零点。
下面详细介绍50条关于牛顿法求零点的方法:1. 选择一个初始值作为零点的初始近似值,记为x0。
2. 计算函数在x0处的导数,记为f'(x0),这是牛顿法迭代的关键步骤。
3. 接下来,计算初始值x0处的函数值f(x0)。
4. 利用初始值x0和函数值f(x0)以及导数f'(x0)来构建下一个近似值x1,即x1 = x0 - f(x0) / f'(x0)。
5. 用x1代替x0,重复以上步骤,直到满足迭代精度要求或达到指定迭代次数。
6. 牛顿法的迭代公式可以表示为xn+1 = xn - f(xn) / f'(xn)。
7. 牛顿法对于一些简单的函数可以快速收敛,但对于某些复杂函数可能会出现收敛慢或不收敛的情况。
8. 牛顿法可以用于求解单变量方程的零点,也可以推广到多变量函数的情况。
9. 在使用牛顿法时,需要注意选择初始值,避免选择导数为零的点,否则会导致迭代失败。
10. 牛顿法对于某些特殊情况可能会出现振荡或者不稳定的现象,需要谨慎选择使用。
11. 牛顿法在实际应用中经常结合其他方法使用,以提高求解效率和稳定性。
12. 牛顿法的收敛速度通常是二阶的,即每次迭代可以在误差上减少平方的量级。
13. 当函数的导数不易计算时,可以使用数值近似的方法计算导数,例如有限差分法。
14. 牛顿法可以用于求解超越方程的零点,例如对数、指数、三角函数等。
15. 牛顿法可以通过对迭代公式进行近似线性化来理解其收敛性。
16. 对于特定的函数,可以通过分析其导数的情况来预测牛顿法的收敛性。
17. 牛顿法的优点之一是可以在迭代过程中不断逼近零点,对于需要高精度的求解问题有很好的效果。
18. 牛顿法的迭代过程可以通过绘制函数图和零点逼近路径来直观展示。
19. 对于非光滑函数或者包含了噪声的函数,牛顿法可能需要结合其他方法使用。
例谈函数零点问题处理的几种方法
例谈函数零点问题处理的几种方法作者:王世恩来源:《环球市场信息导报》2013年第12期函数零点问题往往以选择、填空题形式出现在近几年的高考试题中,该问题主要考查函数与方程的关系,要求学生能够运用分类讨论、数形结合、转化与化归思想来解决函数的零点分布或个数问题,该文从以下几个方法来探讨处理函数零点问题的策略。
方法一、直接法人教数学必修1在函数零点这一节中:“方程有实数根函数的图像与轴有交点函数有零点。
”由此可知,求函数的零点,就是直接求方程的实数根。
例1. (2010年福建卷理4)函数的零点个数为()A.0 B.1 C.2 D.3解:当时,令解得;当时,令解得,所以已知函数有两个零点,选C。
备注:利用直接法求函数零点,前提是函数的零点,即方程的实数根,是我们能够用代数方法求解的,往往是我们所熟悉的一次、二次、对数、指数等一些初等函数所对应的方程。
方法二、定理法人教数学必修1中的零点存在定理:如果函数在区间上的图像是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这个也就是方程的根,也就是函数的零点。
零点存在定理告诉我们,如果连续函数在区间端点的函数值异号,那么函数在区间内至少有一根(奇数个根)。
例2.(2010年高考天津卷理科2)函数的零点所在的一个区间是() A.(-2,-1)B.(-1,0) C.(0,1) D.(1,2)解:因为,,所以选B。
例3.“ ”是“函数有零点”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解:若,不妨设则当时,有;当时,有。
将零点存在定理拓展的非正常区间,有,故函数在必有一根。
反之,显然不成立,若,函数可能退化为二次或一次函数,仍然可能有根,故选A备注:零点存在定理虽然是判断零点存在的一个充分条件,但是却定量的刻画了函数零点所在区间,尤其在引入二分法后,用逼近的思想,可以将函数的零点定位在一个长度充分小的区间内。
一次函数的零点及其求解方法
一次函数的零点及其求解方法一次函数是指形如 y = ax + b 的函数,其中 a 和 b 均为常数,且a ≠ 0。
这种函数在数学和实际问题中经常出现,并且具有重要的意义。
一次函数的零点是指函数图像与 x 轴相交的点,也就是使得 y = 0 的 x 值。
在本文中,我们将探讨一次函数的零点以及几种常见的求解方法。
一、直接求解法直接求解法是一种简单而常用的方法,它利用一次函数的性质来求解零点。
对于一次函数 y = ax + b,我们可以将其转化为方程 ax + b = 0,并通过移项得到 x = -b/a。
这样就求得了一次函数的零点。
例如,对于函数 y = 2x + 3,我们可以将其转化为方程 2x + 3 = 0,并通过移项得到 x = -3/2。
所以该函数的零点为 x = -3/2。
二、代入法代入法是一种常用的求解零点的方法,它利用一次函数的图像特点和已知条件来求解。
对于一次函数 y = ax + b,我们可以根据已知条件将其转化为方程,然后代入求解。
例如,对于函数 y = -5x + 2,如果已知该函数的零点在 x = 3 处,我们可以将其转化为方程 -5x + 2 = 0,并代入 x = 3。
计算得到 -5*3 + 2 = -15 + 2 = -13,所以该函数的零点为 x = 3。
三、图像法图像法是一种直观而直接的求解零点的方法,它通过观察函数的图像来确定零点的位置。
对于一次函数 y = ax + b,我们可以绘制函数的图像,在图像上找出与 x 轴相交的点,即为零点。
例如,对于函数 y = 4x - 1,我们可以绘制函数的图像,并观察图像与 x 轴相交的点。
通过绘图或使用计算机软件可以发现,该函数的图像与 x 轴相交于 x = 1/4 的位置,所以该函数的零点为 x = 1/4。
四、迭代法迭代法是一种数值计算方法,可以用于求解一次函数的零点。
它通过不断逼近的方式来寻找函数的零点。
具体步骤如下:1. 选择一个初始值 x0;2. 根据一次函数的表达式计算出对应的函数值 f(x0);3. 如果f(x0) ≈ 0,那么 x0 就接近零点;4. 如果f(x0) ≠ 0,那么选择一个新的近似零点值 x1,其中 x1 = x0 - f(x0)/a;5. 重复步骤 2 和步骤 3,直到找到满足条件的 x0 为止。
有关函数零点判定的几种常用方法-论文
所以 cos < n1, n2 > =
- 1 =2# 5
1100.
由图 5可知, 二面角 C - AE - B 为锐角, 所
以二面角 C - AE - B 的大小为 arccos 10. 10
点评: 向量法求二面角关键是找两个平面 的法向量, 并注意根据题目情况确定二面角的 平面角是锐角还是钝角.
贵州省金沙县第一中学 ( 551800)
时,
f(x ) = -
2
2x + 3x -
1=
0]
2
2x -
3x + 1 =
0即 ( 2x - 1) # ( x - 1) = 0, 所以 x = 1 或 1 I 2
[ 0, 1] 即函数 f (x ) 在 [ 0, 1] 上有 2个零点, 不
符合题意.
综上所述, 所求实数 a 的取值范围为:
a > - 2或 a = - 9. 4
三、零点存在判定法则
零点存在判定法则: 如果函数 y = f ( x) 在
区间 [ a, b] 上的图像是连续不断的一条曲线,
并且有 f ( a ) # f ( b) < 0, 那么函数 y = f (x ) 在
一、解方程求根法 对于函数 y = f ( x), 使 f (x ) = 0的实数 x叫 函数 y = f (x ) 的零点. 即函数 y = f ( x) 的零点 就是方程 f ( x) = 0的实数根. 要注意零点并不 是点, 而是一个实数. 方程 f (x ) = 0有实数根 Z 函数 y = f (x ) 与 x轴有交点 Z 函数 y = f (x ) 有零点. 例 1 求下列函数的零点. ( 1)f ( x) = x - 3; ( 2)f ( x) = x2 - 5x + 4; ( 3)f ( x) = x3 - 2x2 + x ( 4)f ( x) = 2|x | - 2 分析: 根 据函 数 零 点的 定 义 可知, 函 数 f (x ) 的零点就是方程 f ( x) = 0的根, 因此判断 一个函数是否有零点, 有几个零点, 就是判断方 程 f (x ) = 0是否有实数根, 有几个实数根的问 题. 解: ( 1) 令 f ( x) = 0, 即 x = 3, 故所求函数 的零点为 3. ( 2) 令 f( x ) = x2 - 5x + 4 = 0] ( x - 1) # (x - 4) = 0即 x = 1或 4 . 所以, 所求函数的零点为 1或 4. ( 3) 令 f ( x) = x3 - 2x2 + x = 0] x (x - 1) 2 = 0即 x = 0或 1. 所以函数的零点为 0或 1. ( 4) 令 f (x ) = 2|x | - 2 = 0] 2|x | = 2] x = ? 1. 所求函数的零点为 - 1或 1. 评注: 求函数 f ( x) 的零点, 就是求该函数 对应的方程 f( x) = 0的实数根. 一般可以借助 求根公式或因式分解等办法求出方程的根, 从 而得到函数的零点. 另外对于函数 f ( x) = x2 2x + 1, 在求函数的零点时, 令 f ( x) = 0, 即 ( x -
函数的零点知识点总结
函数的零点知识点总结一、函数的定义与性质1.1 函数的定义在数学中,函数是一种将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则或方法。
形式上,函数可以表示为f: X → Y,其中 X 是自变量的集合,Y 是因变量的集合,f 是一个特定的规则或方法。
1.2 函数的性质(1)定义域和值域:对于函数f: X → Y,定义域是指所有可能的自变量的取值集合,而值域是指所有可能的因变量的取值集合。
(2)单调性:函数在其定义域上的单调性描述了函数的增减规律。
一个函数可能是增函数、减函数或者不变函数。
(3)奇偶性:对于函数 f(x),如果 f(-x) = f(x),则称该函数为偶函数;如果 f(-x) = -f(x),则称该函数为奇函数。
(4)周期性:如果存在一个正数 T,使得对于任意的 x,有 f(x+T)=f(x),则称函数具有周期性,T 称为该函数的周期。
(5)连续性:如果一个函数在某个区间上具有连续性,即在该区间内任意两点 x 和 y 之间都存在一点 z,使得 f(z) 介于 f(x) 和 f(y) 之间,那么该函数在这个区间上是连续的。
(6)可导性:如果一个函数在某一点处具有导数,那么称该函数在该点可导。
二、零点的概念与方法2.1 零点的定义函数的零点是指使得函数取值为零的自变量。
形式上,如果 f(a) = 0,那么 a 就是函数 f 的一个零点。
2.2 求解零点的方法对于一般的函数,其零点通常需要通过特定的方法来求解,以下是一些常用的方法:(1)代数法:对于一些简单的函数,可以通过代数运算将函数转化成方程,然后直接求解方程来得到零点。
(2)图像法:通过绘制函数的图像,可以直观地看出函数的零点。
(3)数值法:对于复杂的函数,可以通过数值计算的方法来逼近函数的零点,如二分法、牛顿迭代法等。
(4)分析法:对于一些特殊函数,可以通过数学分析的方法来得到函数的解析解。
三、常见函数的零点3.1 一次函数的零点一次函数的一般形式为 f(x) = ax + b,其中 a 和 b 是实数且a ≠ 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数零点
一、知识点回顾
1、函数零点的定义:对于函数)(x f y =,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点。
注意:(1)零点不是点;
(2)方程根与函数零点的关系:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.
2、零点存在性定理:如果函数)(x f y =在闭区间[a, b]上的图象是连续曲线,并且有0)()(<⋅b f a f , 那么, 函数)(x f y =在区间(a, b)内至少有一个零点.
3、一个重要结论:若函数)(x f y =在其定义域内的某个区间上是单调的,则)(x f 在这个区间上至多有一个零点。
4、等价关系:函数)()()(x g x f x F -=有零点⇔方程0)()()(=-=x g x f x F 有实根⇔方程组⎩⎨⎧==)
()(21x g y x f y 有实数根⇔函数)(1x f y =与)(2x g y =的图像有交点。
二、求函数)(x f y =零点的方法
1、解方程0)(=x f 的根;
2、利用零点存在性定理和函数单调性:
3、转化成两个函数图像的交点问题。
三、典例分析
例1二次函数c bx ax y ++=2的部分对应值如下表:
则不等式02>++c bx ax 的解集是
例2 若函数2()2f x x x a =-+有两个零点,且一个在(-2,0)内,另一个在(1,3)内,求a 的取值范围.
变式 1、已知关于x 的方程2
350x x a -+=的两根12x x ,满足1(20)x ∈-,,2(13)x ∈,,求实数a 的取值范围.
2、已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( )
A .a b αβ<<<
B .a b αβ<<<
C .a b αβ<<<
D .a b αβ<<<
3.函数012)(≠++=a a ax x f ,,若在11≤≤-x 上,)(x f 存在一个零点,则实数a 的取值范围是
例3 函数2
6
x y =和2log y x =的图象的交点有 (A )1个 (B )2个 (C )3个 (D )4个
变式:
1、 若方程8x x b =+有两个不相等的实数根,求b 的取值范围.
2、 已知函数221,0,()2,x x f x x x x ⎧->⎪=⎨--⎪⎩
≤0.若函数()()g x f x m =-有3个零点,则实数m m 的取值范围是 .
练习
1.已知函数)(x f 为奇函数,且该函数有三个零点,则三个零点之和等于________.
2.函数2()1,()|1|f x x g x a x =-=-.若关于x 的方程|()|()f x g x =只有一个实数解,求a 的取值范围;
3.方程lgx+x=3的解所在区间为( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
4.x
x x f 1lg )(-=零点所在区间是( ). A. ]1,0( B. ]10,1( C. ]100,10( D. ),100(+∞
5.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--两个零点分别位于区间
(A )(,)a b 和(,)b c 内 (B )(,)a -∞和(,)a b 内 (C )(,)b c 和(,)c +∞内 (D )(,)a -∞和(,)c +∞内。