初中数学尺规作图题型大全

合集下载

初中数学尺规作图经典练习题

初中数学尺规作图经典练习题

班级 姓名
作图练习题
在几何里把限定用无刻度的直尺和圆规来画图,称为尺规作图。

1.画一条线段等于已知线段
2.画一个角等于已知角
A B
3.画一个角的平分线
4.画线段的垂直平分线
5、已知线段和,如下图,求作一线段,使它的长度等于+2.
6、如图,已知∠A 、∠B ,求作一个角,使它等于∠∠B.
7、如图,已知∠与M 、N 两点,求作:点P ,使点P 到∠的两边距离相等,
且到M 、N 的两点也距离相等。

O
B
A
B
A
李庄B
张庄A
8、张庄A、李庄B位于河沿L的同侧,现在河沿L上修一泵站C向张庄A、李庄B供水,问泵站修在河沿L的什么地方,所用水管最少?
1、己知三边求作三角形:己知一个三角形三条边分别为a,b,c求作这个三角形。

2、己知三角形的两条边与其夹角,求作三角形:
已知一个三角形的两条边分别为a,b,这两条边夹角为∠a,求作这个三角形
3. 如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭用两两连通。

如果凉亭A、B的位置已经选定,则凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形,保留作图痕迹。

4、如图,一个人从点P出发,到条形草地处让马吃草,然后到河流处让马喝水,最后回到点P ,他应该怎样走,行程才最短?。

中考尺规作图大全-(含练习答案)

中考尺规作图大全-(含练习答案)

中考尺规作图大全-(含练习答案)尺规作图是一种使用没有刻度的直尺和圆规的方法。

基本作图是尺规作图的最基本、最常用的方法,而一些复杂的尺规作图都是由基本作图组成的。

基本作图包括五种:作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线。

题目一要求作一条线段等于已知线段a。

作法是先作射线AP,然后在射线AP上截取AB=a,这样线段AB就是所求作的图形。

题目二要求作已知线段MN的垂直平分线,即找到点O 使得MO=NO(即O是MN的中点)。

作法是分别以M、N 为圆心,以大于MN的相同线段为半径画弧,两弧相交于P、Q,然后连接PQ交MN于O,这样点PQ就是所求作的MN 的垂直平分线。

题目三要求作已知角AOB的角平分线OP。

作法是以O 为圆心,任意长度为半径画弧,分别交OA、OB于M、N,然后以M、N为圆心,以大于MN的线段长为半径画弧,两弧交∠AOB内于P,最后作射线OP,这样射线OP就是∠AOB的角平分线。

题目四要求作一个角等于已知角AOB。

作法是先作射线O’A’,然后以O为圆心,任意长度为半径画弧,交OA于M,交OB于N,接着以O’为圆心,以OM的长为半径画弧,交O’A’于M’,再以M’为圆心,以MN的长为半径画弧,交前弧于N’,最后连接O’N’并延长到B’,这样∠A’O’B’就是所求作的角。

题目五要求经过直线AB上一点P做已知直线CD的垂线。

作法是以P为圆心,任意长为半径画弧,交AB于M、N,然后分别以M、N为圆心,以大于MN的长为半径画弧,两弧交于点Q,最后连接CQ、DQ即可得到所求作的CD。

3.删除明显有问题的段落(无问题段落为1、2、4、5)4.改写每段话3)过D、Q作直线CD。

则直线CD是求作的直线。

改写为:作直线CD,使其经过点P并垂直于直线AB,方法如下:6)题目六:经过直线外一点作已知直线的垂线已知:如图,直线AB及外一点P。

求作:直线CD,使CD经过点P,且CD⊥AB。

初中中考复习之尺规作图(精编含答案)

初中中考复习之尺规作图(精编含答案)

中考复习之尺规作图一、选择题:1.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:甲:1、作OD 的中垂线,交⊙O 于B ,C 两点;2、连接AB ,AC ,△ABC 即为所求的三角形 乙:1、以D 为圆心,OD 长为半径作圆弧,交⊙O 于B ,C 两点; 2、连接AB ,BC ,CA .△ABC 即为所求的三角形。

对于甲、乙两人的作法,可判断【 】 A .甲、乙均正确B .甲、乙均错误C .甲正确、乙错误D .甲错误,乙正确2.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC 的依据是【 】 A .SSS B .ASA C .AAS D .角平分线上的点到角两边距离相等3.如图,点C 在∠AOB 的OB 边上,用尺规作出了CN∥OA,作图痕迹中,弧FG 是【 】A .以点C 为圆心,OD 为半径的弧B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧4. 如图,在平面直角坐标系中,在x 轴、y 轴的正半轴上分别截取OA 、OB,使OA=OB ;再分别以点A, B 为圆心,以大于12AB 长为半径作弧,两弧交于点C .若点C 的坐标为(m -1,2n),则m 与n 的关系为【 】 (A)m +2n=1 (B)m -2n=1 (C)2n -m=1 (D)n -2m=1 二、填空题:1.如图,在△ABC 中,∠C=900,∠CAB=500,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径,画弧,分别交AB ,AC 于点E 、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边与点D ,则∠ADC2.如图,已知正五边形ABCDE,仅用无刻度的直尺准确作出其一条对称轴。

(保留作图痕迹)三、解答题:1.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.2.比较两个角的大小,有以下两种方法(规则)①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.3.如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)4.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.5.如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明SS>π∆圆.6.如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.7.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)8.①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕点O顺时针旋转90°,画出旋转后的△OA’B’;②折纸:有一张矩形纸片ABCD(如图2),要将点D沿某条直线翻折180°,恰好落在BC边上的点D’处,请在图中作出该直线。

初三尺规作图练习题及答案

初三尺规作图练习题及答案

初三尺规作图练习题及答案一、作图题:1. 作图:在空白平面上画一条长为5cm的线段AB;2. 作图:在平面上任意选择一点O,画一条长为3cm的线段OA,并作出∠AOB为45°的角;3. 作图:在空白平面上画一条长为4cm的线段OA,再在OA上作一点B,且OB=2cm;4. 作图:已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC;5. 作图:已知四边形ABCD,其中AB=3cm,BC=4cm,∠C=90°,CD=5cm,画出该四边形;6. 作图:在平面上画一条直线,再取一点P,使得P到该直线的距离为4cm;7. 作图:在空白平面上画一条长为6cm的线段AB,然后以B为圆心,AB为半径作弧线;8. 作图:一个正方形边长为8cm,画出该正方形;9. 作图:在空白平面上任意选择一点O,以O为圆心,3cm为半径画出一个圆;10. 作图:在平面上给定一条线段AB和一点O,作出以线段AB为一边,点O为顶点的角。

二、答案及解析:1. 题目要求画一条长为5cm的线段AB,可以任意选择一个点作为起点,然后使用尺规在平面上作一条长为5cm的线段。

最终得到的线段即为所求的AB线段。

2. 题目要求画一条长为3cm的线段OA,并作出∠AOB为45°的角。

先在平面上选取一个点O,再利用尺规作出线段OA。

接着,以O为圆心,半径为3cm作一个圆,并选择圆上任意一点B。

最后,使用尺规作出∠AOB为45°的角。

3. 题目要求画一条长为4cm的线段OA,再在OA上任意选择一点B,且OB=2cm。

首先,利用尺规作出长度为4cm的线段OA。

然后,在OA上以O为起点,用尺子量取2cm并在该位置上作一点B。

最终得到的OB线段长度为2cm。

4. 题目要求已知三条线段AB、BC、AC的长度分别为3cm、4cm、5cm,画出三角形ABC。

首先,利用尺规作出线段AB的长度为3cm。

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。

尺规作图练习题初三

尺规作图练习题初三

尺规作图练习题初三尺规作图是几何学中的一种重要方法,它通过使用尺子和圆规来完成各种图形的构造。

对于初三学生来说,掌握尺规作图技巧是必不可少的。

本文将给出几个尺规作图的练习题,帮助初三学生锻炼尺规作图的能力。

练习一:等腰三角形的构造要求:构造一个等腰三角形ABC,已知底边BC和顶角A。

解答:1. 画出底边BC,任取一点A作为顶点。

2. 以B为圆心,BC为半径作一个弧交底边BC于点D。

3. 以C为圆心,CD为半径作一个弧交底边BC于点E。

4. 连接AE,得到等腰三角形ABC。

练习二:正方形的构造要求:构造一个正方形ABCD,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧交边AB于点E。

2. 以E为圆心,EA为半径作一个弧交边AE于点F。

3. 连接BF,得到正方形ABCD。

练习三:等边三角形的构造要求:构造一个等边三角形ABC,已知边长AB。

解答:1. 以A为圆心,AB为半径作一个弧。

2. 以B为圆心,AB为半径作一个弧。

3. 这两个弧交于一点C,连接AC和BC,得到等边三角形ABC。

练习四:垂直平分线的构造要求:构造一个垂直平分线,已知线段AB。

解答:1. 以A为圆心,任取不等于AB的半径作一个弧交AB于点C。

2. 以B为圆心,作相同半径的弧交AB于点D。

3. 以C和D为圆心,作相同半径的弧,这两个弧交于一点E。

4. 连接AE和BE,得到线段AB的垂直平分线。

练习五:平行线的构造要求:构造一条与给定线段AB平行的线段CD。

解答:1. 以A为圆心,任取一定半径作一个弧。

2. 以B为圆心,作相同半径的弧,与前一个弧交于一点C。

3. 以C为圆心,再次作相同半径的弧,与前一个弧交于一点D。

4. 连接CD,得到平行于线段AB的线段CD。

通过以上几个练习题,初三学生可以进行尺规作图的练习,提高自己的几何构造能力。

尺规作图需要仔细观察和灵活运用尺规,希望同学们能够多加练习,熟练掌握这一技巧。

让我们一起享受几何的乐趣吧!。

中考尺规作图-经典例题

中考尺规作图-经典例题

五、典型题型1. 已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段. 说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.2.如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .错解 如图(1), (1)作射线AM ;(2)在射线AM 上截取AB =BC =a ,CD =b ,则线段AD 即为所求.错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.图(1) 图(2)正解 如图(2), (1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ; (3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.3. 求作一个角等于已知角∠MON (如图1).图(1) 图(2)错解 如图(2),(1)作射线11M O ;(2)在图(1),以O 为圆心作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心作弧,交11M O 于C ;(4)以C 为圆心作弧,交于点D ;(5)作射线D O 1.则∠D CO 1即为所求的角.错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧.正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.4. 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.5. 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形).分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可. 作法 如图(2).图(1) 图(2) (1)过点C 作直线EF ,交AB 于点F ;(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ; (3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点; (4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ; (5)过点D 作直线CD ,CD 就是所求的直线.说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.6. 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =︒36,∠C =︒44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析本题实质上是利用原题中的5个数据,列出所有与△ABC全等的各种情况,依据是SSS、SAS、AAS、ASA.解与△ABC全等的三角形如下图所示.7. 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A出发,将△ABC分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).(2003年,桂林)分析这是尺规作图在生活中的具体应用.要把△ABC分成面积相等的三个三角形,且都是从A点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC边的三等分点即可.作法如下图,找三等分点的依据是平行线等分线段定理.8. 已知∠AOB ,求作∠AOB 的平分线OC . 错解 如图(1)作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点; (2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.图(1) 图(2)正解 如图(2)(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点; (2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.9. 如图(1)所示,已知线段a 、b 、h (h <b ).求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .图(1)错解 如图(2), (1)作线段BC =a ;(2)作线段BA =b ,使AD ⊥BC 且AD =h . 则△ABC 就是所求作的三角形.错解分析 ①不能先作BC ;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD ,再作AB ,最后确定BC .图(2) 图(3)正解 如图(3).(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ; (2)在DM 上截取线段DA =h ;(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ; (5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.10. 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .作法 如下图(1)作直线MN :(2)在MN 上任取一点C ,过点C 作CE ⊥MN ; (3)在CE 上截取CA =b ,在CM 上截取CB =a ; (4)连结AB ,△ABC 就是所求作的直角三角形.说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.11. 如下图,已知钝角△ABC ,∠B 是钝角.求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形). 分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁; ②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点; ③分别以G 、H 为圆心,以大于21GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高. (2)①分别以B 、C 为圆心,以大于21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;③连结AF,则线段AF就是所要求作的△ABC中边BC上的中线.说明在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.12. 如图(1)所示,在图中作出点C,使得C是∠MON平分线上的点,且AC=OC.图(1)图(2)分析由题意知,点C不仅要在∠MON的平分线上,且点C到O、A两点的距离要相等,所以点C应是∠MON的平分线与线段OA的垂直平分线的交点.作法如图(2)所示(1)作∠MON的平分线OP;(2)作线段OA的垂直平分线EF,交OP于点C,则点C就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.13. 如下图,已知线段a、b、∠α、∠β.求作梯形ABCD,使AD=a,BC=b,AD∥BC,∠B=∠α;∠C=∠β.分析假定梯形已经作出,作AE∥DC交BC于E,则AE将梯形分割为两部分,一部分是△ABE,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.。

初中数学尺规作图综合测试卷

初中数学尺规作图综合测试卷

初中数学尺规作图综合测试卷初中数学尺规作图综合测试卷一、单选题(共6道,每道16分)1.尺规作图就是()A.用直尺按一定的规律作图B.用直尺和圆规作图C.用三角尺和圆规作图D.用没有刻度的直尺和圆规作图2.下列作图属于尺规作图的是()A.用量角器画出∠AOB的平分线OCB.已知∠α,作∠AOB,使∠AOB=2∠αC.用刻度尺画线段AB=3cmD.用三角板过点P 作线段AB的垂线3.下列作图语句,正确的是()A.作线段AB,使a=ABB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以O为圆心作弧4.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,弧FG是()A.以点C为圆心,OD的长为半径的弧B.以点C 为圆心,DM的长为半径的弧C.以点E为圆心,OD的长为半径的弧D.以点E 为圆心,DM的长为半径的弧5.如图,A,B,C三个村庄联合打井,为使井到三个村庄的距离相等,下列确定水井的位置的说法中正确的是()A.连接AB,AC,BC,作线段AB的垂直平分线MN,作∠ABC的角平分线BD交直线MN于点P,点P即为水井的位置B.连接AB,AC,作线段AB的垂直平分线MN,作线段AC的垂直平分线EF交直线MN于点P,点P即为水井的位置C.连接AB,AC,BC,作∠ABC的角平分线BD,作∠BAC的角平分线AE交BD于点P,点P即为水井的位置D.作直线AB、BC,过点A作BC的垂线MN,过点C作AB的垂线EF交MN于点P,点P即为水井的位置6.在△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC交AB于E,交AC于F,则EF与BE+CF的数量关系为()A.EF>BE+CFB.EF<BE+CFC.EF=2(BE+CF)D.EF=BE+CF。

初中数学尺规作图题型大全

初中数学尺规作图题型大全

初中数学尺规作图题型大全1.已知,如图,在Rt △ABC 中,∠C=90º,∠BAC 的角平分线AD 交BC 边于D 。

(1)以AB 边上一点O 为圆心,过A ,D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB=6,BD=32, 求线段BD 、BE 与劣弧DE所围成的图形面积。

(结果保留根号和p )【答案】(1)如图,作AD 的垂直平分线交AB 于点O ,O 为圆心,OA 为半径作圆。

判断结果:BC 是⊙O 的切线。

连结OD 。

∵AD 平分∠BAC ∴∠DAC=∠DAB ∵OA=OD ∴∠ODA=∠DAB ∴∠DAC=∠ODA ∴OD ∥AC ∴∠ODB=∠C ∵∠C=90º∴∠ODB=90º即:OD ⊥BC ∵OD 是⊙O 的半径∴ BC 是⊙O 的切线。

(2) 如图,连结DE 。

设⊙O 的半径为r ,则OB=6-r ,在Rt △ODB 中,∠ODB=90º,∴ 0B 2=OD 2+BD 2 即:(6-r)2= r 2+(32)2 ∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB 的面积为3223221=´´,扇形ODE 的面积为p p 322360602=´´ ∴阴影部分的面积为32—p 32。

2. 根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?更多学习方法和资料免费下载,添加微信youshuxue 并举例验证猜想所得结论。

并举例验证猜想所得结论。

(1)如图①△ABC 中,∠C=90°,∠A =24°①作图:①作图: ②猜想:②猜想: ③验证:③验证:(2)如图②△ABC 中,∠C =84°,∠A =24°=24°. . ①作图:①作图: ②猜想:②猜想: ③验证:③验证:CBA(第23题图①)题图①)(第23题图②)题图②)CBA【答案】【答案】(1)①作图:痕迹能体现作线段AB(或AC 、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,类方法均可,在边AB 上找出所需要的点D ,则直线CD 即为所求………………2分 ②猜想:∠A+∠B=90°,………………4分③验证:如在△ABC 中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC 恰好分割成两个等腰三角形的直线。

数学中考复习之尺规作图

数学中考复习之尺规作图

数学中考复习之尺规作图一.选择题(共8小题)1.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,大于的长为半径画弧,两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若∠B=50°,则∠CAD的度数是()A.20°B.30°C.40°D.50°2.如图,在长方形ABCD中,连接AC,以A为圆心适当长为半径画弧,分别交AD,AC 于点E,F,分别以E,F为圆心,大于EF的长为半径画弧,两弧在∠DAC内交于点H,画射线AH交DC于点M.若∠ACB=72°,则∠DMA的大小为()A.72°B.54°C.36°D.22°3.已知点P是直线l外一点,数学兴趣小组的同学用了4种不同的尺规作图方法想过点P 作直线l的平行线,根据尺规作图痕迹,直线PQ不一定与直线l平行的是()A.B.C.D.4.如图,在矩形ABCD中,连接BD,分别以B.D为圆心,大于BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、连接BM、DM.若AB=3,BG=6,则四边形MBMD的周长为()A.15B.9C.D.5.已知△ABC,利用直尺和圆规画一个△EFD,使得△ABC≌△EFD,可以先画出∠MDN =∠ACB,接下来的画法不能满足条件的是()A.在射线DM上截取DE=CA,在射线DN上截取DF=CB,连接EFB.在射线DM上截取DE=CA,以D为圆心,AB长为半径画弧交DN于点F,连接EFC.在射线DM上截取DE=CA,画∠DEF=∠CAB,交射线DN于点FD.在射线DN上截取DF=CB,画∠DFE=∠CBA,交射线DM于点E6.在平面直角坐标系中,矩形ABCD的边BC在x轴上,O为线段BC的中点,矩形ABCD 的顶点D(2,3),连接AC按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交CA,CD于点E,F;(2)分别以点E,F为圆心,大于EF的长为半径画弧交于点G;(3)作射线CG交AD于H,则线段DH的长为()A.B.1C.D.7.∠AOB的平分线的作图过程如下:(1)如图,在OA和OB上分别截取OD,OE,使OD=OE;(2)分别以D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C;(3)作射线OC,OC就是∠AOB的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是()A.边角边B.角边角C.角角边D.边边边8.如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当长为半径画弧,交BA于点D,交BC于点E;分别以点D、E为圆心,以大于DE的长为半径画弧,两弧在∠CBA 内交于点F;作射线BF,交AC于点G.若CG=1,P为AB上一动点,连接GP,则GP的最小值为()A.B.1C.2D.没有最小值二.填空题(共8小题)9.如图,在△ABC中,根据尺规作图痕迹,下列四个结论中:①AF=BF②∠AFD+∠FBC=90°③DF⊥AB④∠BAF=∠CAF所有正确结论的序号是:.10.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B在格点上.(1)AB的长等于;(2)M是线段BC与网格线的交点,P是△ABC外接圆上的动点,点N在线段PB上,且满足PN=2BN,当MN取得最大值时,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).11.如图,四边形ABCD是平行四边形,以点B为圆心,BC的长为半径作弧交AD于点E,分别以点C、E为圆心,大于的长为半径作弧,两弧交于点P,作射线BP交AD的延长线于点F,∠CBE=60°,BC=4,则EF=.12.如图,以矩形ABCD的顶点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;再分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;作射线AP,交BC于点E,连接DE,交AC于点F.若AB=1,AC=2,则DF的长为.13.如图,由小正方形构成的10×10网格,每个小正方形的顶点叫做格点,⊙O经过A,B,C三个格点,(1)线段AB的长度为;(2)用无刻度的直尺,在⊙O上找一点D,使点D平分(保留画图痕迹).14.如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于的长为半径作弧,两弧在∠ABC内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为.15.如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M、N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为.16.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D,E.②分别以点D,E为圆心,大于DE的长为半径作弧,两弧交于点F.③作射线BF交AC于点G.如果AB=6,BC=8.△ABG的面积为12,则△CBG的面积为.三.解答题(共4小题)17.如图,在长方形ABCD中,AB=8,AD=10,将长方形ABCD沿直线AF折叠(点F 是折痕和边CD的交点),使点D落在BC上的E处.(1)请你利用尺规作图确定点E和点F.(保留作图痕迹,不写作法)(2)将图形补充完整,EF=.18.已知平面上的四点A、B、C、D.按下列要求画出图形:(Ⅰ)画线段AC,射线AD,直线BC;(Ⅱ)在线段AC上找一点P,使得PB+PD最小,数学原理是.19.请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.说明:图1、图2中仅点A,B,C在格点上.(1)在图1中,作∠A的角平分线AE;(2)在图1中,BD是△ABC的角平分线,作∠ACB的角平分线CF;(3)在图2中,画格点H,使CH⊥AC.(4)在图2中,在线段BC上画一点G,使∠CAG=45°.20.如图,点C在射线AB上,DF⊥AB于点F.(1)使用圆规和直尺作图:(要求:保留作图痕迹,不写作法)在射线AB上画出点E,使C为线段AE的中点,连接DE.(2)连接CD,在线段CD,DE,DF中,线段最短,依据是.(3)若∠ECD=62°17',求∠ACD的度数.。

2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)

2024中考备考热点09 尺规作图(7大题型+满分技巧+限时分层检测)(原卷版)

热点09 尺规作图中考数学中《尺规作图》部分主要考向分为三类:一、尺规作图的痕迹(每年1道,3~8分)二、尺规作图画图(每年1道,3~12分)三、网格问题中的作图设计(每年1题,6~8分)尺规作图指的是只用无刻度的直尺和圆规,作已知线段的中垂线、已知角的角平分线;部分题型则考察由作图痕迹逆向推导是什么线,然后利用中垂线或者角平分线的性质继续解题。

最近几年又出现一类不用“尺规”,只用无刻度的直尺在网格图中按要求画图或找点。

当考察作图痕迹时,基本以选择题为主,实际画图题或者网格类问题则是简单题,虽然难度中等,但是对应考点的综合性已经越来越强,需要在做题时更加全面的分析。

考向一:尺规作图的痕迹【题型1 线段中垂线的尺规作图痕迹】满分技巧1、线段垂直平分线的画图痕迹:2、线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等1.(2023•凉山州)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°2.(2023•西宁)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,大于AC的长为半径作弧,两弧相交于P,Q两点,作直线PQ交AB,AC于点D,E,连接CD.下列说法错误的是()A.直线PQ是AC的垂直平分线B.CD=ABC.DE=BCD.S△ADE:S四边形DBCE=1:43.(2023•随州)如图,在▱ABCD中,分别以B,D为圆心,大于BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.AE=CF B.DE=BF C.OE=OF D.DE=DC4.如图,在△ABC中,∠C=40°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于M,N两点,作直线MN,交边AC于点D,连接BD,则∠ADB的度数为()A.40°B.50°C.80°D.100°5.(2023•西藏)如图,在△ABC中,∠A=90°,分别以点B和点C为圆心,大于的长为半径画弧,两弧相交于M,N两点;作直线MN交AB于点E.若线段AE=5,AC=12,则BE长为.6.(2023•广元)如图,a∥b,直线l与直线a,b分别交于B,A两点,分别以点A,B为圆心,大于AB 的长为半径画弧,两弧相交于点E,F,作直线EF,分别交直线a,b于点C,D,连接AC,若∠CDA =34°,则∠CAB的度数为.【题型2 角平分线的尺规作图痕迹】满分技巧1、角平分线的画法:2、角平分线的性质:角平分线上的点到角两边的距离相等1.(2023•衢州)如图,在△ABC中,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E.分别以点D,E为圆心,大于长为半径画弧,交于∠BAC内一点F.连结AF并延长,交BC于点G.连结DG,EG.添加下列条件,不能使BG=CG成立的是()A.AB=AC B.AG⊥BC C.∠DGB=∠EGC D.AG=AC2.(2023•辽宁)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为()A.B.C.D.3.阅读以下作图步骤:①在OA和OB上分别截取OC,OD,使OC=OD;②分别以C,D为圆心,以大于CD的长为半径作弧,两弧在∠AOB内交于点M;③作射线OM,连接CM,DM,如图所示.根据以上作图,一定可以推得的结论是()A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.(2023•湖北)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于长为半径画弧交于点P,作射线BP,过点C作BP 的垂线分别交BD,AD于点M,N,则CN的长为()A.B.C.D.45.(2023•丹东)如图,在四边形ABCD中,AB∥CD,以点B为圆心,以任意长为半径作弧,分别交AB,BC于点E,F,分别以E,F为圆心,以大于长为半径作弧,两弧在∠ABC内交于点P,作射线BP,交AD于点G,交CD的延长线于点H.若AB=AG=4,GD=5,则CH的长为()A.6B.8C.9D.106.(2023•内蒙古)如图,在△ABC中,∠ABC=90°,∠BAC=60°,以点A为圆心,以AB的长为半径画弧交AC于点D,连接BD,再分别以点B,D为圆心,大于BD的长为半径画弧,两弧交于点P,作射线AP交BD于点M,交BC于点E,连接DE,则S△BDE:S△CDE是()A.1:2B.1:C.2:5D.3:87.如图,在▱ABCD中,∠D=60°.以点B为圆心,以BA的长为半径作弧交边BC于点E,连接AE.分别以点A,E为圆心,以大于AE的长为半径作弧,两弧交于点P,作射线BP交AE于点O,交边AD 于点F,则的值为.8.(2023•鞍山)如图,△ABC中,在CA,CB上分别截取CD,CE,使CD=CE,分别以D,E为圆心,以大于的长为半径作弧,两弧在∠ACB内交于点F,作射线CF,交AB于点M,过点M作MN⊥BC,垂足为点N.若BN=CN,AM=4,BM=5,则AC的长为.9.(2023•甘孜州)如图,在平行四边形ABCD(AB<AD)中,按如下步骤作图:①以点A为圆心,以适当长为半径画弧,分别交AB,AD于点M,N;②分别以点M,N为圆心,以大于的长为半径画弧,两弧在∠BAD内交于点P;③作射线AP交BC于点E.若∠B=120°,则∠EAD为°.10.(2023•阜新)如图,在矩形ABCD中,AB=6,AD=8.连接AC,在AC和AD上分别截取AE,AF,使AE=AF,分别以点E和点F为圆心,以大于EF的长为半径作弧,两弧交于点G,作射线AG交CD 于点H,则线段DH的长是.考向二:尺规作图画图【题型3 作一条线段的垂直平分线】满分技巧线段垂直平分线的画图步骤:1、分别以线段两端点为圆心,相同适当长(大于线段的一半)为半径画圆弧,上下各得两个弧的一个交点;2、过两个弧的交点作一条直线,则该直线即为所求作的线段中垂线。

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)

完整版)中考数学尺规作图专题复习(含答案)尺规作图是用无刻度的直尺和圆规画图的方法,常见的作图包括线段的垂线、垂直平分线、角平分线、等长线段和等角。

以下是各种作图的具体方法:1.直线垂线的画法:以点C为圆心,任意长为半径画弧交直线与A、B两点,再以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线l两侧于点M、N,连接MN,即可得到所求的垂线。

2.线段垂直平分线的画法:以点A、B为圆心,大于AB的长为半径画圆弧,分别交直线AB两侧于点C、D,连接CD,即可得到线段AB的垂直平分线。

3.角平分线的画法:以角顶点O为圆心,任意长为半径画圆,分别交角两边A、B点,再以A、B为圆心,大于AB的长为半径画圆弧,交点为H,连接OH并延长,即可得到所求的角平分线。

4.等长的线段的画法:直接用圆规量取即可。

5.等角的画法:以O为圆心,任意长为半径画圆,交原角的两边为A、B两点,连接AB;画一条射线l,以上面的半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求。

需要注意的是,直尺主要用于画直线和射线,圆规主要用于截取相等线段和画弧。

在作图时,如果有多个要求,应逐个满足并取公共部分。

例如,对于要求作一个三角形的问题,可以根据三角形全等的基本事实或判定定理来进行作图。

以下是例题解析:例题1:已知线段a,求作△ABC,使AB=BC=AC=a。

作法如下:1.作线段BC=a;2.分别以B、C为圆心,以a半径画弧,两弧交于点A;3.连接AB、AC。

例题2:已知线段a和∠α,求作△ABC,使AB=AC=a,∠A=∠α。

作法如下:1.作∠XXX∠α;2.以点A为圆心,a为半径画弧,分别交射线AM、AN 于点B、C;3.连接B、C。

例题3:已知△ABC,AB<BC,用尺规作图的方法在BC 上取一点P,使得PA+PC=BC。

作法如下:作出AB的垂直平分线,与BC交于点P。

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案

中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。

初二数学尺规作图练习题

初二数学尺规作图练习题

初二数学尺规作图练习题数学尺规作图让初二学生在几何学中学习和应用基本的几何概念和技能。

通过练习尺规作图,学生可以加深对几何形状的理解,培养几何思维和空间想象能力。

本文将为您呈现一系列的初二数学尺规作图练习题,以帮助学生巩固知识和提升技能。

1. 作图一个边长为5cm的正方形。

2. 作图一个直径为8cm的圆。

3. 在直线上用尺规作图,将一段长为6cm的线段等分为三等分。

4. 作图一个边长为3cm的等边三角形。

5. 作图一个边长为4cm的正五边形。

6. 作图一个半径为5cm的正圆。

7. 在一个已知角度的线段上,用尺规作图,将这个角度等分为4等分。

8. 已知直线段AB和点C,用尺规作图,将直线段AB的长度放大3倍。

9. 作图一个半径为6cm的正方形。

10. 在一个已知角度的线段上,用尺规作图,将这个角度等分为5等分。

11. 已知直线段EF和点G,用尺规作图,将直线段EF的长度缩小一半。

12. 作图一个半径为7cm的正五边形。

通过以上的练习题,学生可以灵活运用尺规作图的基本技能。

在解答练习题时,学生需要明确每道题的要求并合理规划作图步骤。

首先,根据题目要求确定作图所需要的基本图形,如正方形、圆形等。

其次,根据已知条件使用尺规进行测量和划线,确保图形的准确性。

最后,检查作图结果是否满足题目要求,如线段长度、角度等。

在尺规作图的过程中,学生应该注意以下几点:1. 尺规的正确使用:学生应熟练掌握尺规的使用方法,确保测量和画线的准确性。

2. 作图步骤的合理性:学生应根据题目要求和已知条件合理规划作图步骤,避免不必要的重复或遗漏。

3. 图形的准确性:学生在作图过程中应注意保持图形的准确性,如边长、角度等,避免误差的出现。

4. 用尺规作图后,用铅笔将直线粗化,圆心、交点等标记清晰,使图形更加美观。

通过反复练习尺规作图,初二学生可以提升几何思维和空间想象能力,培养几何学习的兴趣。

同时,尺规作图也是培养学生解决问题能力和推理能力的有效方法之一。

初三尺规作图练习题

初三尺规作图练习题

初三尺规作图练习题尺规作图是初中数学中的基础内容,通过使用尺子和圆规来进行几何图形的绘制和构造。

这是一项重要的技能,它能够培养学生的空间想象力、观察力和创造力。

以下是几个初三尺规作图练习题,帮助学生巩固和提高这一技能。

练习一:画等边三角形1. 用尺子和圆规画一个等边三角形。

2. 以线段AB为边,以A为圆心,画一个以线段AB为半径的圆弧。

3. 以线段BA为边,以B为圆心,画一个以线段BA为半径的圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个等边三角形。

练习二:画正四边形1. 画一个边长为5cm的正四边形。

2. 以点A为圆心,以5cm为半径,画一个圆弧。

3. 以点B为圆心,以5cm为半径,画一个圆弧。

4. 这两个圆弧相交于点C。

5. 连接AC和BC,得到一个正四边形。

练习三:画正六边形1. 画一个边长为4cm的正六边形。

2. 以点A为圆心,以4cm为半径,画一个圆弧。

3. 连接圆弧上的点与圆心A,得到一条线段。

4. 以线段AB为边,以点B为圆心,以4cm为半径,画一个圆弧。

5. 连接圆弧上的点与线段AB的端点,得到一条线段。

6. 以线段AC为边,以点C为圆心,以4cm为半径,画一个圆弧。

7. 连接圆弧上的点与线段AC的端点,得到一个正六边形。

练习四:画平行线1. 画一条任意长度的线段AB。

2. 以点A为圆心,以任意半径,画一个圆弧。

3. 以点B为圆心,以相同的半径,画一个圆弧。

4. 这两个圆弧相交于点C和D。

5. 连接CD,得到一条平行于线段AB的线段。

以上是初三尺规作图练习题,通过这些练习,可以提高学生的尺规作图能力,加深对几何图形的理解,培养学生的观察和推理能力。

这些技能对于初中数学以及将来的学习和职业发展都具有重要意义。

希望同学们能够认真练习,掌握这一基本技能。

初中中考尺规作图十例(打印)

初中中考尺规作图十例(打印)

BPAaOQPNM 尺规做图之阳早格格创做【知识归纳】1、尺规做图的定义:尺规做图是指用不刻度的曲尺战圆规做图.最基原,最时常使用的尺规做图,常常称基原做图.一些搀纯的尺规做图皆是由基原做图组成的.2、五种基原做图:1、做一条线段等于已知线段;2、做一个角等于已知角;3、做已知线段的笔曲仄分线;4、做已知角的角仄分线;5、过一面做已知曲线的垂线; (1)题目一:做一条线段等于已知线段. 已知:如图,线段a .供做:线段AB ,使AB = a . 做法:(1) 做射线AP ;(2) 正在射线AP 上截与AB=a .则线段AB 便是所供做的图形. (2)题目二:做已知线段的中面. 已知:如图,线段MN.供做:面O ,使MO=NO (即O 是MN 的中面). 做法:ONMBPANM BOA③②①A'A'N'O'B'M'O'A'N'M'M'O'(1)分别以M 、N 为圆心,大于的相共线段为半径绘弧, 二弧相接于P ,Q ;(2)对接PQ 接MN 于O .则面O 便是所供做的MN的中面. (3)题目三:做已知角的角仄分线. 已知:如图,∠AOB ,供做:射线OP, 使∠AOP =∠BOP (即OP 仄分∠AOB ).做法:(1)以O 为圆心,任性少度为半径绘弧,分别接OA ,OB 于M ,N ;(2)分别以M 、N为圆心,大于 的线段少为半径绘弧,二弧接∠AOB 内于P;(3) 做射线OP.则射线OP 便是∠AOB 的角仄分线. (4)题目四:做一个角等于已知角. 已知:如图,∠AOB. 供做:∠A ´O ´B ´,使∠A ´O ´B ´=∠AOB 做法: (1)做射线O ´A ´;(2)以O 为圆心,任性少度为半径绘弧,接OA 于M ,接OB 于N ;(3)以O ´为圆心,以OM 的少为半径绘弧,接O ´A ´于M ´;PB(4)以M ´为圆心,以MN 的少为半径绘弧,接前弧于N ´; (5)对接O ´N ´并延少到B ´. 则∠A ´O ´B ´便是所供做的角.(5)题目五:通过曲线上一面干已知曲线的垂线. 已知:如图,P 是曲线AB 上一面. 供做:曲线CD ,是CD 通过面P 做法:(1)以P 为圆,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 为圆心,大于MN 21的少为半径绘弧,二弧接于面Q ;(3)过D 、Q 做曲线CD. 则曲线CD 是供做的曲线.(6)题目六:通过曲线中一面做已知曲线的垂线 已知:如图,曲线AB 及中一面P. 供做:曲线CD ,使CD 通过面P ,且CD ⊥AB.做法:(1)以P 为圆心,任性少为半径绘弧,接AB 于M 、N ;(2)分别以M 、N 圆心,大于MN 21少度的一半为半径绘弧,二弧接于面Q ;(3)过P 、Q 做曲线CD. 则曲线CD 便是所供做的曲线.ca b mn (7)题目七:已知三边做三角形. 已知:如图,线段a ,b ,c.供做:△ABC ,使AB = c ,AC = b ,BC = a. 做法:(1) 做线段AB = c ;(2) 以A 为圆心,以b 以B 为圆心,以a前弧相接于C ;(3) 对接AC ,BC.则△ABC 便是所供做的三角形.(8)题目八:已知二边及夹角做三角形. 已知:如图,线段m ,n, ∠α. 供做:△ABC ,使∠A=∠α,AB=m ,AC=n. 做法:(1) 做∠A=∠α; (2) 正在AB 上截与AB=m ,AC=n ; (3) 对接BC.则△ABC 便是所供做的三角形.(9)题目九:已知二角及夹边做三角形. 已知:如图,∠α,∠β,线段m .供做:△ABC ,使∠A=∠α,∠B=∠β,AB=m. 做法:(1)做线段AB=m;正在AB的共旁做∠A=∠α,做∠B=∠β,∠A与∠B的另一边相接于C.则△ABC便是所供做的图形(三角形).(10)题目十:已知三角形,做三角形的中接圆战内切圆.已知:如图,△ABC.供做:△ABC中接圆战内切圆.做法:(1)中接圆的圆心是△ABC三条边的笔曲仄分线的接面(转移为做AB、BC的笔曲仄分线接面,半径是接面与△ABC其中一个顶面的少度)(2)内切圆的圆心是△ABC三个角的角仄分线的接面(转移为做∠B、∠C的角仄分线接面,半径是接面到△ABC其中一条边的少度)。

中考数学复习综合性试题精选之尺规作图

中考数学复习综合性试题精选之尺规作图

中考数学复习综合性试题精选之尺规作图1.如图,方格纸中每个小正方形的边长均为1.线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABC,点C在小正方形的顶点上,且tan B =3;(2)在图中画一个以AB为底的等腰三角形△ABD,点D在小正方形的顶点上,且△ABD 是锐角三角形.连接CD,请直接写出线段CD的长.2.如图,已知∠AOB,点M为OB上一点.(1)画MC⊥OA,垂足为C;(2)画∠AOB的平分线,交MC于D;(3)过点D画DE∥OB,交OA于点E.(注:不需要写出作法,只需保留作图痕迹)3.如图,在每个小正方形的边长均为1的方格纸中有线段AC和EF,点A、C、E、F均在小正方形的顶点上.(1)在方格纸中画出一个以AC为对角线的菱形ABCD,点D在直线AC的下方,且点B、D都在小正方形的顶点上;(2)在方格纸中画出以EF为底边,面积为6的等腰三角形EFG,且点G在小正方形的顶点上;(3)在(1)、(2)的条件下,连接DG,请直接写出线段DG的长.4.如图,在△ABC中,AB=BC,∠ABC=90°,动点E在∠ABC外部,且∠ABC=2∠AEC.(1)利用尺规作图在图1中作出一个符合题意的点E;(不写作法,保留作图痕迹)(2)如图2,若F是AC的中点,线段BE与线段EF的长度存在怎样的等量关系?请说明理由.5.(1)如图(1),在△ABC,AB=AC,O为△ABC内一点,且OB=OC,求证:直线AO 垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.(2)如图(2),在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,∠B=∠E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.6.如图1,已知直线EF与直线AB交于点E,直线EF与直线CD交于点F,EM平分∠AEF 交直线CD于点M,且∠FEM=∠FME.点G是射线MD上的一个动点(不与点M、F 重合),EH平分∠FEG交直线CD于点H,过点H作HN∥EM交直线AB于点N,设∠EHN=α,∠EGF=β.(1)求证:AB∥CD;(2)当点G在点F的右侧时,①依据题意在图1中补全图形;②若β=80°,则α=度;(3)当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.7.【认识】(1)如图①,∠1、∠2是四边形ABCD的两个外角,求证:∠1+∠2=∠A+∠C.【操作】(2)如图②,已知∠α和∠AOB,点M、N分别在∠AOB的边OA、OB上.请利用无刻度直尺和圆规在∠AOB的内部求作一点P,使得∠AOB+∠MPN=∠α.(保留作图痕迹,不写作法)8.定义:如图,E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)如图,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD 的内接菱形,求GC的长度;(2)如图,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,请你在图中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;(尺规作图,保留痕迹)当BF最短时,请求出BC的长.9.已知HD∥GE,点A、C分别在直线上.(1)如图1,请直接写出∠BCE、∠ABC、∠BAD三个角满足的数量关系.(2)如图2,分别作∠BAH与∠BCG的角平分线,交于点F,探索∠B与∠F的数量关系并予以证明.(3)在图3中完成作图并填空:分别作∠ABC与∠BCE的角平分线,交于点M,过点B 作BN∥CM,设∠BAD=m°,请直接写出∠NBM的度数(用含m的式子表示).10.已知三角形ABC和同一平面内的点D.(1)如图1,点D在边BC上,过点D作DE∥BA,交AC于点E,DF∥CA,交AB于点F.①依题意,在图1中补全图形;②若∠EDF=89°,求∠A的度数;③通过图形说明∠A+∠B+∠C=180°(三角形的内角和为180°);(2)如图2,若点D在BC的延长线上,DE∥CA,DE在BC上方,且∠EDF=∠A,判断DE与BA的位置关系,并证明;(3)若D是三角形ABC外部的一个动点(不在三角形三条边所在的直线上),过点D作DE∥BA交直线AC于点E,DF∥CA交直线AB于点F,直接写出∠EDF与∠A的数量关系.11.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.12.如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.13.如图,在边长为1的正方形网格中,点A、C为格点,点B在网格线上,以AB为直径作半圆,点D在半圆上,连接AC、BC.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)分别在AB、AC取点E、F,使EF∥BC,EF=12BC;(2)作△ABC的角平分线BM;(3)在△ABC的角平分线BM取一点N,使CN+DN最小.14.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图1中确定点C(点C在小正方形的顶点上),要求以A、B、C为顶点的三角形为锐角等腰三角形,画出此三角形(画出一个即可);(2)在图2中确定点D(点D在小正方形的顶点上),要求以A、B、D为顶点的三角形是以AB为斜边的直角三角形,画出此三角形(画出一个即可),并直接写出此三角形的周长15.最短路径问题:例:如图1所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图2,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长.。

中考数学总复习之尺规作图专项训练题

中考数学总复习之尺规作图专项训练题

中考数学总复习之尺规作图专项训练题1.如图是由小正方形组成的6×6的网格,△ABC 的三个顶点A 、B 、C 均在格点上,请按要求在给定的网格中,仅用无刻度的直尺,分别按下列要求作图,保留作图痕迹,不写画法.(1)在图1中的AB 上画出△ABC 的高线;(2)在图2中的AC 上找出一点E ,画线段BE ,使△ABE 与△CBE 面积比为3:7两部分;(3)在图3中的BC 上找一点F ,画∠BAF ,使得∠C =2∠BAF .2.如图,正方形ABCD 的对角线AC 和BD 交于点O ,点E 是BD 上的一点,BE =BC .(1)用直尺和圆规完成以下基本操作:过点B 作∠EBC 的角平分线交OC 和EC 分别于点F 和点G (保留作图痕迹,不写作法):(2)求证:OF +OC =BC .证明:在正方形ABCD 中,OB =OC ,∠BOC =∠DOC =90°∵BE =BC ,BG 平分∠EBC∴∴∠BGC =90°又∵∠OFB =∠GFC∴90°﹣∠OFB =90°﹣∠GFC∴在△OBF 和△OCE 中,{OB =OC∠OBF =∠OCE (ㅤㅤ)∴△OBF ≌△OCE∴∴OF+OC=OE+OB=BE=BC3.在如图所示的小正方形网格中,每个小正方形的顶点叫做格点,A,B,C都是格点.请仅用无刻度的直尺完成下列作图,作图过程用虚线表示,作图结果用实线表示.(1)在图1中,在AB上找点D,使AD=AC且点D恰好在格点上,作出点D,再作CE⊥AD于点E;(2)在图2中,先作△ABC的角平分线AF交(1)中的CE于点F,再过点F作FH⊥AC于点H.4.如图,在△ABC中,AB=AC,以AB为直径的OO与BC交于点D,连接AD.(1)尺规作图:作劣弧AD的中点E.(不写作法,保留作图痕迹)(2)若⊙O与AC相切,求(1)中作图得到的∠ABE的度数.5.如图,已知⊙O是△ABC的外接圆,∠A=45°,请仅用无刻度的直尺,按下列要求画图(保留画图痕迹).(1)在图1的⊙O上作点D,使△BCD为等腰直角三角形;(2)在图2的⊙O上作点M,N,使四边形BCMN为正方形.6.(2023•鼓楼区校级模拟)已知:如图,P A是⊙O的切线,A为切点.(1)过点P作⊙O的另一条切线PB,且B为切点.(尺规作图,保留作图痕迹,不写作法);(2)在(1)的情况下,连接AB,⊙O的半径为2,AP=5,求AB的长.7.(2023•松原一模)图①、图②均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点.△ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图,保留作图痕迹.(1)在图①中画△ABC的中位线DE,使点D、E分别在边AB、BC上;(2)在图②中画△ABC的高线BF.8.(2023•金华模拟)在5×5的方格中,A、B、F均在格点上,请用无刻度直尺按要求画图.(1)在线段AB上找一点C,使得AC=3BC;(2)作△ABD,使得S△ABD=S△ABF(D为格点);(3)作GE⊥AB,且GE=AB(E、G为格点).9.(2023•平潭县模拟)如图,已知钝角△ABC中,CA=CB.(1)请在图中用无刻度的直尺和圆规作图:作∠ACB的平分线CD交AB于点D;作△ABC的外接圆⊙O;(不写作法,保留作图痕迹)(2)在(1)中,若AB=2√3,∠ACB=120°,求出此时⊙O的半径长度.(如需画草图,请使用备用图)10.如图,在每个小正方形的边长为1的网格中,△ABC 的顶点A ,C 均落在格点上,点B 在网格线上.(Ⅰ)线段AC 的长等于 ;(Ⅱ)以AB 为直径的半圆的圆心为O ,在线段AB 上有一点P ,满足AP =AC .请用无刻度的直尺,在如图所示的网格中,画出点P .11.(2023•天门一模)尺规作图:按下列要求作出图形,不写作法,保留作图痕迹.(1)图1是矩形ABCD ,E ,F 分别是AD 和AB 的中点,以EF 为边画一个菱形;(2)图2是正方形ABCD ,E 是BD 上一点(BE >DE ),以AE 为边画一个菱形.12.如图,在由4×4的小正方形组成的网格中,每个小正方形的边长都是1,小正方形的顶点叫格点.(1)在图1中,以A 为顶点,作一个三边长分别为2,√5和√13的格点三角形.(2)在图2中,以A 为顶点,作一个面积为52的等腰直角三角形.13.如图,矩形ABCD内接于⊙O.请用直尺(不带刻度)按要求作图,不要求写作法,但要保留作图痕迹.(1)在图1中,作出圆心O;(2)在如图2中,点E是AD边的中点,连接BD,作出∠DBC的角平分线.14.我国纸伞的制作工艺十分巧妙.如图,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AE=AF,DE=DF,从而保证伞圈D能沿着伞柄滑动.(1)证明:△AED≌△AFD.(2)若伞圈D滑动到D1,用直尺和圆规作出两条伞骨AB、AC的位置.(3)若AE=DE=24cm时,当△ADF由正三角形变成直角三角形的过程中,伞圈D滑动的距离是多少?15.如图,已知甲工厂靠近公路a,乙工厂靠近公路b,为了发展经济,甲、乙两工厂准备合建一个仓库,经协商,仓库必须满足以下两个要求:①到两工厂的距离相等;②在∠MON内,且到两条公路的距离相等.你能帮忙确定仓库的位置吗?(保留作图痕迹,不写作法)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学尺规作图题型大全1.已知,如图,在Rt△ABC中,∠C=90º,∠BAC的角平分线AD交BC边于D。

(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;2, 求线段BD、BE与劣弧DE (2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=3所围成的图形面积。

(结果保留根号和 )【答案】(1)如图,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆。

判断结果:BC是⊙O的切线。

连结OD。

∵AD平分∠BAC ∴∠DAC=∠DAB∵OA=OD ∴∠ODA=∠DAB∴∠DAC=∠ODA ∴OD∥AC ∴∠ODB=∠C∵∠C=90º∴∠ODB=90º即:OD⊥BC∵OD是⊙O的半径∴ BC是⊙O的切线。

(2) 如图,连结DE。

设⊙O的半径为r,则OB=6-r,在Rt△ODB中,∠ODB=90º,2)2∴ 0B2=OD2+BD2 即:(6-r)2= r2+(3∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB 的面积为3223221=⨯⨯,扇形ODE 的面积为ππ322360602=⨯⨯ ∴阴影部分的面积为32—π32。

2. 根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?更多学习方法和资料免费下载,添加微信youshuxue 并举例验证猜想所得结论。

(1)如图①△ABC 中,∠C=90°,∠A =24°①作图: ②猜想: ③验证:(2)如图②△ABC 中,∠C =84°,∠A =24°.①作图: ②猜想: ③验证:CB A(第23题图①)(第23题图②)CBA【答案】(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,在边AB上找出所需要的点D,则直线CD即为所求………………2分②猜想:∠A+∠B=90°,………………4分③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。

………………5分(2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可。

在边AB上找出所需要的点D,则直线CD即为所求………………6分②猜想:∠B=3∠A………………8分③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。

………………9分3. 我们学习过:在平面内,将一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫做旋转,这个定点叫旋转中心.(1)如图①,△ABC≌△DEF,△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.图①(2)如图②,△ABC≌△MNK,△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)图①图②O就是所求作的旋转中心.【答案】解:(1)能,点1图①图②(1)能,点2O就是所求作的旋转中心.4. 四条线段a,b,c,d如图,a:b:c:d=1:2:3:4.(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);(2)任取三条线段,求以它们为边能作出三角形的概率.【答案】(1)只能取b,c,d三条线段,作图略(2) 四条线段中任取三条共有四种等可性结果:(a,b,c),(a,b,d),(a,c,d),(b,c,d),其中能组成三角形的只有(b,c,d),更多学习方法和资料免费下载,添加微信youshuxue所以以它们为边能作出三角形的概率是14.5. 为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M、位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)【答案】6. 如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C。

(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD。

(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D的半径= (结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由。

【答案】(1)(2)① C(6,2),D(2,0)②25A BCOA BCO x yD E③54π ④相切。

理由:∵CD=25,CE=5,DE=5 ∴CD 2+CE 2=25=DE 2 ∴∠DCE=90°即CE ⊥CD ∴CE 与⊙D 相切。

7. A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向行驶,在行驶过程中是否存在一点C,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,更多学习方法和资料免费下载,添加微信youshuxue 保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之各最小,通过作图在图中找出建游乐场的位置,并求出它的坐标.【答案】(1)存在满足条件的点C: 作出图形,如图所示,作图略;(2)作出点A 关于x 轴的对称点A /(2,-2), 连接A /B ,与x 轴的交点即为所求的点P. 设A /B 所在的直线的解析式为: y=kx+b, 把A /(2,-2), B(7,3)分别代入得: ⎩⎨⎧-=+=+2237b k b k 解得:⎩⎨⎧-==41b k ·所以: y=x-4·当y=0时,x=4,所以交点P 为(4,0)·8.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等(A 、B 、C 不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P 的位置.要求: 写出已知、求作;不写作法,保留作图痕迹. 解:已知:.A(2, 2).B(7, 3)yOx第23题图求作:【答案】:解:已知:A、B、C三点不在同一直线上.求作:一点P,使PA=PB=PC.(或经过A、B、C三点的外接圆圆心P)正确作出任意两条线段的垂直平分线,并标出交点P9. 如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.⑵在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.【答案】解:⑴在Rt △ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB,∴CD=BD.B B B CCCAAADP E①②③(第27题)∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°, ∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点. ⑵①作图略.作法如下:(i )在∠ABC 内,作∠CBD =∠A ;(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P . 则P 为△ABC 的自相似点.②连接PB 、PC .∵P 为△ABC 的内心,∴12PBC ABC ∠=∠,12PCB ACB ∠=∠. ∵P 为△ABC 的自相似点,∴△BCP ∽△ABC . ∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A .∵∠A+∠ABC+∠ACB =180°. ∴∠A+2∠A+4∠A =180°. ∴1807A ∠=.∴该三角形三个内角的度数分别为1807、3607、7207.10.(本题满分6分)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°。

正方形ABCD 的边长为1,它的一边AD 在MN 上,且顶点A 与M 重合。

现将正方形ABCD 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动。

(1)请在所给的图中,用尺规画出点A 在正方形整个翻滚过程中所经过的路线图; (2)求正方形在整个翻滚过程中点A 所经过的路线与梯形MNPQ 的三边MN 、NP 、PQ所围成图形的面积S 。

【答案】解:(1)如右图所示.……………………(3分)(2)S = 2[14π·12 + 14π·(2)2 + 1 + 150360π·12]=7π3+ 2.………………………(6分) BA (M )D C NPQBA(M)DC NPQ11.画△ABC,使其两边为已知线段a、b,夹角为β.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法).已知:a b求作:β19题图【答案】已知:线段a、b、角β-------------1分求作:△ABC使边BC=a,AC= b,∠C=β------------2分画图(保留作图痕迹图略)--------------6分12. 如图1,Rt△ABC两直角边的边长为AC = 1,BC =2.(1) 如图2, ⊙O与Rt△ABC的边AB 相切于点X,与边CB相切于点Y.请你在图2 中作出并标明⊙O的圆心0;(用尺规作图,保留作图痕迹,不写作法和证明)(2) P 是这个Rt△ABC上和其内部的动点,以P 为圆心的⊙P 与Rt△ABC 的两条边相切.设⊙P 的面积为S,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S的最大值的理由.(第23题图1)(第23题图2)【答案】解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y(X)的一条垂线 (或者∠ABC的平分线)即评1分,(2)①当⊙P与Rt△ABC的边 AB和BC相切时,由角平分线的性质,动点P是∠ABC 的平分线BM上的点,如图1,在∠ABC的平分线BM上任意确定点P1 (不为∠ABC的顶点),∵ OX =BOsin∠ABM,P1Z=BP1sin∠ABM.当 BP1>BO 时,P1Z>OX,即P与B的距离越大,⊙P 的面积越大.这时,BM 与AC 的交点P 是符合题意的BP 长度最大的点.(3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边AB 相切于E ,即这时的⊙P 是符合题意的圆.(4分.此处没有证明和结论不影响后续评分)这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE ,(5分) ∴AB PA =BCPE .∵AC =1,BC =2,∴AB = 5 . 设PC =x ,则PA =AC -PC =1-x,PC =PE , ∴51x- =2x ,∴x =522+.(6分) ② 如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则 52y- =1y ,∴y= 512+(7分) ③ 如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则22z -=1z ,∴z=32(8分)由①,②,③可知:∵ 5 >2,∴ 5 +2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,(或者:∵x =522+=25 -4, y= 512+= 215-, ∴y-x=24549->0,∴y>x. ∵z-y=32- 215-=6457->0,∴232> 512+> 522+,(9分,没有过程直接得出酌情扣1分)∴ z >y >x.∴⊙P 的面积S 的最大值为94π.(10分)(第23题答图1)(第23题答图3) (第23题答图4)练习题如图,在ABC ∆中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD .若ADC ∆的周长为10,7AB =,则ABC ∆的周长为( )A.7B.14C.17D.20A B【答案】CZ X B AA A。

相关文档
最新文档