十字交叉法的原理及其在化学计算中的应用
化学十字交叉法的原理及应用
化学十字交叉法的原理及应用化学十字交叉法的原理及应用化学十字交叉法的原理及应用十字交叉法的介绍十字交叉法可用于溶液浓度的计算,例如溶液的稀释、浓缩或混合等计算题。
使用此法,使解题过程简便、快速、正确。
下面通过例题介绍十字交叉法的原理。
同一物质的甲、乙两溶液的百分比浓度分别为a%、b%(a%>b%),现用这两种溶液配制百分比浓度为c%的溶液。
问取这两种溶液的质量比应是多少?同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。
设甲、乙两溶液各取m1、m2克,两溶液混合后的溶液质量是(m1+m2)。
列式m1a%+m2b%=(m1+m2)c%把此式整理得:m1m2=c-ba-c,m1m2就是所取甲、乙两溶液的质量比。
为了便于记忆和运算,若用c浓代替a,c稀代替b,c混代替c,m浓代替m1,m稀代替m2,把上式写成十字交叉法的一般形式,图示如下:图示中m浓m稀就是所求的甲、乙两溶液的质量比。
这种运算方法,叫十字交叉法。
在运用十字交叉法进行计算时要注意,斜找差数,横看结果。
十字交叉法的应用1.有关混合溶液的计算例1.现有20%和5%的两种盐酸溶液,若要配制600克15%的盐酸溶液,各需20%和5%的盐酸溶液多少克?分析与解:本题是用两种已知浓度的溶液来配制所需浓度的溶液,看似是求溶液的质量,实质是先求出两种浓度溶液的质量比,然后问题就迎刃而解。
用十字交叉法由图示可知,20%盐酸溶液与5%盐酸溶液的质量比应为2∶1 ∴20%盐酸溶液的质量600ⅹ23=400克5%盐酸溶液的质量600ⅹ13=200克2.有关改变溶剂质量的溶液浓度的计算例2.把20%的氯化钠溶液100克,加水稀释成浓度为4%的溶液,问需加水多少克?分析与解:本题是用水稀释改变溶液浓度的计算题,将水视为浓度为0%的溶液。
用十字交叉法由图示可知,20%氯化钠溶液与加入水的质量比应为m浓∶m水=4∶16=1∶4∴需加水的质量4ⅹ100=400克例3.现有200克浓度为10%的硝酸钾溶液,若要使其浓度变为20%,则需蒸发掉多少克水?分析与解:本题是蒸发水改变溶液浓度的计算题,将水视为浓度为0%的溶液。
高中化学解题方法——十字交叉法
在化学反应速率问题中,十字交叉法可以用来确定反应速率常数与反应物浓度之 间的关系,从而理解反应速率的变化规律。
03
CATALOGUE
十字交叉法的解题步骤
确定问题类型
01
02
03
混合物计算
当题目涉及混合物时,可 以通过十字交叉法计算混 合物的组成和比例。
平均量计算
当需要计算平均量时,如 平均相对分子质量、平均 摩尔质量等,可以使用十 字交叉法。
高中化学解题方法—— 十字交叉法
汇报人:
202X-01-01
CATALOGUE
目 录
• 十字交叉法的原理 • 十字交叉法的应用 • 十字交叉法的解题步骤 • 十字交叉法的注意事项 • 实例解析
01
CATALOGUE
十字交叉法的原理
原理概述
十字交叉法是一种用于解决混合 物计算问题的化学解题方法。
它通过将混合物的两个组分的质 量或体积进行交叉相乘,来找出 两组分在混合物中的质量比或体
积比。
这种方法适用于解决涉及两种组 分混合的问题,如气体混合、溶
液混合等。
原理的数学表达
则A组分在混合物中 的质量分数为:XA = (m1/M)。
两组分的交叉相乘关
系为:m1XA
=
m2XB。
B组分在混合物中的 质量分数为:XB = (m2/M)。
溶液配制与稀释
总结词
适用于溶液配制和稀释的计算,特别是当涉及溶液的平均量和两个不同浓度的 溶液时。
详细描述
在溶液配制和稀释过程中,十字交叉法可以用来计算两个不同浓度的溶液混合 后的平均浓度,或者确定某一浓度的溶液稀释到另一浓度的比例。
化学反应速率
总结词
十字交叉法及其应用
十字交叉法及其应用四川省资中二中刘建国邮编:641200十字交叉法是将较为复杂的化学计算问题进行数学处理后得出的一种简洁计算方式,能达到化学与数学的完美结合。
但在使用中,由于不能很好地理解十字交叉法中“比值”的化学意义,极易造成解题错误。
下面谈一谈十字交叉的原理和应用的类型。
一、十字交叉法的原理组分A的量a1和组分B的量a2混合后的平均量为,若能例出一般的二元一次方程组:a1x1+a2x2= K,(a1>a2;K为x1和x2之和,K= x1+x2),均可用十字交叉法。
即,。
注意:1)a1、a2和三者的单位相同;2)比值的化学含义则由来决定,若可表示为,则比值就表示y 所表示的量的比值(即所属单位的分母之比)。
比如:为摩尔质量(克/摩),则表示物质的量之比;为质量分数(克/克),则表示质量之比;为密度(克/升),则表示体积之比;为物质量浓度(摩/升),则表示物质的量之比等等。
3)K为x1和x2之和,K= x1+x2,若K不为x1和x2之和,则不能用十字交叉法求解。
二、十字交叉法的各种应用例子例1、H2和O2的组成的混合气体,其相对平均摩尔质量为24.5 g/mol,求二者的物质的量之比?解:M(H2):M(O2):答:二者物质的量之比为1:3。
例2、1体积98%的浓硫酸(密度为1.84g/cm3)与4体积水(密度为1g/cm3)混和,求所得硫酸的百分比浓度?解:98%的浓硫酸:水:即:a:(98-a)=(1×1.84)∶(4×1) 解得a=30.9答:所得H2SO4的百分比浓度为30.9%例3、标况下,氮气的密度为1.25g/L,乙烷的密度为1.34g/L,两种气体混合后,其密度为1.30g/L,求混合气中氮气和乙烷的体积比?解:氮气:乙烷:答:氮气和乙烷的体积比为4:5。
例4、将6mol/L的稀硫酸稀释成2mol/L的硫酸,取用的硫酸与蒸馏水的体积比最接近多少?解:稀硫酸:水:答:硫酸与蒸馏水的体积比为1:2。
十字交叉法在化学中的应用.
十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B×c% 整理变形得:A/B=(c-b/(a-c ①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b/(a-c为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准;若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b/(a-c表示组分A和组分B溶液的质量之比.若c为密度,则(c-b/(a-c 就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b/(a-c 就表示组分A 和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1 将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2 镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3 KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3 、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:KHCO3 100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4 在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气 29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3 中 S % 25.397 % 2.465 %25%Na2SO4 中 S % 22.535 % 0.397 %求得Na2SO3与Na2SO4 的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol 混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH4 0.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4 的体积比是1/3例7 已经 2H2(g+O2(g=2H2O(g;△H=-571.6千焦C3H8 (g+5 O2(g=3CO2(g+4H2O(1; △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8 的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2 = 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8 即氢的原子数是 4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4 的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 1931.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl / m(KI =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO / V( H2 =5.2 / 20.8H22 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO中,元素铁和氧的质量之比用m(Fe∶m(O表示.若m(Fe∶m(O=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe∶m(O=21∶6;若Fe2O3未被还原,则m(Fe∶m(O=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数.解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则 m / 3m = ( x % - 60% / ( 20% - x % 求出x=50既NaCl质量分数50%通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。
十字交叉法在化学中的应用及总结
十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下: KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO 中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数. 解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50% 通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分)的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。
化学十字交叉法的原理和应用
化学十字交叉法的原理和应用孟州一中 王俊强化学计算是中学化学中的重要组成部分,运用恰当的数学方法和模型解决化学问题,可以培养学生的科学思维能力,提高学生分析问题、解决问题的能力,同时也可以加深学生对化学基本概念和基本原理的理解。
“十字交叉法”的应用就是其中的典型。
一、十字交叉法的原理对于一个具有平均意义的由组分A 、B 形成的二元混合体系,设a 、b (a >b )为组分A 、B 单位物理量的分属性,c 为混合物的混合属性即平均值,a,b,c 表示的物理量是一致的(如摩尔质量、相对原子质量、质量分数、焓变、分子式等),X 、Y 两组分单位物理量的数量因子。
此时通常可以建立一个二元一次方程组:aX+bY=c X+Y=1对上边的二元一次方程组进行变式得:X c-bY a-c为了方便同学们的记忆,将其变为固定模式:单位物理量的组分A a c-bc单位物理量的组分B b a-c二、十字交叉法的应用十字交叉法作为一种简单算法,它特别适合于两总量、两关系的混合物的有关计算。
具体适用题型如下:(1)有关质量分数的计算(用两种不同浓度溶液的质量分数与混合溶液的质量分数作十字交叉,求两种溶液的质量比)例1 将50%的盐酸溶液与10%盐酸溶液混合成40%的盐酸溶液,求所取两种溶液的质量比。
解析:(2)有关物质的量浓度的计算(用混合钱的物质量的浓度与混合后的物质量的浓度做十字交叉,求体积比)13)%10()%50( HCl m HCl m 100g50% 盐酸 50 30 40 100g10% 盐酸 10 10例2 现有浓度为 4mol ·L -1 和6mol ·L -1 的两种硫酸溶液,欲配制5 mol/L 的硫酸溶液(混合时体积变化忽略不计)则取两种硫酸溶液的体积比是多少?解析:1L4mol/L硫酸 4 151L6mol/L硫酸 6 1得两种硫酸的体积之比为1:1(3)有关平均分子量的计算(通过纯物质的质量分数与混合后的平均分子量做十字交叉,求百分数)例3 实验测得乙烯与氧气混合气体的密度是氢气的14.5倍,可知其中乙烯的质量百分比为:A.25.0%B.27.6%C.72.4%D.75.0%解析:1molC2H4 28 3291mol O232 1得乙烯和氧气的物质的量之比为3 : 1,3×28乙烯的质量百分含量= ×100% = 72.4 % 答案为C3×28+1×32(4)有关平均原子量的计算(用同位素的原子量或质量数与元素原子量作交叉,求原子个数比或同位素百分数)例4 铜有两种天然同位素63Cu和65Cu , 参考铜的原子量为63.5 , 估算63Cu的平均原子百分含量约是A. 20%B.25%C.66.7%D.75%解析63Cu 63 1.563.565Cu650.5得63Cu和65Cu的原子个数比为.3:13故63Cu的原子百分含量= ×100% =75%3 + 1(5)有关反应热的计算(有单个反应的热效应与混合物的反应热做十字交叉,求百分数)例5 已知:2H2(g)+ O2(g)=2H2O(l) ΔH= -571.6KJ· mol-1CH4(g)+ 2O2(g)=CO2(g)+2H2O(l) ΔH= -890KJ· mol-1现有H2与CH4的混合气体112L(标准状况),使其完全燃烧生成CO2和H2O(l),若实验测得反应放热3695KJ,则原混合气体中H2与CH4的物质的量之比是A.1∶1 B.1∶3 C.1∶4 D.2∶3解析:1mol H2571.6/2 1513695/51molCH4890 453.2得氢气和甲烷的物质的量之比为1:3,故答案为B(6)有关混合物反应的计算(利用单个反应消耗某种反应物的量与混合后做十字交叉,求分数)例题6 用1L浓度为1.0mol/L的NaOH溶液吸收了0.80mol CO2气体,所得溶液中CO32—和HCO3—的物质的量之比为:。
“十字交叉法”的原理及应用
“十字交叉法”的原理及应用摘要:本文分析了学生不易掌握“十字交叉法”的原因。
应用平均值概念推导出“十字交叉法”原理,从平均值概念分析“十字交叉法”应用的条件和范围,给出了一种适用解答格式,并从三类二元混合体系和平均值角度对常见题型进行了归纳。
关键词:十字交叉法、平均值“十字交叉法”是平均值法的技巧方法,即利用平均值求解二元混合体系的混合比的一种图解方法。
利用此法求解二元混合体系的混合比具有准确、简便、快速的特点。
因此,它是高考化学计算重要方法之一。
教学实际中,许多同学对此法掌握得不好。
学生出现的问题主要有两种情况:一种情况是遇到可用“十字交叉法”求解的问题,却不知道怎样用“十字交叉法”来求解;第二种情况是虽然知道用“十字交叉法”求解,但却不明确所得到的比值的化学意义,得出错误的计算结果。
我们认为主要原因是在教学中没有抓住平均值概念去推导“十字交叉法”原理、分析应用范围和应用条件,没有给出解题的规范格式,也没从二元混合体系及其平均值角度来归纳常见题型。
本文应用平均值概念推导“十字交叉法”原理、分析其应用条件和范围、归纳主要应用题型,并给出一种较适用的解题规式。
一、“十字交叉法”原理1.用平均值概念推导“十字交叉法”原理以A、B二组分混合物的平均摩尔质量为例推导“十字交叉法”原理。
设混合物平均摩尔质量为M,A、B的物质的质量分别为n(A)和n(B),摩尔质量分别为M(A)和M(B)混合物的总质量为:m(混)= n(A)×M(A) + n(B)×M(B)混合物的总物质的量为:n(混)= n(A) + n(B)根据摩尔质量定义可知混合物的平均摩尔质量为:)()(混混n m M = …… ①将A 和B 混合物的总物质的量n(混)和总质量m(混)代入①式得:)B (n )A (n )B (M )B (n )A (M )A (n M +⨯+⨯= …… ②将②式变形得混合物中两种成分的物质的量之比的数学表达式:M)A (M )B (M M )B (n )A (n --= …… ③ 将③式写成直观的图解形式,即“十字交叉法”的形式:A :M(A) |M - M(B)|╲ ╱ …… ④╱ ╲B :M(B) |M(A) - M |2.“十字交叉法”的应用条件从上述二组分混合物平均摩尔质量推导“十字交叉法”原理得出其应用条件为: ⑴n(A)和n(B)具有加合性,即n(混)= n(A) + n(B)。
十字交叉法在化学计算中的应用
对密度为 9.7 ,若将此气体进行喷泉实验,当喷泉停止后进入烧瓶中溶液的体积为 4 5 L ,溶
-1-
质的物质的量浓度为
。
解析: M 2 9.7 19.4
17
9.6
4
19.4
1
29
2.4
故烧瓶为含
NH 3
1L 4 为: 1 4
4 5
L
氢气不溶于水,当喷泉停止后,烧瓶内
4L 溶液应为 5
解析:设原溶液的质量为 x
22
14
14
0
8
14 x 8 100
x 175g
M (NaNO3 ) 85g / mol
C
0.22
85
175g g mol
1
3.0mol / L
0.15L
4. 有关消耗量、差量计算。
[例 4] 把 NaCl 和 NaBr 的混合物 0.5g 溶于水后加入足量的 AgNO3 溶液,把所得沉淀过滤、
洗涤、干燥,最后得到卤化银1.10g ,求原混合物中 NaCl 的质量分数是多少?
解析: NaCl — AgCl 58.5 143.5 AgX 1.10g
NaBr — AgBr 103 188
(1)若皆为 NaCl ,可得沉淀
0.5g 143.5 1.227g 58.5
(2)若皆为 NaBr ,可得沉淀
浓度
混合液质量
4
质量分数
质量分数
分数
x1 a平 a2 x2 a1 a平
5
密度混Leabharlann 密度体积分数6用于某些综合计算:如确定有机物的组成
【典型例题】
1. 有关分子量、平均分子量计算中的应用。
高中化学解题方法——十字交叉法
3 .十字交叉法十字交叉法又名混合规则法、杠杆原理等,它在化学计算中具有能简洁和迅速求解的特点。
1、十字交叉法的数学原理:凡能列出一个二元一次方程组来求解的命题,均可用十字交叉法。
如: 1211221x x a x a x a +=⎧⎨+=⎩平12a a a -平a平21a a a -平结论:2121a a x x a a -=-平平十字交叉法立足于二元一次方程的求解过程,并把该过程抽象为十字交叉的形式,所以凡能列出一个二元一次方程来求解的命题均可用此法。
2、使用范围列表如下:⎧⎪⎨⎪⎩溶液度混合十字交叉法平均化式量(原子量)平均耗氧量3、注意事项(1)适用于十字交叉法的量必须是具有加权平均意义的量,具体说是一些分数,如:质量分时、体积分数、物质的量分数或者是一些具有复合单位的量,如:摩尔质量、密度、燃烧热等。
(2)物理量必须具有简单的加和性。
如溶液质量等,而溶液混合时的体积不具有加和性,所以一般不可用物质的量浓度交叉求两溶液的体积比,只有稀溶液混合时近似处理忽略体积........变化..才可用十字交叉法求解。
(3)比的问题:什么比——基准物质以什么物理量为前提进行分量和平均量的确定得出的比,以物质的量为前提得出的是基准物质的物质的量之比;以一定质量为前提得出的是基准物质的质量之比。
练习1、质量百分比浓度溶液的混合如用的98%浓硫酸与7%的稀硫酸混合配成20%的硫酸溶液,则需浓硫酸与稀硫酸以质量比为混合恰好配成20%的硫酸。
2、物质的量浓度溶液的混合如用18mol/L的浓硫酸与2mol/L的稀硫酸混合成6mol/L的硫酸,则浓硫酸与稀硫酸的体积比是。
3、相对原子量的求算铜有两种天然同位素6529Cu和6329Cu,已知通的相对原子质量为63.5,估算6529Cu的百分含量(丰度)约为A、5%B、25%C、50%D、75%4、平均相对分子质量的计算甲烷和氧气混合后,其平均相对分子质量为24,则混合气体中甲烷与氧气的体积比为。
高中化学十字交叉法
“十字交叉法”在化学计算中的应用“十字交叉法”是一种适用于二元混合体系的计算方法,常用于计算二元组成部分的比例关系。
现将其原理简介如下:由,可得(假设),即,则有。
为了便于记忆和运算,采用“十字交叉法”图式表示如下:其中,A1、A2、是具有比值含义的量,P1、P2是A1、A2、的分母对应的物理量(如当A1、A2、代表摩尔质量时,则P1与P2之比为物质的量之比),且P 1、P2具有加合性,只有满足上述条件,才能应用“十字交叉法”,否则便会造成错误。
“十字交叉法”可以广泛用于溶液的混合与稀释、有关元素的平均相对原子质量的计算、连续发生两步反应时产物组成的判断等多种类型的试题中,下面分别予以说明。
一、在溶液混合与稀释计算中的应用1. 在溶液混合计算中的应用。
例1. 现将质量分数为30%的食盐水60g与质量分数为10%的食盐水混合,所得溶液的质量分数为15%。
则所需质量分数为10%的食盐水的质量为___________。
解析:本题是同种溶质不同浓度的溶液混合问题,解决这类问题的依据是混合前溶液中溶质的质量之和等于混合后溶液中溶质的质量。
设所需质量分数为10%的食盐水的质量为x,则:有,解得x=180g。
故所需质量分数为10%的食盐水的质量为180g。
2. 在溶液稀释计算中的应用。
例2. 将质量分数为30%的溶液稀释,配成300g质量分数为10%的溶液。
则需质量分数为30%的溶液和水的质量分别为_______、________。
解析:利用稀释前后溶液中溶质的质量不变,把水看作质量分数为0的溶液,则:即每有1份质量分数为30%的溶液与2份质量分数为0的水混合,可配成(1+2)份质量分数为10%的溶液。
故需质量分数为30%的溶液的质量为×。
需水的质量为或为。
二、在有关元素的平均相对原子质量计算中的应用例3. 由(氯元素的平均相对原子质量为35.5)构成的11.7g NaCl固体中,的质量为____________。
十字交叉法及在有机化学计算中的应用
十字交叉法及在有机化学计算中的应用(1)“十字交叉法”的数学理论基础的数学理论基础(2)“十字交叉法”在有机化学计算中的应用在有机化学计算中的应用①若a、b为两气体的相对分子质量,C为混合气体的平均相对分子质量,则x∶y为混合气体中两组成气体的体积比(或物质的量之比) ②若a、b为气体分子式中某原子的数目,c为混合气体平均分子式中某原子数目,则x∶y 为混合气体中两组分气体的体积比(或物质的量之比)。
(3)在有机化学的计算中,除“十字交叉法”外,还有代数法、差值数、守恒法、讨论法等等,必须灵活运用,具体问题具体解决。
必须灵活运用,具体问题具体解决。
2.确定有机物分子式的基本方法确定有机物分子式的基本方法确定烃及烃的衍生物的分子式的基本途径为:确定烃及烃的衍生物的分子式的基本途径为:【命题趋势分析】【命题趋势分析】求各类有机物分子式及判断它们的结构在有机化学中占有举足轻重的地位,贯穿在有机化学的各章节中,应通过练习熟练掌握。
的各章节中,应通过练习熟练掌握。
核心知识核心知识【基础知识精讲】【基础知识精讲】1.有机物分子式和结构式的确定有机物分子式和结构式的确定(1)利用上述关系解题的主要思路是:首先要判断有机物中所含元素的种类,然后依据题目所给条件确定有机物分子中各元素的原子数目,从而得到分子式,最后由有机物的性质分析判断其结构式。
(2)实验式是表示化合物分子所含各元素的原子数目最简单整数比的式子。
求化合物的实验式即是求该化合物分子中各元素原子的数目(N)之比。
(3)烃的含氧衍生物完全燃烧的化学方程式为:烃的含氧衍生物完全燃烧的化学方程式为:燃烧规律如下:燃烧规律如下:y>4-2z 时,燃烧后,气体体积增大(100℃以上,下同);y =4-2z 时,燃烧前后气体体积不变;时,燃烧前后气体体积不变;y<4-2z 时,燃烧后气体体积减少(不合理)。
上式中若z =0,即为烃燃烧的规律。
2.由实验式确定分子式的方法由实验式确定分子式的方法(1)通常方法:必须已知化合物的相对分子质量[Mr(A)],根据实验式的相对分子质量[Mr(实)],求得含n 个实验式:n = ,即得分子式。
平均摩尔质量十字交叉法
平均摩尔质量十字交叉法摩尔质量是指物质相对分子质量或相对原子质量的度量单位。
平均摩尔质量十字交叉法是一种用于计算化学物质平均摩尔质量的简便方法。
本文将介绍平均摩尔质量十字交叉法的原理和应用。
一、平均摩尔质量的概念摩尔质量是指一个物质的摩尔单位中所含有的质量。
计算摩尔质量可以通过相对分子质量(分子化合物)或相对原子质量(单质)来获得。
相对分子质量是指分子的质量与碳-12的质量之比,而相对原子质量则是指原子的质量与碳-12的质量之比。
摩尔质量的单位是克/摩尔。
二、平均摩尔质量的意义平均摩尔质量是指某一物质中所有原子的摩尔质量的平均值。
它可以帮助我们确定一个物质中各种元素的相对含量。
平均摩尔质量在化学计算中起着重要作用,尤其在化学方程式的平衡、物质的质量计算和化学反应的计算中。
三、平均摩尔质量的计算方法平均摩尔质量十字交叉法是一种简便的计算方法,适用于计算化合物的平均摩尔质量。
该方法通过将化合物的每个元素的摩尔质量与其相对含量相乘,然后将所有元素的摩尔质量之和除以化合物的相对含量之和,得到平均摩尔质量。
具体计算步骤如下:1. 根据化学式确定化合物中各元素的相对含量。
2. 查找每个元素的相对原子质量。
3. 将每个元素的相对原子质量与其相对含量相乘,得到各元素的摩尔质量。
4. 将各元素的摩尔质量相加,得到化合物的平均摩尔质量。
例如,计算二氧化碳(CO2)的平均摩尔质量:1. 化合物中含有碳和氧两种元素,相对含量分别为1和2。
2. 碳的相对原子质量为12,氧的相对原子质量为16。
3. 碳的摩尔质量为12*1=12,氧的摩尔质量为16*2=32。
4. 平均摩尔质量为(12+32)/(1+2)=16。
四、平均摩尔质量的应用平均摩尔质量可以用于计算物质的质量、摩尔数和体积之间的关系。
例如,在化学方程式的平衡计算中,可以通过平均摩尔质量来确定反应物和生成物的摩尔比例。
在化学反应的计算中,可以通过摩尔质量来计算反应物的质量和生成物的产量。
十字交叉法在化学中的应用及总结
十字交叉法的原理及其在化学计算中的应用十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义,在使用该方法时将没有真正达到简化思路、快速准确求解的目的,从而限制了该方法的推广和应用.“十字交叉法”是通常中学化学计算必需掌握的一种计算方法,因为用此法解题实用性强、速度快.学生若能掌握此方法解题,将会起到事半功倍的效果.以下是笔者几年来对“十字交叉法”理解及体会.1 十字交叉法的原理:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下: KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO 中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数. 解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50% 通过上面的论述,我们可以看出,十字交叉法确实简单、方便、容易操作,但值得一提的是,在应用十字交叉法进行运算时,必须满足它的运算基础.十字交叉法应用于处理两组分(或相当于两组分)的混合物的组成计算十分方便.不断积累、总结、发掘新的解题方法,可促进知识的有效迁移、同化和深化对问题的理解,提高解题的效率与正确率.。
”十字交叉法“的原理和应用
化学计算中“十字交叉法”的数学原理和应用一. “十字交叉法”简介“十字交叉法”是二元混合物(或组成)计算中的一种特殊方法,若已知两组分量和这两个量的平均值,求这两个量的比例关系等,多可运用“十字交叉法”计算。
十字交叉法在化学计算中是一种常用的方法,在很多习题中采用十字交叉法可以简化计算过程,提高计算效率。
下面先从一道简单的例题来介绍何为十字交叉法。
例1、50克10%的硫酸溶液和150克30%的硫酸溶液混合后,所得硫酸溶液的质量分数是多少?采用十字交叉法计算的格式如下:设混合后溶液的质量分数为x%,则可列出如下十字交叉形式所得的等式:10%的溶液 10 30 — xX =30%的溶液 30 x — 10由此可得出 x = 25,即混合后溶液的质量分数为25%。
以上习题的计算过程中有一个十字交叉的形式,因此通常将这种方法叫做“十字交叉法”。
然而怎样的计算习题可以采用这种方法?且在用“十字交叉法”时,会涉及到最后差值的比等于什么的问题,即交叉后所得的差值之比是实际中的质量之比还是物质的量之比?这些问题如果不明确,计算中便会得出错误的结论。
针对以上问题,在以前的教学中,可能往往让学生从具体的习题类型死记差值之比的实际意义。
由于十字交叉法常用于:①核素“丰度”与元素相对原子质量的计算;②混合气体不同组分体积之比和混合气体平均相对分子质量的计算;③不同浓度的同种溶液混合后质量分数与组分溶液质量之比的计算等类型的习题中。
因此可以简单记忆为前两种类型中,差值之比为物质的量之比,第三种类型差值之比为质量之比。
这种记忆方法束缚了学生的思维,同时也限制了“十字交叉法”的使用范围。
实质上“十字交叉法”的运用范围很广,绝不仅仅只能在以上三种类型的习题中才可运用。
然而不同情况下,交叉后所得的差值之比的实际意义是什么?该怎样确定其实际意义?是我们应该探讨和明了的问题。
要解决此问题,就要明了“十字交叉法”的数学原理,然后再从原理的角度去分析,便能确定差值之比在何时为组分的质量之比,何时为组分的物质的量之比。
化学计算中十字交叉应用技巧举例
例 1: 实验测得乙烯与氧气的混合气体的密度是氢气的 14.5 倍。 可知其中乙烯的质量分数为 ( ) A.25.0% B.27.6% 解法一:数学法 解析:物质的相对分子质量(简称:式量)Mr=m(质量)/n(物质的量); 混合物的平均式量 Mr=m(混合物总质量)/n(混合物总物质的量) =(������������1 × ������1 + ������������2 × ������2 + ⋯ )/(������1 + ������2 + ⋯ ) =Mr1×组分 1 的物质的量百分数+Mr2×组分 2 的物质的量百分数+„„„ 解:设乙烯与氧气物质的量百分数分别为 x、y 有已知的:混合气体的平均式量=14.5×2=29 Mr(C2H4)=28 Mr(O2)=32 则有:28x+32y=29 且 x+y=1 解方程组得:x=0.75 y=0.25 或
有氢原子的平均值 5 得: CH4: 4 5 C2H6 2828 6 1 1 1 = 1
所以假设成立;故选:D 同理;可讨论 CH4 和 C3H8 故选:D CH4 和 C4H10; (略)都不成立
故答案选:C 。
例 2.在一定条件下, 将 22.4LCH4 和某气态烷烃的混合气体,充分燃烧, 测知生成 CO2 共 33.6L,
平均分子式:C1.5H5。所以另一种气态烷烃可能为:C2H6 、C3H8 、C4H10 讨论:若为 CH4 和 C2H6 有碳原子的平均值 1.5 得: CH4: 1 1.5 C2H6 2828 2 0.5 0.5 1 = 1
x y
C.72.4%
D.75.0%
= 3: 1(则认为:混合
组分中乙烯有 0.75mol 或 3mol 甲烷有 0.25mol 或 1mol) 则乙烯的质量分数=
十字交叉法在化学计算中的运用
十字交叉法在化学计算中的运用十字交叉法是一种常见的化学计算方法,通常用于计算化学式、反应式、反应物质量、产物物质量等。
该方法的原理简单,适用性广泛,因此被广泛应用于化学教育和科学研究中。
一、十字交叉法的基本原理十字交叉法是一种基于化学化学计算的原则,其基本思想是利用反应的化学方程式中各个物质的摩尔比例关系来计算物质的质量和化学式。
对于化学方程式中涉及的各种物质,我们需要分别计算其摩尔数,然后根据摩尔比例关系求出所需的其他物质的摩尔数和质量。
具体地说,我们需要先根据化学方程式来确定各个反应物的摩尔数,然后根据摩尔比例关系来计算所得物质的摩尔数,最后根据摩尔质量关系来计算所需的质量。
二、十字交叉法的应用示例下面我们来看一个具体的计算示例:题目:有9.5克的硫酸和20g的铁,它们反应生成硫化氢和铁(Ⅱ)离子。
请计算反应的化学式和干燥的硫化氢的体积,温度为25℃,压力为常压。
解答:步骤一:根据题目中的描述,我们可以写出以下化学方程式:H2SO4 + Fe → FeSO4 + H2S步骤二:计算反应中硫酸和铁的摩尔数。
硫酸的摩尔数 = 质量÷ 摩尔质量= 9.5 ÷ 98 =0.0969 mol铁的摩尔数 = 质量÷ 摩尔质量= 20 ÷ 56 = 0.3571 mol 步骤三:根据化学方程式和摩尔比例关系计算产物的摩尔数和质量。
根据方程式,化合物中硫酸与铁的摩尔比为1:1,因此硫化氢的摩尔数和铁的摩尔数相同。
硫化氢的摩尔数 = 铁的摩尔数 = 0.3571 mol硫化氢的质量 = 摩尔数× 摩尔质量= 0.3571 × 34.08 = 12.17 g步骤四:计算干燥的硫化氢的体积。
根据摩尔体积关系,1摩尔气体在标准状态下的体积为22.4升,因此:干燥的硫化氢体积 = 摩尔数× 22.4 L/mol = 0.3571 × 22.4 = 8 L步骤五:考虑温度和压力的影响。
十字交叉法的原理及其在化学计算中的应用
十字交叉法的原理及其在化学计算中的应用1 十字交叉法的原理[4]:A×a%+B×b%=(A+B)×c%整理变形得:A/B=(c-b)/(a-c )①如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系.可得如下十字交叉形式a c-bc ②b a-c对比①,②两式不难看出:十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比.推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值c决定,则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c 为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比.若c为摩尔质量,则(c-b)/(a-c)就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.2 十字交叉法的应用例析:2.1 用于混合物中质量比的计算例1将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?解:在标准状况下,求出氢气的质量M=1g,以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:Al 37 / 18 19/561Fe 37/56 19/18求得铝与铁质量的比是9/28例2镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:Mg 5/6 1/91Al 10/9 1/6求得镁与铝的质量比是2/3例3KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑CaCO3+2HCl=CaCl2+H2O+CO2↑以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:KHCO3100 3484CaCO3 50 16因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).2.2 用于混合物中物质的量比的计算例4在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物则十字交叉法如下:空气29 2.534HCl 36.5 5求出空气与HCl气体的物质的量比是1/2例5某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?解:由平均质量分数25%,列出十字交叉法如下:Na2SO3中S % 25.397 % 2.465 %25%Na2SO4 中S % 22.535 % 0.397 %求得Na2SO3与Na2SO4的物质的量比是6/12.3 用于混合物中体积比的计算例6已知CH4, C2H4及其混合气体在同温同压下分别为0.71 g / L 、1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?解:以1mol混合气体密度1.16 g / L作为基准物则十字交叉法如下:CH40.71 0.091.16C2H4 1.25 0.45求得CH4与C2H4的体积比是1/3例7已经2H2(g)+O2(g)=2H2O(g);△H=-571.6千焦C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220千焦求H2和C3H8的体积比.解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦lmol混合气体完全燃烧放热为:3847/5=769.4千焦列出十字交叉法如下:H2 285.5 1460.6769.4C3H8 2220 483.6求得H2和C3H8的体积比为3/1例8一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为CxHy + 3.2 O2= 2 CO2+ 2.4 H2O1 3.2 2 2.4根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是 4.8.十字交叉法如下:C2H6 6 0.84.8C2H4 4 1.2求得混合物中C2H6和C2H4的体积比是2/32.4 用于混合物中原子个数比的计算例9已知自然界中铱有两种质量数分别为191和193的同位素,而铱的相对分子质量为192.22,求这两种同位素原子个数比.解:以1 mol铱的相对分子质量为192.22为基准则十字交叉法如下:191Ir 1910.78199.2 191Ir / 193Ir = 0.78 / 1.22193Ir 193 1.22求得191Ir 与193Ir 物质的量比39/61 也是它们原子个数比.2.5 用于混合物中质量分数和体积分数的计算例10 把0.200gNaCl和KI混和物溶于水后加入过量AgN03溶液析出0.449 g,求原混和物中NaCl和KI的质量百分数.解:分别计算产生沉淀物的质量,根据化学方程式得:0.200 g NaCl生成0.490 g AgCl0.200 g NaI生成0.283 g AgI则十字交叉法如下:NaCl 0.490 / 0.200 0.1660.449/0.200 m( NaCl ) / m(KI) =0.166/ 0.041KI 0.283 / 0.200 0.041求得NaCl 和 KI 的质量比是4/1,即他们的质量分数分别为80% ,20%例11在标准状况下氢气和一氧化碳的混合气体7L,质量为2.25g,求H2和CO 的体积分数?解:设混合气体的摩尔质量为M2.25 / M = 7 / 22.4 L / mol M=7.29列出十字交叉法如下:CO 28 5.27.2 V( CO ) / V( H2 )=5.2 / 20.8H2 2 20.8求得CO与H2体积比是1/4即它们体积分数分别是25% ,75%例12 已知Fe2O3在高炉中发生反应Fe2O3+CO = 2FeO+CO2,反应形成的固体混合物Fe2O3、FeO中,元素铁和氧的质量之比用m(Fe)∶m(O)表示.若m(Fe)∶m(O)=21∶8,计算Fe2O3被CO还原的质量分数.解析:此题用方程式法甚为烦琐,用十字交叉法则非常简单.即:若Fe2O3全部被还原,则m(Fe)∶m(O)=21∶6;若Fe2O3未被还原,则m(Fe)∶m(O)=21∶9.列出十字交叉法如下:未被还原Fe2O39 / 21 2 / 218/21被还原Fe2O3 6 / 21 1 / 21则未被还原的氧化铁与被还原的氧化铁的物质的量之比为2∶1,所以被还原的氧化铁的质量分数为13×100%=33.3%.例13将20%NaCl溶液与60%NaCl溶液按质量比1:3混合,计算NaCl溶液的质量分数.解:设20%NaCl溶液为mg,则60%NaCl溶液质量就为3mg,所得NaCl溶液的质量为x%列出十字交叉法如下:m 20% x%-60%x%3m 60 % 20%-x%则m / 3m = ( x % - 60% ) / ( 20% - x % )求出x=50既NaCl质量分数50%。
十字交叉法的应用
十字交叉法在化学中的应用在学习的过程中,适当积累和掌握一些技巧,对于我们提高解题的速度的精度都有着重要的意义。
十字交叉法是化学计算中常用的一种速解巧解方法,适用于二元混合体系所产生的具有平均意义的计算问题。
掌握了它之后,你可以在做相关的选择和填空题时事半功倍。
下面就让我们一起来看看什么是十字交叉法吧!大思路先看看十字交叉法的原理:设二元混合体系C 包含A 和B 两种组分,k 、m 、n 分别为混合体系C 和组分A 、B 的分子量(或相对原子质量、密度、浓度、燃烧热等性质),X 和Y 分别为A 和B 的物质量(或体积)。
则可列二元一次方程: mX + nY = k (X+Y )。
整理得m k k n Y X --= 可写成图式:Am n-k X╲ ╱ —— k ——╱ ╲B n k-m Y具体应用时,有两点是关键:第一,十字交叉法适用对象是二元混合体系,两种组分只是混合在一起,组分之间不发生反应。
第二,找准平均量k 和分量m 、n ,并确定其满足方程mX + nY = k (X+Y )。
抓住了这两点,之后就是列图示,十字交叉求解了。
其实很容易理解和掌握的,让我们来体验一下吧! 体验1混合气体平均分子量相关计算中的十字交叉法例:已知H 2 和CO 的混合气,其平均分子量是20,求混合气中H 2 和CO 的体积比。
体验思路:令H 2 和CO 的体积分别为X 和Y ,且H 2 和CO 的分子量分别为2和28,依题意满足方程2X+28Y=20(X+Y ),可以应用十字交叉法。
体验过程: H 22 28-18 10╲ ╱ —— 18 ——╱ ╲ CO 28 18-2 16答案: 5∶8 。
小结:还是先前的两点哦,第一:适用于二元混合体系。
第二:找准分量和平均量,满足方程mX + nY = k( X+Y )。
这样解起来就会快许多了哦!体验2同位素原子百分含量相关计算中的十字交叉法例:氯有两种同位素,相对原子质量分别为35和37,而氯元素的平均相对原子质量为35.5,试求原子量为35的同位素的百分含量。
十字交叉法在中学化学计算中的常见应用
十字交叉法在中学化学计算中的常见应用摘要:十字交叉法是一种数学运算技巧,也是有关混合物的计算中一种常用的解题方法,它能将某些本来需要通过一元二次方程或二元一次方程组求解的计算转化为简单的算术运算,因而具有快速、准确的特点,灵活运用十字交叉法解答题目,不仅可提高解题的准确度和速度,而且也可打破常规思维,培养思维的广阔性。
关键词:十字交叉法;数学原理;混合物;应用十字交叉法的数学原理:1.已知甲气体的摩尔质量为A克/mol,乙气体的摩尔质量为B克/mol,甲、乙组成的混合气体的平均摩尔质量为C克/mol,且有A>C>B,试求混合气体中甲、乙两种气体的物质的量的比。
解析:根据公式:2.将含KNO3质量分数分别为α1和α2的两种溶液混合后,混合溶液中KNO3的质量分数为α3,且α2>α3>α1,求两种KNO3溶液的质量比。
总结:以上是十字交叉法的数学推导,有关十字交叉法的运算,实质是求二元混合物平均值的逆运算。
下面从五个方面介绍十字交叉法在中学化学计算中的常见应用。
一、求同位素的原子个数比A.1:2B.1:3C.1:4D.1:1解析:本题应先求硼的原子量,再根据两种同位素的质量数用十字交叉法求出两种同位素的物质的量之比。
设硼的相对原子质量为x,根据B原子守恒可得关系式:2B————B2H62x g 22.4L5.4g 5.6L2x:5.4 = 22.4:5.6x=10.8二、求混合物中各组分物质的量的比或质量比例2:某铁锌合金30.25克溶于足量盐酸后,产生标准状况下的气体11.2升,求合金中铁和锌两金属的物质的量的比是多少?解析:Zn、Fe在与HCl反应时均是+2价,故合金R必也是+2价。
R与HCl反应时方程式的系数必与Zn、Fe各自与HCl反应时方程式的系数一致。
设:Zn、Fe合金是R,令其平均摩尔质量是M克/mol,R + 2HCl = RCl2+ H2↑1mol 22.4Ln 11.2L则合金中Zn、Fe两金属的物质的量之比是1:1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字交叉法的原理及其在化学计算中的应用
十字交叉法又称对角线法,也叫混合规则.作为一种简化的解题方法,是实际计算方程式图解形式,应用于二元混合体系具有平均值的计算问题,它具有简化思路、简便运算、计算速度快等显著优点.近年来,十字交叉法在中学化学计算中广泛使用,通过十字交叉得到差值的比值的含义如何确定,如果没有真正理解十字交叉法含义在使用该方法时将没有真正达到简化思路、快速准确求解的目的从而限制了该方法的推广和应用“十字交叉法”是通常中学化学计算必需掌握的一种计算方法因为用此法解题实用性强、速度快学生若能掌握此方法解题将会起到事半功倍的效果以下是笔者几年来对“十字交叉法”理解及体会
. 1 十字交叉法的原理
A×a%+B×b%=(A+B)×c%
整理变形得: A/B=(c-b)/(a-c )①
如果我们以100 g溶液所含的溶质为基准上式表示溶液混合时它们的质量比与有关质量分数比的关系可得如下十字交叉形式
对比①,②两式不难看出:
十字交叉关系中(c-b)/(a-c)为组分A和组分B混合时的质量比
推广到二组分混合体系中,当以一定质量的混合体系为基准所得十字交叉关系
,其比值为质量比(例如,质量分数是以质量为基准);若有c-b比a-c的化学意义由平均值,c决定则比值就表示组分A中c-b和组分B中a-c所表示的量的比值.如c 为质量或质量分数,则(c-b)/(a-c)表示组分A和组分B溶液的质量之比.若c为密度,则(c-b)/(a-c)就表示组分A和组分B的溶液体积之比若c为摩尔质量,则
(c-b)/(a-c) 就表示组分A和组分B的物质的量比;此时可用十字交叉法求混合物中各组分的含量.
2 .十字交叉法的应用例析:
2.1 用于混合物中质量比的计算
例1:将铝铁合金18.5克溶于足量的盐酸中产生标准状况下的氢气11.2升,求合金中铝铁的质量之比是多少?
解:在标准状况下,求出氢气的质量M=1g以混合物总质量18.5g作为基准物再根据镁铝与盐酸的关系列出十字交叉式如下:
求得铝与铁质量的比是9/28
例2.镁和铝的混合物10g,与足量的稀硫酸充分反应,生成1.0g氢气,混合物中镁和铝的质量比为多少?
解:在标准状况下,以混合物总质量10g作为基准物再根据镁铝与盐酸的关交叉式如下:
求得镁与铝的质量比是2/3
例3: KHCO3和CaCO3的混合物和等质量的NaHCO3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO3与CaCO3的质量比是多少?
解析:由化学反应方程式:KHCO3+HCl=KCl+H2O+CO2↑
CaCO3+2HCl=CaCl2+H2O+CO2↑
以消耗HCl物质的量1mol作为基准物, 求出反应掉KHCO3、CaCO3、NaHCO3的质量的数值分别为100g、50g、84g,依题意KHCO3和CaCO3的混合物84g 与NaHCO384g均消耗1molHCl,即两个分量值分别为100和50,平均值为84, 用十字交叉法图解如下:
因为是以物质消耗HCl的物质的量1mol为基准物,所以比值34/16=17/8 为碳酸氢钾与碳酸钙消耗HCl的物质的量之比,故原混合物中碳酸氢钾与碳酸钙的物质的量之比为17/4,即质量比也为17/4(因它们的相对分子质量相等).
2.2 用于混合物中物质的量比的计算
例4 .在标准状况下,测得空气和HCl混合气体对氢气的相对密度为17,求空气和HCl气体的物质的量之比
解:混合气体的平均式量为17×2=34 ,以1 mol混合物为基准物
则十字交叉法如下:
求出空气与HCl气体的物质的量比是1/2
例5、某Na2SO3已部分氧化成Na2SO4,经测定该混合物中硫的质量分数为25%,求混合物中Na2SO3和Na2SO4的物质的量之比 (整数比)?
解:由平均质量分数25%,列出十字交叉法如下:
Na2SO3中 S % 25.397 % 2.465 %
25%
Na2SO4中 S % 22.535 % 0.397 %
求得Na2SO3与Na2SO4的物质的量比是6/1
2.3 用于混合物中体积比的计算
例6.已知CH4, C2H4及其混合气体在同温同压下分别为 0.71 g / L 、
1.25 g / L 、1.16 g / L.求混合气体CH4和C2H4的体积比是多少?
解:以1mol 混合气体密度1.16 g / L作为基准物
则十字交叉法如下:
CH40.71 0.09
1.16
C2H4 1.25 0.45
求得CH4与C2H4的体积比是1/3
例7.已经2H2(g)+O2(g)=2H2O(g);△H=-571.6KJ/mol
C3H8 (g)+5 O2(g)=3CO2(g)+4H2O(1); △H=-2220KJ/mol。
现有H2和C3H8的混合气体,在标准状况下体积为1120L。
完全燃烧放出3847KJ 热量。
求H2和C3H8的体积比
解析:lmol C3H8完全燃烧放热为:571.6/2=285.8千焦lmol C3H8完全燃烧放热为:2220千焦/lmol混合气体完全燃烧放热为:3847/5=769.4千焦
列出十字交叉法如下:
H2 285.5 1460.6
769.4
C3H82220 483.6
求得H2和C3H8的体积比为3/1
例8、一种气态烷烃和一种气态烯烃,它们的分子式中所含碳原子数相同,若l体积这种混合烃在O2中充分燃烧,能生成2体积的和2.4体积的水蒸气,则混合中烷烃和烯烃的体积比是多少?
解:设混合烃分子式为CxHy、烷烃与烯烃的体积比为:
CxHy + 3.2 O2 = 2 CO2+ 2.4 H2O
1 3.
2 2 2.4
根据原子守衡定理得混合烃分子式为C2H4.8即氢的原子数是4.8
十字交叉法如下:。