平面向量图形结合问的题目

合集下载

平面向量与图形的结合(重难点)

平面向量与图形的结合(重难点)

CBA 平面向量与平面图形的结合类型平面向量与三角形的结合问题,难度是远高于平面向量的坐标运算类型,这里的问题多数都需要先进行深入的分析,然后才能找到题目突破口,进而才能计算,而不是那种先去算,计算过程中发现突破口的问题。

1. 基于向量本身的问题,主要包括向量的夹角注意事项、平面向量基本定理的拆分向量思路、向量加法减法的运算法则(平行四边形法则主要用于解决向量的加法问题、三角形法则主要用于解决向量的减法问题)、向量垂直、共线的充要条件等这几个基础问题。

这里要特别强调向量的拆分思路,将题中待求的向量或题中给出的向量,拆分成模长或夹角已知的向量,如果题中给出基底向量,则将所有非基底向量拆分成基底向量。

2. 基于向量与三角形的结合,尤其是三角形的各种心与平面向量的结合,这里应该清楚三角形的各种心用向量如何表达,本书相关专项有总结,水平高的学生还应该能够进行正确地推导。

1. 已知,,A B C 为圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为2. 在ABC 中,已知tan AB AC A ⋅=,当30A =时,ABC 的面积为3.如右下图示,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A . 0AD BE CF ++= B. 0BD CF DF -+= C .0AD CE CF +-=D. 0BD BE FC --=4.在ABCD 中,1AD =,3BAD π∠=,E 为CD 的中点,若1AC BE ⋅=,则AB =5.在ABC 中,某23A π∠=,1AB AC ⋅=-,则BC 的最小值为6.在ABC 中,若2AB AB AC BA BC CA CB =⋅+⋅+⋅,则ABC 为___7.正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅的 值为_________8.ABCD 中,8AB =,5AD =,3CP PD =,2AP BP ⋅=,则_____AB AD ⋅=9.已知AB 与AC 夹角为23π,3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥,则_____λ=10.在ABCD 中,若AB a =,AD b =,E 为OD 的中点,延长AE 交CD 于F 点,则____AF a b =+11.△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________12.已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________13.若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____14.若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___15. 设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++=16.如图,在ABCD 中,AP BD ⊥,垂足为p ,且3AP =,则AP AC ⋅=17. 在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c18.在ABC ∆中,2,3,1,AB AC AB BC ==⋅=则BC 的长度为__________19. 在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.20.在等边ABC 中,P 在线段AB 上,且()01AP AB λλ=<<,若CP AB PA PB ⋅=⋅,则实数____λ=21.已知ABC ∆为等边三角形,2AB =,设点,P Q 满足,(1),,AP AB AQ AC R λλλ==-∈若3,2BQ CP ⋅=-则λ的值为____________参考答案1.解:,,A B C 是圆O 上的三点,()12AO AB AC =+,∴根据向量加法的运算,几何意义得出O 为BC 的中点,即BC 为圆O 的直径。

专题06 平面向量 (解析版)

专题06 平面向量 (解析版)

专题06 平面向量【真题感悟】1.(2018年浙江卷)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是()A.B.C.2 D.【答案】A【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.2.(2017年浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【答案】C【解析】因为,,,所以,故选C.3.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.【答案】(1)0 (2)【解析】()()12345613562456AB BC CD DA AC BD AB AD λ+λ+λ+λ+λ+λ=λ-λ+λ-λ+λ-λ+λ+λ要使123456AB BC CD DA AC BD λ+λ+λ+λ+λ+λ的最小,只需要135562460λ-λ+λ-λ=λ-λ+λ+λ=,此时只需要取1234561,1,1,1,1,1λ=λ=-λ=λ=λ=λ=此时123456min 0AB BC CD DA AC BD λ+λ+λ+λ+λ+λ=等号成立当且仅当1356,,λ-λλ-λ均非负或者均非正,并且2456,,λ-λλ+λ均非负或者均非正. 比如1234561,1,,1,1,11λλλ=-λλ=-=λ===则123456max AB BC CD DA AC BD λ+λ+λ+λ+λ+λ==4.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______.【答案】 4【解析】设向量,a b 的夹角为θ,由余弦定理有: 212a b -=+=212212cos 4cos a b θ+=+-⨯⨯⨯=,则:54cos a b a b ++-=+令y =[]21016,20y =+,据此可得:()()maxmin2025,164a b a b a b a b++-==++-==,即a b a b ++-的最小值是4,最大值是25.5.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.【解析】由已知得,60<>=︒a b ,不妨取(1,0)=a ,=b ,设(cos ,sin )αα=e ,则cos cos ααα⋅+⋅=++a e b e 2cos αα,取等号时cos α与sin α同号.所以2cos 2cos αααα=αα=)αθ=+(其中sinθθ==θ为锐角).)αθ+≤ 易知当2αθπ+=时,sin()αθ+取最大值1,此时α为锐角,sin ,cos αα同为正,因此上述不等式中等.6.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤,则a·b 的最大值是 .【答案】12【解析】()221||||262a b e a e b e a b a b a b a b +⋅≤⋅+⋅≤+≤⇒++⋅≤⇒⋅≤,即最大值为12. 7.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .【解析】由题可知,不妨()11,0e =,212e ⎛=⎝⎭,设(),b x y =,则11b e x ⋅==,2112b e x y ⋅=+=,所以31,3b ⎛⎫= ⎪ ⎝⎭,所以113b =+=.8.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .【答案】1,2,22.【解析】问题等价于12()b xe ye -+当且仅当0x x =,0y y =时取到最小值1,两边平方即xy y x y x |+--++5422在0x x =,0y y =时,取到最小值1,2245|b |x y x y xy ++--+ 22(4)5||x y x y b =+--+22243()(2)7||24y x y b -=++--+,∴⎪⎩⎪⎨⎧===⇒⎪⎪⎩⎪⎪⎨⎧=+-=-=-+22||211||702024002000y x y y x . 【考纲要求】1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念. 2.掌握向量加法、减法、数乘的概念,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题. 4.掌握平面向量的正交分解及其坐标表示. 5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系. 7.掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.【考向分析】1.平面向量的线性运算2.平面向量的坐标运算3.平面向量的数量积、模、夹角.【高考预测】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.近几年浙江卷主要考查平面向量的坐标运算、模的最值等问题,与三角函数、解析几何密切相连,难度为中等或中等偏难.【迎考策略】1.向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.2. 准确理解共线向量定理(1)a∥b等价于存在不全为零的实数λ1,λ2,使λ1a+λ2b=0成立.对于向量a(a≠0),b,若存在实数λ,使得b=λa,则向量a,b共线;若向量a=(x1,y1),b=(x2,y2),则x1y2-x2y1=0⇔a∥b;(2)共线向量定理是解决三点共线问题的有利工具:解题过程中常用到结论:“P,A,B三点共线”等价于“对直线AB 外任意一点O ,总存在非零实数λ,使()1OP O OB A λλu u u r u u u u r u r=+-成立”.3. 基底的“唯一”与“不唯一”“不唯一”:只要同一平面内两个向量不共线,就可以作为表示平面内所有向量的一组基底,对基底的选取不唯一;“唯一”:平面内任意向量a 都可被这个平面内的一组基底e1,e2线性表示,且在基底确定后,这样的表示是唯一的.4.平面向量数量积的计算方法①定义法求平面向量的数量积:已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②坐标法求平面向量的数量积: (a)已知或可求两个向量的坐标;(b)已知条件中有(或隐含)正交基底,优先考虑建立平面直角坐标系,使用坐标法求数量积.③基底法求平面向量的数量积:选取合适的一组基底,利用平面向量基本定理将待求数量积的两个向量分别表示出来,进而根据数量积的运算律和定义求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 5.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.6.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围. 7.巧建坐标系系,妙解向量题:坐标是向量代数化的媒介,若能建立适当的直角坐标系,往往能很快实现问题的转化.常见的建系方法如下:(1)利用图形中现成的垂直关系若图形中有明显互相垂直且相交于一点的两条直线(如矩形、直角梯形等),可以利用这两条直线建立坐标系. (2)利用图形中的对称关系图形中虽没有明显互相垂直交于一点的两条直线,但有一定对称关系(如:等腰三角形、等腰梯形等),可利用自身对称性建系.建立平面直角坐标系的基本原则是尽可能地使顶点在坐标轴上,或在同一象限. (3)三角形中有唯一一个特殊角(30°、45°、60°等)时,有以下两种建系方法(4)圆(或半圆、扇形)与其他图形的综合图形通常以圆心为坐标原点建系.(5)所给向量中任意两向量之间的夹角为特殊角,将所给向量平移为共起点,以该起点为坐标原点建系.【强化演练】1.(2019年高考北京卷理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |>|BC |;当|AB +AC |>|BC |成立时,|AB +AC |2>|AB -AC |2AB ⇒•AC >0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C .2.(2019届北京市通州区三模)设a ,b 均为单位向量,则“a 与b 夹角为2π3”是“||+=a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】D【解析】因为a ,b 均为单位向量, 若a 与b 夹角为2π3,则||1+=a b , 因此,由“a 与b 夹角为2π3”不能推出“||+=a b ”;若||+=a b||+=a b 解得1cos ,2=a b ,即a 与b 夹角为π3, 所以,由“||+=a b 不能推出“a 与b 夹角为2π3” 因此,“a 与b 夹角为2π3”是“||+=a b ”的既不充分也不必要条件. 故选D3.(浙江省温州市2019届高三2月高考适应)在平面上,,是方向相反的单位向量,||=2 ,(-) •(-) =0 ,则|-|的最大值为( ) A .1 B .2C .2D .3【答案】D【解析】由题意(-) •(-) =0,即-(=0,又,是方向相反的单位向量,所以有,即||=1,记,则A,B两点的轨迹分别是以原点为圆心,以2和1为半径的圆上,当反向共线时,如图:|-|的最大值为1+2=3,故选D.4.(浙江省金华十校2019届高三上期末)已知向量,满足:,,,且,则的最小值为A.B.4 C.D.【答案】A【解析】由题意可知,把看作,,,则可表示为,点B在直线上,设,,,,,,,则的最小值可转化为在直线取一点B,使得最小,作点C关于的对称点,则最小值即可求出,设,由,解得,,则,故的最小值为.故选:A.5.(浙江省嘉兴市2019届高三上期末)已知向量,满足,,则的取值范围是( )A.B.C.[D.[【答案】D【解析】设点M为平面中任意一点,点是关于原点对称的两个点,设,根据题意,根据椭圆的定义得到点M的轨迹是以为焦点的椭圆,方程为.,即.故答案为:D.6.(浙北四校2019届高三12月模拟)已知向量,满足,,则的最小值是( ) A.1 B.2 C.3 D.4【答案】A【解析】因为,,由绝对值向量三角不等式得:===1,故选A.7.(浙江省2019届高考模拟卷(一))如图,在中,,,为上一点,且满足,若的面积为,则的最小值为( )A.B.C.3 D.【答案】D【解析】,得到,所以,结合的面积为,得到,得到,所以,故选D.8.(浙江省温州九校2019届高三第一次联考)已知是不共线的两个向量,的最小值为,若对任意m,n,的最小值为1, 的最小值为2,则的最小值为()A.2 B.4 C.D.【答案】B【解析】设的夹角为,则,则由的最小值为,的最小值为,可得,两式相乘可得(*)而,结合(*)可得,解得则故选B.9.(浙江省“七彩阳光”联盟2019届高三期初联考)均为单位向量,且它们的夹角为,设满足,则的最小值为()A.B.C.D.【答案】C【解析】设,以所在直线为轴,垂直于所在直线为轴,建立平面直角坐标系则,,则满足,故,如图其轨迹图象则其最小值为故选.10.(天津市和平区2019届高三下学期第三次质量调查)已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC ,DC 上,3BC BE =,DC DF λ=,若1AE AF ⋅=,则λ的值为( ) A .3 B .2C .23D .52【答案】B【解析】由题意可得:()()113AE AF AB BE AD DF AB BC BC AB λ⎛⎫⎛⎫⋅=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭22111133AB BC AB BC λλ⎛⎫=+++⋅ ⎪⎝⎭, 且:224,22cos1202AB BC AB BC ==⋅=⨯⨯=-, 故()44112133λλ⎛⎫+++⨯-= ⎪⎝⎭,解得:2λ=.故选:B.11.(湖北省黄冈中学2019届高三三模)已知m ,n 是两个非零向量,且||2m =,|2|4m n +=,则||||m n n ++的最大值为______.【答案】【解析】设m 的起点为坐标原点,因为||2m =,所以设m 的终点坐标为(2,0),即(2,0)m =,设(,)n x y =,因为|2|4m n +=,所以2222(22)(2)16(1)4x y x y ++=⇒++=,21x -≤≤,||||(m n n x ++=+,而2222(1)423x y x x y ++=⇒++=,所以有||||72m n n ++=+≤==1x =-时,取等号,即||||m n n ++的最大值为12.(浙江省七彩联盟2019届高三11月期中】已知向量,满足,,若对任意实数x 都有,则的最小值为______【答案】【解析】如图,由,知在上的投影为2,即,,对任意实数x 都有,.由摄影定理可得,.设,取,可得P在直线BC上,线段OP的最小值为O到直线BC的距离,当时,.故答案为:.13.(浙江省浙南名校联盟2019届高三上期末)若向量满足,且,则的最小值是_ _.【答案】【解析】设,,,由可知,所以点C在以AB为直径的圆上;设,,则,而表示点O到以AB为直径的圆上任一点的距离,所以最大值即是点O到圆心E的距离加半径,即,所以,即最小值为2.故答案为2.14.(浙江省台州市2019届高三上期末)设圆,圆半径都为1,且相外切,其切点为.点,分别在圆,圆上,则的最大值为__ __.【答案】【解析】以为原点,两圆圆心所在的直线为轴建立如图所示的直角坐标系.则,,令,,所以所以,令,则,所以当时,有最大值,填.15.(2019年高考天津卷理数】在四边形ABCD 中,,5,30AD BC AB AD A ==∠=︒∥,点E在线段CB 的延长线上,且AE BE =,则BD AE ⋅=_____________. 【答案】1-【解析】建立如图所示的直角坐标系,∠DAB =30°,5,AB AD ==则B ,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以30ABE ∠=︒, 因为AE BE =,所以30BAE ∠=︒,所以直线BEy x =-, 直线AE的斜率为3-,其方程为3y x =-.由y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)12BD AE =-=-.16. (2019年高考江苏卷)如图,在ABC △中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE交于点O .若6ABAC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 的中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-,()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故ABAC=。

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析

高三数学平面向量基本定理及坐标表示试题答案及解析1.已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.(1)求椭圆的标准方程;(2)若过点的直线与椭圆交于不同的两点,且,求实数的取值范围.【答案】(1)(2)【解析】(1)设所求的椭圆方程为:由题意:所求椭圆方程为:.(2)若过点的斜率不存在,则.若过点的直线斜率为,即:时,直线的方程为由因为和椭圆交于不同两点所以,所以①设由已知,则②③将③代入②得:整理得:所以代入①式得,解得.所以或.综上可得,实数的取值范围为:.2.(2013•湖北)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.【答案】A【解析】,,则向量方向上的投影为:•cos<>=•===,故选A.3.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.4.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,, 所以, 故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.5. 如图,△ABC 中,D 为BC 的中点,G 为AD 的中点,过点G 任作一直线MN 分别交AB 、AC 于M 、N 两点.若=x ,=y ,求的值.【答案】4 【解析】设=a ,=b ,则=x a ,=y b ,== (+)= (a +b ).∴=-= (a +b )-x a =a +b ,=-=y b -x a =-x a +y b . ∵与共线,∴存在实数λ,使=λ.∴a +b =λ(-x a +y b )=-λx a +λy b .∵a 与b 不共线,∴消去λ,得=4.6. 已知点O (0,0),A 0(0,1),A n (6,7),点A 1,A 2,…,A n -1(n ∈N ,n ≥2)是线段A 0A n 的n 等分点,则| ++…+OA n -1+|等于( ) A .5n B .10n C .5(n +1) D .10(n +1)【答案】C【解析】取n =2,,则++=(0,1)+(3,4)+(6,7)=(9,12),所以| ++|==15,把n =2代入选项中,只有5(n +1)=15,故排除A 、B 、D ,选C.7. 已知向量a=(cosθ,sinθ),b=(,-1),则|2a-b|的最大值为( ) A .4 B .4 C .16D .8【答案】B【解析】∵2a-b=(2cosθ-,2sinθ+1), ∴|2a-b|===故最大值为4.8. 已知向量a=(1,-2),b=(m,4),且a ∥b,那么2a-b=( )A.(4,0)B.(0,4)C.(4,-8)D.(-4,8)【答案】C【解析】由a∥b,得4=-2m,∴m=-2,∴b=(-2,4),∴2a-b=2(1,-2)-(-2,4)=(4,-8).9.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.10.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.11.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.12.在所在的平面内,点满足,,且对于任意实数,恒有,则()A.B.C.D.【答案】C【解析】过点作,交于,是边上任意一点,设在的左侧,如图,则是在上的投影,即,即在上的投影,,令,,,,故需要,,即,为的中点,又是边上的高,是等腰三角形,故有,选C.【考点】共线向量,向量的数量积.13.已知向量,若,则的最小值为.【答案】4【解析】,所以.【考点】1、向量的平行关系;2、向量的模;3、重要不等式14.已知向量,向量,且,则的值是()A.B.C.D.【答案】C.【解析】,,即得.【考点】向量的坐标运算.15.已知点,,则与共线的单位向量为()A.或B.C.或D.【答案】C【解析】因为点,,所以,,与共线的单位向量为.【考点】向量共线.16.已知向量,,若,则实数等于.【答案】.【解析】,两边平方得,则有,化简得,即,解得.【考点】平面向量的模、平面向量的坐标运算17.在中,已知,且,则( )A.B.C.D.【答案】A【解析】因为,,所以,,,故选A。

平面向量及其应用练习题(有答案)

平面向量及其应用练习题(有答案)

一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =3.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是73 .4.在ABC 中,若30B =︒,23AB =,2AC =,则C 的值可以是( ) A .30°B .60°C .120°D .150°5.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,2b =,30A =︒,则B =( )A .30B .45︒C .135︒D .150︒6.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .2OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为-7.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量8.在下列结论中,正确的有( )A .若两个向量相等,则它们的起点和终点分别重合B .平行向量又称为共线向量C .两个相等向量的模相等D .两个相反向量的模相等 9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形10.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)11.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-12.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-13.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥14.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同15.题目文件丢失!二、平面向量及其应用选择题16.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .25917.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角 18.若△ABC 中,2sin()sin()sin A B A B C +-=,则此三角形的形状是( ) A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形19.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④B .①②④C .①②⑤D .③⑥20.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若22sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4C .2D .2221.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对22.在ABC ∆中,D 为BC 中点,且12AE ED =,若BE AB AC λμ=+,则λμ+=( ) A .1B .23-C .13- D .34-23.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定24.若向量123,,OP OP OP ,满足条件1230OP OP OP ++=,1231OP OP OP ===,则123PP P ∆的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定25.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形D .等边三角形27.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2328.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a =( )A .12-B .12C .-2D .229.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .3π B .23π C .56π D .6π 30.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( )A .1B .2C .3D .431.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-32.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .533.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅=B .cos cos cos 0A OA B OBC OC ⋅+⋅+⋅=C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=34.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B 33C .33D 335.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知 解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.BCD 【分析】本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,所以B 是的中点,P 是的解析:BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.3.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得R =ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()223B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.4.BC 【分析】由题意结合正弦定理可得,再由即可得解. 【详解】由正弦定理可得,所以, 又,所以, 所以或. 故选:BC. 【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.解析:BC 【分析】由题意结合正弦定理可得sin 2C =,再由()0,150C ∈︒︒即可得解. 【详解】由正弦定理可得sin sin AB AC C B =,所以1sin 2sin 2AB B C AC ⋅===, 又30B =︒,所以()0,150C ∈︒︒, 所以60C =︒或120C =︒. 故选:BC. 【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.5.BC 【分析】用正弦定理求得的值,由此得出正确选项. 【详解】解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC 【分析】用正弦定理求得sin B 的值,由此得出正确选项. 【详解】解:根据正弦定理sin sin a b A B=得:1sin 2sin 12b A B a ===,由于1b a =>=,所以45B =或135B =.故选:BC. 【点睛】本题考查利用正弦定理解三角形,是基础题.6.AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形,其中, 对于;故正确. 对于,故正确.对于,,但对应向量的夹角不相等,所以不成立.故错误. 对于解析:AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误. 对于:D AH 在AB 向量上的投影32||cos ||42AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.7.AC 【分析】根据共线向量的定义判断即可. 【详解】对于A 选项,若,则与平行,A 选项合乎题意;对于B 选项,若,但与的方向不确定,则与不一定平行,B 选项不合乎题意; 对于C 选项,若与的方向相反,解析:AC 【分析】根据共线向量的定义判断即可. 【详解】对于A 选项,若a b =,则a 与b 平行,A 选项合乎题意;对于B 选项,若a b =,但a 与b 的方向不确定,则a 与b 不一定平行,B 选项不合乎题意;对于C 选项,若a 与b 的方向相反,则a 与b 平行,C 选项合乎题意;对于D 选项,a 与b 都是单位向量,这两个向量长度相等,但方向不确定,则a 与b 不一定平行,D 选项不合乎题意. 故选:AC. 【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.8.BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确解析:BCD【分析】根据向量的定义和性质依次判断每个选项得到答案.【详解】A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;B. 平行向量又称为共线向量,根据平行向量定义知正确;C. 相等向量方向相同,模相等,正确;D. 相反向量方向相反,模相等,故正确;故选:BCD【点睛】本题考查了向量的定义和性质,属于简单题.9.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ABC【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解.【详解】第四个顶点为,当时,,解得,此时第四个顶点的坐标为;当时,,解得解析:ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.11.AB【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】当时,则、方向相反且,则存在负实数解析:AB【分析】 根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.【详解】 当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误; 若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确.故选:AB.【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题. 12.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 13.BD【分析】 根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确; 向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】 根据向量的模及共线向量的定义解答即可; 【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.14.AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据解析:AD【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论.【详解】单位向量的模均为1,故A 正确;向量共线包括同向和反向,故B 不正确;向量是矢量,不能比较大小,故C 不正确;根据相等向量的概念知,D 正确.故选:AD【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.15.无二、平面向量及其应用选择题16.C【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BC R A=求解. 【详解】在ABC 中,5AB AC ==,6BC =, 由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =,此三角形的外接圆半径是258故选:C【点睛】 本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题. 17.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确;,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.18.A【分析】已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简.【详解】ABC ∆中,sin()sin A B C +=,∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+, 整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =, cos 0A ∴=或sin 0B =(不合题意,舍去),0A π<<90A ∴=︒,则此三角形形状为直角三角形.故选:A【点睛】此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题.19.A【分析】直接利用向量的基础知识的应用求出结果.【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确.故选:A.【点睛】 本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.20.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.B【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案.【详解】 2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力.22.B【分析】选取向量AB ,AC 为基底,由向量线性运算,求出BE ,即可求得结果.【详解】13BE AE AB AD AB =-=-,1()2AD AB AC =+ , 5166BE AB AC AB AC λμ∴=-+=+, 56λ∴=-,16μ=,23λμ∴+=-. 故选:B.【点睛】本题考查了平面向量的线性运算,平面向量基本定理,属于基础题.23.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】 解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.24.C【分析】根据三角形外心、重心的概念,以及外心、重心的向量表示,可得结果.由123||||||1OP OP OP ===,可知点O 是123PP P ∆的外心, 又1230OP OP OP ++=,可知点O 是123PP P ∆的重心, 所以点O 既是123PP P ∆的外心,又是123PP P ∆的重心,故可判断该三角形为等边三角形,故选:C【点睛】本题考查的是三角形外心、重心的向量表示,掌握三角形的四心:重心,外心,内心,垂心,以及熟悉它们的向量表示,对解题有事半功倍的作用,属基础题.25.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 26.B【分析】利用两角和与差公式化简原式,可得答案.【详解】因为sin 2sin cos B A C =,所以sin()2sin cos A C A C +=所以sin cos cos sin 2sin cos A C A C A C +=所以sin cos cos sin 0A C A C -=所以sin()0A C -=,所以0A C -=,所以A C =.所以三角形是等腰三角形.故选:B.【点睛】本题考查三角恒等变换在解三角形中的应用,考查两角和与差公式以及两角和与差公式的逆用,考查学生计算能力,属于中档题.27.A设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=, 所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 28.A【分析】根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点,根据OA 与OB 在OC 方向上的投影相同,则OA OC OB OCOC OC ⋅⋅=,即OA OC OB OC ⋅=⋅,可得4152415a +⨯=⨯-⨯,解得12a =-. 故选:A.【点睛】本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力.29.D【分析】根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可.【详解】∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得22a b a b +=-,即2222||2||2a b a b a b a b ++⋅=+-⋅ , 则0a b ⋅=,由2a b b +=,平方得222||24||a b a b b ++⋅=,得223a b =,即3a b =则2a b b +=,22|3|a b a a a b b +⋅=+⋅=(),则向量a b +与a 的夹角的余弦值23||3223a b a b cos a b a b bθ+⋅===+⋅⋅(), ,0.6πθπθ≤≤∴=, ,故选D.【点睛】本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 30.D【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案.【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC =-b -12a ,故①正确. ②BE =BC +CE =BC +12CA=a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF=-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D.【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量.31.B【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以: ()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.32.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 33.C【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案. 【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅,所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析

高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析

第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。

【巧解妙解】高考数学向量与其他问题结合的经典题型

【巧解妙解】高考数学向量与其他问题结合的经典题型

平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。

平面向量常用方法归纳

平面向量常用方法归纳

平面向量常用方法归纳1、基底法 在处理平面向量问题时,有一类是所求的向量模长和夹角是在变化的,我们利用平面向量的基本定理,选取一组不共线的且模长和夹角知道的非零向量作为基底,把所求向量都用所选基底表示来处理问题.【例1.1】在ABC ∆中,M 是BC 的中点,3,10AM BC ==,则__________. 【答案】16- 【解析】方法一:基底法 ()()()1625092-=-+=⋅++⋅+=+⋅+=⋅MC MB MC MB AM AM MC AM MB AM AC AB 方法二:极化恒等式法161004194122-=⋅-=-=⋅BC AM AC AB 【例1.2】已知菱形的边长为2,,点分别在边上,,.若,,则( )A. B. C. D. 【答案】C【解析】方法一:基底法AB AC ⋅=ABCD 120BAD ,E F ,BC DC BE BC DF DC 1AE AF 23CE CF 122356712()()()()⎪⎩⎪⎨⎧-=-⋅-=+⋅+⇒⎪⎩⎪⎨⎧-=⋅=⋅32111321DC BC DC AD BC AB CF CE AF AE μλμλ,()()⎪⎩⎪⎨⎧=++-=-++-∴3111242μλλμλμμλ令μλ+=x ,λμ=y ,则原式可化为:⎪⎩⎪⎨⎧=+-=-+-3111242x y y x ,解得⎪⎪⎩⎪⎪⎨⎧==6165y x ,65=+∴μλ.方法二:解析法建立如图所示直角坐标系,则:()0,2B ,()3,1C ,()3,1-D ,又 BC BE λ=,DC DF μ=,易得()λλ3,2-E ,()3,12-μF()1224=--+=⋅∴λμμλAF AE ,()32222-=--+=⋅λμμλCF CE ,下同方法一. 65=+∴μλ【练习1.1】已知直角梯形中,//,,,是腰上的动点,则的最小值为____________.【答案】5 【提示】本题仍然推荐基底法和坐标法,可令DC DP λ=,当43=λ时取得最小值5.【练习1.2】如图,△ABC 是边长为32的等边三角形,P 是以C 为圆心,半径为1的圆上的任意一点,则BP AP ⋅的取值范围是 .【答案】[]13,1 【提示】本题可以使用基底法和极化恒等式两种方法处理,当然也可以使用解析法处理..2、平方法在向量中,遇到和模长有关的问题,很多时候都可以考虑把相关式子两边同时平方来处理,并且要灵活运用:向量的平方等于它模长的平方这个规律,即22||a a =.【例2.1】设,a b 是两个非零向量,( )A .若||||||a b a b +=-,则a b ⊥B .若a b ⊥,则||||||a b a b +=-C .若||||||a b a b +=-,则存在实数λ,使得b a λ=D .若存在实数λ,使得b a λ=,则||||||a b a b +=-【答案】CABCD AD BC 090ADC ∠=2,1AD BC ==P DC 3PA PB +C AB P【解析】方法一:平方法 对式子||||||b a b a -=+进行两边平方处理, 易得:1,cos -=b a ,即向量a 与b 反向,而“存在实数λ,使得b a λ=”表示向量a 与b 共线,故选项C 正确.方法二:三角不等式由三角不等式||||||||b a b a +≤-等号成立的条件是向量a 与b 反向,下同方法一.【例2.2】11. 如图,在△ABC 中,3BAC π∠=,D 为AB 的中点,P 为CD 上一点,且满足AP t AC =13AB +,若△ABC 的面积为332,则||AP 的最小值为 【答案】2【解析】由AP t AC =13AB +,点D 为AB 的中点,易得: AD AC t AP 32+=,又P D C 、、 三点共线,31=∴t , AB AC AP 3131+=∴, 则A AC AB AB AC AB AC AP cos ||||2313131||222++=⎪⎭⎫ ⎝⎛+=,又233sin ||||21==∆A AC AB S ABC ,∴6||||=AC AB ,2||=≥=∴AP , 当且仅当6||||==AC AB 时取等号.【练习2.1】设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈.若12,e e 的夹角为6π,则||||x b 的最大值等于__________.【答案】2【提示】平方法转化成二次函数最值问题,数形结合也可处理.【练习2.2】设为两个非零向量,a b 的夹角,已知对任意实数,||b ta +的最小值为1( )A.若确定,则||a |唯一确定B.若确定,则||b 唯一确定C.若||a 确定,则唯一确定D.若||b 确定,则唯一确定【答案】B【提示】平方法转化成一次二此不等式恒成立问题,或使用数形结合方法处理.3、投影法 平面向量数量积(点乘):||||cos ,a b a b a b ⋅=<>θt θθθθ③b 在a 上的投影是||cos ,.b a b <>④投影有正有负,正负代表投影的位置.【例3.1】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,是小正方形的其余各个顶点,则的不同值的个数为( )A. 7B. 5C. 3D. 1【答案】C【解析】i AP 在向量AB 上的投影有三种情况,分别是52 AP AP 、的投影是0,1AP ,3AP ,6AP 的投影是1,4AP ,7AP的投影是2, 所以共有三个不同的结果,故选C.【例3.2】如图,在等腰直角ABO ∆中,1,OA OB C ==为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,P 为垂线上任一点,设,,OA a OB b OP p ===,则()p b a -等于( ) A .12- B. 12 C .32- D. 32【答案】A【提示】投影法(1,2,,7)i P i =(1,2,,7)i AB AP i ⋅=()2||41||||41AB AB AB AB OP a b p -=⋅-=⋅=-⋅, 又ABO ∆ 是等腰直角三角形,且1==OB OA ,2||=∴AB ,∴()21||412-=-=-⋅AB a b p .【练习3.1】已知,是平面单位向量,且.若平面向量满足,则 . 【答案】332 【提示】方法一:投影法由题意知1||||21==e e ,又121=⋅=⋅e b e b ,由向量数量积的几何意义,可知b 在1e 与2e 上的投影均为1,又2121=⋅e e ,3,21π=e e , 则向量b 如图所示,由几何关系易得332||=b 方法二:坐标法1e 2e 1212e e ⋅=b 121b e b e ⋅=⋅=b =建立如图所示的直角坐标系,设()y x b ,= 易得:()0,11=e ,⎪⎪⎭⎫ ⎝⎛=23,212e ,121=⋅=⋅b e b e ,可得:⎪⎩⎪⎨⎧=+=12321y x x ,解得:⎪⎩⎪⎨⎧==331y x , 332||=∴b 方法三:数形结合121=⋅=⋅b e b e ,01cos ||||cos ||||2211>==∴θθe b e b ,21θθ=∴,又2121=⋅e e ,3,21π=e e , 621πθθ==∴或65π(舍) 代回已知11=⋅e b ,易得332||=b 【练习3.2】在ABC 中,5BC =,G ,O 分别为ABC 的重心和外心,且5OG BC ⋅=,则ABC 的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能【答案】B【提示】方法一利用重心和外心的性质,利用投影的思想来处理5=⋅BC OG 这个条件,方法二利用基底代换,把条件5=⋅BC OG 转化为余弦定理形式来判断C ∠为钝角.4、坐标法 几何问题代数化是数学中比较重要的一个思想方法,在平面向量中,这个思想在处理很多问题时比较“直接无脑”。

关于平面法向量的问答

关于平面法向量的问答

关于平面法向量的问答324100 浙江省江山中学 杨作义提问:在立体几何的求解(夹角、距离的计算)中,若用坐标法,常要求平面的法向量,教材对此介绍不多,只有一个定义:直线l α⊥,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.没有涉及应用研究.请问:怎样求平面的法向量?回答:根据平面法向量的定义,求平面的法向量的方法通常有两个: 一是尽量在图中找出垂直于平面的向量作为法向量 ;二是如果找不到,那么就设向量(,,)n x y z = 为平面α的法向量,在平面α内取两个不共线向量,a b ,因为法向量n 垂直于平面α,所以,n a n b ⊥⊥,则由方程组00a nb n ⎧⋅=⎪⎨⋅=⎪⎩可列出两个含有,,x y z 的方程,两个方程中有三个未知数,求不出唯一的解,但是可以根据题目情况、计算的方便,取z (或x 或y )等于一个具体的数,就变成了两个未知量、两个方程的方程组了,解出唯一的解,就是所求的平面法向量n .提问:在平面法向量的求法中,设平面法向量为(,,)n x y z =,列出含有三个未知数,,x y z 的两个方程后,用赋值法令,,x y z 之一为一简单的数(例如0,1或-1要视情况而定),但到底设哪个呢?这样求得的法向量可能不同,那么,最后求夹角、距离等的答案岂不要不一样?回答:这主要涉及对平面法向量的概念和相关计算公式的理解问题.法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量.由于空间内有无数条直线垂直于已知平面,而且每条直线可以存在不同的方向向量.因此,一个平面存在无数个法向量,而且这些法向量之间相互平行(共线).我们在求平面法向量时,把法向量和平面内的两个不共线的向量做数量积,得到含有三个未知数的两个方程,其实有无数组解,这也验证了一个平面的法向量有无数个.我们做题时只取其中比较简单的一个即可,具体让,,x y z 之一哪个等于多少,可以怎么简单怎么取.下面再看看我们是如何应用法向量来计算相关空间角和距离的.1.求直线和平面所成的角如图1,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO 于O ,连结OA ,则∠PAO 为斜线PA 和平面α所成的角记为θ,易得: ||sin |cos ,||cos ,|||||n PA OP PA n PA n PA θ∙===. nPO图12.求二面角的大小在二面角βα--l 中,1n 和2n 分别为平面α和β的法向量,若二面角βα--l 的大小为θ,则12|cos ||cos ,|n n θ==1212||||||n n n n ∙(依据两平面法向量的方向或实际图形来确定θ是锐角或是钝角).3.求点到平面的距离如图2,点P 为平面α外一点,点A 为平面α内的任一点,平面α的法向量为n ,过点P 作平面α的垂线PO 于O ,记∠OPA=θ,则点P 到平面α的距离为:||cos d PO PA θ==||||||||||||n PA n PA PA n PA n ∙∙==. 看来无论你取的平面法向量方向怎样,大小如何,最后算出来的角是一样的,最多只有互余或互补之分.平面法向量的大小、方向也不会影响距离的计算.提问:在求二面角时,一个平面的法向量与另一个平面的法向量可能因为坐标取值不同方向相同、方向相反或者不清楚方向,那么,我们怎样决定求出向量的夹角大小是二面角的大小还是二面角的补角的大小呢?回答:通过建立空间坐标系将几何问题代数化,把求二面角的大小转化为求平面法向量的夹角的大小,使原本繁琐的推理论证,变得思路清晰,操作程序化的运算,优越性显而易见.但是两个半平面的法向量所成的角与二面角“相等”或“互补”,确实是个学习难点.一般地,我们可以结合“图”观察决定取锐角或钝角(一般适用于图形便于观察的题),然而在二面角比较接近90或者图形放置的位置不适宜时,容易估错.下面介绍一个比较便于理解和使用的方法:若两个法向量的方向同时指向二面角的内部(或外部),则二面角的大小与法向量的夹角互补;若两个法向量的方向一个指向二面角的内部,一个指向外部,则二面角的大小与法向量的夹角相等。

人教版高二必修四数学第二章平面向量试题

人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。

【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。

5、已知点M是 ABC的重⼼,若,求的值。

6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。

2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。

2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。

【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。

平面向量及其应用练习题(有答案) 百度文库

平面向量及其应用练习题(有答案) 百度文库

一、多选题1.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是43.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S =36.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD7.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++D .AB AC BD CD -+-8.下列命题中,结论正确的有( ) A .00a ⨯=B .若a b ⊥,则||||a b a b +=-C .若//AB CD ,则A 、B 、C 、D 四点共线;D .在四边形ABCD 中,若0AB CD +=,0AC BD ⋅=,则四边形ABCD 为菱形. 9.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 10.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅- 12.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-13.已知ABC ∆的面积为32,且2,3b c ==,则A =( ) A .30°B .60°C .150°D .120°14.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量15.题目文件丢失!二、平面向量及其应用选择题16.在ABC 中,若 cos a b C =,则ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等腰或直角三角形17.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥18.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:5 19.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形20.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +21.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .3323B .5323C .7323D .832323.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若222sin sin sin 0A B C +-=,2220a c b ac +--=,2c =,则a =( )A .3B .1C .12D .3224.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =,则边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 25.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若()()(23)a b c a c b ac +++-=+,则cos sin A C +的取值范围为A .33(,)2B .3(,3)2 C .3(,3]2D .3(,3)226.题目文件丢失!27.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 28.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-429.在ABC ∆中,60A ∠=︒,1b =,ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A .3B .3C .3D .30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF的中点,若1AM =,则λμ+的最大值为( )A B .3C .2D 31.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,角A ,B ,C所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且a b =,则cos B 等于( )A .4B .14C .4D .234.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( )A .(-8,1)B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形. 故选: D. 【点睛】 本题主要考查 解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc == 因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确;若ABC的面积是1sin 2ab C =2a =, 由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】 由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=, ∴sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<,故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由与不共线,可分两类考虑:①若,则显然成立;②若,由、、构成三角形的三边可进行判断;D ,由平解析:ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.5.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错; ABC 中,若3b =,60A =︒,三角形面积33S =11sin 3sin 603322S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,13a =,∴2sin sin 603a R A ===︒,3R =,D 错. 故选:AB .【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,,故A 正确;对于B ,,故B 错误;对于C ,,故C 错误;对于D ,,,故D 正确.故选:AD.【点睛】本题考查三角形解析:AD【分析】根据向量的数量积关系判断各个选项的正误.【详解】对于A ,2cos AB AB ACAB AC A AB AC AB AC ,故A 正确; 对于B ,2cos cos CB CB AC CB AC C CB AC C CB AC CB AC ,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BD BD AB ,故C 错误; 对于D ,2cos BDBA BD BA BD ABD BA BD BD BA ,2cos BD BC BDBC BD CBD BC BD BD BC ,故D 正确. 故选:AD.【点睛】 本题考查三角形中的向量的数量积问题,属于基础题.7.BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】 对于选项:,选项不正确;对于选项: ,选项正确;对于选项:,选项不正确;对于选项:选项正确.故选:解析:BD【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案.【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确;对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确;对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.故选:BD【点睛】本题主要考查了向量的线性运算,属于基础题. 8.BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,,故A 错误;对于B ,若,则,所以,,故,即B 正确;对于C ,,则或与共线,故C 错误;对于D ,在四边形中,若解析:BD【分析】根据平面向量的数量积及平行向量共线定理判断可得;【详解】解:对于A ,00a ⨯=,故A 错误;对于B ,若a b ⊥,则0a b ⋅=,所以2222||2a b a b a b a b +=++⋅=+,2222||2a b a b a b a b -=+-⋅=+,故||||a b a b +=-,即B 正确;对于C ,//AB CD ,则//AB CD 或AB 与CD 共线,故C 错误;对于D ,在四边形ABCD 中,若0AB CD +=,即AB DC =,所以四边形ABCD 是平行四边形,又0AC BD ⋅=,所以AC BD ⊥,所以四边形ABCD 是菱形,故D 正确; 故选:BD【点睛】本题考查平行向量的数量积及共线定理的应用,属于基础题.9.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.10.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.11.AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误;对于C 选项,解析:AB【分析】利用平面向量数量积的定义和运算律可判断各选项的正误.【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.故选:AB.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题. 12.BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量与的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为,,且, 所以,即C 结论正确;因为,解析:BCD【分析】由向量的加法减法法则及菱形的几何性质即可求解.【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的,所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确;因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.13.BD【分析】由三角形的面积公式求出即得解.【详解】 因为,所以,所以,因为,所以或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平. 解析:BD【分析】由三角形的面积公式求出sin A =即得解. 【详解】因为13sin 22S bc A ==,所以13222A ⨯=,所以sin A =,因为0180A ︒︒<<, 所以60A =或120°.故选:BD【点睛】本题主要考查三角形面积的应用,意在考查学生对这些知识的理解掌握水平.14.AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论.【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确;温度是数量,只有正负,没有方向,故D 错误.故选:AD【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.15.无二、平面向量及其应用选择题16.A【分析】利用正弦定理边角互化思想化简可得cos 0B =,求得角B 的值,进而可判断出ABC 的形状.【详解】cos a b C =,由正弦定理得sin sin cos A B C =,即()sin cos sin sin cos cos sin B C B C B C B C =+=+,cos sin 0B C ∴=, 0C π<<,sin 0C ∴>,则cos 0B =,0B π<<,所以,2B π=,因此,ABC 是直角三角形. 故选:A.【点睛】本题考查利用正弦定理边角互化判断三角形的形状,同时也考查了两角和的正弦公式的应用,考查计算能力,属于中等题.17.A【分析】直接利用向量的基础知识的应用求出结果.对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确.故选:A.【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.18.A【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.19.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 20.D根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 21.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.22.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.23.B【分析】先根据正弦定理化边得C 为直角,再根据余弦定理得角B ,最后根据直角三角形解得a.【详解】因为222sin sin sin 0A B C +-=,所以222b c 0a +-=, C 为直角,因为2220a c b ac +--=,所以2221cosB ,223a c b B ac π+-===, 因此13a ccosπ==选B.【点睛】 解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.24.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】 0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B c C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 25.A 【分析】先化简已知()()(2a b c a c b ac +++-=+得6B π=,再化简cos sin A C+)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 2a c b B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos sin )66223A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)62A π<+<,故cos sin A C +的取值范围为3)2.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.26.无27.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 28.D 【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3mOC OD =且,,A B D 共线;由AOB ABC O S S DCD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333mOA OB OC +=设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD mm CD∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D 【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系. 29.A 【分析】根据面积公式得到4c =,再利用余弦定理得到13a =,再利用正弦定理得到答案. 【详解】13sin 342ABC S bc A c ∆==== 利用余弦定理得到:2222cos 11641313a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b cA B C== 故213239sin 2sin sin sin 33a b c a A B C A ++===++ 故选A 【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 30.C 【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立. 故选:C . 【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力. 31.A 【分析】由条件()()1sin 2sin sin 2A A B C C A B +-+=--+化简得出1sin sin sin 8A B C =,设ABC ∆的外接圆半径为R ,根据12S ≤≤求得R 的范围,然后利用不等式的性质判断即可.【详解】ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,即()()1sin 2sin sin 2A A B C A B C +-+++-=,即()()1sin 2sin sin 2A ABC A B C +--++-=⎡⎤⎣⎦, 即()12sin cos 2sin cos 2A A ABC +-=,即()()12sin cos 2sin cos 2A B C A B C -++-=,即()()12sin cos cos 4sin sin sin 2A B C B C A B C --+==⎡⎤⎣⎦,1sin sin sin 8A B C ∴=,设ABC ∆的外接圆半径为R ,则2sin sin sin a b cR A B C===, []2111sin 2sin 2sin sin 1,2224S ab C R A R B C R ==⨯⨯⨯=∈,2R ∴≤≤338sin sin sin abc R A B C R ⎡∴=⨯=∈⎣,C 、D 选项不一定正确;对于A 选项,由于b c a +>,()8bc b c abc ∴+>≥,A 选项正确;对于B 选项,()8ab a b abc +>≥,即()8ab a b +>成立,但()ab a b +>成立. 故选:A. 【点睛】本题考查了利用三角恒等变换思想化简、正弦定理、三角形的面积计算公式、不等式的基本性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 32.C 【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可. 【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值, 由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥,令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =2(2)171788m --+==,所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C. 【点睛】思路点睛:该题考查了平面向量的数量积的问题,解题思路如下: (1)先根据题意,设出向量的坐标; (2)根据向量数量积的运算律,将其展开; (3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题. 33.B 【分析】利用正弦定理可得sin 2sin B C =,结合a b =和余弦定理,即可得答案; 【详解】cos cos 2sin cos sin cos 2sin c A a C c C A A C C +=⇒+=,∴sin()2sin sin 2sin A C C B C +=⇒=, ∴2b c =,又a b =,∴22222114cos 12422ba cb B ac b ⋅+-===⋅⋅,故选:B. 【点睛】本题考查正、余弦定理解三角形,考查运算求解能力,求解时注意进行等量代换求值. 34.A 【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形. 【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-=, ∴22222a a c b c ac +-= 220c b ∴-= ,∴c b ABC =,是等腰三角形. 【点睛】本题考查余弦定理的应用问题,是基础题. 35.B 【分析】由向量相等的坐标表示,列方程组求解即可. 【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭,故选B. 【点睛】本题考查了平面向量的坐标运算,属基础题.。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。

2、《平面向量:共线定理》类型题1(题目)

2、《平面向量:共线定理》类型题1(题目)

《平面向量:共线定理》 姓名:一、求向量1、已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=2、若平面向量b 与向量)2,1(-=a 的夹角是o180,且53||=b ,则=b 3、已知a =(-2,5),|b |=2|a |,若b 与a 反向,则b 等于( )A .(-1,25) B .(1,-25) C .(-4,10)D .(4,-10)4、在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c二、求值1、已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若AB 与CD 共线,则|BD |的值等于________.2,)1,0(-=b ,,若c b a //)2(-,则实数=k _____ 3、已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k = 4、已知向量(2,3),(3,)a b λ=-=,若//a b ,则λ等于5、 已知BC CD y x BC AB 且),3,2(),,(),1,6(--===∥DA ,则x +2y 的值为_____6、已知向量OA →=(k,6),OB →=(4,5),OC →=(1-k ,10),且A 、B 、C 三点共线,则k =______.7、已知平面向量(3,1),(,3),//,a b x a b x ==-则等于8、设a 与b 是两个不共线的向量,且向量a b λ+与()2b a --共线,则λ的值等于9、 设向量(12)(23)a b ==,,,,若向量a b λ+与向量(47)c =--,共线,则λ= 10、已知向量e 1、e 2不共线,a =k e 1+e 2,b =e 1+k e 2,若a 与b 共线,则k 等于11、已知向量a 与b 反向,且|a |=r ,|b |=R ,b =λa ,则λ的值等于12、(2009江西)已知向量(3,1)a =,(1,3)b =,(,7)c k =,若()a c -∥b ,则k =13、如果向量a =(k,1)与b =(6,k +1)共线且方向相反,那么k 的值为14、已知向量(21,4)c x →=+,(2,3)d x →=-,若//c d →→,则实数x 的值等于15、已知x 、y 是实数,向量a ,b 不共线,若(x +y -1)a +(x -y )b =0,则x =________,y =_______.16、已知向量a =(4,2),b =(x,3),且a ∥b ,则x 的值是17、已知点A 、B 的坐标分别为(2,-2)、(4,3),向量p 的坐标为(2k -1,7),且p ∥AB →,则k 的值为18、已知a =(2,1),b =(x ,-2)且a +b 与2a -b 平行,则x 等于19、若三点A (-2,-2),B (0,m ),C (n,0)(mn ≠0)共线,则1m +1n的值为_______.二、求关系式或方程1、若|a |=5,b 与a 的方向相反,且|b |=7,则a 与b 的关系式为:a =________b .2、平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC →=αOA →+βOB →,其中α、β∈R 且α+β=1,则点C 的轨迹方程为3、在平面直角坐标系中,O 为原点,已知两点A (1,-2),B (-1,4),若点C 满足OC →=αOA →+βOB →,其中0≤α≤1且α+β=1,则点C 的轨迹方程为________二、单位向量1、a = (5, -12),则||a = ,与a共线的单位向量为2、已知点()1,3A ,()4,1B -则与AB 同方向的单位向量是3、已知a =(5,4),b =(3,2),则与2a -3b 平行的单位向量为________三、向量与几何图形1、设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直2、已知△ABC 的三个顶点,A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,则点P 与△ABC 的关系是 ( ) A. P 在△ABC 的内部 B. P 在△ABC 的外部 C. P 是AB 边上的一个三等分点 D. P 是AC 边上的一个三等分点3、已知|p |=22,|q |=3,p 、q 的夹角为45°,则以a =5p +2q ,b =p -3q 为邻边的平行四边形过a 、b 起点的对角线长为4、在△ABC 所在的平面内有一点P ,满足PA →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比值是 .5、(2009·辽宁文)在平面直角坐标系xOy 中,四边形ABCD 的边AB ∥DC ,AD ∥BC ,已知点A (-2,0),B (6,8),C (8,6),则D 点的坐标为________6、若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为 形7、已知△ABC 的三个顶点A 、B 、C 及平面内一点P 满足PA →+PB →=PC →,下列结论中正确的是 P 在△ABC 的8、已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0 ,那么AO →+→DO =9、在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_______(用e 1,e 2表示).10、已知圆心为O 的⊙O 上三点A 、B 、C ,则向量BO →、OC →、OA →是 的向量 11、已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的12、已知P 、A 、B 、C 是平面内四个不同的点,且PA →+PB →+PC →=AC →,则A 、B 、P 三点的位置关系:四、向量与三角函数1、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角x 为2、已知向量a =⎝⎛⎭⎫sin θ,14,b =(cos θ,1),c =(2,m )满足a ⊥b 且(a +b )∥c ,则实数m =________.3、已知向量),cos ,(sin ),4,3(αα==b a 且a ∥b ,则αtan =。

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

【高中数学】平面向量的应用 典型例题课件 高一下学期数学人教A版(2019)必修第二册

+
.



×




+ ×


=
题型8 三角形的面积公式
.
典例8、[分析计算能力]在△ 中, = ∘ , = ,其面积为 ,则
++
等于(
+ +
A.
思路

B.

)

C.

D.


根据三角形面积公式分析计算,再利用正弦定理和余弦定理解三角形进行
由余弦定理得
即 =
=

+


− = + − × = ,
++
,由于
+ +
=


=



=

.

的值;

(2)若 = , =
思路

,求△

的面积.
本题通过直观图形,利用正、余弦定理进行分析计算.(1)在△ 和△ 中,利用
正弦定理表示出和,从而运算求解比值.(2)直接利用正弦定理解三角形.
题型6 正、余弦定理在几何中的运用
.
典例6、[分析计算能力、观察记忆能力]如图,在△ 中,平分∠,且

− ,从而得

出角的值;(2)先利用余弦定理找出, 的关系,再利用基本不等式放缩,求出 +
的取值范围.
题型4 平面向量基本定理的应用
典例4、[分析计算能力]在△ 中,角, , 的对边分别为, , ,且 +
( + ) − = .

平面向量常见题型汇编(含答案)

平面向量常见题型汇编(含答案)
变式11:如图, 为 的外心, 为钝角, 是边 的中点,则 的值为
解析:外心 在 上的投影恰好为它们的中点,分别设为 ,
所以 在 上的投影为 ,而 恰好为 中点,
故考虑 ,
所以
2.范围问题
例题8: 若过点 的直线 与 相交于 两点,则 的取值范围是_______
解析:本题中因为 位置不断变化,所以不易用数量积定义求解,可考虑利用投影,即过 作直线 的垂线,
,则 , ,
由 , 为中点可得: 为 中点,从而 在 方向上的投影分别为 ,由 即可求得 的范围为
3.综合问题
例题10:已知 为直角三角形 的外接圆, 是斜边 上的高,且 , ,点 为线段 的中点,若 是 中绕圆心 运动的一条直径,则 _________
解析:本题的难点在于 是一条运动的直径,所以很难直接用定义求解。
解析:由 可将三角形放入平面直角坐标系中,建立如图坐标系,
其中 , ,
∵ ∴
∵ ,即 当且仅当 时取等号

变式2:已知点A在线段BC上(不含端点),O是直线BC外一点,且 ,则 的最小值是___________
分析:本题主要考查了不等式,不等式求最值问题,属于中档题。解决此类问题,重要的思路是如何应用均值不等式或其他重要不等式,很多情况下,要根据一正、二定、三取等的思路去思考,本题根据条件构造 ,研究的式子分别加1后变形,即可形成所需条件,应用均值不等式.
解析: ,
变式9:在平面上, , ,若 ,则 的取值范围是
分析:以 为入手点,考虑利用坐标系求解,题目中用字母表示:设 ,则 ,所求 范围即为求 的范围。下一步将题目的模长翻译成 关系,再寻找关于 的不等关系即可
解析:如图以 为轴建立坐标系:设 ,

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑常考问题8平面向量的线性运算及综合应用[真题感悟] 1.(2018·辽宁卷>已知点A(1,3>,B(4,-1>,则与向量A错误!同方向的单位向量为( >.b5E2RGbCAPA.错误!B.错误!p1EanqFDPwC.错误!D.错误!DXDiTa9E3d解读A错误!=(4,-1>-(1,3>=(3,-4>,∴与A错误!同方向的单位向量为错误!=错误!.RTCrpUDGiT答案A 2.(2018·福建卷>在四边形ABCD中,错误!=(1,2>,错误!=(-4,2>,则该四边形的面积为( >5PCzVD7HxAA.错误!B.2错误!C.5D.10解读因为错误!·错误!=0,所以错误!⊥错误!.jLBHrnAILg 故四边形ABCD的面积S=错误!|错误!||错误!|=错误!×错误!×2错误!=5.xHAQX74J0X答案C 3.(2018·湖北卷>已知点A(-1,1>,B(1,2>,C(-2,-1>,D(3,4>,则向量错误!在错误!方向上的投影为( >LDAYtRyKfEA.错误!B.错误!C. -错误!D.-错误!解读错误!=(2,1>,错误!=(5,5>,所以错误!在错误!方向上的投Zzz6ZB2Ltk影为错误!=错误!=错误!=错误!.dvzfvkwMI1答案A 4.(2018·新课标全国Ⅰ卷>已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b.若b·c=0,则t=________.rqyn14ZNXI 解读因为向量a,b为单位向量,又向量a,b的夹角为60°,所以a·b=错误!,由b·c=0,得∴b·c=ta·b+(1-t>·b2=错误!t+(1-t>×12=错误!t+1-t=1-错误!t=0.∴t=2.EmxvxOtOco答案2 5.(2018·山东卷>已知向量错误!与错误!的夹角为120°,且|错误!|=3,|错误!|=2.若A错误!=λ错误!+错误!,且错误!⊥错误!,则实数λ的值为________.SixE2yXPq5解读由错误!⊥错误!知错误!·错误!=0,即错误!·错误!=(λ错误!+错误!>·(错误!-错误!>=(λ-1>错误!·错误!-λA 错误!2+错误!2=(λ-1>×3×2×错误!-λ×9+4=0,解得λ=错误!.6ewMyirQFL答案错误![考题分析]题型选择题、填空题难度低档考查平面向量的有关概念(如单位向量>、数量积的运算(求模与夹角等>.中档在平面几何中,求边长、夹角及数量积等.高档在平面几何中,利用数量积的计算求参数值等.1.向量的概念(1>零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2>长度等于1个单位长度的向量叫单位向量,a的单位向量为±错误!.(3>方向相同或相反的向量叫共线向量(平行向量>.(4>如果直线l的斜率为k,则a=(1,k>是直线l的一个方向向量.(5>|b|cos〈a,b〉叫做b在向量a方向上的投影.2.两非零向量平行、垂直的充要条件设a=(x1,y1>,b=(x2,y2>,(1>若a∥b⇔a=λb(λ≠0>;a∥b⇔x1y2-x2y1=0.(2>若a⊥b⇔a·b=0;a⊥b⇔x1x2+y1y2=0.3.平面向量的性质(1>若a=(x,y>,则|a|=错误!=错误!.(2>若A(x1,y1>,B(x2,y2>,则|A错误!|=错误!.kavU42VRUs (3>若a=(x1,y1>,b=(x2,y2>,θ为a与b的夹角,则cosθ=错误!=错误!.y6v3ALoS89 4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量错误!=错误!-错误!(其中O为我们所需要的任何一个点>,这个法则就是终点向量减去起点向量.M2ub6vSTnP 5.根据平行四边形法则,对于非零向量a,b,当|a+b|=|a-b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a+b|=|a-b|等价于向量a,b互相垂直,反之也成立.0YujCfmUCw 6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.eUts8ZQVRd热点一平面向量的线性运算【例1】(2018·江苏卷>设D,E分别是△ABC的边AB,BC上的点,AD=错误!AB,BE=错误!BC.若错误!=λ1错误!+λ2错误!(λ1,λ2为实数>,则λ1+λ2的值为________.sQsAEJkW5T解读如图,错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!>=-错误!错误!+错误!错误!,则λ1=-错误!,λ2=错误!,λ1+λ2=错误!.GMsIasNXkA答案错误![规律方法]在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1>题就是把向量错误!用TIrRGchYzg 错误!,错误!表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.7EqZcWLZNX【训练1】(2018·天津卷>在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若错误!·错误!=1,则AB的长为________.lzq7IGf02E 解读在平行四边形ABCD中,取AB的中点F,则错误!=错误!,∴错误!=错误!=错误!-错误!错误!,又错误!=错误!+错误!,zvpgeqJ1hk ∴错误!·错误!=(错误!+错误!>·(错误!-错误!错误!>=错误!2-错误!错误!·错误!+错误!·错误!-错误!错误!2=|错误!|2+错误!|错误!||错误!|·cos60°-错误!|错误!|2=1+错误!×错误!|错误!|-错误!|错误!|2=1.NrpoJac3v1∴错误!|错误!|=0,又|错误!|≠0,∴|错误!|=错误!.1nowfTG4KI答案错误!热点二平面向量的数量积【例2】若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量b与a+b的夹角为( >.A.错误!B.错误!C.错误!D.错误!fjnFLDa5Zo 解读法一由已知|a+b|=|a-b|,两边平方,整理可得a·b=0.①由已知|a+b|=2|a|,两边平方,整理可得a2+b2+2a·b=4a2.②把①代入②,得b2=3a2,即|b|=错误!|a|.③而b·(a+b>=b·a+b2=b2,故cos〈b,a+b〉=错误!=tfnNhnE6e5错误!=错误!=错误!.HbmVN777sL又〈b,a+b〉∈[0,π],所以〈b,a+b〉=错误!.法二如图,作O错误!=a,O错误!=b,以OA,OB为邻边作平行四边形OACB,则O错误!=a+b,B错误!=a-b.V7l4jRB8Hs 由|a+b|=|a-b|,可知|O错误!|=|B错误!|,所以平行四边形OACB是矩形.又|a+b|=|a-b|=2|a|,可得|O错误!|=|B错误!|=2|O错误!|,故在Rt△AOB中,|错误!|=错误!83lcPA59W9=错误!|O错误!|,故tan∠OBA=错误!=错误!,所以∠BOC=∠OBA=错误!.而〈b,a+b〉=∠BOC=错误!.mZkklkzaaP答案A [规律方法]求解向量的夹角,关键是正确求出两向量的数量积与模.本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.AVktR43bpw 【训练2】(2018·湖南卷>已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是( >.ORjBnOwcEd A.[错误!-1,错误!+1] B.[错误!-1,错误!+2]2MiJTy0dTTC.[1,错误!+1] D.[1,错误!+2]解读由a,b为单位向量且a·b=0,可设a=(1,0>,b=(0,1>,又设c=(x,y>,代入|c-a-b|=1得(x-1>2+(y-1>2=1,又|c|=错误!,故由几何性质得错误!-1≤|c|≤错误!+1,即错误!-1≤|c|≤错误!+1.答案A热点三平面向量与三角函数的综合【例3】已知向量m=(sinx,-1>,n=(cosx,3>.(1>当m∥n时,求错误!的值;(2>已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,错误!c=2asin(A+B>,函数f(x>=(m+n>·m,求f错误!的取值范围.gIiSpiue7A解(1>由m∥n,可得3sinx=-cosx,于是tanx=-错误!,∴错误!=错误!=错误!=-错误!.uEh0U1Yfmh(2>在△ABC中A+B=π-C,于是sin(A+B>=sinC,由正弦定理,得错误!sinC=2sinAsinC,∵sinC≠0,∴sinA=错误!.又△ABC为锐角三角形,∴A=错误!,于是错误!<B<错误!.∵f(x>=(m+n>·m=(sinx+cosx,2>·(sinx,-1>=sin2x+sinxcosx-2=错误!+错误!sin2x-2=错误!sin错误!-错误!,IAg9qLsgBX ∴f错误!=错误!sin错误!-错误!=错误!sin2B-错误!.由错误!<B<错误!得错误!<2B<π,∴0<sin2B≤1,-错误!<错误!sin2B-错误!≤错误!-错误!,WwghWvVhPE即f(B+错误!>∈错误!.asfpsfpi4k [规律方法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.ooeyYZTjj1【训练3】(2018·江苏卷>已知向量a=(cosα,sinα>,b=(cosβ,sinβ>,0<β<α<π.BkeGuInkxI(1>若|a-b|=错误!,求证:a⊥b;(2>设c=(0,1>,若a+b=c,求α,β的值.(1>证明由|a-b|=错误!,即(cosα-cosβ>2+(sinα-sinβ>2=2,整理得cosαcosβ+sinαsinβ=0,即a·b=0,因此a⊥b.PgdO0sRlMo(2>解由已知条件得错误!3cdXwckm15 cosβ=-cosα=cos(π-α>,由0<α<π,得0<π-α<π,又0<β<π,故β=π-α.则sinα+sin (π-α>=1,即sinα=错误!,故α=错误!或α=错误!.当α=错误!时,β=错误!(舍去>h8c52WOngM 当α=错误!时,β=错误!.审题示例(四> 突破有关平面向量问题的思维障碍图1解读法一设直角三角形ABC的两腰长都为4,如图1所示,以C为原点,CA,CB所在的直线分别为x轴,y轴,建立平面直角坐标系,则A(4,0>,B(0,4>,因为D为AB的中点,所以D(2,2>.因为P为CD的中点,所以P(1,1>.故|PC|2=12+12=2,|PA|2=(4-1>2+(0-1>2=10,|PB|2=(0-1>2+(4-1>2=10,所以错误!=错误!=10.v4bdyGious图2法二如图2所示,以C为坐标原点,CA,CB所在的直线分别作为x轴,y轴建立平面直角坐标系.设|CA|=a,|CB|=b,则A(a,0>,B(0,b>,则D错误!,P错误!,J0bm4qMpJ9∴|PC|2=错误!2+错误!2=错误!+错误!,XVauA9grYP|PB|2=错误!2+错误!2=错误!+错误!,bR9C6TJscw|PA|2=错误!2+错误!2=错误!+错误!,pN9LBDdtrd 所以|PA|2+|PB|2=10错误!=10|PC|2,DJ8T7nHuGT∴错误!=10.法三如图3所示,取相互垂直的两个向量C错误!=a,C错误!=b 作为平面向量的基向量,显然a·b=0.QF81D7bvUA图3则在△ABC中,B错误!=a-b,因为D为AB的中点,所以C错误!=错误!(a+b>.4B7a9QFw9h 因为P为CD的中点,所以P错误!=-错误!C错误!=-错误!×错误!(a+b>=-错误!(a+b>.在△CBP中,P错误!=P错误!+C 错误!=-错误!(a+b>+b=-错误!a+错误!b,在△CAP中,P 错误!=P错误!+C错误!=-错误!(a+b>+a=错误!a-错误!b.所以|P错误!|2=错误!2=错误!(a2+b2+2a·b>=错误!(|a|2+|b|2>,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2.故错误!=错误!=10.ix6iFA8xoX答案D 方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征.wt6qbkCyDE [针对训练]在△ABC中,已知BC=2,错误!·错误!=1,则△ABC的面积S△ABC最大值是________.Kp5zH46zRk解读以线段BC所在直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,则B(-1,0>,C(1,0>.设A(x,y>,则错误!=(-1-x,-y>,错误!=(1-x,-y>,于是错误!·错误!=(-1-x>(1-x>+(-y>(-y>=x2-1+y2.Yl4HdOAA61由条件错误!·错误!=1知x2+y2=2,ch4PJx4BlI这表明点A在以原点为圆心,错误!为半径的圆上.当OA⊥BC时,△ABC面积最大,即S△ABC=错误!×2×错误!=错误!.(建议用时:60分钟>1.(2018·陕西卷>设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( >.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解读由|a||b||cos〈a,b〉|=|a||b|,则有cos〈a,b〉=±1.即〈a,b〉=0或π,所以a∥b.由a∥b,得向量a与b同向或反向,所以〈a,b〉=0或π,所以|a·b|=|a||b|.qd3YfhxCzo答案C 2.已知向量a与b的夹角为120°,|a|=3,|a+b|=错误!则|b|等于( >.E836L11DO5A.5B.4C.3D.1解读向量a与b的夹角为120°,|a|=3,|a+b|=错误!,则a·b=|a||b|·cos120°=-错误!|b|,|a+b|2=|a|2+2a·b+|b|2.所以13=9-3|b|+|b|2,则|b|=-1(舍去>或|b|=4.答案B 3.(2018·辽宁一模>△ABC中D为BC边的中点,已知A错误!=a,A错误!=b则在下列向量中与A错误!同向的向量是( >.S42ehLvE3MA.错误!+错误!B.错误!-错误!501nNvZFisC.错误!D.|b|a+|a|b解读∵A错误!=错误!(A错误!+A错误!>=错误!(a+b>,jW1viftGw9∴向量错误!与向量A错误!是同向向量.xS0DOYWHLP答案C 4.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( >.LOZMkIqI0wA.30°B.60°C.120°D.150°解读因为a+b+c=0,所以c=-(a+b>.所以|c|2=(a+b>2=a2+b2+2a·b=2+2cos60°=3.所以|c|=错误!.ZKZUQsUJed 又c·a=-(a+b>·a=-a2-a·b=-1-cos60°=-错误!,设向量c与a的夹角为θ,则cosθ=错误!=错误!=-错误!.又0°≤θ≤180°,所以θ=150°.dGY2mcoKtT答案D5.(2018·安徽卷>在平面直角坐标系中,O是坐标原点,两定点A,B满足|错误!|=|错误!|=错误!·错误!=2,则点集{P|错误!=λ错误!+μ错误!,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( >.rCYbSWRLIA A.2错误!B.2错误!C.4错误!D.4错误!FyXjoFlMWh 解读由|错误!|=|错误!|=错误!·错误!=2,知cos∠AOB=错误!,又0≤∠AOB≤π,则∠AOB=错误!,又A,B是两定点,可设A(错误!,1>,B(0,2>,P(x,y>,由错误!=λ错误!+μ错误!,可得错误!⇒错误!TuWrUpPObX 因为|λ|+|μ|≤1,所以错误!+错误!≤1,当错误!7qWAq9jPqE 由可行域可得S0=错误!×2×错误!=错误!,所以由对称性可知点P所表示的区域面积S=4S0=4错误!,故选D.llVIWTNQFk答案D 6.(2018·新课标全国Ⅱ卷>已知正方形ABCD的边长为2,E为CD的中点,则错误!·错误!=________.yhUQsDgRT1解读由题意知:错误!·错误!=(错误!+错误!>·(错误!-错误!>=(错误!+错误!错误!>·(错误!-错误!>=错误!2-错误!错误!·错误!-错误!错误!2=4-0-2=2.MdUZYnKS8I答案2 7.(2018·江西卷>设e1,e2为单位向量,且e1,e2的夹角为错误!,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.09T7t6eTno 解读a在b方向上的射影为|a|cos〈a,b〉=错误!.∵a·b=(e1+3e2>·2e1=2e错误!+6e1·e2=5.|b|=|2e1|=2.∴错误!=错误!.答案错误! 8.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P 是腰DC上的动点,则|P错误!+3P错误!|的最小值为______.e5TfZQIUB5解读建立如图所示的直角坐标系,设DC=m,P(0,t>,t∈[0,m],由题意可知,A(2,0>,B(1,m>,P错误!=(2,-t>,P错误!=(1,m-t>,P错误!+3P错误!=(5,3m-4t>,|P错误!+3P 错误!|=错误!≥5,当且仅当t=错误!m时取等号,即|P错误!+3P错误!|的最小值是5.s1SovAcVQM答案59.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为错误!,|OB|=2,设∠AOB=θ,θ∈错误!.GXRw1kFW5s(1>用θ表示点B的坐标及|OA|;(2>若tanθ=-错误!,求O错误!·O错误!的值.UTREx49Xj9解(1>由题意,可得点B的坐标为(2cosθ,2sinθ>.在△ABO中,|OB|=2,∠BAO=错误!,∠B=π-错误!-θ=错误!-θ.由正弦定理,得错误!=错误!,8PQN3NDYyP即|OA|=2错误!sin错误!.mLPVzx7ZNw(2>由(1>,得O错误!·O错误!=|O错误!||O错误!|cosθAHP35hB02d=4错误!sin错误!cosθ.NDOcB141gT因为tanθ=-错误!,θ∈错误!,1zOk7Ly2vA所以sinθ=错误!,cosθ=-错误!.又sin错误!=sin错误!cosθ-cos错误!sinθ=错误!×错误!-错误!×错误!=错误!,fuNsDv23Kh 故O错误!·O错误!=4错误!×错误!×错误!=-错误!.tqMB9ew4YX 10.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m =(a,b>,n=(sinB,sinA>,p=(b-2,a-2>.HmMJFY05dE(1>若m∥n,求证:△ABC为等腰三角形;(2>若m⊥p,边长c=2,C=错误!,求△ABC的面积.(1>证明因为m∥n,所以asinA=bsinB,即a·错误!=b·错误!(其中R是△ABC外接圆的半径>,所以a=b.所以△ABC为等腰三角形.ViLRaIt6sk(2>解由题意,可知m·p=0,即a(b-2>+b(a-2>=0,所以a+b =ab,由余弦定理,知4=c2=a2+b2-2abcos错误!=(a+b>2-3ab,即(ab>2-3ab-4=0,所以ab=4或ab=-1(舍去>.9eK0GsX7H1所以S△AB C=错误!absinC=错误!×4×sin错误!=错误!.naK8ccr8VI11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π>,C点坐标为(-2,0>,平行四边形OAQP的面积为S.B6JgIVV9ao(1>求O错误!·O错误!+S的最大值;P2IpeFpap5(2>若CB∥OP,求sin错误!的值.3YIxKpScDM解(1>由已知,得A(1,0>,B(0,1>,P(cos θ,sin θ>,因为四边形OAQP是平行四边形,所以O错误!=O错误!+O错误!=(1,0>+(cosθ,sinθ>gUHFg9mdSs=(1+cosθ,sinθ>.所以O错误!·O错误!=1+cos θ.uQHOMTQe79又平行四边形OAQP的面积为S=|O错误!|·|O错误!|sinθ=sinθ,IMGWiDkflP 所以O错误!·O错误!+S=1+cosθ+sinθ=错误!sin错误!+1.WHF4OmOgAw又0<θ<π,所以当θ=错误!时,O错误!·O错误!+S的最大值为错误!+1.aDFdk6hhPd(2>由题意,知C错误!=(2,1>,O错误!=(cosθ,sinθ>,ozElQQLi4T因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=错误!,cosθ=错误!,所以sin2θ=2sinθcosθ=错误!,cos2θ=cos2θ-sin2θ=错误!.CvDtmAfjiA 所以sin错误!=sin2θcos错误!-cos2θsin错误!=错误!×错误!-错误!×错误!=错误!.QrDCRkJkxh申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中复习-平面向量1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=,=,则=()A.+B.﹣+C.﹣D.﹣﹣2.(2016•朔州模拟)点O为△ABC内一点,且满足,设△OBC与△ABC的面积分别为S1、S2,则=()A.B.C.D.3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23) D.(4003,7,31)4.(2013秋•和平区期末)已知向量,若存在向量,使得,则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)D.(2,﹣5)5.(2016•吉林三模)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A 的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8 B.﹣4 C.4 D.86.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则=()A.﹣4 B.4 C.﹣8 D.87.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()A.4 B.2C.2 D.8.(2016•合肥二模)点G为△ABC的重心,设=,=,则=()A.﹣B.C.﹣2D.29.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则=()B.C.D.A.10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足++=,则点O为△ABC的()A.外心B.内心C.重心D.垂心11.(2016•河南模拟)如图,在△ABC中,已知,则=()B.C.D.A.12.(2016•衡水模拟)如图,在△ABC中,,P是BN上的一点,若,则实数m的值为()A.B.C.1 D.313.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣=(3,1),=(x,3),若(2+)∥,则x=()A.﹣2 B.﹣4 C.﹣3 D.﹣114.(2016•嘉峪关校级模拟)已知向量为非零向量,,则夹角为()A.B.C.D.15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.217.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.巩固与练习:1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.2.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,,则向量可以表示为()B.C.D.A.4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A.B.C.D.5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()A.B.C.D.7.(2016•湖南模拟)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()A.B.4C.4D.4B.10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且=2,点F是BD上靠近D的四等分点,则()A.=﹣﹣B.=﹣C.=﹣D.=﹣﹣11.(2015•厦门校级模拟)如图,,,,,若m=,那么n=()B.C.D.A.12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t答案:1.(2016•潍坊一模)在△ABC中,PQ分别是AB,BC的三等分点,且AP=AB,BQ=BC,若=,=,则=()A.+B.﹣+C.﹣D.﹣﹣【解答】解:=.∵AP=AB,BQ=BC,∴==,==.∴=.故选:A.2.(2016•朔州模拟)点O为△ABC内一点,且满足,设△OBC与△ABC的面积分别为S1、S2,则=()A.B.C.D.【解答】解:延长OC到D,使OD=4OC,延长CO交AB与E,∵O为△ABC内一点,且满足,∴=,∴O为△DABC重心,E为AB中点,∴OD:OE=2:1,∴OC:OE=1:2,∴CE:OE=3:2,∴S△AEC=S△BEC,S△BOE=2S△BOC,∵△OBC与△ABC的面积分别为S1、S2,∴=.故选:B.3.(2009春•成都期中)已知点A(2008,5,12),B(14,2,8),将向量按向量=(2009,4,27)平移,所得到的向量坐标是()A.(1994,3,4)B.(﹣1994,﹣3,﹣4)C.(15,1,23) D.(4003,7,31)【解答】解:∵A(2008,5,12),B(14,2,8),∴=(﹣1994,﹣3,﹣4),又∵按向量平移后不发生变化∴平移后=(﹣1994,﹣3,﹣4),故选B4.(2013秋•和平区期末)已知向量,若存在向量,使得,则向量为()A.(﹣3,2)B.(4,3)C.(3,﹣2)D.(2,﹣5)【解答】解:设,∵,,∴,解得x=3,y=﹣2,∴=(3,﹣2).故选:C.5.(2016•吉林三模)函数(1<x<4)的图象如图所示,A为图象与x轴的交点,过点A 的直线l与函数的图象交于B,C两点,则(+)•=()A.﹣8 B.﹣4 C.4 D.8【解答】解:由题意可知B、C两点的中点为点A(2,0),设B(x1,y1),C(x2,y2),则x1+x2=4,y1+y2=0∴(+)•=((x1,y1)+(x2,y2))•(2,0)=(x1+x2,y1+y2)•(2,0)=(4,0)•(2,0)=8故选D.6.(2016•商洛模拟)在等腰△ABC中,BC=4,AB=AC,则=()A.﹣4 B.4 C.﹣8 D.8【解答】解:在等腰△ABC中,BC=4,AB=AC,则=cosB=|BC|2=8.故选:D.7.(2015•房山区一模)向量=(2,0),=(x,y),若与﹣的夹角等于,则||的最大值为()A.4 B.2C.2 D.【解答】解:由向量加减法的几何意义可得,(如图),=,=∠OBA故点B始终在以OA为弦,∠OBA=为圆周角的圆弧上运动,且等于弦OB的长,由于在圆中弦长的最大值为该圆的直径2R,在三角形AOB中,OA==2,∠OBA=由正弦定理得,解得2R=4,即||的最大值为4故选A8.(2016•合肥二模)点G为△ABC的重心,设=,=,则=()A.﹣B.C.﹣2D.2【解答】解:由题意知,+=,即+=,故=﹣2=﹣2,故选C.9.(2016•眉山模拟)如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则=()A.B.C.D.【解答】解:∵AP:PB=3:2,∴,又=,∴==+=+,故选:B.10.(2016春•东营校级期中)点O是△ABC所在平面上一点,且满足++=,则点O为△ABC的()A.外心B.内心C.重心D.垂心【解答】解:作BD∥OC,CD∥OB,连结OD,OD与BC相交于G,则BG=CG,(平行四边形对角线互相平分),∴+=,又∵++=,可得:+=﹣,∴=﹣,∴A,O,G在一条直线上,可得AG是BC边上的中线,同理:BO,CO的延长线也为△ABC的中线.∴O为三角形ABC的重心.故选:C.11.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.【解答】解:∵=,∴由已知,得=3()化简=+故选:C12.(2016•衡水模拟)如图,在△ABC中,,P是BN上的一点,若,则实数m的值为()A.B.C.1 D.3【解答】解:∵,∴设=λ,(λ>0)得=+∴m=且=,解之得λ=8,m=故选:A13.(2016•焦作二模)在平面直角坐标系中,已知向量=(1,2),﹣=(3,1),=(x,3),若(2+)∥,则x=()A.﹣2 B.﹣4 C.﹣3 D.﹣1【解答】解:由=(1,2),﹣=(3,1),得=(1,2)﹣(3,1)=(﹣2,1),则,∴2+=(2,4)+(﹣4,2)=(﹣2,6),,又(2+)∥,∴6x+6=0,得x=﹣1.故选:D.14.(2016•嘉峪关校级模拟)已知向量为非零向量,,则夹角为()A.B.C.D.【解答】解:;∴,;∴;∴;∴;∴=;∴夹角为.故选:B.15.(2016•南昌校级模拟)△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上的一点(包括端点),则•的取值范围是()A.[1,2]B.[0,1]C.[0,2]D.[﹣5,2]【解答】解:∵D是边BC上的一点(包括端点),∴可设=+(0≤λ≤1).∵∠BAC=120°,AB=2,AC=1,∴=2×1×cos120°=﹣1.∴•=[+]•=﹣+=﹣(2λ﹣1)﹣4λ+1﹣λ=﹣7λ+2.∵0≤λ≤1,∴(﹣7λ+2)∈[﹣5,2].∴•的取值范围是[﹣5,2].故选:D.16.(2016•潮南区模拟)已知平面向量与的夹角为,且||=1,|+2|=2,则||=()A.1 B.C.3 D.2【解答】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D.17.(2016•西宁校级模拟)已知||=1,||=,且⊥(﹣),则向量与向量的夹角为()A.B.C.D.【解答】解:∵;;∴;∴;∴向量与的夹角为.故选B.巩固与练习:1.(2011•丰台区一模)已知平面向量,的夹角为60°,||=4,||=3,则|+|等于()A.37 B. C.13 D.【解答】解:由题意得•=||•||cos60°=4×3×=6,∴||====,故选B.2.(2016•河南模拟)如图,在△ABC中,已知,则=()A.B.C.D.【解答】解:∵=,∴由已知,得=3()化简=+故选:C3.(2016春•成都校级月考)如图,在△ABC中,线段BE,CF交于点P,设向量,,则向量可以表示为()A.B.C.D.【解答】解:因为F,P,C三点共线,∴存在实数λ,使=,由已知,,所以,同理=,∴解得所以;故选C.4.(2016•抚顺一模)已知向量||=4,||=3,且(+2)(﹣)=4,则向量与向量的夹角θ的值为()A.B.C.D.【解答】解:向量||=4,||=3,且(+2)(﹣)=4,∴﹣2+•=4,即16﹣2×9+4×3×cosθ=4,解得cosθ=;又θ∈[0,π],∴θ=;即向量与向量的夹角θ的值为.故选:B.5.(2015春•临沂期末)如图,在△ABC中,D为边BC的中点,则下列结论正确的是()A.+=B.﹣=C.+=D.﹣=【解答】解:由已知及图形得到,故A错误;;故B错误;;故C 正确;故D 错误;故选C.6.(2015•娄星区模拟)如图,正方形中,点E是DC的中点,点F是BC的一个三等分点.那么=()A.B.C.D.【解答】解:∵,∴,∵,∴,∵,∴==,∵=,∵,∴=.故选D.7.(2016•湖南模拟)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.【解答】解:过点c做CE∥OA CF∥OB设OC长度为a有△CEB∽△AFC∴(1)∵∠AOC=30°则CF==OEOF=CE=∴BE=2﹣AF=2﹣代入(1)中化简整理可解:a=OF===OA OE==OB,∴故选B.8.(2016•重庆校级模拟)若||=2,||=4且(+)⊥,则与的夹角是()A.B.C.D.﹣【解答】解:设与的夹角是θ.∵||=2,||=4且(+)⊥,∴(+)•==22+2×4cosθ=0,∴cosθ=.∵θ∈[0,π],∴.故选:A.9.(2015春•昆明校级期中)如图,点M是△ABC的重心,则为()A.B.4C.4D.4【解答】解:设AB的中点为F∵点M是△ABC的重心∴.故为C10.(2015秋•厦门校级期中)已知平行四边形ABCD的对角线分别为AC,BD,且=2,点F是BD上靠近D的四等分点,则()A.=﹣﹣B.=﹣C.=﹣D.=﹣﹣【解答】解:∵=2,点F是BD上靠近D的四等分点,∴=,=,∴==+,∵,,∴=+=﹣.故选:C.11.(2015•厦门校级模拟)如图,,,,,若m=,那么n=()A.B.C.D.【解答】解:∵,故C为线段AB的中点,故==2,∴=,由,,∴,,∴=,∵M,P,N三点共线,故=1,当m=时,n=,故选:C12.(2016•嘉兴一模)如图,B、D是以AC为直径的圆上的两点,其中AB=,AD=,则•=()A.1 B.2 C.t D.2t【解答】解:连结BC,CD.则AD⊥CD,AB⊥BC.∴=AB×AC×cos∠BAC=AB2=t+1.=AD×AC×cos∠CAD=AD2=t+2.∵,∴•===1.故选:A.。

相关文档
最新文档